From bee4f571a87ae9e48721b4ee9f3e152877ba0b93 Mon Sep 17 00:00:00 2001 From: elisno Date: Thu, 8 Feb 2024 05:22:44 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@55409591737a9cc39ab0da67e9cf10ceac579900 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../cleanlab/datalab/datalab.doctree | Bin 175535 -> 175535 bytes .../guide/custom_issue_manager.doctree | Bin 29191 -> 29191 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 5977 -> 5977 bytes .../guide/issue_type_description.doctree | Bin 104403 -> 104403 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 102267 -> 102267 bytes .../datalab/internal/data_issues.doctree | Bin 76884 -> 76884 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 43741 -> 43741 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4488 -> 4488 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 78620 -> 78620 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68053 -> 68053 bytes .../internal/issue_manager/index.doctree | Bin 5947 -> 5947 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88321 -> 88321 bytes .../internal/issue_manager/noniid.doctree | Bin 90559 -> 90559 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 75294 -> 75294 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 120182 -> 120182 bytes .../cleanlab/datalab/internal/report.doctree | Bin 33614 -> 33614 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5316 -> 5316 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4492 -> 4492 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/outlier.doctree | Bin 17168 -> 17168 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 103926 -> 103926 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 164172 -> 164172 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 91933 -> 91933 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 52029 -> 52029 bytes .../cleanlab/segmentation/summary.doctree | Bin 68105 -> 68105 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79104 -> 79104 bytes master/.doctrees/environment.pickle | Bin 16569652 -> 16755473 bytes master/.doctrees/index.doctree | Bin 42561 -> 42561 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../.doctrees/nbsphinx/tutorials/audio.ipynb | 1268 +++++----- .../tutorials/datalab/datalab_advanced.ipynb | 326 +-- .../datalab/datalab_quickstart.ipynb | 130 +- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 1840 +++++++------- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 690 +++--- .../.doctrees/nbsphinx/tutorials/image.ipynb | 1958 +++++++-------- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 586 +++-- .../nbsphinx/tutorials/regression.ipynb | 162 +- .../nbsphinx/tutorials/segmentation.ipynb | 1404 +++++------ .../nbsphinx/tutorials/tabular.ipynb | 130 +- .../.doctrees/nbsphinx/tutorials/text.ipynb | 164 +- .../tutorials/token_classification.ipynb | 169 +- master/.doctrees/tutorials/audio.doctree | Bin 336518 -> 336520 bytes .../datalab/datalab_advanced.doctree | Bin 199746 -> 199746 bytes .../datalab/datalab_quickstart.doctree | Bin 142172 -> 142172 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3120 -> 3120 bytes .../tutorials/datalab/tabular.doctree | Bin 116812 -> 116812 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 292050 -> 292050 bytes .../tutorials/dataset_health.doctree | Bin 330431 -> 330431 bytes master/.doctrees/tutorials/faq.doctree | Bin 196291 -> 196291 bytes master/.doctrees/tutorials/image.doctree | Bin 488212 -> 500006 bytes .../tutorials/indepth_overview.doctree | Bin 220554 -> 220554 bytes master/.doctrees/tutorials/index.doctree | Bin 3232 -> 3232 bytes .../tutorials/multiannotator.doctree | Bin 137376 -> 137376 bytes .../multilabel_classification.doctree | Bin 61606 -> 61606 bytes .../tutorials/object_detection.doctree | Bin 140249 -> 140249 bytes master/.doctrees/tutorials/outliers.doctree | Bin 171139 -> 259497 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 80806 -> 80806 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 3194385 -> 3224144 bytes master/.doctrees/tutorials/tabular.doctree | Bin 59790 -> 59790 bytes master/.doctrees/tutorials/text.doctree | Bin 93598 -> 93598 bytes .../tutorials/token_classification.doctree | Bin 194684 -> 199549 bytes .../datalab/internal/issue_finder.html | 29 +- .../internal/issue_manager/noniid.html | 6 +- .../internal/issue_manager_factory.html | 32 +- master/_sources/tutorials/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- master/_sources/tutorials/tabular.ipynb | 2 +- master/_sources/tutorials/text.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/audio.html | 2 +- master/tutorials/audio.ipynb | 1268 +++++----- .../tutorials/datalab/datalab_advanced.html | 6 +- .../tutorials/datalab/datalab_advanced.ipynb | 326 +-- .../datalab/datalab_quickstart.ipynb | 130 +- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 18 +- master/tutorials/datalab/text.ipynb | 1840 +++++++------- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 8 +- master/tutorials/faq.ipynb | 690 +++--- master/tutorials/image.html | 385 +-- master/tutorials/image.ipynb | 1958 +++++++-------- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 698 +++++- master/tutorials/outliers.ipynb | 586 +++-- master/tutorials/regression.ipynb | 162 +- master/tutorials/segmentation.html | 2121 +++++++++-------- master/tutorials/segmentation.ipynb | 1404 +++++------ master/tutorials/tabular.ipynb | 130 +- master/tutorials/text.html | 2 +- master/tutorials/text.ipynb | 164 +- master/tutorials/token_classification.html | 80 +- master/tutorials/token_classification.ipynb | 169 +- versioning.js | 2 +- 163 files changed, 12130 insertions(+), 10573 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 78039c467..ebcaa394f 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 4e5d913a780751bc72c2effa411b9ce8 +config: 827cdadfd9bbfed7b2c4f18c442a8c73 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 13601831fa79e59eff87a3e5501e7bce263c2bf9..67136fc67700050556034cbbc2e693e0c459d6d6 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^XWk!*CN>!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO YVrr6!X^MsE<_^XHPBOG{axZ5D09QF9X8-^I delta 117 zcmdlWxj}M6IHO@OjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OS delta 1464 zcmX^3o8{ndmJRWYhJ{HMIYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWf0QFtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= O4cbURyD(`?J!rB34ikFe;zDw1CrO9Yk`Dr*JgSo!d7_5Es!w%Qnvu48F*Xvhc?cBx~au}>W z&&602IS7`P3Ke!AEt+c5m<=X>PG@159Lr*NVe+P(J%Y()+3X`sj_zVpFgc#bs$ufW zd=>%7B!}b)3^j^a6oCHO9`tSx`vQ}F`&bW5ZYg0WVX}8Wn}*2)hgci91{$fw#l99` zd%lt8&#>WYK)ih$cT@H~c6kIakOOvserEBuGECfH^d{2j{W0zb9zWKkZ5ceP<*#<) z6*$CfGq=&YkC%eiv{i7CaRIb`nup(K|abz?8pQx1P3zT}~t4NnR@$`VA2|ZKIrf9J; zfjkl|8Y*2(qQ@Qz%4rZRg~Fjgki>`fNvU4vn?K4PI-LmjFG(0}#1eZ&spjlq%L3(0HcoXjS#65aw9 zG{W-(>6o_5xV89@quQyZVqh-Kn!AkPHxJD9ti)jLn;%xV=AKmp=DuFL3~OiCN0Gx| z_IWnOqR2rowN#+6`)JWro5n0K`ExqcU~(*r-G#{;R`v)cmpa%-m>k`~CSh_sm({@J zmw7A-PQc{qy=)35M-H%da1At3>tXga zAKUXyGRjz(5YzdHR{f+e7kK=bleTH_td76h zj#pq4GcDXgYaU(#Uejh7Hj*x zoRn;O5KIUU5F`Gs)XkpnDUgrJiL~J@-OYq?=w1)Y0ZWDKY@fc`8(x4*~5N{pG zd=YmlIrLUl#?(|@gmiJzMy7Jbnt~O{f{r1Z@&806G?%Y5AYVng)QhM46uSs!st$@4 zDdWf^(X=6Ha}HS+W)iWmU#+8wN@b!AY^Lc@PjOvQZeR}0BwKJ0NKZ1r^OS-M8Qe}q ah3Z8cR=bO2`ZI@;7n?unB!BeBoWB8aUPy%i diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 80c1425940cf96734f86cc254b2bf0fd85184fee..d1febf6bbd6e801e002bbe050962f55c8568ec38 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_hB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL2S3RYhL delta 3571 zcmX@QLh$Gc!3~~_hJ{HMIYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWf1<74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL2T&4J1Q diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 6feaad9104457b237c3788e5f2d4063f1a38f483..9fa9c780a896c1407badf25112c619bb0fd8ce54 100644 GIT binary patch delta 4242 zcmbuC-%C?r7{__vnb@W{Fl$}xVj5&up5vqyX(A`k>gZAGz*khJom+q~$eZaQZ~_vgDm;PZT*@AJHS_n!Gp>-?tm z#cAg5@V9k&W4%hL->djqd}ZEfnIieUo=DUmlcGvgX^}ip>8Rq1C@r4yn6I4r*cSj( zD-xBIw4BH`Z!}OfX|b!L)=r2HP`}NYg`uk4?jXtT+k@e>Q&^e@qQk{WwCUmE9NH?8 zCCseqxVlwhQ(rfp0xR^}_S0xnH`>23^oiyM?3@MCI~$BB9BkgO_r*psvEOfP&%{0z z_knhj+tJ)4U56^UGIF>(5#TF_>1k6l91q4ASIPW?|VP8|~~fR!TC zOQ><-!5hGsZg%hE_bA%+NdU2Bb0zwsx>d`A5M1}T|ZwPL86OxelxZTppZT(~FMqg?Zx zrgL@T+*3B=G7k&)I(rCASkt*0(eRGF1h#6xvbOz^S;golRtM_;Rk)gB^}w=>9zr7U zl~sfKkU03A6&IKvxpwzAYZ9x!*f{Wp6*^qx#H2Oa2Pe-HRSuqwEKN7p2)#n(0ZcCo zwVZo_%*McE5j@6A0JHvk4vC*({uaBSLz>Py#o1cEkZ(S=AvX$SX>%93Lrf_=0p$N* zMd(%TVc&c~vC_kF%4Q*dYV607lD!#ZpGR1cY#gMMoSBSP-%n-r4XVl z4)b9CC@P6EwDrhdhzJBhQd?1Y5t3G3bek95)J^A%=>B~72YjB-^L?Io@7^=NVV&Qw zzBt9Cu2xS+ci)k&;tEf=RVhClY7M)UU{DGxWgfRus+0#6DcGhcWo~!4qOGk|qJH)T zz|_iU6(udlGtC5@w@v#R6jrpu_ zJ{9qRc9PrC+*EQ|0j;TtAMCuAPG+fRG9CN*E0yWkOM3?`&~Z`d^o`HhtrnrhTiaOX z2pt=`j^&L|;7%B|28R1kYiM*9uu^3-8(U0-eyA3-+1q26P;_|w1dvnzlZ#Nt#1deo z;B*2t#vi-^jHzaKKYov*-A~S;JH0TQhg$RJ>QFQzUX3;Er_}{Nwj4iACkk!m?`k92hdB&^<^uDs>yXbIlpbaGLH*sl0C{c z&uKbWFU~$?GfwlckXG44V8WWt)r!V<>?N>O1D3U|kIX7!pIAMp|5xGaI%@!yW%S?^ zHD6f()ceH#@2n`#{K&Ptzge?b{>8?DH>}X%LI)E~~;3)-jYtV5isqNZeAed*d6u{EzpdJO Av;Y7A diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index ad37af4434919c6c1a7fe1b65e2b693c55bf0641..db3686d1730ec3ba2bdefeea84afab7fe3088933 100644 GIT binary patch delta 64 zcmZpF!r1i~WidkZcVPbMh Tim9=2nt5`viQ(o(#!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO RVrr6!X^MsE<~fW);sATS6F2|> delta 62 zcmZ2yxXy4xHltx-l0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ Rv2mJta!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO RVrr6!X^MsE<{rkgq5zC{6d?cr delta 62 zcmcbqcT;aeG^1f*l0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ Rv2mJtaY3IG5A diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 799c411cfad864f1b32716731686e9eea9ef6718..d24b78ad7f1cf220dd29d5d652e1ba1e29a33046 100644 GIT binary patch delta 117 zcmX@AbyRDEFQZ|OWk!*CN>!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO YVrr6!X^MsE<~qjhf@Ek*6TZ&~0F8tss{jB1 delta 117 zcmX@AbyRDEFQZ{$l0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ Yv2mJta=&g7^Eebb5WyR^B8YflaAuGh8Fin8Qt>S-f52MnyZrXv zobze0?9*V`&^B7#6F79tpFEYS5BO7Nr@7XjSex<%{0$w6K+=~;B~qQfhJ7k-NTD(j)3XxtQAwC!ee5{>*nCx-*LHzd450Ex1H|cKNg0tz6*B+CG!Vo>kBH%Di2vSj z0GpP@&x09k#c}a=^S{NnDnkAolYT!OS+keBnd-7}G) zYdP2NISWjU$0IFRVmA**Ggz-3JkpL7E5;+17>oS}?Z;Nm;sI*}TW?fU_s$UUw1b~_ z#Y(d%7r7p+hkOwnPp`lWcnb~B4zA6g>#-A!*wSqaC;xg1T)ZuxDKclO#QT^}e9YW~ z`zW}aw082%ECYk&v*+DTAieEs`_GH60Edm+uGRo`>T4~`uViW?RBM-fX;OnQaH}U-jeS{sx>ZnRy-b%~V@_Dod?n2uvDldK&N)PcK z7@Cx3n3~lCFKq(A*XO2HW$S4>sFhmllKcGhXYpOz*#-SWlcJ#h%SM_bErZ-P#8N~2 zMBQIc;OAwloUrq#ToXidzNtx3}^hZZ8>Y)-fs>f%<40enpwWJ9zZ0DHo~ zDZd1%LTzdztAsKNE;8$-7S$J~5Xh`*ZpV4oT9-5uFz{P5SG6!w!TRK}CDrz>tS`%ZjE_u>C2DK$n*U>r} zv%+??-yq*cThM8%i$B$UeT^35Oc{eFKh zpK}h+^Xfv$s|zKQyU91y?;kvIvTdlo)t~IQTDBhPPc~ZdxG!ln`x~t$t0ivv;t9)Y zZfs1pCK63PF-i{r)lA!7zPs!q5~!u}`p@JN)s7)7SvYIlTvPJ<2e91WZf7r8yiPZ` zqoQ{iobKVzs$zJ$hc{Fo2h-VEBbGyjN5!Pq&4Jbb;BpW1$D>%^cDjfET^Gdq&daZE zI9yEn-y6RI(|OVxE@o_hZutabJ<4W7Z3(zX5ec@=`v# zZv`@RE$90E9S$rP~%x{^MJ4@wR-0NPkx;9!49) z^Ymr7kG#uCa}WQTVPKFv{)5{Ir1zZZ`)&Pc;IMJenQEX;eXWJ~o;=bH)tZ!d{nR9k z>?%NRCr@O(*lQaSu3H=V)U^sw&aPYEBZ%sv#YDDT&eu|a6L)rEFLp?zZkDtE{y|{T z_QrDZb@N|;SoqkbZxe;tcrsE3YK8mtLr^MztROd^e=|^7gh3ysJs|h3qO~HhxjDFW)>w$n$_G{|j3 zEH%V8)RoT({JiXzi*_EB?SN>`HMQh&t&;`-DF5g3xQhrln~N@n`e_$M0lt($>pyUj=FX+)R!l4)N=-%!#L{Nz$vE&HR^B1aMYJv To}Hp(Idn7bRr(+0rRDDc7gGn^ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 3a8e331515c6a3cb81b432e43d1ce917b1c17214..0a48b57d4085f0b68c46e2cf76b04de997ca7be2 100644 GIT binary patch delta 2679 zcmca|gXPK%mJOkdhB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*HrY`zX0s@BKNsmXg0xOA&|>7D?7&w@p7zP}g@rc<@*iX- zPy6Qi!ptmWXuX(Mwb@r9njBj%=GAYGkl8_ot(zScli0~{tfOMiW(Q4A^5QmU@&+%y z%_iFS<;b%cs6C7foxlK|>?^^$d7t-jRdm#~G32J<&e~;U1kvP=$8tBHZS*5k>*TYIVv`MmST|p3l_jH?0@*(KLkH{TDP6VP zWTfSf$1)}tG;>W>yQ#7H&NMS}QWw;S&0A+oCZ}5Zc&u>qtHr0u^Lydu@Rc3nWcj;p zbKgNDGLp*XkH@+M$+9tH@_}2TlQnPtBTx6{1GmHk$kPh6m}7FnJIT!xUOST)&>**i zjhH;)HS6X{AJ&qa*nq}te(uhiJVdem`JAs^@?tvz{TiGUcDYWeVzc& hfCeGPQ{?1zM@6UsZ^anD36bG_VEb)5u>JOg5dgeyZodEk delta 2679 zcmca|gXPK%mJOkdhJ{HMIYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWf2a7@5e>HrY`zX0s@BKNsmXg0xOA&|>7D?7&w@p7zP}g@rc<@*iX- zPy6Qi!ptmWXuX(Mwb@r9njBj%=GAYGkl8_ot(zScli0~{tfOMiW(Q4A^5QmU@&+%y z%_iFS<;b%cs6C7foxlK|>?^^$d7t-jRdm#~G32J<&e~;U1kvP=$8tBHZS*5k>*TYIVv`MmST|p3l_jH?0@*(KLkH{TDP6VP zWTfSf$1)}tG;>W>yQ#7H&NMS}QWw;S&0A+oCZ}5Zc&u>qtHr0u^Lydu@Rc3nWcj;p zbKgNDGLp*XkH@+M$+9tH@_}2TlQnPtBTx6{1GmHk$kPh6m}7FnJIT!xUOST)&>**i zjhH;)HS6X{AJ&qa*nq}te(uhiJVdem`JAs^@?tvz{TiGUcDYWeVzc& hfCeGPQ{?1zM@6UsZ^anD36bG_VEb)5u>JOg5dfzfkV60f diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 79bfc25a20539623a3bb5619ba2dd8d5ee9da978..55382b9db27212765be579dfd4f12bd920e7146a 100644 GIT binary patch delta 1184 zcmcb6mFezPrVYM~hB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*X7S$u@Z*4|8}PF-2y&DSNiGLxr$v#zW% z3+Y-nH!AKWLmM!pdL}!_vTjm$BO`iXx;JxZ-Xt%Yz?N@btP@Cy?c4M&Q)0Wfkup2! z0S@$g#}5NEu1_jjBE4k2rD)Uv^T~ZDUzu@-jH?j2ThU9d5wJJrJBOYFeA*{ hxOm8Rh2-WxlWwq5puK;lGCx_`K?MZ==A@O?i~#TobAkW> delta 1184 zcmcb6mFezPrVYM~hJ{HMIYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWf2q7+aV~*EYFPv0(B7ae>X7S$u@Z*4|8}PF-2y&DSNiGLxr$v#zW% z3+Y-nH!AKWLmM!pdL}!_vTjm$BO`iXx;JxZ-Xt%Yz?N@btP@Cy?c4M&Q)0Wfkup2! z0S@$g#}5NEu1_jjBE4k2rD)Uv^T~ZDUzu@-jH?j2ThU9d5wJJrJBOYFeA*{ hxOm8Rh2-WxlWwq5puK;lGCx_`K?MZ==A@O?i~x?Kf%^ae diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 0b9574205ef0191008144e6c38f0124ef9f7e0e3..6bb2493cae4e0a1018b140a78c18b82ac9a11a7d 100644 GIT binary patch delta 117 zcmeBB?oi&~&uExqnNeh(QkAN2X`X74WMOQcY@BLfX>O93Y?)$^oSK}PWMGnPV3cZ+ Xn3`l_nqpzPxq)#mGa1_aSgm*fMx`S^ delta 117 zcmeBB?oi&~&uCbfWRX);X<4XmZjqLhVrG<@lxCcgm}r=mVrpTWVv=H(m|~cioRVT{ XY@BAEoNQvaxq)#mGa1_aSgm*fs{|y) diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 449eee76fa0b3ee6e24e568052391fb44cf37318..1d395105a39397e0c4115e760cf351f1473f8b26 100644 GIT binary patch delta 1125 zcmeBu&(!;#X+t=pVUA@+k$Fm0s=lRpszs88v3as_s)41sNn)~Pia~N}a%z%+NwR@a zszqXIl8I@Gh3V!FMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}~I*J1|% delta 1125 zcmeBu&(!;#X+t=pVPTR*PEn<0p}x6AT2hLcQEF0}aY|yMVOol*g>i~WidkZcVPbMh zim9=2nt5`viQ(oBMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}~k6>q%& diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index a27462f35ee2c92038f9b4048532920d7a6200f5..eb0ae051844ef6a2113cab627a76b98eca978e58 100644 GIT binary patch delta 62 zcmew$^+9TbE0bZ4Wk!*CN>!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO RVrr6!X^MsE<}#*VTmXq#6dwQp delta 62 zcmew$^+9TbE0bYil0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ Rv2mJtao=$K zw6T(TtLhDhPfTYOiOmzrQkNNn~AZYRUvz&J)2aUk?H1s>Vl5LryA z3m!zjqQC{fpp@9WJzkGeS6oVbM5!wlrY>7;*18&*nw98p&%MfQ{IE?>UDiSuU8deZ3$f6M5kX%1Uh88>AUi O$xKY!*C{dP2><}{FJ%M( delta 2685 zcmbR9jAhOo=$K zw6T(TtLhDhPfTYOiOmzrQkNNn~AZYRUvz&J)2aUk?H1s>Vl5LryA z3m!zjqQC{fpp@9WJzkGeS6oVbM5!wlrY>7;*18&*nw98p&%MfQ{IE?>UDiSuU8deZ3$f6M5kX%1Uh88>AUi O$xKY!*C{dP2><}1uZ6_` diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 1dedd0fbb24ad292c1ef5d3ebc701bf95d4ea9c5..21f9bd5cabe7c5404231446cf1fb78f313c8ef75 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wmFs=Mdm40srr`YsTN5V#^%Y!sRowjCW*lB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OVI&OQHY( delta 2632 zcmaERn&s_jmJNZ7wuMO+IYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWiVc`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OQZOYTW<; diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index c0a9f649af7ef65177bdfb3a473659c06998f1f7..b75eabe8d1df6c309497ed45b0e81f0964b7be50 100644 GIT binary patch delta 2466 zcmcaQndRzamJNZ7wmFs=Mdm40srr`YsTN5V#^%Y!sRowjCW*lAtOB5z{TF`hJHzI z0SJ>ES(_C#s>utkMUy`Sux>8VYaq|x5bb9SPB4+>cZl{JlO9TJzhL%;65FR(t)Rqq z5!+{!*nY`j88aC{SLm~DbGYjqa&lLp&*sh7y)w!0^X5XI1>`w)^X9Js>15bA8RS@p z;CtkRFi0y?xE>j{ZcdEoB-fwkV&;(-DYG|QB-OH$l@umS=FjAr{J2lAtOB5z{TF`hJHzI z0SJ>ES(_C#s>utkMUy`Sux>8VYaq|x5bb9SPB4+>cZl{JlO9TJzhL%;65FR(t)Rqq z5!+{!*nY`j88aC{SLm~DbGYjqa&lLp&*sh7y)w!0^X5XI1>`w)^X9Js>15bA8RS@p z;CtkRFi0y?xE>j{ZcdEoB-fwkV&;(-DYG|QB-OH$l@umS=FjAr{J2Px# diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 3c5447db46afd7b0e636507ea50c76fd73dc1e14..f6ba7a0e71057409ce58a0ea2e710fd85cf1d870 100644 GIT binary patch delta 62 zcmdn3w_9&RB%@)DWk!*CN>!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO RVrr6!X^MsE<}SvKq5yq)6U6`k delta 62 zcmdn3w_9&RB%@(rl0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ Rv2mJta!- diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index d178eec8c01691c6352f19e361741b333e16ff34..b8cc6e58af5d59be74664c1cfb7eec28e0af7680 100644 GIT binary patch delta 2506 zcmbRCjb++5mJN}NhB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NRKWhbxz delta 2506 zcmbRCjb++5mJN}NhJ{HMIYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWf247+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NSV6hj=&(VuEZ!C@`*Vg-`C&;z6sxp&Y zTenqjC)ZYodOdP&b!=QuhOL_wTV%D+|<5KJbQZvfTvs%?~CTbC79- zz)a!I*Jd3fQ~PG0B~j%0yMFSnZ0^m8s~X7lJ4pMSO}g@A`uqO{q0QZwPLo%9)K3O! zm$-hAT)*o);N3j!ZXg?(jt6O9@2fUHaw? zzc=!d<#3SA(%VJ27_)gO&~GHpxJQF5{q>WgShg>6V7y9R!4Jx=tlM?m7;lrQe>%Sx ZBj@%5-i+J0$Z|iZInBRaDV*^>BLI_m&@%u4 delta 3023 zcmZqN#M-!tb%Q6PVPTR*PEn<0p}x6AT2hLcQEF0}aY|yMVOol*g>i~WidkZcVPbMh zim9=2nt5`viQ(od#tURj=&(VuEZ!C@`*Vg-`C&;z6sxp&Y zTenqjC)ZYodOdP&b!=QuhOL_wTV%D+|<5KJbQZvfTvs%?~CTbC79- zz)a!I*Jd3fQ~PG0B~j%0yMFSnZ0^m8s~X7lJ4pMSO}g@A`uqO{q0QZwPLo%9)K3O! zm$-hAT)*o);N3j!ZXg?(jt6O9@2fUHaw? zzc=!d<#3SA(%VJ27_)gO&~GHpxJQF5{q>WgShg>6V7y9R!4Jx=tlM?m7;lrQe>%Sx ZBj@%5-i+J0$Z|iZInBRaDV*^>BLEQn^@acd diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index f364da857c753f1cc131c19952b31a9965f11495..da7cc659916ea0761ed4358bc8044989fc3cda4b 100644 GIT binary patch delta 3004 zcmdmgn05bQ)(zf_hB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*Ay50}1zfY3 z$GF|aNOl5PSq%%7O+A9<-RmjrbIQf4e z>*fr%SOK!Nb8M~;XCg1@fNU3 zUqu6%Uf=woYCjX%4wu+mS=U3R&0vS0Z#Yef?I|rQD6#!o+fhnvPwncU#P;ny&6L>A zGQpp`5(AQCWT%8uqTOc39r7H%V6uEM-{$YLJIP4zn>Q|yAWqlU&>Dm+)*3c%n{$_Q?THST|e0W#=R> z=peyg-^sn1^?MO{&dAs*z_^0E@+4!b0HenCN*2aeUb37I(l5PzlMrJ*4+Z+K$}=9+ zAWMJKc27^nhva1%aLVV{{?w200l5a831Z}&{Aj!I^dEkVPTQ}AFs5;l<&C`U!1nVK FMgX?F>_Y$m delta 3004 zcmdmgn05bQ)(zf_hJ{HMIYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWf197_XC|ZSuwidDCylGxASnWGN)wR*?3|3%GAy50}1zfY3 z$GF|aNOl5PSq%%7O+A9<-RmjrbIQf4e z>*fr%SOK!Nb8M~;XCg1@fNU3 zUqu6%Uf=woYCjX%4wu+mS=U3R&0vS0Z#Yef?I|rQD6#!o+fhnvPwncU#P;ny&6L>A zGQpp`5(AQCWT%8uqTOc39r7H%V6uEM-{$YLJIP4zn>Q|yAWqlU&>Dm+)*3c%n{$_Q?THST|e0W#=R> z=peyg-^sn1^?MO{&dAs*z_^0E@+4!b0HenCN*2aeUb37I(l5PzlMrJ*4+Z+K$}=9+ zAWMJKc27^nhva1%aLVV{{?w200l5a831Z}&{Aj!I^dEkVPTQ}AFs5;l<&C`U!1nVK FMgW%r5aIv; diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 56364c735d904e4de714093feef04cd4fc037f08..81405848d46bef1f35543a9d280427271991c45c 100644 GIT binary patch delta 2688 zcmbuA-77<39LF0wb1XBFTo9+w+-PH)v!gadu~OV1$;)m}{=k~UJSDIJh{hD6`EVwOb3 z;dNL=*{WD1(dLmQpG8(=#cQ$2mQuyxQM@+0&tW&Ssze*xG;wsGY2`}(&9kTSKDLsa zPRB_#8W;~kWQcC`DOw0+v~A46>IPV)z|nA~n}^IQ&eLFS0d`sesuaHQ;2BJ4s9;W0 zGL$_;T+s!3;ETmUtTLk;^J)SVn33H&k6LH#r>K>eb^$9rmDeYNJzrdNfbn;G89A#) z(Vk;9)o9?UIyZ{W*WV+7&!Q8|)s#!t#t!5T|Kj9o3L&TbXU?a!mJ>X9J{7ik;;}ck zLtCWwUhi6n$NcGy#?yPU+XN1bt@j$JvwshH?$n_PegmD49O;3jRPo2MG!m!HMi4hH zr%+z_8F}qhyNaK$yd&R~if?YDl7DLkwX68S&S4VNeU@?}e&EK@S@a?sGET6_u#SbU x^i+EpL*^ZRSfuyce&9``@Pp0(h8A8pa>t_RjJsZW+JDQ^f%eE3Pl1oS)F031azOw9 delta 2688 zcmbuA%PT}-7{(jsjAJrJBn#pc8XHYBXKs{16jO=~l3dQramr=kGD0Jlq%1TVA6byg z24!K!E3uNA&1|etWRf)-VI{YdzrZtpz^~u)eDC*u-}Q?2dPN(q(^!YRu7Tl+vLUn6 zrFdnBwa2T7vLsm)+3pf$o9vKei{z7KyC^D7pU-A7v+86U+ct4@q-o~YGgxItH|F&uC@>?txQJTk?dPbKFWU#K^jO}I4EB6+F962h?PXL^ zJ%;uiudP7?PuF`;bg|(c349TmWbWpC5}P`aJN%22yE%xQ@}IeoHd@c{;DuD&E+t}b z>43IK?Y-H(l!*D$8%d=1lwtx0#x{Em)YX50Ja_8Q1iyizqbGV`DOLQzkwMN`vk}CN zt7%jadPZJ*)vn^vwRhy3Qt|Drbn@@ap>`EN+B;5xy3bQy*bm$|x`@PbA>$+qkLXzN yN>6o{PsqGO@nw3y?FZg83dMB>FtqT(k>@Fb&ba%Pr^B}#9cT}K@f7&DOaB4F_LIc` diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 019b77d9427e2a8c7c0e4d37cb604bd5d9c3d218..7e9da80c4956f0d5e31581c482c3343900dbd302 100644 GIT binary patch delta 3004 zcmbPthGpIvmJPm)hB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*sT&mLr{tx`4YUMpiOm~T z8_4xFNc%tawM^tWeshBM5=v~osC$u2n}JDHVspOX3QBB$Vtkhp+xyIID6xII;$yJ(-T5?690~v+7Dca$Nw@F1}HmOxq!G|KEyh^XFaF-K5{Lahe9LXJif0%mJzMn8+jRD gl9zp3w<`!Uejr2dc1HsT&mLr{tx`4YUMpiOm~T z8_4xFNc%tawM^tWeshBM5=v~osC$u2n}JDHVspOX3QBB$Vtkhp+xyIID6xII;$yJ(-T5?690~v+7Dca$Nw@F1}HmOxq!G|KEyh^XFaF-K5{Lahe9LXJif0%mJzMn8+jRD gl9zp3w<`!Uejr2dc1H!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO RVrr6!X^MsE<`%|>JOGFG6c7La delta 62 zcmaDV^HgR-Fr#5%l0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ Rv2mJtaJOHIL6w?3z diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 105d3fb90817a631d6c26ea58fed03bb24c5f329..0f477502edcbefaf1a943a30185298a4fa540e3d 100644 GIT binary patch delta 3483 zcmbuC-%C?r7{_^QXIgU;Tj|6SB#4O0lTNo?6kZJ!%3&g=M7gt5i}eE+?!v-`E|5|S zU&bz~v08;tFzdm+5Rn%}SCYGlZWfK8i*8~gsEcBBUT^Yt-~9of=lguW&-1*8Q(iZh z*Uihl?8rq=FzgCU>g^tv?)JMoU0SEEdR)#i%@a^HUDN%lQ&T&1_n7W?b_LvBG|5T; z#+f?JTTRi*1tqy?u~R_#Zo=r7mies!Sqi@3sXi-RuOCH(OTjF?**S$|CDFZ2f3`qP zXGv+fs{kld({!QjysdJSnED*?$<(Jj)N7$T9ZF;6s>WhS{3Jjcqoq`z4M|DPChm(O zb|w0Epn#6`?a&;m+I`A|T|k!FPA{RV%V)}{*SI!|s+!Kd22`mOJceF*r)xp{Y}!trpOjHt^;$_}!rMS~ zi7T(>Eg-(!eU6)Trm1PnnK1s-GTJ0r!L b6TTQ~euEd|H`zoJzb=DVfXkM>9p!K*MTDRu(YId(*(|R0^K(F85ZKrFj z3}Bq8Q@q^}tzJ-)3nnXR%69`sFPY{x17tb)lBWjDbfa+$5iSRF^k(}cl9fbvxBS@z zHJu}+?VbXlOik1Ij&qjkQDW)~#3xgq@$r5W-R)AEt5?+*L*mB)QXeg)1}sQQayD^K z6tOGOze7cItZzqVQB~&&19ky9>NvHCs%B4DP_J?S4614fyarUM96W+vdGn=tG~GMl z0?@3!`AOb)tbq^4tojpWA%7%=H2=ShjecEsBZ+S;(K-3MHZwMAof@m53mS}BkV$Mb z;h8yDLkIdqY!tfvqt+aT<}=_xDbJ}6coJm>`EetSK1kPt_?fhoK0mFXxau~O$b`3m z>JnF8&6z-a*G)4ottxco{UhYFAmh_ZP-%4-HK3=@`#zd!&nJOJ7^Z0P9k%~r9xd)C z>$j{KicjKg@d7i^?9YV;yu@;WmG(k-QrzFi4xp3EkJpK$it{U%>&0UyJ8Fb_pXQmS zonqxM`-&azI-k&aMMT`}c@y45qCComaa`;;$v$ku_{5h9)-IMWvIrQ0&)ciUxLbupN3*=t@8a0Z=hiqi)KWh_%s{jB1 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index fdfedba59a5af49c3ad82976d2b52d47e586ccb7..3996f1df04f8209ff3045a9b44b9a0bcee514a24 100644 GIT binary patch delta 3935 zcmbW3-Ahw(7{__EqjTwU)6Al}2(ye{&YH4K&|W|>tf;g?>}{SMQcy}0idkTqC^QKD zMW;-&Loh`20T4^Zh-)m!;A4rP1`U zCUQ1=8{6FefV#))Ry_?Kms@eEve#YgQ@nmzQ5Cg8E>`5ds>i1`6qootC1Q}i0aSl= zP_#=9u1!@C>0i7P5>N3$+BOM7V@z2ZhK9v4S>leI5j$iyaZ9w&iiKs;IikGK%F_0h zbhvmj_X+|G<`1(0aY%DQewNRS8(RzuJvP zGJn>-tcu^~@X^)7<$GP%w`xt*gK(%5VCJ6sw2ch#{wq zQ(A`80J9#NVZFTFYCwzo6< z>JDs`?lz*mUb-ivz3PK)sCDh|I@G#bccNC`lQn>q_0R+4anwW4xgh)ndCc`tL`;{h z)}m+WG*>;lZ%O{Vv;AegHF+#?U?XDFp*;4zF3JG$mE)VaceV~HdVU1KJ}pRSuloWv zez*7-#TUCA?Eh7PJOyUb3EUVY+LaANZJ!_0ma{3_m~fDc4CucF-se-yk$eSOtBYdB zz)p$)ceIg!Par?-L~Ppr8nPQ)L6OYlt2QUxNG#Bej`ws~nilqvRqLLlT=8%=R~!jj zwaO@MH8Rf8C@{a8JwOA(_9)Znx=7=|74?6ClxF&nm3$~hqJmO@GsVNk`aa4lN?!VB gCu~uwMTXZrJ=0~9Q8_`UKwevUK^exaN&1=h8#Md-)&Kwi delta 3935 zcmbW3-Ahw(7{__Eqi*SP)6Al}2(ye{JWbsav=>keD=MuJdpqv55|o+=l@^#L3JpSk z(J9mH5R4dX=pN`8gc-P-C~)LWf<=Yh6d_%B71~ZgUGMt`e14zj`Tm~Y%R(@9A(%SS zNV2cN-PCezmv4v5?QKv?cAjhSI#orHy=t-BsTQdviYhA}RV{Wpy)KWZNEQS14WRm} z{i0QJaBZ>&k^aRyAn^pxrEHQQbdo7U!_bg8TqtpS*03Ein|N9z--?B0(pjQB-^$YF z=2WA-X?x!Vw-r4@L-kLZTKd@o3ZhsCduL~?7zI0?g_e|G8Mb8c+*rz!O?R9sX zjo-~bM)CPh2dlp-kf*>*I*uCyMB6ffsO_^O+F~YU8eOYLVeJPtR1DWK@pPagf)RUXaDOHBLWsegnSUEocA$ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index b22b22e9a27b3de573e3787cd700d175d562d62b..16de5168a4daf46f853b8bdfedc7ea3f949a029c 100644 GIT binary patch delta 1062 zcmX@t#&oWYX@fVTVUA@+k$Fm0s=lRpszs88v3as_s)41sNn)~Pia~N}a%z%+NwR@a zszqXIl8I@Gh3V!R#`|ofYn!~0Gj#Gpj`^hP+`N(V7a8sZTWH8rOS*-VH~K|S-YY1) z*_ZbTGkMxK?-l$@Rv`IBZ+4SB!cV5H(=;ua$kZCGBOptj*2&*Jqsh`)y7`A!2N?mp zd86M$vJ!+})n?nkTJl1uYIACcDGOQtOxmm)Sx1IHf$1=5vt2A3Ct0?}O!mv*oqR9t MF?qTd`(;Q20R2-^fdBvi delta 1062 zcmX@t#&oWYX@fVTVPTR*PEn<0p}x6AT2hLcQEF0}aY|yMVOol*g>i~WidkZcVPbMh zim9=2nt5`viQ(oN#`|ofYn!~0Gj#Gpj`^hP+`N(V7a8sZTWH8rOS*-VH~K|S-YY1) z*_ZbTGkMxK?-l$@Rv`IBZ+4SB!cV5H(=;ua$kZCGBOptj*2&*Jqsh`)y7`A!2N?mp zd86M$vJ!+})n?nkTJl1uYIACcDGOQtOxmm)Sx1IHf$1=5vt2A3Ct0?}O!mv*oqR9t MF?qTd`(;Q201K~RHvj+t diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index adfac5a6f2b7a4809638add6247fcae5ef3dfddb..a1235339e93cc012669819c4ecf9e91543a41f54 100644 GIT binary patch delta 62 zcmew@^;>E~3zK1vWk!*CN>!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO RVrr6!X^MsE=B-S}xB#6p6n_8! delta 62 zcmew@^;>E~3zK1Cl0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ Rv2mJtaAg*W3#8}h6-0u~hf+c$SGwlV?$(@T9( delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$B|MCc diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 18454adadad166aa419e780ecf520e7b70892f7d..712a08ad448777a9a5ed86afdfe2d458e31e2155 100644 GIT binary patch delta 13101 zcmbuG`%{!<6vyYh7j%(jxq818iVmW(fe2U%h>>H6prV+f2&^HZpoS)1l2TDiQ5Sv8 z(NZ%VHAix*Bi<-R z6&W6qm6tguWKLee>`aTbsNbvB19bYe7Q0AglC42;(=n;I-pkEoUD{BtR zb%DXxnxC%OjvKEikVUdJq+=^#c~SUwt1Qrf%rMKapP#8vn}`dk~2O+<30v|QVc zR14B#cInOueE_PB(k`LIg7gsp(P|HNa>fvpI@q!Yl`hR5g-Yj4e}U#|nmG=osYuaWT&oIFQ0n*dCZoBYF3d-z=NA>D(uYfu(Om039Ews;FB^|i%ZuYt>XubcQEKSw zfhg6mHVma+UN;G){!$u?QV(v7L8&F5K1QhlTe47U_s>nJ^ylphQR%In)6iTW?3#;G zX|F#jwS5IsD-OWa_YcB5XXLjHXoYKdFj}U=hvC^&c62LBy>ntcD(!Ik3@R_!;q!f2&by>T|f8Vw;|TRIVZ# z1D2R8RQdtn1NPSW5LlfOcwTpde09xl{f2u^eN83|6a(g6S+PS<7 ztw6cgU!gT~H*mo$8J`~uY@A0}x5Y#E2kU>TuVyDd3Zotx@)D0Aiykas5<8^H+ z*L_4DNckKwNSnEB&={s#=_gRj-;~n!cA!`^9weiPKc;z!4~)tH4%$yiz;`{zGP3lV z1^2)`rW!B_PAI2Iet_7~x#mg=hkGaIk}Ti8p=vxwRZ$smmN+XXZOV|X=h!_>H^^Ol zSxdhH6>xN}G)OdpVqtznt(!Gar+O+ydw``^Fx-7t8)-kfd4&`k*!KmUhwD)2tF+-f zqp}K4KspRZ#P%*0rgZY)u^ki-w3Yd{ZpsC?fx`ooZNOJn=lHLTP)yBQXkWOp0}e!b z-GNIG6|Jm6R=}}~hP|o8qhfJBThT<9k+OxlzO59(ZEUw;Y4Zs(4IRToI{1m&p8Egi z!O|?{92yNvuWRs$=%`5Ie8rPv3Y3*-435IGw3+XZ4md|m6G{}}QVc>mc=BAUa;gU! z$jRf1q1iTRRjx#${l?O(7c9;`qwGP8!RyZ|W>2sL9Ct~HM$buBYZW$wWKrUyx{I4B zYM{vRR(FCfEL~!NpTRgE5|VnT9niTbq}Yoa1J(VV!PxB%ZlYhDdfOEP{%ojv$jc>% zYbmOiD`jvK(!re`Dm?LOOWzvin*S z{FY)LGHfJ07(RR)V@f*sakZkKFn|lfZH;<2crCv3);GW}2Tj2;cKLF!6~;@4Qg|fp ziqyTEJpku~>qpR&ho#qTv?tjsTK9pwK#GlA7NZyT0UJQXWdS8D4?08OoqCZ7)mbz5F z_)KqtFSPo4xp{KByITUf;w&9H0)I7dd{7XH7I`CA-Px_!z2)6%|Az|8znNU~{txBc B16}|C delta 13101 zcmbuG`%{!<6vyYh7i5uTxq818iVogD5JXD>A#w~6R1{N`%R-7MqM?bGq*T;W)I}e2 zwA4&T&5_*dh=`ZbAsdTy49vj`(#5-3q$WDpv%Ag6uYC6p_7IXomQBRkZbo<1NYm8Sa?j1B%NeU z@K@YhFSQm8SWc~%$zGXanKGiSb$f7#7c3tKC@J+F+aejQ<72A4A$_iuCnO*_Q);et zS4tMrVm9gS$^8JTl~OOE#DcWZ0MTL#c3Q>=lsY_XA1YlweJm=SH}eIWt7-N`l&a>( zq0~R-!nxKIB%{>t7ED8PJzY2lm7ZTxj7tAmmW1Zo@Ifp}J-uQQN-ZyrL#f-=JVmJ? zYlos#!}?H^dU?ZCl=^dNG)g_ZISQqgeDWBj`foF%)E=LiQ0Y%Q7o*Z!yJw)eKG-uK zrP6*sRBHVardAz-sqYXji|Ka=`*ObunIou za?h?osg`q>(RDRc!#&*PLLEviy|@X@wW{_RN}YOn8%h;d?xNK0*Jq&AfQERK>hart zl$v}KKIuYlZ$+s&_af0;;~rF^)E$3~MX4o?=TPdC$M7@a@Bh}K)RgCNH$^u;0jXR= zG#)H5SE=+j%1v%V-l$e{qt&RkkCFPL+J8)RAJs1Pp>VX$Nq$s~a*uVOH01V3zO-|B zS6YQ~uf0O+(0mO&s0iiu?nPTr?UX=Ti(J&%YPGUIjYqi)g6RmV{UMb0pmjEdQ#8Qk zq6j*JG8=}{On_;-MB+Qc=yR0YCyGX*TvH5%q1+p>6oYb4y-DLx?N_5{1FF3~n$TAQ zt{Fq<^Ay*Or8&U<6VY!|9?MJI06@%AjC?4tLEq&KQz58BJUN4mK*SEQF`Hfo#Z$O; z21UZ+U9(7aZT(HTE$n3OJD*+yjw4aDUQHA!i^)$sFQhtvZZlwMQ0fATMP4zPgz=h| z%?%%tJ5oM-4AN$PTQr7j3;hUc`Rh{J*&Y;&ro&_uag~~Ftw$hAcSb$&>tXb-UT>I-+@l_olfZeAh92KISD=ixdO`Y3HV z�_{6Oaz05V5U`g(;2Pc|u3U9c^X)wYzcwZs0I~We4z;)iM672P>u)Ep#AE*#!q8 zz3#vz7!s+hLsr1Pi$=bo#Gztwe!8NGu47~ib$d%GgxlC=!_wwsWE$FsiFEK4^}Y1} z&x7S=;lGab8ry@V$|Et81SdD>Jd+; z9Ihs-p3aoPMMwuXUOG{&Z|6)P;-fjLQ9Nb}5bg8S`_5Rgw3^fnb4YcBAWGEo)*G;# z`2<&?d!=Sz_r2;B;6B1}^4lDQbnxco`_*gcSP*ubB^9bcJStb4TVIBk!LW46>E(=r zs1MX!#j-o9#!DL1o9MK18`pp%-Oj7MEzRLlVkifAK=%6Evh8r+S1>tXrfZJ z_M+Qf)l)oNtEKYF6fGEiZLpV$rQx$6XG8K3Q5$4O2Kj5gEaTegR7gUG+&?)Wv&LCd=*&vG{uSe3+Vz6|0j6Q5Q7B}y7Q2)8rp-Ql(P)=S?6zZ^98m9fj0gY7V0I+VgA zaZiNq)#3p-CrqzEPac+Dx6z(t&q&=H?gA+`a#@sK*bi&~abT8S4Qjb*w!VH8DsFpJ zFGPzbq}a$lC-rma;~!7EpclhaK#JWszeeAT4gg+tOAmw_Kjgmt0NC-I^hAG(>X60+otTx}PZVz<_JtL+~uEdOS5)$2bj C_M=n) diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index eb4ee932a73af6700814a1bc4fdd65f9fa6dbd1f..437ff3d2afa8950606835f9d4df2b8e5b5c08c8c 100644 GIT binary patch delta 1676 zcmeDE&D8swX+tohZH{F|k$Fm0s=lRpszs88v3as_s)41sNn)~Pia~N}a%z%+NwR@a zszqXIl8I@Gg{gi@esZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90R5mPSO5S3 delta 1676 zcmeDE&D8swX+tohZDEo{PEn<0p}x6AT2hLcQEF0}aY|yMVOol*g>i~WidkZcVPbMh zim9=2nt5`viJ^W{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90AKn!=>Px# diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index f91fd31d6a6aca36450661e72eefce19378fb146..f8620f84c7508b23495a7b859a5303624e081da3 100644 GIT binary patch delta 117 zcmX@2c|>zVIHO^XWk!*CN>!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO YVrr6!X^MsE<_<@~ delta 117 zcmX@2c|>zVIHO@I%+|Ypaok{JHjBCwtfT!QR$_4?LiPcDI_X*aJM<+ywCmtzu)uh%)B$3TW!g$ zwmeHy&zO4lLOf;Y-D+GXF*644VQdNS6VO7!wOv=P9} z!SW~{XxP!_JaHYZ$oU2gHRnSCvokF7NMNWDRs?xZknjdUzP2?6rt|sG0+yUM$GalD zGyD|9`FPhg542=<@=m_c&6+Trul0q!AbNlQXDl_#w;%57fKs!(Q9pJPLZ{5u#mgY6 zF1^A?KD)dRo8l>MzELqWXHLGGcHWl{mJgwU{qOHO540|v9KZVEddfM%k&ev{f!f%tNp zE~4;y{f-&h?Me`MKv!G|CW^G#mEiO&y>=z2&XEc{Z}lx~dQK%^$m@c8oc>B~PT@I0 zX>jfe;zo%+0gsMdzrZZmBX*Uk8TdJ}4F*%bl8?<*$*UVbAlxRQpj43n+cJ{m0hhrHr(l@6luHAC?qooL58WZ3yFQi$CukzcHAk}BXf zWQ3(Ty1{t|@pF$fhOD2(6~wlvR17)~wI0kgTOO8Vp&yan0{4I|5SHKxaPTa4)U3!p K;Xfn&YWok#Vjdg- delta 3290 zcmbuB&1(}u7{+_08rQU5Rn`0A@u0%*(PjWM z21`00XxP3q&Nk0mFK(XIgR z^gjo2KH7D|0WDcIc{iW$W=$B**F%0Mh(0{{8B5LZokv3*P-=!ZCQh7&&`G0p;VMW* z7T;hbpIJJ9P4Of*-bFApYfOBYvfh^umX4r-{mb{Q2bvd7mS11FsaZ$aRE{o-h5a<- zLg82a^cxtuTJrEAk_W(K=E%_*>#Q(8S#7q?RSQ2h7JUveou?FVL)8V}Z&N!e5MS=n zB^2JM-!V;lZ3#S&=$b9TSb?_M5}ci(x3&b8S&9J9TYU?gUQ!Vl^19#wr@xY&Q+Qrb z5}dodxK*T2z@t;GpJyiQ5PM404E!8b4QbZ%m0WDLLT>h?NHKA8m3qK7X<@oP0#9$P z$k-3^h}Yl939e*Xn1+c~Y#-As^M{<`X@w4>@ijx?ADwE)I;7ZzZIX}ODUw^PZjs91 zHl&29Iljqy2k~>CG=i+3$>qfkRVsL`hnf#&k}VBOvPc}0-UIhQRUk~kGvMHvtZtNL LmvEnxezpAv?e|7| diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 082e8d89c35f8603fff81889070d09395d794023..a37398b4a9132f5375f6aeac77b45f86ea39e45a 100644 GIT binary patch delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39ZKN^9b%j6fSTh%taBMUe<1Dlnj+h>#lFF^VoD zCTdy6S$a~mVG%1Rte$Nq0993Jnln(g7%(ZX&GiX%T-J&)xuY^L$l2ku6r>CJAZM5V zkC1A)@~#X#E5U(>Ipv^2*>kzGDzp=jIjTa}IZUe+=aiwbSiWv~!h9y16zGl}8NTVvU+hJx=`B~#b^Yo~xQ9(` zttfSOdkvcFt?U0mspU5gqtu(7T>zCwEMaS%>u=jp?7q9R0jxfnR&<|2sjLUS>h65~ zJCr)3cN&`Ovwck{^+10HNTtJ!eFb7^vck|YktS;F7Rvpzk)a(`b7}xXUT4INNlQ&^ z9$Mx+Gc%yvkWgkuOZ8b8+kh)^Yke!0p(hsXP=PuqC1C*{E^)lOsa!Zog0yN(>Da?v;=clq%lsi9-y@+ZPGuS><%NH@^a{-B& zst0AB$ziL2y~n#ZumXOlhy~Hrr7YSThcK#N&Js}v5;6P~6}u7$qa&}fr@V96xQ1;8 z9g3)WEgPbE{tQlH1=a#zH@H?V=l!j0F>pKasu9vWzIX=<;g8DMHP3_A4M-TAQ&I5& z&NxzQJ#--sq~<-W$PdKxrw%e7-c-XHKm!s6&OxA7BdIR{X)!p+~Uy=f8 z;VkJfj28~yz=uJ0HjHqxdH=@rCbj$KNl>?~;y(x|$)ELW-kjye+JO~}3! zx@A;YDqTkIH$CDD+oVHix?G3@Xy6X%7a^W+PTqY`%HzbDiLc9&QmL$3`Y{j)2^;HZ z0PkuS`fZc+Hqt42uL-d)ee#7AgF4WbR;doi*}cabu1Zq_(8SCCB_+aFnh*!ms)tgJ z1;q2TvGNsAOYcX@a|Z(A;+66Oa{NRdj2vsaIC_eFY#2!9cQRx@zJ7t+0UD4nIBvqk zHi{~g2LO4K$a^I+z3TNUD3eD6P_B!IyeX%I1L^8pbJ+pepZ8Zo#nul7VNj18YC8RB ztihM+PRsYEWNVP z*DHsMvLV9?I*^EAz6Oe2RJ?dJLs-MT9t* z5_%2y(4oMcMQy*qc;ces@U9lZ#gF<7N;mvjKtD#-hACscJ4S>hvn}8gTfRo_FF?9#f@dBAn4T|~@-svxzRQ%)7 zwqVr{ot|juNYw_cv-|x-hy%zRsRjUVbu`DSZa|(+KJ8H#(xT_om{8A~oa^F|DJpcz z>*AJqYWE6|%!N3J=YOOoUy~)n3}6 zBHwMh#j|gy8{nK@?^H{G8^cY0_l|lUF4%;7D)QS0H~H`b^*%r*(c5F;bPqmK_XAfQ zpCfB4sOzzc45lQ+tAVS+Ri@0{-Kw(tf~wFWllC!~_ID~qeZGc&b4VYNMBM>1Jtac@SoTzf>4;+T+FjL=>3TR_S# zrI($O|KNdIotXxyS2+e|-ZMkeQpcV}X-H!yX zz>hZn2Bl8hIvdS(>aSl!sqx#P!N}Rei90e->WrNa(Omzu!~z*u8gV0a$%Bt?W68Qduv2)!qL3 z_b7FGUp$)YQ~k{-b^kyXNToxJeFb7EMq%ifNRu>n6XpKJ$k2|eJvoRWuQOuCq@^Y{ z7cH~R%nT?uD43biQhgS}cB9&m5iAVVc80P6R9i8M#h`UA8pAqJZr?bz7<jSSOuEz#!1YMa!*^>HdOmf9IHb6dD;|~gmNvP#D+W#>`m!z7jg zFrAkl^`|i80ZP}7d4cUkxh1J=KAP|9G-g4$^U_&5%AJ?No z)r&Gu=dqQ*-s3&%Sph#-!~*EbQWoopLkKl2W67uki5Px?ik%6B(BYTa6P`J2Sj{$p z4ncd1mDAG_f`?2@(dc1Oj4bh5Agfz#5}`$FtXyKb>6WasHE z_{Uy$6G;BC*2s@@X692jE9vz119oo^>b2e|dC?F>>O>oXgu}CN3#OQ)Gw3#^9f4B2 zultFUDB^uE;zcwjT*^emdfT>_h`tG(C|TgPZM8@@fMLkB;itz*uLEDTx_bV~^O8R; zm?=Gi@xtL7IPnGP(%VSg^&KO`M%tJqy@)u>E|oGUH%HoyG^#ExUm{fkM;!_AMr2Tcv|&x?G6;Xz+IF)gbpbC+|5R**I}#;%jrHbSkfreg*_W!p1Td zz&qQ8e%CC$g>;JEYeMWzpL`+3p$@dUO{xcScJ1-TE7DXyH1UdmOUdw+Cd7fX@`02W z0pfYac=-=pOWvvW2f#A|B>8*Zg8$U9Q;)FMHb-yS#aUt&6nj!X3A@kV}FdUhlpk{MfAx= zZ;u=<$c8Kn=s+Tdc^W8omNS&<5)A22df;HBiXuY;a?d|r5F-~3!PNgtL+M0M0&&{- za??qJ7Y*BIX!1Cu@4U9u8ODWs5SKT_e{SeSZ$!Q4xo`-jj#fkCa4-;x=rxqV6%pb< zO6oJ*MTY`c7Igy#=+Ra!F=RCgP9k8Zg`$* zhA9>3NkAWtQ7rKC2ypOI14H zzRc{Ge8@ac!EY4Z;c$jhIl=v{x$~%+&YL$WEtr(XZ&qqkFfA`=RR(eKY-^(8&y<&e z0y={y;c^+6-}J=0Z!6xe2>#KfYy_G>k3hKW1WtnEN7d~>#|va8H7e=@c&9&SQt^*R zTLV=ebb6xUqg5-g&aU?pA@(D4xatSI)zNH=x*mBt`LtJEKntH%W2> zuZvsfsy)j=G8f_ip8t`Wgc+3D2WI+F!5Os?SuzoR8U3?CjYV!aUEI{DE=MMPU3~Lz zY9dT-yPzV!Tz0N^8C`2p>tXVoi|PV6=Y^Nm6quaRrtW~rmF;Q^OdfevMSiB?s`k=O z75Q%4C7yL%T@UB{T9;Y^+!!wMySLSAaKR$)s>p92T;xOd)q4P$L~oCW(>?G|-3MHC ze73ADr|w58GMJJOuL75)BUUYp-+4w0C-$@k{!i8ALc(PSkpBLXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3HScEW delta 1139 zcmeBrz}oeIb%QsfVPTR*PEn<0p}x6AT2hLcQEF0}aY|yMVOol*g>i~WidkZcVPbMh zim9=2nt5`viQ(iL#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3I~8=F diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 862ff08d2d282bd3f09f87b7519a5d8072ef3ce4..5f1aa645cf9ab62ec59bb94d7e3d7695a05fa19a 100644 GIT binary patch delta 117 zcmeBC?or<0&uExqnNeh(QkAN2X`X74WMOQcY@BLfX>O93Y?)$^oSK}PWMGnPV3cZ+ Xn3`l_nqpzPxq-2pnG9_%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi7KYZ}1- delta 1690 zcmaDdi}lGY)(z2&hJ{HMIYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWe!H7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi5sUoaH_ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 3fc143133a4ebadc080df1fa4c19f15efdb4eebc..c80a41cd4c5ca8a7ab87aea3f1060ab603371c57 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$79D%u1r7TystLB8@=0=m1)p*-50jvfbqav-F4pc-$M2RRGL|I)_7g5%HYbbTM&-MrWp67YrdFQ~q3YuO8 zO;_DyX|;1}eQrgwlIhG<@;rIjx!!EW?#y+#z0L}|SMe$yyTfZ=tmL^Bk0YldFDJ92 z#@mqDP}5lNRan54!S0bqSz)V4vWzE3eIXdCwLhd5cHU5j;rvX@6$6H{K5H_67uN^| z58Q?#ioHDFt zm4BMM3UwWs*A2R!U%wC}`DFVR6ivxKjh5=piHm}!Lgi`BQfwkBxuu}W3b|G?OM!u> z6s2JGhH$oUotgC)cj5u0LMcSIaC^yNY!|BBSKf+Mt@4gdcY)dB0hbBD_?Fr}q{BM;vwkm9ua4$71yR@FP7QG7ZvS!sV|rL+ z4|ECXXqS2)t#jFdU1(tcp={K(_DBQjdg1s=V4L&w!2USkU~&6>yr5$yh_WH3P%e0TS(DHzIXpBVY_2esJp`a*cgqxVVSyYsridx&e@U@;d%(UZb= zWOajuJnKU<=32B zS}7KtB^Kc748dB*ePR^-SI8;gz!+CZ5NVxc*cN_A#}$Af*IA!-r(do_-%B|e^6e~c zKOonE$@p8!CgwjS(ZH<#EA#Fdx%eMsR=*&~zsp1#A^VdKY`qBuy~8$f<29*5WrSR) zIpB&7rG^&Fhoc5wr@!&Fen62i<>Vh zia%nSV|ddLiN<)bX@c`49E=)a-1sBgVvI3H34w?SQQR)vE|v{FZy}KFu21&|e4gj| ze$V&($ax;NJP%uLDCF~ir?{!@P)Q(fTXDTdE!yhy)Vowgan`Ga#V)l#EmBmc;#Ji` zm#co8*IVGsQ(L_4dF?G7ZC)P>xpUb#dE|^*MUpi+ z$|mgTd^WiQ3?9Mft<@BB=M(lh+}Xh!SDgo)WpD={NdGJz3f|4~t8Ba{>m=57jo)5( z5UX3`GwW-xnl=90hTW*^+{O{m^~zV9L6Wb?uS3xcS3g>+QkWbEO@+p@ORBMnXyCT8 zMmyx%z-(nEo>7s3)f>Ut=Dk)nSviCUkP6ih-Ocl>PGP%H9y0-SUqpnxa?gF+s&j}q%1`ZY_=;vjF zYeAG{`?7f2HKzr0W=BRWY;O1ujOIs1)_sDZto0W&-|?UoTV8(zuX^+*EqZqzm>x%5 z1JjjUyoyhZ-jM~S%enLIVa&Ch=e)a!9Eyf(!F#B~2D;|Yoxm=L)cWkNZ_rwA|NQ}Q z)yLvUr~XQ(xuTbnB*0uqh12=K+J@Zw*kEp=cv(PRn`7Yjl#9m6(qxM<%l;U6G1N%5B9D=!GNiyt_PbrSwS~MyZj(i& zOkr&&=VOSHsY`){D79T=4A>#^T^CuKOflL`Ojf+D7Tw)J%zEz>SuMKGkObspTFkN_ zCDw$1>nF~Qb-lqLuAGgeMgrRfFU5}Ud58X6lZS=5l&Wh%vG!3XW!lv}loYm3$8lk^t c+lz9=luk$@Hs}X+u1tVUA@+k$Fm0s=lRpszs88v3as_s)41sNn)~Pia~N}a%z%+NwR@a zszqXIl8I@Gh3Vu8j6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGl^c67i1 delta 1199 zcmey>$@Hs}X+u1tVPTR*PEn<0p}x6AT2hLcQEF0}aY|yMVOol*g>i~WidkZcVPbMh zim9=2nt5`viQ(i4j6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGn}NQ3+U diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index eb8b3eca27963f0213128efbff06657dc12f2a48..47b867902cdf7a9569d53163419fcd5c083d677e 100644 GIT binary patch delta 491 zcmbQx#yFvkaf2_TVUA@+k$Fm0s=lRpszs88v3as_s)41sNn)~Pia~N}a%z%+NwR@a zszqXIl8I@Gh3Vuv#(QMwN^o@Fe1&NyITj{322cLTQb?AiE|c$b$W7Mb7T(Ok*3Uw| i5u3HR&ofh?y@x-BJgi~WidkZcVPbMh zim9=2nt5`viQ(ir#(QMwN^o@Fe1&NyITj{322cLTQb?AiE|c$b$W7Mb7T(Ok*3Uw| i5u3HR&ofh?y@x-BJgwmFs=Mdm40srr`YsTN5V#^%Y!sRowjCW*W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5ddJs7ghiO delta 1705 zcmdlyhh_5|mJP*>wuMO+IYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWiVc`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5df4MEUEwi diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 6301ef9cd192b755d65688446cc71b659293699d..4023599507a173fbfda7c2c049c6daf21336d138 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaH|PH*HI>PnY1obY?`ql8JRf1(sl!cB5W}XC3B)= zOBOQtiZ^?~E!$YgUfA4aIm2KyPL{a@f;u$8sep;`2N4qIEQt`mEpvas!yoWGpXZ!= z&-vc8V~fVIMdP(1wxQlp)12>b4Xk(M2MVeS?D;->z~;!$^ZFcqn=jxCRNL}=w%kC0 zH&C6o(OLv!>Bt^Nr5`@ijY>yst*G>8`vp|` zRDJ-JKE0_OJyZ8)0Z^sI83o89XL|Dm4=O#obst*i;7dDD>N$5CK$Rt)8I<^Ku^k{r zx_f>{GfKTt3VkcWb9!sPa(#J(Tz$=mLn5gZZwh1f|~Ew;rW-y|o{uo^Po|sh8g#K&cCDoha3M z=u?0yE$xFS(ciHbAgb4)PVPDE)+Bg za>W(W(rv~n5-|^P+QW==I+^{7ot-mcAXEb_X|mWCt5*`kxrOzvD28f~O3faYpaWwZ zyUkZAnRYW7USYY|zHo~FO+?KkkEe-JW;Q`_T;g*tOQ1J=ECc(7J~D`@W$$1&)FrmJ zuyjglWrNs+JTlmIkmX=M2{}c^M=Xx?UF-suz)7k>OcHbePGz*nOqZ^(CanL<`csni zqtiL}H`9r^A6Tr2nPX zm;qb-&Tu{HqIH&8#g7l!KX^^)R2gDrD@dWckq zemn-dR!Z39vtn+bQ8zyT?yay1sU~UBa0mmHzRHi{d;^tN@@`Z=ejt{DJ{|>*h7#6? z{QO8NSbxsJbn$E-PoS)K`4n1&YC@eK@InI?f;M;YBj^EkzHg=%PjNrG3{v`d9jFzD zB{zwVXl|z10j>jwiBy-1pjIh7kwim7`~kR`Bl^5A`E`&Ve#Kct?Ie$*);qibJpYIb z)!gH4Kn&rX;bl}m$-e@6K&p5gfU3XREWcpIpYuFUsB{Z`{X72zi165oRI7S0i_$xw zejMFAk!BzAtLUdiHKCLxz6O1SW?M9=;+9DRzB5SGe+*_9iy4}fgBfvQR-rQ7fQ7s z{uH1}TgMPeR66$oMD04%OYe~)J@gjz$>Oe;P-^D!`)fez<=$S5>XXx=6Ya46)FMjl z>#IPiCqBN3QWwtFqtwOzizs#L08DjX8bGN%SMt$X>#zNVO8=F9RB9&p4!edc5o$?! zlPnlH83qkqnXDRp*N92gs!_dc9E**HNh?UtSZ|W9fZ+*T zuDSwxy3JTcEaoB3xS5&G#Is+qvvY8T`K!x-D+Yux3a!f#n22AsoBk93}B4o zxA_`%t;0&Dmsu9JFP!3k6S04aN7G~}vs$1yF7dgC#n9_DECu_9J~D`?V{czPgPIau%N|&xMKi2;h{b|Vt z(CM82n;FFX4=hqd%rh(9zsvf}SSccCMVgf{W)%kNFC}JbnPV1oHi9XFCSq?uyV`5# znF(9`&R{*sqHT`Z#g7l!KX^^aR2g7pt4LwEk;XTyrXRg&{7G@=E{hggKaBJT<5A!i zq^5BGGSNz$>OEX;uwj7PW6s z`#2WySekptucDt8&4dz``Fivbnr71_idz;P_|70r{}Gs7ET!lYRz}eiuS*BpNSe#B PcxZ_gkoJG@_s0JKn_)u0 diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 5f2b4c7a6fdc2ded7da073f1dde460a62035a9e7..dc1116c9b619e64d24b1c6547745915f81756137 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2wmFs=Mdm40srr`YsTN5V#^%Y!sRowjCW*RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO RVrr6!X^MsE=6XgY4gg@I5~%!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO YVrr6!X^MsE<{HMuY-DH);Be#y08!N=WdHyG delta 117 zcmbQJK2d#xH=|);l0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ Yv2mJtai_@% diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 9f335ab4bcd9b97633e1cc54cf4d0e3fe0cd9650..dbc78dec340a21d388bdf7f74de9eedb9abf7cff 100644 GIT binary patch delta 4019 zcmbuC-%FEG7{_^X`p%iz4<=|yB|wE}H-P2ApBBs5$zF$)?K2`c)* zfsT?%MMz;_ama&Sq#02c;!V_@by0ZH&q*L%Mdx*(-R}GT0iWmlJ?A;k^W`j$Wi5|o zJ#C<>4uAVuuij@k{a(Wt_PM%MByN4=Tp zW9-@K8quP?DaBCMqS^V0TcoiEySt$h0XE~@A|6!^*)UwpI0rK@R4EsTU+!<~EZ|XZ zwjIKo#NWDm*$^5O<&B%MGY7?sW3$DO>T`$+u##vApV~;9M1IFrw8tgUE?^|o+cxFP zge%sK_SnShdk$GqclI_|Q7^nuW<~weMQ%mCAUS)6ED&TkjYahq8^l^TFD>aGf#rHrDR#-N@m?^d=4+B%U#{c|XR|I-D_4z~|g)u%V zRqjmynJ3l7-2oP#dFUSbc^mZuYcB=o77-FRvbC7zVbKpe$PXWPqLfBq<&1Jd@-1~& z^%ZmuRt{GZl5HvF&OH=`l?R+u1x{3mA9T|aHVq-EBJB^52>fL~o#YF(WzTo-b!uC$QjG(9MOkcg>tn-9}dhPC$!LVBo1YBXg#^ctj_1b{$3WRjM#_bN*g+kRXagJiP z^fC7ARDfjRoAO z%eF&!oA}#wHyc7bM0x8*?93hF#gUm}NcA~Hd0B~3!Y9|$29e)&1?_Q((F2TxdfTRa znW&0H(H@(4bMFBw>dsh;74^dNWmeQbUEo&K3*y68)H@PkE9$-h-HN(?DQHE#^YUSA z%FI`n!y2!BhesxdzpkckQF>zr+v#5RV`wcqed{aeK+$}*fx@C?a1wMN5+g|zU3}1; z4?2&}+L`a7#^aroDUuTc+s-m{wP5^ z*rEAJ@BpfWxcc#lmOjq!ZKgIcweTM3!7|IH7Hnc`@*psUtNhR3O+}!0Q=gCLQ4r$| zsd8@|$ULbo?l!Ra%tQCe&s(S;SbHfrw}_Cqk%3~GgGE1Vqk8zbz1R9B_|?s#7{@T-I^*T zRZ8kWvaOiWWKV>Kffct}fvXBOc_&73Amq%q;p2}J^d`cFq{AY diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 0e3d633a3333d7af086a40d128fe0c1f2dd8b529..89f5fdc92c2d0f316abf937579e0fce7b71c24a3 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVUA@+k$Fm0s=lRpszs88v3as_s)41sNn)~Pia~N}a%z%+NwR@a zszqXIl8I@Gh3VuT#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y-F66o~); delta 1709 zcmX@x#dWreYeO`nVPTR*PEn<0p}x6AT2hLcQEF0}aY|yMVOol*g>i~WidkZcVPbMh zim9=2nt5`viQ(iP#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y%^qDct}7 diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index d06906452619a6af768075363ec0dae7eab024f9..a8b1b8ff69855987b83001242b2d85dcae737a1e 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVUA@+k$Fm0s=lRpszs88v3as_s)41sNn)~Pia~N}a%z%+NwR@a zszqXIl8I@Gh3V!xMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgSEocANkJ delta 1200 zcmX@z%W}GxWrHuHVPTR*PEn<0p}x6AT2hLcQEF0}aY|yMVOol*g>i~WidkZcVPbMh zim9=2nt5`viQ(otMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgYwsh1dW9 diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index f2be011180d9b8f45017a5d7b8aa0a8aae2c8062..a9561a7e5b81f242989397db23854027f015a359 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVUA@+k$Fm0s=lRpszs88v3as_s)41sNn)~Pia~N}a%z%+NwR@a zszqXIl8I@Gh3V!RMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFi~WidkZcVPbMh zim9=2nt5`viQ(oNMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuF!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO uVrr6!X^MrZeoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6I_rYoZW delta 139 zcmdm@wnc42A){Skl0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ uv2mJtaMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vNRR9O delta 760 zcmaF+p6Ts-rVZ|lhJ{HMIYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWf0U7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vi$3)t diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index c6a297aa92c68caba29d1aa34a03c583174d429a..824568ab86e4cc06aff88e035cdd905c11740bcb 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*yg_K&uExqnNeh(QkAN2X`X74WMOQcY@BLfX>O93Y?)$^oSK}PWMGnPV3cZ+ Xn3`l_nqpzPc>-fEIokY~_i+ONO?V^B delta 117 zcmeB?>yg_K&uCbfWRX);X<4XmZjqLhVrG<@lxCcgm}r=mVrpTWVv=H(m|~cioRVT{ XY@BAEoNQvac>-fEIokY~_i+ONvDYP1 diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index ef1e1a417e898f2c7f6afdfcf9dd7ab687bfa1d3..d2c5692ae747d1cb238b11c3353e2bab1ce75293 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0Kv%Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0RILki2wiq diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index eaa9443b50ea858f249c1cd92d11377b3dde80f5..b1bc659a1cf68707e8f403bc0c40e467284248f5 100644 GIT binary patch delta 2442 zcmbu=ODjZS9LMpV5yQxBC}M~RF*wX{&M_hPBot;RmpOAZ3mXPAu6PuO ztT}W^m7Qan>XkHI(>;t^jqncE>{1337D# zEg`!*ljP=E+YWe_Q1tV(n#aD}Ipz#OH Ch7=3{ delta 2442 zcmbu=-77wljxLGnB_A`6PFHcU*G=^+0S@kQ< z`k-Hx6razoDh;xvI25N(vHJpw(jZByD-dwl`8*>)#oZ(PKE=eZblaGwyQEniMib#h zNG?!j>Sr26m+92Bh1}k_dzrq?m)KDw6wZ6Ysu8jj?1R;4xCoSFEjdA{R`!4%wYK6K ztsYd(q1Aiq9$1aab)clz`XEa6PCZI570gPsB>;=y=$MaoTu#G-8x*JQb4peX|wL}w8j#~zjE zZ=kD;4d!82z_%(3g{ztErT)XuceB-8*c-LOQI^5iVmU&Lu{!-fhs27?p0lwLZD*Zj zXwxq&D`uKuCTv6`Mryp6<<_Qh5qe?Y*#Ft{>+?U^c^lRj-bURA_$p`#TP(iXb;B(` DnKCkj diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 6ee6f9f15ad3bf8b834506ded6783044c8105394..f1202d108c89032c1c70da0dc610b195e2ee0a64 100644 GIT binary patch delta 1369 zcmbPxj&<%i)(yUlhB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*AdS@yl|KtPgg=A@W*}RN{jXaxOCNJX< z-fY6l%SxWjlO3d3H}4h_U?)%eW(TPVa^h&?f0xM)3xzi;$gFN5&t{+QCCYDk97n>YU7p+}aDuG{bHG3IfQr*}F~FW2_7 S=8TcLWEo(z9auz7VFUnS0>@DR delta 1369 zcmbPxj&<%i)(yUlhJ{HMIYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWe#i7!Q-7YvX^T%}bb8v5=>AdS@yl|KtPgg=A@W*}RN{jXaxOCNJX< z-fY6l%SxWjlO3d3H}4h_U?)%eW(TPVa^h&?f0xM)3xzi;$gFN5&t{+QCCYDk97n>YU7p+}aDuG{bHG3IfQr*}F~FW2_7 S=8TcLWEo(z9auz7VFUmR8`u*7 diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index b034602214ad1536caaa909c696873b6ddb2e3a8..465dc00f41ef12c98a21bbc7587ce23c7ee4f247 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DICFCB delta 2066 zcmZ4ggKhl}whiu#hJ{HMIYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWezM7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY Dywr!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO cVrr6!X^MsE<`%|wGPF&ez$m&oklB+P0O2Mij{pDw delta 121 zcmbOwJ4<#$Fr#5%l0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ cv2mJtaq0u?%u&l6Yt-oSpol$~ zf!0X7n3xK>Ko(tgx*)J96iG;8Ub-1fZ$%irSJ0k;F0beF5BPoGT5GSp*532ene)?` z4;q!iBc9fs(i*zijQQD0#^4MfLWP6voqR$Y{Aq!jD{S7y8_f&I<4VTR0+ELV?{zJL(2!^!7-b+z=Q>by zYRHeBR7gynZ$@2bMhHb$T^dKx?r0l;3PXxQfEZ8Q3%pi8*=)IHpQe^W+wq=jDm5sB7o5FzVX>q7-%Y zO^%?hk?A<VvYG2NQg_hRUN#1-aGr#@gzfac zpEYCx_J6(?>*?bK)~7E(A)l<1Y@pJ-0?91;!0c=3rBe+ellX7qTqbU(PpefQT0fHC Svz$%l6PM$vjO1@Tmi8MxNCE6~};4KL?>cv}+G=@BSFz62HMI|1+P%jSZ?qHLy7kNA(Z&OpDTMR4T z0L*a2%6L_SYB!dxw}}kPfjslp|1`ejcS5*NBsTq0K{Viwr-A6W*XaP!%8H{{xqZf^ z9;Y!>VH5jyYw70Qd3%8E;ZF^qpm;Z;IUmE&&GChotS?!;e?h&ozT8Ex0*-k;eI8KEM&>~ zX?Z}2WSKYRN*$}=y{$?*Ww$A(fX(`!g5$K3SZ6*4d3kGjRj!iFV^+3;qEW?XUyRCO zJG0WcF{S4aq*86TMlF1=ojLemR0fr(XT|i{$`ZiY$kbADB;___z~N|ou#~N&yd3rx z4??4>xy+}5L7W`ZxN9d%qv2AfVt1JPG^xWEazDbq8|-12?5WQlZ5L#Qr=>-9^`W**LJmc@pLlw$uB5 z){qI<|M^~Qq>mR_pKB2c`DC491C{0#NM_LoW?xG$ovMyZ;=hS=nYf)ktyKeP{YZY# Ra<-UHT#lw&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7jdq#FcIHO^XWk!*CN>!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO fVrr6!X^MsE<_^YMMkA87=}(@(BDUF=xt<#UHDx7N delta 122 zcmX>jdq#FcIHO@4|{lQk(xt&ETUzySi3eFqzuxIwdyS X)Sc!cPy6P&&P(>BYu(&4|{lQk(xt&ETUzySi3eFqzuxIwdyS X)Sc!cPy6P&&P(>BYu(&i~WidkZcVPbMh zim9=2nt5`viQ(ir##dzMT3F(<`6-hN6M0&vcXBZDPu|K}NS1cr$pKt^lRpRwZ$8SV z$V!nB;+s2pHjxu*3rk?G5Z`={uZ_HL02{ISgW!D1Tp+R8Sfqji7XX7&Vza;aZ5A?v zvO!8<^A4GIJ_@v-)n4pDy7tWrOSbTmu5I$dlGM$wo2tCY(&{_8K$L&;r*j_c6lgzw Q&DD@B?LOOqS*L*!0Fic31ONa4 diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index a778393e88194b99424b87c40240a673acc4544f..660704716e66648d2842532eb13437a1ea5fd9f7 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dbq=ngIX+ delta 483 zcmX?gh4IuC#tq(#hJ{HMIYpJ0h5F_eX-O$&MyW|@#wm%3hG{9L7RD(iDQ1Z&hKb23 zDW=B8Y39kvCWe!182^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dcK#pcw!F diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index ef992bc5c64e8888f53c9c5b6316413817a69604..cb49032fad2073a659c126c1cb04ea9ee5287d8f 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_BZWk!*CN>!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO fVrr6!X^MsE<{6CZ8I4HRrayTfi`?ev%*VL_VjU)z delta 122 zcmca7cTa9ZI-_A>l0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ fv2mJtai~WidkZcVPbMh zim9=2nt5`viQ(i5#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OUcZT`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MKPZEZaf3hi7}gF=HVk E0OWy1?f?J) delta 1013 zcmZp8#nSMKWrHuHVPTR*PEn<0p}x6AT2hLcQEF0}aY|yMVOol*g>i~WidkZcVPbMh zim9=2nt5`viQ(otMkaE!ZDd-*M7nL0H!{Ufe#=@*md=>T`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MKPZEZaf3hi7}gF=HVk E0KYR*9smFU diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 7dd04a8b0bff1bf7cf80af32a43f46935b47113f..67afa2567055dd78b3544ab550b19369ddcc0f81 100644 GIT binary patch delta 944666 zcmb@vb$nDu)HnXD??yK3n{`Wq1W0f%?(P;MKyZ>kuwnsY6sH7= zQ>;+hA_YomDQ)3BGxzR7`~H5P&&%ZbBe`>~eCM1q=giC*+g%%9D{`*AS7fg%Ke&4T zVO9H#Nsg&rHMv@^Y89*Yu9zHKy=tYT-qriW_D=4d+$*+H@7M~-)sm8XRjS;lTIHM@ zeU$!>b~Y5%awrF+R~a*=dY_b?Gn_-kipn)&tJkPhVV=j9;eYM_8GC-FDm`_?u-?gi z1`L~@*(hfCkTml5**GzMQhTSza7#SBK3_hrtk*6wp-YGLCN#IAqq;aV5)D1yFj6!h z#r{6j%gu_epbhOkI5{b0a8j?BVM!^2=4X14=XjD2X?`E-&}D`N9`+qDczE)#`6%c2 zp-wKlmz&d-wTj{8dKJwcu6(o}rPX*Q<06v`sI4m8AEl_I&KQclhrXXbn*ts*l@O6+10l||)O zjw>sfpBaT7Selg7r~|q5P92dld_K}1Z|D za_!3aM3LO2^^x41Zc#hSlr34hWa!6S`X&vXpK16=4@>ShEIB=WKx)eT%y5*qX=pgN zy{nOw9(OsZ6t^?c;xEMyi6tpVdrH~3iqYYen~Kp|-U8b7azy=C)0x_j*$hwWHDYiQ zc!Z#c`*9_SG7SHh4b0CJ6p)lqmYW@2UgSlWMn3a`!atE(oXM9BSH5QzQYg0nTa5wx z=C*dL#9b=o;Ig|#B3;xHJ9jBb&lg#0sdChe(66tCdcaAj(lll5RH>i%k0Mhr!M2Gu z>LKXm%b`YYW6xkNu1vU`FLiET&xQfx5G=i*S0tCy%LS%MY{l<>VACk=@^~BfOMK+Q zQ(8M07UdC9gAi;@pQ-*tbIGHJ&lemRwBSSSc0Tig2h>H&ejlpmRwc!vyjF2u;*`XL zMOGwQ`pn9Gh>sSS_LQ`9qa!^ZOZ%IjTEzRQLm%z!{Q*)?0!ha)JpZ(CbR?V!~Elf1j%(r1~JIxO!*siTyd{;D&jCQ#}`^`4Zf(kzlo~^+?SuPKYCWa4ZX8IdR7$ljJ%m!@C{?2tPwl2ubgMM_Y@76dG9dewJJTtN z>BEalhEu9PrAn^nslJrD;vGq!ag_47W>9K4rG|8zNvU;|8ate)CR3`zx=i|P2BrQo zETz<5pfYAD{n}{T0^Npy?E*nrD8;D>9Yfr+Sn_fQixKq-)^GRB1+9F z+DxgPl)4wSg;Ir-nlO1Qr3MfxLlHD%CnXothgB}@qSO#dDev=C8m0RG%~L6qimQX^ zn+24rePchRc2Vk#>L8`2Q|jQ%LzMcGQid%&#amuR+w8;i;RgEfZTt~REv3}+>F&cnMcWG zovzY{Ih0bS^3+$9I*@RUJ{wP|AD`Z!)DcRp9DI{fgDCaeRGykbsV3uY(Py(Lb+y8G zl$uMaow*r2d6<&wA9!jXrOyA7cZJjmV=2{BBf3hcJ(SwMzXzqZQ0nJ%JhhyEv%+Kg zESplT@149xzDuUm+QTcZ6RJ0*YHV(vaf6U6C|S?8@Ml78qSUdbb)FDvBBh%5=Bc5S z+W*&L`fM$wOl!M7C2vlpRQK2FXM~zZse=>G{6eTzl$v>*r}|K;ly}REYUJTTN;ayO z_ZOkkDJ8a4|C>;&Db*OO{~^>&O3kTSVEd(3JOLFctUAU=>G-&*RSz%n=iBhg}YJcwPY%AAkL<#O@S{qKAGLUnp zR^irUPYTW+NGe+REHfFk6OBveI;IW`ynJJRIW98C$K9P5%}pILK$1OhHrG16A~!4} zf_pHm61R3)11@HchMV}MmeUOT0-i%(Exod6F!`^_5`ewj&@Z94lpezE8detG*~(2? zYv%HxyYXgtBA36cKKJW{I^4|Rr8(`YMqKo8C%iL)ySumb>zF=<0$eP@q(J?4*mo-ERd2Q!XmYb<`-M=)6VnB{4 zbTK+y#dVw>>&NTLdA@4IIj70FqDk$zK}&gUoc~e_QXHjH%pY5ia`eZT?yBs8q)8y9 zlr*^~w|xRUnbk}5Z;WX}T5;R*>;X=Q)cOCH)Lim}hN3wEH4&)vjK~nua1iyl%aw~k zLl4ZdQ44^lqW-{W7fzp}=O(Ny$@QC9pCcJnon+^BjjRTYkw)hKjj@?uEfB5ewvB1Z z)t=f`)Cq7Kaz9VeiyA-#P!grS2)A=PhBx4TTc8ots{~!7!UsQy;skAd!8Ha6J5R4A z+D(B1r4_a|ikigNxf<@}%3xGfx1W+I02(hUS3Cf;4=?#m_2 zc8D-Hes(2MU#c$R3XStfIZ085ytJIalO~R+tt3}I%YkC|lnLgX*?mOA;WIN=H_OJk zvRiW2EF-sSxs{7eB_3$v`p>g+Q8|6U1uApjW?8_ONQ*~c5;#wGbMB`(y|_WyMoyD5 zh;wJRfbUJ5XH92O8P1bxM|Fd$X^7jBc9H1)aE|>yj+e|`$+CzlaD$hYLIwA`skkXa z27)H%bFFgST=y^4+}(5~H+fzxcV)H}?jNER!rgggMF#>N)?rZvV9_h`aXH{`Lvlm7 zK69+#dnyzg+SCB^9sd9@W0 zgmW#oa3`0R3sOI``Lly>! z%2Qd6uCQ^h7q#VnOVMzN%j}}I6g+cHqyu8D=LaJOLOg(xlv)ugdljs4{ZY%B&|E}M(YM*rTHskxsD@Bawl@5h`$6% zF_gM4*tLT60LT}U=9PyUdLS_vu4z6|k{RS)M(yC`N{eVEcQ3sqS2$kD#jncXB3360 zje!reW#I;{HE?@Y58^&`I?lDG3qTCyR<60HApHfBjVrY(e5m0*tPMrE6$hz^^f|Ou z`moj}`U(uwOrCLt2~uwHQsckg8&4JRD8HRJGm3k;){gFnr34WNAe{;VP8?v?y2^^o zvV5tFlAlHC)4qf^NJj(S$OK!U=FlS5#r?8QEt*2C67^`2Y6nH~CeEAdESi^Mq=q~+ za=GgpfTfV01won0X}9!2b*_)qp!u@z1)nnC_8(xiWBeb%Tw>40F_jb0o;&oMu1Q5;`S|~sa%h3gHb`X zTpcQBd9H-7-l2;}a^>9QU2nNDI73>gQbI*8u3!*(M~kwQE1+K3`Hma6_dWLxPe%8x z&*iJdyF~y_`Y8l_1iG{;HyOqBTm@Bu9WY<-{|UvmTSXFSD4yJTc;H90{GXL7ZtVWi z@FnTRkS|A3B~>rC#sEq>$aOpP2Duy{b(h00xjKbo(ZLHxRouBF>D-Q^<50pSAle)m zjt)9*D!EO^N1};N&|#gU>FBu~KKk}>I@kJe2Djzd7|wM<$?ZHgjw^A(A)3wIK2csY zn*JY5|7X$v>$%XcTi9sx2rO(c) zSO1iLezrT4ZaEloL|Tn#*3RnR-Ib%XRi(6C$%j`yKW_puZ|9LmC&fI-!XFvNK6#J> zKegaNcAB4Fmhf=zep$xKQ@58d1fIIR?#l?mso#a{oby{N5#?s*vp2Ve)Qvx|kjneh zpX&eDBZ2Fl9~cI>i4vxwZOR6w-9@4^GMXdWC>JF&@{TVnL~D44(DY!@4px}ILqx-P zMWT!_QPStbU=ZvPuPrRsiT)IL(wIbBKOc;m3Z7&Z9prh!t*xSUesH^JlZ*{=I7*EX zDRI14)Io_x+%ILsCrgWR1Wx;x6EPa~a15~B1Ws?37YPQAD_0V2kiS%62Q!Ad>O*CK5pe(=| zhmR(TstD{U`-x0KGG++T9;r((H$rqxV0z3LQI8O|j0U3*8$>poHC=Sb#+ORMYLSGI z>%kbnu%O>lTST!!0VsEhS_`c9!=g4q^3;JqvP5AZIsJs_sqn&AXGAlEg0-I)Jy-B@ zTd#<+pr=h#u=kGWv2b_W526afXTSa|DiH4Od?h+1SnllCqE`YtS$~QS33q$^C3+vs zrnvzqulo}pHYvr{Aim&7YQ=oP57UX$CB;HrWfHd+WRN+Ur65TC^iecE4qne1mT**i|+`@%6-H|!V9JW;_}MRS1@z{#-lew#e2~1 zllL4b;p@<7^m>@M;Pa7aHw4Wt_tb#jr;9~m282o9iR44DLKT_ zJ@m7w#`}UK%}7B>)RGk}1(mZ$Q6A;02G+uLbdn(~yaW&sAe2WJ9ZGq1=4pELFSJ

uD@OChk}ZUfw@cai&@7i22_I2;5|;3Q>LX>PWIMrduVv?>TE65rB1_o~ zl3Z4O4B03-Krl*eVc`RVESOmM%x#hb%;n0n1IvI>Nxw+ma2eHV}MA zvXi+867EYz5eBY*&#nRcBguJY4a|JZYoPqk>_#~LiKGF;P#}KwO7hqV!i$bujQF`m z`Xi~3t{S8)?G9jd$JdS04Wx3LWR_kb*UlDc56~{&VUv1Dcj1axdXwDW8X-MEn)QLD zr2|6A{i@PeO1Pe^E2Z6%c@3r42|citv_AQ6OGoMVk zBThPtB}NYPimXcdW?Mc;hgjlp&wn81`+zj zC21=aTx;K!$_ZY>2U619?0G1iPF|bwSh_2SJbop81-IA5yq1!$V&6!QkjF3IN-q|Du*nA*xI_$y$ZL z^{7|Y-wxN(b!4F=(`xl)XIUa<0B?gPM)gyo+;%brdRe!g9%&jo2V!+InFzS1u?G5~ ziA;|Q(j->gu9fU0qY!*P81flLIM#KNQS*M*S(ZiAGp2{kL<%h@QP!4OlEkJ3-QB%IXyh2?3HE--EcI=_DKbD%l!hRYy0-UXuGe zw#vke*|tOXmq;}zyGsKFDy$Qs$BDaTgTe&^!uK!8Ix;ppAAv(r!<#Y>N_)3lir*H= zz91Y|y((Kwobu9j*%3nLd?&j@s-)DXvevVcL|e^v9UFtZ5BR~ zX;F-Jz#w!XT7Jqe+J-Xnt&BS35nXYELh+l5@^eIvqgCWjNu{x+ntUKBq3|!{(F{{Q zh?-Px&nF>hVnewUP5*Mh0@S~OJd;s$M4&K0MFVsE_(NeMxg>}Ijy5AlrVdzy54DwV zV{uJCLL>A=$9i&X=^|GV)%m)~r$BX$G>Zoq@WI~l0W9^DAG-|N+Na(`r0gfxqnMF$ z7f$XkXBsK{7oZ($2FZUW<@;{1d^xe#MMLEV!u*zWd2>cxG{l3yls{!L65y>NK0iUe zfYcGaCd=m%PJW#tPa&3T$D~j|#exTyQ%od`KCh@aOzv;4tXNO3ovJF1lB>D8;xuX1@7Lj<=how&H*LT_ z4{D@%M4rEB!9U;Hihtgv4gcKIPH}@g|FsMMe0w+kdG{Xtb9+xk0eOC*H~%~{nSWln zAOHN1{)&U-`L0y{dHPWPxjh}8>&cqFOx3XDzI{@MBn?QJKd{wsw7s692}-N3aHDc* z3Oyb;LQ#nTYsaPNelSyUjC`NL@z1|lz(4rcUVSD1{QFh>^EGP}&q?brZ?nS8Xq%mJ><&dNgKc84O*;5nuurj( zlyZ+Fit^-|bwaU}kr_J1*bswRM(c`WkqEs}XmOZUVG-ercNO)B*JvN`#u@xj@xcsq z@L!4s!0zrg%2U)9#Y$?Mg%agaLQj?{`w`VX2~jp+93tk2w(%jOQWq{7hK}wvHbLfc z$`uTfkrfm8?{dnwEP>g|!OC)|U`414wOy+!jhB^Io)n?NU+r3)UQwx$^2zyCm8FE_ zH#L=~h2*-r%HAv!SRb>T(Nf7Uu#W(s6F&&Kyp?iE5akgy?W)XRP#$3Q#GSe+!&&+_ z^y9yJDD%WT51ZqaGgx^zmY^KS;u(~O{mIIa0uS~2D_JUR3e$3cGJ>Jm#qja(LiX!Z zmD5;Na4=2Tlerkyr3X|{ZlrPoD-ShBDR0R5()5j2rn17gCn!^SH$i!mm3f~JgNJ^l zOpx%5Jea2J_4x?IO?slcGnFCu&UEDj!K(+)RNfU}dt@mWGs5D@bCfZHe8=V~`!d3y zMGKT6=+@}qGWZuxSwdhjYJu`6fkoG1R^=)C2UL%MK8})k)id$Dl1Mqpj;7xDvh@rvG269Btw-(oTmDl|pc}z| z=6a}v^#>GT;$!8GP(InLGjswebwC6ylCZw5E#*H(Q|98}~M1%={n4ODCSmKle&R{f;mnO7#L z{0b~eRQVOSqqoW>=U@1KfND=LpWHA))k4W9WfN4d!`bXC1|=pw(cu0_RVj#<^j)4` z(z`2FKQQ{F09$db$|vyHZ%aV5m~8>kv^!Kr!8WSyQJoenMzc@#M7SG#ShZd#&J#yf z9|W)~XH~t0@@{%X)dI$3NRMpIZPiINs~QS_QidZaa4Y`%i7FwC_l~r8s%nfr2)lRy z5kq0$6!;I41(g*{w`ow2znnE8LH=_7RUPD4Mz}u6uZ&m5pe@2@+iXF?Kh>g2m8)6spoKxOM1<5v02m1}Mv?+KGL+FIH;lWvgPPW;D9|(rKGCDXijL+_RjbOhG z_pTj$Td`~NJUb@X%(4QM7Mh zs9=rH7Y4r*)be&&utrdwjC4_C6v1Z_e8owyF;to=!D8#L43zG| z_5UlSyJkzEbO&tAYk}L&L7`WL)~A*> zlxdZAz-usg%^SgC^39=shneCIEr!D+lnnJdjHz^}-(i&1Lk|dSU#S!74^HYf3iUh8 z%$A{khlyzy>aX{{?-c5H7~Cb)?=V^2LQR4?cEyLPS^NQX&;(_rhAL6>xHfw9^5GyE z?%p?anVfIcf`^0#v2^MQEC$$Gf~>bjg!;R%t44+TyRcKng!;R%8z+SNdk|ku3iS_) z#!U;IDl}ui&InyCRAl)%p*lhAGYdm!u!s%KWjPE3wezA-;a+1?lu$ZSi!@`jGL-jq zD9gkk3>!O9VvVQ4c-qNO6^qJ5Gt~9bQnS{D)VnnrT>eZbjPif>v0CUO%*%@Ecy#|# zsDllqIcj?y+!>aq>ha3Up;@rHf2~Q2>Rbz5$Owo5P{b%xb9DF(7%5!@9{*-w5bEAc ztwG9TdNmHa7n&K0p8R7n;(}+P17V{H;WPS0D9e}(sE=l)#_pG)K9(k*AYfoN4t6^L zBRKl6(DSfKg(Q{#gsu^ihu()S z>>46>7e=cKi=#^y0{dW@FQ6Lon}z{vDytXqjG}$j)w3B*gV>rA->IR##}GRZo2S<5 z#GPuZ;{^jaQAa(uSlm3Tt2Qz^vcS!f2I}4dH|oY}mYoS7C9B#*eWZB0ncGa=T;S$O z3+9r-FI%c#6_1fIZPY^qM&7nlvkU@%REw{J+E=_ny4OivSKubLt9oX!Os0J|b!Wyp zqaTKvHVC$gfpeoCeOav~70>Rc9>}PXRJ>rIdX%6H#}HNeJZ{^N39mRFYj{HX{?$I z;?zX~%+rOeHAN~mEK+~Rpb_j@sy;3#C&!aZIg6|136^Lk*TaG@>kN zk^-gPHl*N?qiUAJEJ*LA1qM_V%eWuaP2nwF2x@zm#Q$WqX|s#!7r}goxYcbn(?n?i z76a@uq09NtWAzo-uuXcO-@jC!6MC|Te^r}8_`5&6SNDhWQppSPny@><3oUhFlUne1 z@AeFX1u^u6-3ei1~YZ^g{YsxQiQu}pNApgZmZwIwhLfke}?sE85yJn z8S_{x!*Bl%D`NE+L=l>O2+L)58$bv}MJkvvXr0lq918nWFT)!Zn&rh|DHH?Xs8F{0 zyam!&H9`1-S#ye&2Mh=oSf)~s#%nqvTqnYgF8<den1}QLXBCt z+jyyFpHM=YVDt;5JPuA^H3EfUt!-HDQ8;_p#<1 zq4`(Q0)g-M% z2G^Q>wMz0{!~WV@3bY4SVr3Q;cJ_l6t1z~YGMClE`EJg+ml?|-Ox@W_iucs zl@a>xU2QdTH9z2=k9eqEBnMjkM2pREJt@+`j>cS^Ezw;h*F>4_7P;0`=q{0Ks7hBh zl+Y$!Fu`dOu7d+Ca&aB2?i{%W+jUpT^?^eNtKW0+YL^ZyAQxZt=z3}4TCJk)2)X~Z zlJ0AAJzPbXO!AMYtt%w-4`1jeNZ{J1zOJ$nu1mV`_j`2H$w6PZSG*2(V&>w?i9G%v zNjg|{pNo(5*6mWmb@(v;{mR329h5-N9H)a*BXaSm4F3J-n*`QNUp7J>0XlO zUwp^wU42(Kjg;$xA9QeF2)y^B?p-ik`@GiGB=6_F(d{An?4r<9zWb~6D~KKy8vPrh zhku;}CX*25tzi1`o}T>fkQbSdaz-x)ni9rLP4KNxGy>3?VGE76Zv zU(k;i0|TBSJ;NCz7%;lBsF3FU_*?xflK0SSOnKM4u0O(HjL73PbU+tnhG0DRj=mnz z{-p;DBrzC2$4rY|g(k)XR`gA$Fm z8&dJUzw}cGd*swFRPt{ z3J?diFpOkSFa{*1c@y|91*IwteR17(Y<2+%Nw|6!gPVbEqQXS{Hk4+G0`t&e!$R0dnG+SAaR#Z*Wwhn>lWlwf~#ax2weoqUsKXh4icmu?ux zTI&Hc#MkExa_k|bKDtT1W!7>q0Jq9GXNUNQ));7VUG)FYjb z!9|AE3?&+X!~l7S0QJ0TSXC^bxz`MRSjM~qte~;IjcxGdJBHRQ!~OtMj-{=F@A@F; zUUd`P<7dMumNmyYc4J5Mi`b~d+g=;)tNh;A`HkQEF8yO@2;R5AWMtXD?T1(6D3P%N zON~tsFfjO323CAaX-p$l-6GVuf?S_yjpJFY+Rv5_y*C+WFjx)%jO15z)(tm~B_?># zW?b|6Kp23MSV|tgn}Aokj5Mgyd5vp7KW{`a`udE?j4Dh-M@k#zbP6A5mo%+ZQCGs%9CJ}*2(Az*t|i6&$crTCF0fU zXxzXk9tFk#%yfh(5iP)4DID9?IEL`Esk?DwvG}>)!?=jWB|hP&w~;Pwsf3#*8JTA0 z16Vk%xA8HnO%m-`FgV9GR@0#f2>hZA-ZIp9lckBFq9o2V24T%OV>56JJ{CxsY=qN| zw<7ygX74~0weB?IIA-w(0s;gz>Nvy5(g7yYVL&-S8iB|xc2@w5GW-{O#B2MYV`isW343QcFgnqc~RbwvC$ikaOmgbY7pfr!kj5J3i3f$(Fu@j?O`yurc zqp)!&>vqE+^ul0H#77?(H%rmG-gE2x#Zc&R-`7ptllyV5JgGzD*6(Bu9ptDzo$gA-DeMiv&|JT5{f0 zkzcf2G}6Qr8hylS5ZA_v5_Z>=;n*)t&sml)1J)3fJ@knJ?XMGI`DD#%;tZ2PLfch5 zbGE53qmu~OKUb88;Ji7e9fEFq&ojaDVXE7R`KH4`eDd`Q(|9?boV3>Tnq?TBij(*S z{B&PT-Iqbwz16f&5aO5Zrt{1~1P~D*%K62`!*-kCN7$$gIr~hoqL?P*513#@F-^`t zYBC5d{JxW>$_zG2TAltVudYdn=bkrpV5|^$1Ox~g^!A9wh+-c>Z_NG3l#0t;G<_@L z3)ytZ^a@U@C%xeCnIX=I+ntzciEhVw^lK47Ncxulok)FZifArH2J8ec_OUrC3i>E zHxCf*zG!H!CnW1NF&9Yq7sM^hOIWiGlHT!m=`f9lE5H< z5gO{r9nEW4oCjcrqPz}fB`)f2PM1>MppFTwEb&+fumrw#C7Lg=7) ziAwi1vy2M=2eoZ!y9zJsXTJWw#bM2X=5qpv<{@U5<<|e;7dhT5+_Y8Kqs&YtW&i4b^ynB0N$g+K%Tc!*{TBuYsMC=;eg)5S*_G zk7k(Y=O&FQjogm#`Z&cB-i2XIivVB%=*h7CJCHeo%;8+0GT{u3BL#WcFT5^VTOnLn z&M~lTcpghB5oHi43{Yzr$|JxFepDlTEkl<*0D%7L8?MF`8i%)FEE6gRL2;pPwuNhO zljh+T`{x_{zZhbeGbZ0-Q0Z)jYRI2=FMblLZb~@I=_mg|NgW!#ycjC&g$izTQQ^xY z!Y{FU8)%~?it*ZP2zK)?#_u!2)vUhbhf<;!73FfYjsq`((hkGp@2bPas5TdFNA9nK zwCLWTu~E2XPI!st>?TkThkX~G&d@UZOQ0SC02hkcpfRF}?c`dN*ScP3yzg%K1hpuW z)XEOr>3R4rh8)OGeV627zm7nQ>v(l|(TnikMJTpqA1%&(6+S^KI?C7i$-jpee7^h? z9L4s1>Oxt6gzsPgm=t80fPZ-#&UCmE`54XlE1bdkQ28d7t^5KB>p$V}BPE(?Ew!ko z$nuCm2*BEdl_{dujyg=Rw$_%@s^_us`?LKwGu5%d%6AtWA1IaEb#R% zxp;hGD21Dhb==2tbmF*y78nwtO+oD;mIK9C)zcJ950>bkSJecI0Uf#Kn2tA&1WO=% z>2T3#3rzJ87V(lXmM<83T7rG#SQN;8-pk>dQv`4=PMl`hFMvnSu#{lvr3b)uD7LjN z3-9Lw;P(~;z&9dG9cJ*9dKT>hm+cl_zB+(?Y^?=O3Z_~?>nt#+Kd#53{E8Mow;ckJ;$gCSQY%1hYP{C7=0k1V#(*zcyY}OLi{Rt50~LQxz-x;uyVqwT5+zkmTxEoqVqgA8Tm6A&9=IskI$L z;L6tzLkevha7r7iS}5|Yc2>X7cIpt|%-+eG%bZ1Gjzx~XDebi*O}cLg*2h_WLS{|k ztuvTmmrsxK@rWgp1Bh|`towse&VhzaQGB{JpP?w}V3mfmnoz;er&2s>IH-mJrrv7n za8!Dfl_em8Z`bev(dNSjb^=2>-U;z}F*=oDwYCWhNx7FzeRaX1G8 zjUeyM_{m1=S;penjB~bFFB1m(6tI@VW~|*|Wr;+1?tQzh7YGBdu=OIV2A1!$R%ED` zu;_?&oDA}waDt`e5qw_2k0Mq$X=VET*N+JLGuB5$4R6m`&oijuBhZ!$)(D0#X`kWI~+2TII%V#KA5Hd1xs`(_(# z-<^PWSa{?yHro>hha?^~7rDmRqtL|{-Wm9^*LFh+sI`rn_T{#`i7an# zo4{fko{_d`s3^|a6UW5cIf&u4JyeX#7(vp8L?o6ggaaW*d&ily?ku-R&KsfMXMx--sN8WpU!2ca^M@#jm7 zA*Wd^)y7bb9nsJNL1i7Wn=f;xtn?JS)+ zz}SM#7CY0a;`HNvHv1kiFp%c7GlVpVVp!aErm%v3eAH{dLKs*WX}|ROHp(;5sDzy< zte^~ZEp5L@7${lR&JtfzjBDlWEMW!VelAKg*@Y>N>|@>SSW(%&nwZ3<>Z~U55z>j1 zYTB935BwKrPF(K``%R)GTRr;)wo>|(smt~4zcISZr!WPL>}Ls6W1IeOFjb+s{lNbM zQ`cMCAtuU4d2Q^cim$15?d%;HIxoCo#rCw*xeYx^(?_(&ce~n;ummC06cQ8du#DrO z!^mS@?PcG^((9vGb0h3za>0fY-j(Q$Z=~3#F+;VjVGl*IUYqrkf&R^7>@!FS(4KX( z@%A{DSb#F>M_15*0B20JKPGKh-|6;QES(yHi3_sqD@g-LxI_K2?Ru2`2=;ZxwijzL zmt*fmnxx<7+nK@u$~0tP#P=53VX!72?^tYy2p}KNTWXJCY04>L+Df~LL;(Hp`_*oc7d-=QePdSZb%7sZXn-f*eO9bpM#sg)U?};?c#%4wi7j4>cBF zY~ol48;39qxKD54xXRFY`LX)*W1W>+IWDqTj31^w+M4YUCMj-obX=FAjU`|#Vtr=^ zv}mmyR{W~FqX%rWB^>wc=@?QBj%ikEJTKlciKP$lFOFU4@OXy?|DEV~Tdue)u}m@% zW-u5>Ti9krRHH=>mQ{m(nS{bzy2!y4W&8)G>Qculp~#*rcd+b?{tsY!u7fG~_y{v` zzfXlts~r0Uz8J|snC=V6y z<#ESwGWKA=A9gy{z}`J#U%U3Q+ZOw{(>5Z2b^>45^Sg3H;ygEQp=Hxjtb0mIjAN6ke|h4ww!ebkhNAp=h$oZO2`f9x4@gqQlu0wbe(s`7!GLj{-SlJr3m1^(RN2;^lDv zcUK6%)&1gD&fw4l4IEJtwBKmKgQ7hw_kP&g?d z@1~<6sw;LjL)pum6&C#LEaLTdR^)_V@tA{WOPpr~mG+f6$=N4F(d87*2`opI`L){- zr54)O;V_*OmXiRY4#yarh zmmiDvm2kqc6bjp=l+#`uEAD{m?sI?%cx^!_adQt1da>M93D1aimgV~<_-tioL*@=0 z<=dYDA9JGQ+DI~7kw-%RySMrj&5v!t|lg?BV}juHx? zMr$Y2vNL}T)B({P=#-SctrOOsQN~}kcf#5;nk?$*Y*Z|V!7zi=K*DogG7*fk7?oTH zG94vMCI$C)CJS1a)Yl2C(kQ!a2039>8co(pb+#&&CDGt>?nq~F7|;E-sm>b31 z+dIPv3)Co!)w7(iK#e9hEpWmDHJV(#+)0ixAr>?wH{iFGRytvU8ok?py%QFw(d18? zov=WSCiAyDVSyS=Uftt_1!^>Tc)xQ5bNP|@1w;HYTPYeTM072ZN}}86oXo*oLC#YX zE+#hh=TZrJ@lAIvnsmi^mccRs zYZ(r|=DfgSY4Gs`bl2h%0;p|woN1vbqGJyu`tqI=4&vzOvf`wtPFNmJS#0==b3Gf2 zG#54A@WNT0r5ESt(}fFOIS=p(!{gpKZ%Zj-xc@sRmeJ(ySQq@pE8!L^#I8+3^0>qW z4H3ONOXhmbi-YGVU9eGr-t80`_^eEr3w|1w-o2*@e3q|sy%0XjH@aprY|le}Az0!y z_?B9X0p|_!wie@Dhikb|D6QPCZES_I44?71m;yFnXBqAu;aVo}peW(m%F4s!k}js; zjPhWKc0ou+3JX0d>tgxkJPMN><6@c|q96CG;DQ6$C=X>TyBH!13^08dYolejes$Lb zA^S@;U5x&@3^%UrIxf^i)_SgutfiS#-*sAm8Q9phi52GiCN7r!KzMsgR~}yxpkD2n z{DL6xLsL&WxGu9)Rv!@-baq`4ie^kV7t4UbM=Vtj7t>~+j|gXbx{eCmEK771Fci&4 ztjJz2rYXaZ2*34l6$sqy?pI81z8K(Q3WGm#b9s@F9aIz?Z|+T+^9+Y4^C&jqKq(YqN(0th{h1`tfg0|-Bz2q0`a z89?ZF#??~b;lwwtAuItK6)mx=ONV}0AFafHU2&y~d1Yl>cQHkq|3XxwAMd)I0t_OlDLhrbk!g-oO!H+On;_4Nlgp&5?ah->*;S!$j(~n(W3LU-nPh3nf z=D%`KWA`%`gqO6S{`tiP;U!JpdFgt=Y@QP%U2>GT@KF$Qw}hp0bpG@0Th|E|=Yvi_ zKe|_np9DQGbysDW1SP#p3R4+=o!$-cDHXDDs2k!_nl$L#5TDYd$mDLxB09~2?3&u+ zaDU4(FB$;gH%u)l=Z1KcvSh31hIo`Fvue5_9;L~t4criq(qx-PZhueS)Wi+(D81Xf zwHxA5nmpUy4e=;V&gkNXc$6k_oEzd%n#@admtc0WwDFNrw0v|_3jVpTn`u!pHOiOc zqv%S=LHNxO_bX;@E>8OalvUn42&+c8y)5kpl*C{R@obDpG=`6_>twj|7`g^@<5cVd zw*j}D=niA)%ubr=PC@RPUKgsX_Qa!6U%6RAYe1R8ht_dZ+;S-@7}HIQ(r38ue7;N= zu->zj&7{(vRP4%j>xAs<&v&o<{Ol2dK>$;Y?~Wc{;NHaItrX_P{HGB}lkb+J8kMW* zaf{{dT~Z|b(9MVqtK8LCqS*i}2H4@eqAQ6c-M1xtvdjs06_z>&_??6fb#&Np%vE==jtal7 z&5v##79~D$vxH6*b-C4|#;2dU6Ih~!00N3pd$bErdBRcMyJe&KH6lZPal=3>Rl%EA z?wx`*_Wj|8qhsmaX@9zV$@%1;9|G#?Eb~}cYJ-3A!m>j4E3i|OVmj_NPp?YZS z^{_;P6z06o!!%YwKfV;@fkWCU4@*mVc7J}YgaM`>Q}s^DaBo@9WFh+&u^yH|1}eqZ z|q)&_=r%yn`ei>jVzAU0tHoP_4HI>Y}hBEH0=+e=>A=Yf*epH zEaLs8k7qP<^`C3_A%qSh;OrDnf0jUoYN^QU(S006s6NIsf)xrUPWAk*;5#dWvOLY$ z&1kB}z%SCBnC*Eiw3?%krx#-%ZxZsK$zj1emwVuFJKCZ8X0>OW&}R2o=V1z5sRju+ zhI!E&yq#gyW)H-y!~yWnTRgurTMQJi;=eJgdXI-ST8Ibs~wp1O>xH>J)*yMlU@O zvr_KxTMxvnB)NN=7eZEg^GmV!h>&b1^+L!>?~V`lLdZ&!|AcuVWTnXi1}}uHH2K8h zg^-mdzjb)aFdOLy1V7Y}J34AGj)?I7$_!Jdlvh~fTQl1GCo{~%njRH~kaZqY1qC4@ zh7b|Xqg~HOt68YB}dfnLT z!r2YIOpE%!LO;T=%n|wlVEBhjE%$2b-6Elq!Qhnl6oZ!hfT?(UEAJVm3P+Hs9f}?3 zd8;(N1qVABy!|?j0vM*6Wqbjzs{+;*qPpOozEpp(sMbd@n>k zwBS@5ye#W1K4N8U^!~y$N+l?0EN-{O3#&dTH}AKxSJG6naofFrvT}m~p@d*JN?c5} zWbXCeVd~NdYU%lL<#NFhFRWaq9g3?*y|8kbCi9MaFR(0v^OszERCfv-Aq?k4t`op- zd=mg)UF1E$vT*k!c-SnL2_>f3jr@}0H@5>aSnqn_Ku0RWi+f&JDom63K_K(V4+D3b z|KQzGJU$X~T~QbgYk^5^X6nYF@f_-d(pkQC^kw2SI^oPNx#<8J3 z7)zugd9+bl zznhL}=wtdRduk5QkE+EVb{XHsH;yq5rXc`@sf_bG`XCslO0akJK`=~{PvQbvx}NAW z6tBEf3T^9g-F`k;u}{Gh2Kf9wUSg0BW?JdpUk3X+7B3&Dy=3$hNDQYyW(%2ZAK_#A zWwejZ=br!-PLwG<&IhabDa-K_d<#{gR6a^9ccVoa)PIJLdChR_2A>hPoatjauKd+T zUmBd}6yZYSfAGblB@4kJ?hJ`w84r6<=vzXgI|Lgs<#=?K54vFmvpQ%|(;QzBLpKZn zSK+7geAii`I}j`r!|{-*O7vID4o0+gF-TT$)Mv%9t9@5s*orV_%=fWGa)3P#Ph98g z%~BD;$Ez{k;8QVtjNxM^!*|GEHU|95W?uyu#39m`-{E6e5K6FCVZ77FG~q=*ZoS91 zMkoQvJ|9aEL}6y^_c29d^yA1wzGDIpZ;$vGj`G0(bDbsXq1n$q;e+))v>5uI^6h8! zjyI=$XBh2a70x;5J0$Rs@QsgUYbF)t=Zik3F(vx(l*_(p0uQ#UK9=a5!YsMwJ10~& zBX9Xw!Vn7c$8BGc0CVG>k7eaLh3Wpl#}w(k5=G?mLEgj1zMU}YO1yO4QzkD3tgX2E zb05=G8~xb+(sxoQn%BSjSeCC-m}$THUb2`d{kYQ~zP$nu&UfrQZ2!y0G^a*+Xz|_$ zLpHQ5bfDDFcU259zcRI9qKIq=-iBapP{b6LF=@znDoWHwXz0l|7*5e)TKz|1>N+Cm z&dzaov@7B}mJR}i`A{+<9F6JOL+;-#6@KAwHNM|7{L_N1#-X;HQwZ{9tR~ykjXu$jPR4b z5&tk+@>EoK-WLW(bKB+oT2xDF#6>1E+UOhb$-LgXF%flG;u+{lQJBhDIWdCF>k;`T zd=)|F^+>Yij0iHXN0QYuBRVrlO|l5g>&@jNvRUT!D5C_0Uy%CKnh02sO8FYFA%aZq z5f*Q6k06tKB>C;W2r|1zlFJW7K$t|6eGWyC**$W1(TNB$yGN4YXClb#9!Xxi5J6`5 zNK*D~1ex6<$zQHTlxH{9dl7PecCX2uhWUHa)^;z@rEeQ$avIh}};ka+xYo z2$3*^NU#ib93QgX9Mrc0QvDvm8nSUkk>U8|?-B7*K!k&N>Y}3Rkup60uZUh!r2DBN z9MJpD^NK!262DdVrZ-{CwkSZRBJr<)eowl4WHXK%HXL;{bN|Z`$rA2B z?g#M_S7d#bb`L&Y@o^t5a$JbY#+^$>)(%An&sQ?y^_3%o_#!%9Es`Y~_T#H@(;AUX zA#nf!Evpf!MQw}V_y~H$sk(M#W6B#&t{d4~MpTGzHi|qcqN#!=k*oMr?`DyE_*Cf@ zk!Jpj_N^oD(IUt7J48mX)EfU`tCch|9&OzIe^~p<_@RP3OZCVrRdfMU1vPvN?;CVQOfTdg4%(a=i;Dsbap&%d(aEWz>a8j zF+G=x$+^@BNLo;e@b5FJFHZ#>gv@Fvl==K;HN5m%&{KQl*O7G43+@GVWL=uiqabUb z*%n()tFp7DJDvoMaD(~sV)XBWk?6;X>h7reHNU3#(fgoxR*dzFk3n-7>*-&DKyy*5 z5pz{;c-Xg~)70Z|iyuMfSZ|+X6`Tqh5($?7|DBIK=@{$=a)c^DJ^wK${nIBnA2KH; z?IneY!{OC}+cEVm4G7-H#xdRN1m9-Qnu~&mfkH;Ww@gT%L)!E)tV-k)RW56rub`VI}Le!8@3dPHYZ#fov%x z_>0lXZNc>c?Tqj)KCwM`4-5HOJA+sFz+h&g`_+ORu-&;}Yp$;vSA!1#^o0l~4z~72 z@KxrR#dm@SGkpa-43;r{wR-{97sE%%zeAPA3ATD2e3of0`CafNUx4OFkdMHF9Yk%M z(fhG=G)Uwv+7E!Co0(O6UIn89AJHxVz?P$;NocB{C=h@46@jkrH6uVawUT!?Ak|v7?Em6K+1UY3*QOq{;#-k0QN488W z{p*X)R>)@Q4Mm_CwwY1@uGBxF3-LDXv<-dr2hYZ}y*-Yvu zBAMZ6%Tqj1bP>n~ldyPNF(S2xiS}|LZ$^lY0f`80Y5?9kN@T^G)5GILkQJYD1&yB| zA{iB^f|g7XovaYA_QfL5eb9u>Irja&+HBEEJI3b10ukh1AcA!buUjO7B@+@}KDt!o z${qOe3TSX&!v|K0oFStnBEWfM(EEDhduv5yR#X}I_IeT7K1;2XvPE&LL@!C=D_yriLARK;+Fil>8>T2GzsF!=ev>aK?ngU0(f?lhD@W z8Xj;O+{j+T!_SFc^M+*DML371mqq&lDnQf>HLr=vIENZHMW>-=cy~)Q1TrZk9Cpza ztfP-aL6FVq1Yje2yZ)sMYIPu}5U0Ktc|%q&C`?fsk-KoI5hkhCo`O+QY(uKzMEj7P zV1(|yMFFU1Y`Z6hxZz!jkh7H-+XaasF041hyHp{Uz_==Hh$q^l z4{<;z3sSvM=n?yr!Fl^nfBu zQPG+q8nRv{@W)Z3L&EGB_3jfZ;EDvt58s*+LavLTO5HpygzWa9#Q`%yw((-h ztdRbdVa?e_bndw5pLy^0uMElIK~!TyNIZATj$17C#{3#Wc9~ELpSOi109#{LFD7@L z@(B`l+8sjn9Z}qudqSE4C(E>f{6``@OcLSk1GY|m|FOpFdm*GZWQ~`21BHph9j=Cu zeMeNjJ2yhez9U*(e>a5eJEFxo4@2ex`<1@s%e*NsLyiF5mZ7kHN4LI)kbOr2ukFo4 zJChALLZf%hA(U)8qQ!IWp=L*%>ltcxh8-WXPyTs5gKs#*2 zo6|#Y`dVSOb7)UQa2Wd5G!(e8M}*EEedUBNHw#@=3H=zW^&qFnL&>QUT0GD?6qMU8 zuUn`I4el5kh>8kAAxm@u04`}4YJhYl=Gq~vbL8C~Y=6(`PN55!Mo|B*p{sws<--JP z5ZCG59-+@5&PO1cA+It1)ll)aOeeJai5uDW^s%x%p3*P$k~`WlL`&}e>Kp2X&QA#C z7bY$rADYR`hdxgX?eg=y5v{aCai|;qF)5T>CMLK7Dx4Zx1jNDwE6TA^ zbfFFNpOe=@Uqgm=RI5`DhC1Wi+o2JVVTc6*5d=Hze^-boA#U-6`=R@}BR6>(x|lO{ zd}VR^kFP@?I$L!_9^vx>kjg+dn0MdmaTT5W7FvD!3lG%F)FTEZehd8ouq*k75`c$& z58Y~K)t+@Dm8Ysa(D_-7Y*DdI*en>NKPs{fJOA_V;vRNk);6d#UhIKKIfcorS@D!h zSQNw~2$}*FzX|t4gDZy({CPU4R(M!@w&=FpJ*q1UgW3I^nFagMcOl6R>mM%)z&`3fo(W6^FD9 zBWEyZ1Z*t|TUPt$r4zh17EQfD+&+0zm^}*Yuk}Jx?sTw2RcD5IqvR9e_GqeiF3AIT zq7%vA?i^MND`$ok`Z8&DtqXI2Og$`>Vp3`KXeL47{V;N>nhF#9Fl+^v>-n3or7rC0 zyl-KJPORu_ACBx;aldPL34d*1*b{+e)KA&I&d9y&SP(~lYyg-kIMzqBfREu`lXura}QsLtqq zJ{*36tNhZb@SgVUX~Rq57pehNZf>N{p~G`LG-&nP@Kpem3zwyJ(6F0xj^{1`5N2<9+ql(;L`gY{Ur z9;D;MWTOUc9jzvcdqUmHcaoSSs-Q4`P7#A96GDX4Di+@bYh>AUaRbi5VU`%O21KJ& zK3fdh{6b$Yonzq;JYNi&Tnc(`L;M)b!DF|WtQJxZ zEB1;JG`jEZ6N45oX-M=f6%XMY><)=R%TPi{Bp(*P1nc3{F$;&LC*d5XpQ-?dz;l+c z9C!f|maOw!cTs#CtOuW~mbmD19o|f@xKV*7QgYie9)EBb?vvH-iyv^ea(yK34t4Fo z$6{MH=035AG6p2j1RGLM}U^wy5GO0e4(^RV1gugNRZ; z2}yiLIZUZ8SqRm`*&332U=GHbl4G1hNFB*iD2Fa}CGc_e@4=GuoWt2r$#N(M@9+xv zWU)l@m~$8%B>{Z7XW?}&TJiv33;ZBf(ug+=*>cG`s0wB)B+tN2L(N3VRIY;3WOzt? zNs$cVFk{ms;C^#%x}*-*$eAn&aD}NScG5^dN6cwMRg_~14vk&{Twv{qry3*;fJ???T!XuMd|){r0!z; zWXG`JtoWBtlE28lF`+p4Z^;fg2-LS)L>W{vf-)Zutr6j9&xD#=H{zrfEA|eK$npT-k|1k< zRf-5u7GEmb-j?yb@vhVeKd^cUf;(=T5pjw230SR;xXs0qW=B{zN# zHvqku0bFr+Qv^9NOPwgFNyKOFtdT7u4sp7b@*`?Nnj~69xAF1LcymF7H}}&k9V_Ce zb6;%S#7 zvLH^f#WS)#s%(|uhKZgKL?APQH=g$(;sx&)XFiMQ=mTiYDA>N*30|n#gcxqNPv0ZR zZ9;;Npf6UDkh!-R)epN=inQZ>QXQwr768w}1k4#QHbdmScGy%k(ucRv{Q@G}_ySdg zTg63Uu(8O?9=IevauGRZBMf4iHH=Jz7>mZmnO>2!AuhnFmT@ zx$&Y%$O5B45fi|1ya9c%B$6C3qGl{!9_hl18&*b=bCL9EowbqV4ho^T`pbG^D*DiQ zXXFnKP;GZ))f((+#O5Co6Nji} zyy)T-wT~BXI!8$%o3+iP)6j*0s1Fs8+8Z~k871Sb&$8gCW1QH45DQ&NSQI%gOkKoP z9Ayhh9bl$whpIItZjjPAF#=zfMb)T~q6Mt2I7}I}t9k_#V22X=B_`uF4WmLU#)iPS zqsl81eUSU-NQAwcM7`#L<<;Jz)>j=YYF*UH;u}K?qZHmy8GbA$^=kW($yuLaa91EG zi|~XIQNa$((g!C*-Qh;xG%0EgWOBCjM|2Z3> zl)~FqMpffY!2PvRSNQGXqFc3kM&3*qQZ`}1& zRAm={Q<)L`am`OrA2-?h4OviQenRevn@+`T`d-Ein2G?{d;= zN9TI7A1sqb7eEEV#Yxe-A%|S4Eac^?sAXuf9lBgU+5@RtMv%0+g-KIT-<;^`NG0|s zCx-Nz%xOCdi(LcC!&ALXf=T@%LKe{ngI#hFI(qcSk zMD%>f2$G6O5d5i#_|CZKNN%Va#nI;0{KK^9^_=vUnbGFJUOYQGhCh8cCwenC_40Yq z=F#YhCDB#5GTv>BzQi?fWoz_z{@SDM(NB2n-PjXd1lGXYqls=v^*m`7?sFu16Icyq z7Wc)%4HY#=w!@R7V_tAa87qwm0SerNL~QaDd@Mf37c%&yoCtyk?w1l% z%q{4b9%}|+S8=;(j30_0oE(88o5a+Cb|jd<)CH^^ilQXU!|i(($~*lG4ljCthUXh2LC@Nm1hIHn3F zlle&QZ}X?dK&J4*uo4rjrQFNXX2d*!xIZ19PCc0157%56WB$Hqza$3q5nWjHBUs+J z+R_-3caydlX)9v>f_N4caQE7nrVxLkQjwS4(ed-i%dw^;#x;!5X@525HF)BB-X+BW z-+2<_2IfQ%#^OJp#f;;0CV9p_=e{=DJJy#Qv&1*{5B_vh)!6sExXnMdE^q8!)QSDT z{qjvn>^VMgJr^D80$sPj&DF66@G3*~Us8N=YHln)9)jIWvBA76&TJAp4l)*__BXVT zJpgu|DTT3C+zFR-i#4yX_9%)qFK(-P$IfsE3=^q$&0n7~4L=zjD`j>-VH08@pZ3jI zF1YT**aO_s?~PSo*e^U{qV~o{afj=1D7FmJ9njAMn}SuE_mItP^_u zBDNI(wAP=ojZq_cfj55nGS&_xbglm`x7l1DXc8@ub4(;p3-id&313;7@$U&smpw%u>Ixb@>G@f z=eE!1}Y zB0U9lU9_aX)E>JIl4iM@CG9v~dJs%efI|e%9`BwgUBW%LaH@1NFFMYU{xJJ9k|uG_ z?J!?Twro(xoV3{T^yYGDCI0mFYUy-doK|A-^1_YM)!d)!Y?e;oKiI#G|G*Q^-C_A{ zubn~|&?>@qOE>c3i#^f-{I%Yt(ms&IS{e}t9=>wM{f~M7rM{@j zQ|YRoCxhrHO7(=qMCdc=cK|?iT3maSUl3=o{-_`jreAi+*yTG_?%1TrlEzOxaWiGyN3ONdkMG3IfJz*4FYW~N z-DUUV<^$iwuOGzO+EZiOyojs997_B?t_E|8rhmoVvZDW*^*L@ID|vs7d&5iLshJDO}3wvQaof5=9PneWUU#2 zH&tbSvw!`&n(RBna|w_|vS+%QvR>?W=j+HmvC<8ZY!my}xnZ&itR$7leAvG>jWRRs z9AjqMN-8_WkP~FGm+TFhQg(us+!JNbS;;X)cEuXqQ(AfAx2a~4c4Wx>81#L$tP3l( z(8~T|ue39m3BJga1+stjYan~as;kyW#^h`v zJ@`cS3*O&BcF=>iN(gn5k!`SN;{5T!{<2(J3#v6p)&<}?0yHAf4me@3ERQxcXyHiN zmyHTGzPOK6 zPL6le@!&?e{44W|-3fAFym0*Iv39Pjt&-%7xu;4#mzDOW%U`huaHmE-8Zs{+ni+tK zPQ4^s$Cl+dqWuN()~LQw?u9<)%iYjGjddO>Y#En?JdE-PCKmbE>dY9!>&t^7T+@X0QFz4Mll$>Wl*0$!{^vmD|f3GtT`wLql``1+Lk= z&;=hVl*hQzKFhAZd^a=2g+X#Q$HQ-i%Z~ub_d#zR<<-%Y?ymNj1i?7&N!2FFJ2CpR zilP2r4(*EHO_TF6SLAH@9yZ?iisX8x{3Z+Ki-9ALK6vp8d9*!K`jhqYEsXW*%}___ zg9upLLH zEx8Bs?=JPiO)ksbY?w@guFF9u!~{f45D&9qp7mY%VJoyLnG7ng-;?hJa->T!bmhbY z=RA{dbhR4C)`(Oe@U=V=`z~ZWk{#Opc*`tfpuTi8x|_a)xgBWo<>ZO2`X0^TGbX3Q#`M{~*o@QK*?M@Y`@j5HAKt zDmqrg(EjLNg2Dln-7$J$eVl@1>Jm7kwQ_|QirS>`$IBFoxsWlVnY}+I6=*nHMT&)Z zw=~5nAo0$4lSWZw&6sw~F*9wgRSe+%P^MP^hE$kv-U9T_BGhcV(gWp}k!|)vHmQP9 ze4gSA%q1z*NK{ro9v3dI&Ct z=mEbgRLc(ZYs#3P^Hk%I5rh#eEKQaFGJCkA}k7 zFHwM!;L(?7FH?}iI#d+*l?uo{8Vb{Bl>(HhhraxJjfF$U^$Ni5CLCR&FhCA1(dwf% zE67O$s)8k3;VO9ctD+R#PBz}5AZbb|ho?K??PTn31!(UO)x*}k3UV_p8-9~6)iL)0@)eN>Pn9~9=pXL#qC@)b54 zqZ}@NSFB>9%o?u*2gnU8B`BjbrSR59IgM*`y1jBO)W6Ccl%R~#l!L8{atr5h%nh!G zD(*^1Mrk&*H+m__E@0{ozP`$3P(5_2qU;9_(&_$00LCG_h7vrz=og>_rIn_(u&$*f z>6ED+&eu^wcF$9o&>$te>s}*LZsQ!fhAF}Q)`4&(D6KRVATdIDfpZ9mR<4HnL!THW zD6KT*U>B#n#X0;TSFVS0FesJq5%rw}B}wT_{o!J=as!k@l&S(gxjRisQZrEwhccC0 zpd5nKN=RC1);{2D}pia3B$|2aG1m%{d{;)q!xtw$8Ssxx3hZ`tca~N4;CAb4^ z*hDGk9q6Lw$`w$J{MkYY$}LSb(jngxA@$lSA)g^A%+>-WD7Q3yd1s-;DqXrMmq7Kf zue%bITbgnh-%~lCn>6khxMz&*qa?YdX`l`0uY??qrEC@tP?Aqr6lVVrCFJu1g>fCG zBuQo|%;XVD$gx-ovu~uO^*A~P-m7|zQ-X3!Qx1PkAj2ajO3`E`WK%AM**--H$}LS_ z)=pDS;vAmOP=XgwV`nKrxuq!w?>WjYoWrzvO7P<4jrmGYZfVLvx5#3PBTJOvH6oW~ zN|IZedgs9vO2`3J%I4lm^@B`08z?8<<&O|EHDF(U~LnVmpeedp^^9M z(~Q)JWTYN~7rs|YYyiUq0S1%A)?}la;40YWyHXE1t4`^Vq|!=M*)jehkO<96jYwAN z?)a@!d|x|8sh>wYNli`JMf${()YP;nuNHsI61;%IZi}NDy-% zpX90D%Cl0xsh8l4Mk?Z;0VTr(YPUVp(C*ZDa*~rOYgT%EJ}B{-(2A<|3!$rsD6mRL z9*yFwA$MD=syM1)yglH!2|Cz4z5(9XGJY8(@P(HVdATxv-#VV8siwkRFNi0Z6KU~C z`*>f_KFIFzt#Q|G@sMmcn2@T@RsOn9JV{JVseBp`PZCqp;_1Qh36R*N(smyo?}SKV z>H_?AMEp?>esK)URjKj`Vje(AxA-VXyj!p^$yoiJ z3sl2CVIm|8kOd5t=bJVz>}0}gYb4k)rK8eX36S}?1sW4*U*7aR4o&C_bt+60c%dR1 z^TAq00?GA9-MdF}!XRI0BSTF|GDuIsHVqR}D#FPI(L~gDnkJA$)RfqyJ_!xMrYuiH zeQi?0RvtC;rX_%fEQla_V$IBiM2O!+{aB^uvA#YT7A50*Ls43e{hZ9I5YFZp~ zG=U_drp0e35=bIyp}6|e=>!+{@bUEol8BoA`}>;-BoQ?&*7%e_5>d0aJ|{c}C=XGN z<%y`tnA;g``jK!8==P++N$kxVoSAlsPdK{?4vC?V%yQBa(S~ z7k=cQNK(sEJ)IOKk_@18ELJ`kGO0Xl(yZk!Z=h z1Shm{1WBRoW=GZzw5mkNT*eIA8;jEtpK`s{(O5+Inr#tbqc)MGq^2TF(I@&rG7ym3 zI$)BBIuD?2OkREiI3b81^d-^&yp6oq`5(EZ-wa5!ab@D$jI-$H_IQharcO*GdB>@K ziY6!Oya83xSSimfJ#<;(S0D-|C^sD#o0lbtB>OBSc70>wZ=l)L`lJ>#tu!WSrME*i zXDuZNm?Wki#oHsF&l0Ui20ktCC*^h~c3Niu0#y#2-!@rS-8l4R1t)9v|5B$qV(_cu043m}6G!lNY` zmY+n%Dt;t$OqqX@1D3cY1-Sqm;on%8V7=ph@Va^uNi9u@uBn@}-iZ|pB9lmJY5Fue zIfR)hKBQR6b1PI|o@wG7D6N<>UR@Iq3!$=t-9(l0up? zyE!n4q>!e?&f}9v3TaxbKRJn{kfz0g;v|wnnigv=Na_icqAw!JzR52Cl}U8~9*c=6 zCENlne@!y?7_#k2Bxf|G_6JTfNA3MxNhD`9eOhO463H1&i;wpuna7b%hm%OoX!kC(*3hVHrbCPayXJc9paiyGDFj1XOCo(8JZTyc_)+1(6l(hKN%`p z3zQU^T#IGRkE)wI6f)EyQntVZW;Z)0fE|*ONs?&FOrDh-1k`#9M6x?i!hLd+@3OW9 zwX2^D87&I*1S~g9GDVw1x~Oq-8epkJuxJZRQata5DoV&O?SbdEO(yxFsfyw|B$NEm zwD_r4GRY53i*x!We+5?|vRCJCaChA{&!{+jFzHlUCj8j;-45vZMW%2U8FfhwAy6ofN2nTiyW8k%}m za(oI&4NZ&f5>rTOXj<%;oI+AV(_&Xu3P}x3i_5Z8NNQ+WTw_QfsiA3cT%(j=@Ja$n z4PA^6bxpYp>2s)9BtP^;F2IkzDI_&CB_$i0vJ4W?)OaK{^kn>UQi=xBEKvlKAKD9_ zoR&ha;iGg;%uF$_h|ZgxLXt$&r=8}dY=Gq1qH>cY(YJUkkKLRC`8-dV5*QaedP@q) z4^25W_%+1}thoQ=hwfII0$Gh=3kn3w19v=L|@UThz!nqXFMtZEc5&X%eA@?t=|Y9%jTPErlw0oGQfy6M48VKAwdaI5@i zqB_irms_hQ@nVlos;#^z?V(!7i*Nd=X7S>zVX9BOxM-ZE3duy(Zf~aEZ;MrTY+3R3 zN>!{KEu!n|RQwEZ+Y*%44YGHMygQhkV{N)s<;I=8|4tQT{|~_$jgRb79R?bI zG)~#88p=$A&h3YDs8*^v59YA+H&sv0q3#jYR9Fy<#+{C;bdaw~REdQrEF4~+Qb97? zQ5g9d)itml4xdx;j4uE63CJeXMmP5Kq@^S~<{kv)gPZLqaD)lumCORO3ic77pVS*H1q1$ECG|a! zIY+!U#Lg964oqbU6!6sEo!eTW&Vi}b(fMwbJdpd9)Fd>#dg^7?Bet)RI*$wEQ75$) zFQ$j2?ga*Q3p`nzss)QcUUtOYBT|2JWPNCsA~hH25iL-w(`4uqo{|~@rXwJr2^w2} zG`de}Upyc+wSaZ*NTy2VJ$g-b>T!q@^yrn=5H0CI?oNL-x>FbYTA#YG!Z3a~xqj+f zE30uhvSDghCz7VfeQqajyd^)iEySK?iZgITyHwEr2{S?@axWwi<=ioqTyRK-#XmZw zPUbVlh22tZ_+V{oQECl{7HC8fYuTd%_sRb)8ClPs-bRCo-5&7q*uX)lpexac3^Q@Z z5ve6{fVP#qJRC*M?`(%p?@TS^t%+uD>I<%hwEd~~sxXbjTus&R0GxO$l_YSdddj(z zI)@kkyqmg(7q{O}-OTq9^m%6aZQKjXZ|}ae{B}uM>PG(CR)1Q48}PyM+hZRsza9T6 zbu0g^?uX^K&Q@t=4%@8L%pCgIq}}IZ;SMfohXH28L_5h=c%D~UJmBLVD%b6#=rpr# z9pci=y0w<4MOI~6Ov_En;<}w%Kh3P$#tkiUSv9uEb*M>N3D?1}e9LcB+E{-3yshQ8 z>)NH=<2snvH4T!5N6n`eijM9n>M*ugY%n+Em5=f7EgJMFOLxAl&uUExPAsh)lpvV+}BBoMiY(tYu#ko1L+ML9D}4K&QxncNuMDBT{r%hC@9pi?c|`k;Ps z>0Zd#A>AK)HAr`a%nSZq0VWl^v!gzOr?*TGX2!rL^3xkuVo#$A(sd53IJrwYwqnHw z-O|<0thk|ndTm!$ygw%WJpb*%sp(_A*wZG<)5!*WAw01A>hyuZthnGz`b8Erc<80{ zFPy`Ko9W}d*$?WzNpJ4Xiqn3i$8p?i_8DCr+0zCd8QHvwO?5M#@gJ;~WTZk?Xv_6t zbV{#^+azb~x2HPCaakD^a`+mEBEHYg_>HUKm_Ea-$f>y*!?_x2HON@YimPum&9G-e zmbK34%>TVZhm12&w?@RRYoPom4j!o3Gd&Rb?a1`U_q%5dabkW|rF#bVt0e<6u2m$w z|5?lYW364W@6e1Q8zu}InNf)gvwmF0V{Y>$Q#0l}u^;H>Wenslczr>}cJ>47&ehPC zx*1YbRFdJ23=eaCk=ytTCv3AKBZwP4zQm%X?OQTdK^A41{dZ@)Lv43=*C3r$)d*z2 zHv`hqS>4bE;xl_QMgTgP8Lek{&1l-+8814Rkz-{w6PxOqwgoOyz$f18FeAej~V7c1t_SI`<;v`_{#Z= z+hpK=-pd31b~)of#Q}q^X0(J%YRxjKG2umKHIs_GeURcIiKw^MB+OzTWq|TdSYQQl z1M!9@86(LS8X_)E{WC+@xF{4Wf5^B_hLA$>)0Ye(!F~_-+M}47nRBf6G4J%Ol?ln4E_f$W88a&*>qv(JcD<#$ zT7Y>sL(msQA8A^J>E>d10=_8K!sb2g@WnG=C*F!7sLfLZ@P6zkk9lbpV$ zF0-;l<|H5y=6>&5X4Zzx)u>uXBn6@=rI}>o!j4QYe7;j=mJQOC;;q2};00b@wl9H+*4ECgzgPU68qti`QXA=3ZWumRKZp z+-Q;X-lj~@`ls1^j!5<5C7H;SX4+w5LuAj)cY0rDFgSFH`4}uFut&I1?GI;?PLY~K zdNlJ7a=D^l9r>xu94_DVi<#*T?CH~+nLQwm$~7oqq1h(GPjPOkaZHO7$krp0%nKj z7iWFrq}QOV9497VrDa*Sxr*Md%PJz5dICkh57Pd!mei zSF-NF#8`|&u4P??eAOZ>7UQ!wvW{320yA%CZG;l=yqgsW)Z=1o^&snOaYH2h4jB)qwP6)&+rp-S1i3padqo&T0qNz=3yJzX=3Jyw3vVbQ8>2>0?$Vm_XIf zjKHn0StU>nH2R)(7)oIKEA>u60V^u00rg`c93g8|KUP<_B{JfsfodnjaT;v3eM0G zLAS>-De6ap9(~i)kFChxuj%Tm!rzOT>TP!9?^vCBfDQR;ou>vZT)yk9&d2#p)OG|6 zd3d$*!Gl_JRj0v2Jty#BOUH+xplp-}K`U&Q6 zEbFE2C1`ZrFY3zxVnQQI4D=<-2iF;-7CD){snrS+SIJqy(HAq#j!&hkNo2eMhACYf*8pvZTn zdIz8#W`m;YWj^TX?`f?Oxk<_sk@YO^+4&l>6=IdT_0MDCywz$*%5_BEYl#{jQBOp< z>(!8@upS50-PjPxxkUZm25nxXARCspsJH*T5Qt#)!CkhhLF+d3<>2k=LDr1JuUHNF z+Dc)b?^J_sxu7q<+oN8`Ih5>I&-{5kU;@)0;;J6!)kB#rHXcNZg_x$W)Nh!B_Loz z7PRZoTzw$weuT89=Ug<9jZp-J2k&NA&3fLDcJb7#fg0|#m!>kj) z2rDBsogoIHFBisW##*Cc^OT;*CQbv|b}w+~BGZ7DRw;+3N)5@{OxskuM9oU59(pBd zlEHfDuhPuq90JlcE1(=EWN5|!IAEd&l3RkRpmPq~6)tHtpxcV58JZb1=0VPLBit2? zCXE$jltDQ3M>X1zhJAc{UvKoUHun%9sSsep*j_Sdv^X3Ww?Yq~?e3Q=Z}6E$wQ>3B^%q-_po z(D2T0d9lXHj?vpcTLa34KFtT8VPRB`Yal1I5RFz z4>g6528Q(7P4JKBnwb!t2rnb@a!s7{O4H4W`Euz8jns+E+VlR>CTx$&Zs))vZk0p! zKJM4O-Lm&uv8So-*;Dxs9#qY)!++otkbQ+U{P=6F?0AUpQEJ9_FCFpmu|NZ{Bidz?bNsa1s@EYq8Pb~lt6Ip86$%iwL+ylI`e*ZO@`HM3lPiPiDC0`s z?B!5>3aFT%?uGQ8<-GRyAzu=^4#~dCDb*j54LLRWZ$Lxrbu{KeHrWkC z)ph$ub{RMEja%6yO%;85VIk;2LUZl75c#EYWR0#%;~_5C4Q5$8a$BL{QhM)9``9{D3~)v*!v}?8E+@V*4jJn%%l9hw2%1` zNaa9neQufFb+rc}37E)4kA5-q!*^n}`BrFJVS5eP$*zU0&(bfU?m=a~Xt7ND3gGF4 zOaOAv*DBE6c&!~feG;zFf_97j3k%Yln*p-1d!n|nt<@aVDOG!@0#aq8CE3~l{4h=H z42e<;9|p5LQ@h8SkZPsTuB`|uOh`ri5BQAIX?qBKJ{q(OE5e6Kmu=MEfGqC)M@iS~ zYkv_)85;dBNG)xwtqB>O3#2e{>$Q;Pz${TNQp72IaF;gP+Leezbi0&aTP^t%*NmK< zi85Jx;PdUY>xrM@L512=Hsr6SNE;1l!^~AG(VL*Ms@Si;cA?<@t^acJ!Ka64L0KsN zgE@J)_9`(9E*Pb~Y(@Sm$7qj|zdOchyFvPla`d|&Ub-M@oWc)Ro1%Sh(NvRZ|I$?6 zbgi`F^-UtM>=BbyLvO zYg!FjR7ZFG=XH(f_-I&2Sxsag>Cg&2&8SUxia8=tuaB-X*-NTZ09+DTk(Uv9 z*$yo{m*Id`>Gf`?Rj6(Vj7K5btkKnG-`6*V>3Z6t;z~LX6ceR`jF<>F3K)j>MC(91 z4$2YcNOc>m8JmW39c1TFIo3{v4s;7;Il`0#-9pYLF2JNYUK}gqL7>uHED` z9XW$fEp;+O2iV*853IUby0=g^m^jZ4PNc6^H>UzV7>2Ltbf2L_1TPN5Gjnw$B_mZ! zx=9CF94}Y#ih8;P$VkJC;DX0C(Si1yTM*DVqrMv6+)PLEuLP5Z6E$eABg4jMoj-ov zQn!SKDqdWmBS)$Pp>ezRI`Z9#7ONKO?p0z%hwi%LfG!;q9)AJtF$_&H>V5G3e!6kC zlsaxUME8ahZZ^t7xYih*h(B#IQFok+5i?mwz6?<@zD?1Qvt_inw^(C9vkBK4Ove#4(Gk{Z8n}mlG;$+$o*XjunSq z&{=W&PrITsLQeEj0jGwQIpQ(*bsfR7QG^)}bwM`F{AZr($SwxTcT1VY{C!{R{^WcI z{%Lud`aze+1zP^q^0d=;ofrS@WGj6pWO_tp8|I?-z(bw%?Vz$@f)K&PLfNi*9*}R{ z^xLw z^c^5;f%N6ATl9;$3fgSbPk^dm+IIaRFo(~(^d!Xw)x(Uv`iW2uhxX|~vk$6=ex>?t zoI}zf{d6dY-iP%ffGZ%%L3K<|_7zb*96h0j%y^`IFr)q~A5iyk(-fa~GbOMMww4_$uOlVbohB5dBmImEov2LODMTxG5Q z%&VXHQ9lOi3OoMNgUN{YalL53!Mh)QLYM9D7tf_1Ow+C0<4GB;y;2mBD za>$a#K@VR8CSPz448jhFMlr z4|r&81KA)*Rgx$&OoF*aZ`?Jcf}9ZHWW)`_4Vj!+iP%6cVWq@m(FQ=kvXE&WW2gCw;X67OSM9ygChnT$O;%Oz8+#AdBSLM=`aJy6Gn@TM;N~F*V>LXRJCPK zCrvU`gDk`^{a{p~^Yfp%XD74imh3WAf&?U!i(q1c zNiOf9Hra5%;L2@s>X4x(FMc~_2;jx=(}pL!SnGn}8ZSCtHDp5MB954X_un#ncQ8wH z{;}aWL>d7J5hQP1{kg%Ot6TcJ;Q@EH;5UYA{Hfaq1Nq)S#l8N~U?K@^iMwu3$ldMC z9@@F&wucHMP;f!}E0cuSZ$fhYaaGUU5__{R`upW_U$pbjH37qoN?BfoJxibSSB>1E z+!kYN=RO5v5Bc)a2fYo+wLzL;Q4zSVC|3;}DWxC*3lppf&Sv9ImFC((vYim)s?giL zdT;c1My@@2@zT)?ZQrB!#W~5jW!7eNZE9`=P;iEh33_wxB!xM-B(W%Ul2l!;n(KD1 zF}I9I%Ix~Nr}z(gHq3>3Kdsmub#I>Qf-{=uW}4eAyr@;~d|({>6Z2@B+y$I)ulBiQ zPcW4zxnr)mY5u!YZfh=FQMX)AF8z#Nx#a5{{cV?Da)ZFp5EWVGjvl>q^uu8Tb8XDM z4eC9>90)~2b79Fwgm4$o@rmKN+qi^NM(3X3tUHd)9mvIcKhg5^?Bv{oZcMBt3vxXm zV$oJ}@z<9g$bUzsAJ#3){baTonzzy{)|gef>mk-FM_+KPwF^G5Hn*Vz;~Ts+cPkg@ z#g5!mJN7hTUv3R&4$@ZC&}1yB*jFu_|`h7zb8J-Lq|s{)}QxJL5hJ z#aL$}?|cGXjQc7=(HrNx8yi%FqcdsDwB+jiss8jGlOP4P$#t+hbqDtcTp%M$iV7a^O>SjnmjL9(NTPB@mW^b7Cin zvAvyDC)^{}2%S@;AOcba`^k)JdAMAPH}2uB;o?N&PIJSUY+T8U0V*TeH9^DhT&m^i z=yaobbd;NEBuUrk55m;ObG+!3&0q7xdvlB{_|qOb%WDY+%WJ+yqaLJ{zIiINq`T1$ z6}B)sv#iIT8W=xVtT?x!*@}_Pj7LDeXs!a2D#%^PRLokfEjs(XjgcHpr%!hmSQJ&* z-lC{l9W4^S>SU4lXrZxQMI?4bemmX#@s=LOFXny)m;PdeeOu%ry5d^>jP6{-w1Gyl zZHCI_G}t2IwILQ^mJTz*Ml%+LwisiyvRLZGXtSl3OfbT}0+@jj0d~PZCK>zlpc_Bc zcpu!7y@@IF#=p-n8bID7^avE;z$~N8(pEXmH)0-s7Z)2(SA{KjrJ&-!Uk0Ez2Z;Zd z-7$LM%w5L6%)?wXeUDk8L-raUK}H$0LlmmOq>Ag@FRmXle&>Gi^oa2)FP=GOBuB=m zw_G`8)Pa>vYO9VnoHO#z+&JZ;@e;41&ShgNa8i(h?*B~^*}tkyjuHI0W4ve4k(y|Y z&H8ITFotjenmji8f_|04qcKzMhl*9LXYy1Qlo?z0QD9q7< zUw<~Pf|!(m`!-3-s-j$XvMVb-PT__7+U6x&Jp80n-gkhM!g6p5 z5`ZxQCYPF1m%8Vfmknm=5?AJd*H+EDVxC^2%XRX&)l2K=nV(O^wko;O&71j(Px_z%ZhxWy;IxuI5CgD1Y1mN(T*5FJ*V)wo%c z_XMm)0T>Zr2TT(D@{f0Ter}#MM2!zxX@(F^x`~n%$z>WnVA>QRXl5Mo_U=4%ly16kW+l5rAfwQqa4Yv@#sW` z2IZ9GtpT)z!Xc0u#VeeVenZ~lpMQVGgV{Av)YiN(T(U6_^3mS{fUfqic0={H}d z3Lu!U2qiaH{F&i_I`7O|2bZNj+AOK%h=1FaS0B)TnFXrPl4Km(pSOkFXC$y1eK2o! z1z6$I-}15m-uWLwzaGt-!3i}wkq6j$^&h<1C-XJ|0{lNHf1J)+%UPA2`ya4+bv|!o z#dTHfN*>uEMvb@h8q_g`@TiZ9_9z|kt?PM^{Fvps+FVFbHr>iw#aXq#TOpTXF1q$! z-bBDj3Nx!@eCTPO+zq{Zm_e3{KIAp4K+q)P&!6+iK2<^Gc;L6ZLO|zZ=B2>htxYW) zC@*xv%H%csP@X?_b2f=9;1~)-K)vxbH&Z9hGS9;#t^muJ9aT&u=Oa|-`P#RRp8YjBIg z&|+z} zX#q*pAw2DBFx}+E#`R3e6&1!0hc_{KGN(ZO8*|Sc+T7$@QGv(@idH5qmt{;F(-zKJ z)4?R%dnL$HwUdb)J)*^9olP#}sw&~>`Q!6qfZv2oBCQyVMPP2b!N&l+pG zU~AQl5!yJ}1j&t0#jBQ3=E;ub8uk@>qG}=aTyX8FrV%!%=Ej;HX!{J1m{yv4iFof! z(|U3ND}llNW}DK;J+?ye)Lhd>A6A^O$>inn^8*zmpd*6rhMFxhd7#jPrhzaN13G%z zM9-6ZWBqTYu3YF-M@^8uaD)~GB+Ed@Oyr~-Rbc5UFcv1{j2uRE-UJw~3Yy}Sj2BGg z+z_?EtScrbK!{N=9B|t-)&a#otLcMxKQ?tBm+=a267$T|1!@9<=zzMHne1@*b5kuY zZ;MwZ$Sxi#uKRkeK z_y2&QY51b6*CVHqgyrQ(=C{^+f^QgX^vP zALy%1NIjBgp6bgjydET}YPq1QZf=g)D6R+EI$91x#q*D>M@B@H*Zk;ukWI(sfOMX4 z?f6kE`K0Y#@_tU2DW~1Y~G6;|wcPcM`7eKd zJ-?cqQxrdsOl$2>26*BE`?IKUhY+4@AQiqd+7Ne~&I8?TCjNnK}hG-xJRw>D++T z_wD#&O*GC&eHeeYJ}|fw@vzcY+vAUu@w;^S=e;xWcd_z9!JK8w1577sF48A|h~K9R zHm_WWXNfNYSkvj%i}CAOW*GJ3#9!iZ|GdiibHB3VVELU*L{M>y z3NZZ`w&+By{>AI@&+66Z_$9FH991wc`6n>l>ZN`>EieI|>S{9tHcnu1kygRnAChpH zxhtFxOPHkNFrg_s4%?a~%wv%QQ9scfDz9Gva@4CGmE8}CHHkn7{DTosBjkaNa&}p&Yv5ZJ46BjoKVVH5{`SM4@ZJm`fw$9rH{K3 zywb;@1h4clIKeA@3`$Hr|_R`Xo z^V0G?pAg5m9waQ=nGi%EXiTSr3lbm^sNL=RB2Ra_Se)=HW6#z=tHQ?2G6l4{j9s1R zrQpaUF9k~`C)~**Y^Y4Cd=R%W|L|PAg-oBB@E60z@dlJ9Ux=SY=gdlgJC@p^uT>@7 z$)Mv?#KbzfE&B3;ga-r2uzsCJkSU82HZ!28YWYeRCw$NFZQRj>f#md#q53CUL-;NfY-Z z$Se!0`f*nc^O9>CQC9el{#x@-{&y(6OliJeSu*3vLDpjye z$ef78So%!UME}OxWU#GuBBHjdQ$&~8M3|+h$v-o!D$!;$$7h*?x&|uTejI`JTiMZMEc?l*FdtTGAjVLXuYtkle)K zh{kmCN9b_- zElEs;dCdczVg9~65k{#h+>$2~l}KYs6}FX$kPy`5AFC2qG|`gJZb+;e%{C!$%l9QT zrhEQMyeCR+JlZlMX(?-ysj!AcCJofNyS!bJr-ceTBq8R!iuk_HN#QzgzU`iLS#Okc zy^=hPp4B&Li(X)eEy=^^%ul+~RYRRDN@BVn3d3X=DQ%P7ik@Dc^nPP) znAn#m>BHowHAzg-#k^n%zy{ISXOc3aG(;D^=H8q`hm+2&AbWC>Z zedD99$%FL1(X~(VES(?QtjR__dF8HT4{Hwf(}6|MXYNU!su$=xEV+k1J>(Bh4%Ok# z9p%m4H6}StXL+yq`<%Yp$gP(oK7k?JQl*10jYy zxi6VTkOlxZX?8lfk0woD+@D3ux; z&D%m{+b78^!Ewk9R1Tg@zNnz`)~V#}jHpoX_+^%%e*=p}UnPH_U?F~+{0b`;o4-qb zpGBBdu_z5W*OpZNnH)%(*@v{C!!IPa4F*1Hyo*V{C#NuzrvRn^+#}HN%GQ@sviuFN z(2#(X=>d4o3r=aLJf99r`BHh#jYug(t@M{RDOZ&DAEQ&=SDxEDr}Suy=Qq7lj>a&u zha3qx*MHJxo>>Wa3$4;ZeE$v1r=xw^!@WGtr!$+6fIwaW}&-Y zPMM6Ef!_5R-r2BplTqI!w;?~h&@-4^JJ+TKUA8mjiwF;bk9?5A6iiL+njXMSX!@~~ z;i16u>C-9u6}*eSOIgv94PSL`K46%qEgDBidJppX^%T}sf?$U;)G=?y5G!&9+w zO&$`Y%%1UdS#;{O4u*L&qF-vnZM5UP!~-{+9v_%m(Fh>N-kW+yD4q|*rA`dP^M}mT zqd|DSA*J>OKj`_~)ShT1+PWz9RptF~Y3iBAcy5`RTB_uCnwh%T56`W$Qrj!Pe=s|B zl9GSlBdKuIn@8_mkXoa>e_WfoKzSFIsC=d~mZx?I#QT#gQfor+?D>4^^IkmU) zOx>2cP$~c2_SDZ6xbM7`nyJ9)yeBnY`Mu&m>erEM-G*XdBu1mH)y1go_0%UA<|t2F z<6fN*aQ%R^hn4cSp=nK&@D$l&~v{#g8^u)ARmFKYswBMIh zq+L+(uX-r0eOERPd#9colSTxIUzhfnVTv|CT3$@s`_DlWRe&D&Qd%d*23zve^Px+& z9ce{!KEc|uDk`|itN%{xV=zpieP2#12{g>qu)7$a(UpX4PrJR@yV8w_TP?_v9RCQ00t#vtcY!|pWPm{@(Obp(;$O?!u-c0j1n+&F&Om&Ri7 zPHsT>^FZ3KekwN052rCWP}KodekAQd7P+S5$7#h3s|&$*GwFa6X&wFnK4NQZ(=X&kz$Mf!C; zxv^#X z$uLLyRlT-0{nN*?Y@^Y9Q?S~c3!~A)(_d!U@7{ng@4obvAsz<064I+eH8c-qr-$hb z{DDuuU+3Dr?)10y+;#=&{dA_}PWE!`+Eg#snmm|3Py5X8n;D9d*-FM0q&FkgA2sen z+g7Dl>0H?OaQfo#e?AN-MsODf2ZcQ;oFqOTuLhmVUw8-4U> zI(%HzTJr4mbY}-GY3h)HV-U5# z)#wadTBIg7bjg77T}=+^ma$CF{jOI=d9aq7Z_C)JC-1%|qa=hJ%UY;jCfJj_V*08% z3AiugDTY3TzT1snyDwu0%kT%Y+R?_NG9-iHNm?>G!xd=Q?p>W(ZV^$iA(iC_G538! z##sh(;$~-zq2rP=K4uvb%EtsB2a+?4(~78M!c{#oY@w_nlZ&s{9qY za?2g!RH?7aAvt-c#UWTEqsw9C1ea(OBthbhR>5eNoSej4ZKBgg0C|R{k29oazz#KM zSy=>;_>7m?NSs3t2^qgIk~oJ}xHFzYUsG`Ck)Od5vmW%!p=AXb3z>0vr8wh59f!xt zGFbYGio*}(8CO|)uKMwc2Qqf(I22CKU@=)!!EB$Bv5}b%(K9k|e}LK+U(d{7kw8@( zjI%N>GT=b*@qL)Jm9Fs8Ja!gbc{qdZKH=FJZjv)$WGFfPRY4YQyC`E-82R+UGW~MQ zgDW!(OotIVSU3hflN3mTp20w_U6;{}E?b*%IzlCv&V3nko|a77nxV|;U;=GKGn6@9 zN$%U0aShY3l05!a#?b&R`P!ZgoJXm-)$e5dj_F+~u>Adu4>UH?DM!?aT*(dpFoVOC ztt4lj%-F4eHvV&OZH6y0HtV^&PiOoRs+HY)-U}h^LdH@ZhwGO!5UgAU_Q;itoeY~R zWfmGsn&o9QCxzvO!Q{|y`7M@?*q;ytBTY4ralg)ag zZcR<-*^taHbuvyi%S4N)WDIVV`Iw%2u6-r~h^o0mI%YE2nwQ;`IZ-8vw(Xv|ys1hK zech2chh49Um`vJksT8I|`;%Ie3!Z{meb{`@2} zoW@Me3ewr{c*IL&$fH@FPQGVBme$Fe(+SmC*n_GZv(;vKI{C2WS)NYLJ?VvDU76+S z$AP>Vv2I>sg9itjwWryqSe#T{Rj0 zuD7<+`@D^^`aN%>bokrbC_i7z%F`RA&_6qorBT$0^ZJ1q4AW#?#OBz5)8 z_HZ-Ml>L^@w`2C~mWafpbmqVB%677-2SD|Ih{GQa&E82&ixNhVzNW6dNYK66Ec!Q9 z%wH3C9?Sl{Oq}DQ`2>=4Uv?n5J}SEn88&)g968bk0rD$GWQzf0G1+mA$&r-A2=Yd9_BJ+hRDd?xH#NIA!vaV=DA{PMjO-JB8a9UP zY!>y%4OkgD*)whro25eb>pC_$ayED zw}(widG@C|HbWlBUVU3#X62-8rfcDD(8Ev3-mYWQdwMpDoAeD>vu0#7Z8C2_*k75A zI}6p}BvfUyc;?-JwQhDclfmW<2!G7WzN};O_x$V^ZmXqo7G#fRkppgElUtj8NXKUQ z64sempK4Yw&3=<*SK`5@6-f)rZb#-knA3*#UXh&?Le{TIilUD_mwoT;431WG+PZ8@ zFSP^E9mlde#%jq+zh-|8Un|VA^xLc1*b1u2SFdHir6sq{$@!y^mRTK`vrGRyCpag8 zMS@U?Tr=)$3{8#5nbK4v?Yr2VmCU56!0zml^Mp>sM?G?S>i9M@=8VyEOYAxOw6%ne z7?=~I=T5#i$3yUl5joH3wEcZw4g?964e#CWE%3x>Z-KF6bDq@;G>XgFtJn5fQVxV^ z^|ODcC4zLl1S-6tG{^Inr~gmwWD+UheIkld~{Hqeraua>TmW%aQMw=F6L{2Zgw)Sgt-qmw2Ka~S@vHID*XS~T3&*h9~WLY9P{TlA8IG=E~6|LEj zlNg}&wJTe4Sa!miAaDa>%+?%PCt~^QUY32ZGiSb@TlB8CHw@XIb4Vwx(*Y&7v~N;# zdgc8bCO0Z|1T{@Q8%_5f%SmjkQDyuhrwe2AClVFdA7^rw>8P(d>m}&ZA9ISDv(C+c z8%kDB&kiRT>utAQ=l&h2VY@eoTXQ?u>QFK0!)Zh)H&4fVT?FSD`QNnU5?D-uRpuU< zmED-Uc{dkKk96YhkJ35pE#*AZpkq0Q$hJxquRg}L3DRKoSnbKAzpUZH^xS4IcmaI1 z&Wq#Xm$>yRfaY}E1};&r_tlrVXIKuTl%}B=fK&A@U$Tdr$-L+TP9M^2=FmX;!n@pi zO*Go7KIS~DLHs9PD*Qh6a{8Th4f)fyLq80)v|J zkL&21YsMeaD}JvfFEbcjn@~OxbFNA#<4J&_V3A8=}bIo@)EGt;w505 zjrVlz77pIS@bUe555q?d<~d({9b*rACT&;qG`IfinlU!CL%&+ z7Eg6{4axBq_?h!EafQHtsN-9i&%YXGsL)RK9<1P>Vwf4@Ci6cqe0J0(nCYr1{8ubP zNBNlG<3Q5aDz?#%@*GyN2`Q=MSz>ts-ca(|9A1qt*Mhd6#n1C6r8|~O&VgBtB8cnYb5q@TDz8n0CrjOn$6zO<1zE4DQd_WK*q^)|Lq|jkV;?slu^fE%{uP z&__>x^QeG}&Xq1iXH*OO8)?bpr9!2iJo~s%7{bi1Awna1=o#TVFP-mg7JgxGPJkl- z7ew!QS$MOFhHKbvp`A{m^MLSNsFr)-W5F{}gU)(MT>XRa8RO(MlwQ0fv<>pKSIiZm z6N`O$lB+UVJ-HMVJgp73Z>X>ju;=G&4=S#4?U3b1 zeY{ZoMu%NfDpuY;?5E2_wm^7wdtMjXX`;AGXX52aB8zx%OXIelEQbCcXk0o~JfP#X zWQNEP3WVH(*J}@oOs-kCfXSI9LYb}h5oxx_atLw@z-4p9`&gEn8(?<+mR~~OTp$LA zkdK~EiK3q_7cbo2u+LeWfmqUyi-&@>`LowkBJ?Ec1iRuTv1PcH+_Oy_b*Gk${Zc%r z7r1s#9Mnk59d}8*PoIHb{8bFn*hY8%E(Yq!6IaAkmR*iQJH_nzYm`Ru6H$`!cKY0% zs?iipZY@PN(NLe>RYIf!mE!k$Np3xN@ZHkMR$6YKcnQ~*sRec>O3&#OSEPG$8)r$l zTUsq}NsvC$`S5YBgz&>^E?*!aqM@3!mPsC-&7CBz(^t5GQ>A-Y#0PL^sOH@oI8(|B z)L1lSj+D$Gic$b;r!T0zmq|->gpWQUwbzr^R!co~;_iAzn#<6f^wK)%XsCwf@vYKH zmc9!R!!;Xb<2ET)M~!<^f~AGZ;qUfHuj#p4_Dk?MP;+M<@V1=&s5D!r^S~$4&wBFE zX=$|nS+8%U3AZy&p+d6#98F_>l*R;Tv_5o6>To-~)&udfRH~1?HGfNpR-%$N++Xgd z(>}AYJW|j7w255B&_dq16b;?-Tqm-9u-u0J87Vt-O73kV_q;tyRIni<edqa#S2>fA@zBQ?AB`zJu_whC_>??q?aMT@{DS zVQ!WH&veUhcRziOy*84)`VphtXPCR=p)qdU?xr@wxHvb9qm0UeN5{Lvn46(rq8skF zDh}t8*}G%!RQC(aI84oOKds}?C)>?pkE!xuLXLYkb6b4MyK%v|$_G(mZ;REk`)y_% zg7e(VbsRPoxSwPl5*G^HYZ=;t?kaI3LafSyUFGa7xH`f8J~Io7Cb?hIakz5|dv`3D z>i&&IoJK!NB8Q^_g6YLs?mwETvJU-wv3nnjXyF0Ygr+^|ejRrTD3U_gHEvv)rzWqj zb)V3Z&wu~4J4DO;bAua3B{f(^>H$;|e-!x%i@m8B(~RCaX-lhtvJg2=^zgIdrLJ#vd1X-#>cZ*FJC zRr3bea5~SDTcEST-;t|CS69&g+?iXYbET|*?$>%!9-JG+DEY;c%^5!gk?gsR=Fx>C za(n4S92%WF?Y1EXYG+TU<8$xO5p9{0>*<*nQgij5Nl&EbZo|DC3Vly;xt^|BEaZB+ z<^U250xt^|hJ~ua2??Oo>xt@+?F3UyOR2A5q$+_R^6;Gd$%VZ0IwuWWk69LV% zh($XGbZJ4G&d!aA(6%Vz(p+teQo1acRaCkGKb#JKJa>@Z=#Q_+9p>q?t8(}1xqF|= z_19_s^aU?3Uw+Zc%a!YM4f-(O^s1Ma)3$keIcmF?mu=th^76`?xivc19)HIRxBT5) z&&V9KKNogFDqGLJmkUcSH5vRtZZn<3cYd7vmY)3M(_GlVs0BVdll!M$_Pg(M_vlo- z{$nnVQq=H56h&-)fo^77DRKtagY?H@w z$A>c974Re`qad8lZ<`mVQ*pjS-btM$pTy*4={9%^<$1tRg(J)x)xjA_qSfmm!1Of~Z9qwzp zDj3W#fqHnV>Zf`V6H%$Uv|Gt@oEf75Pu-Tt7cOzoVXvekgwtE0SKtWPft{y`cH@ zmxuG0vD`&`b0?zcL}hw+|M#l=@AZzbeog)bz5lG=mT%F~zxbxNJvQy|wnxe?Z+o=e zlaJuoYCAvlUVaD08B(B@5A&Uki2qA1MiA>$XCuhlpX9G)7%!fKjPnfNf=yAR@;5Z? zPiON3N#2U$NP5S~{O1A;`SkrS@+>EYae4N&Y`v02mU|Ek9Y$#fxQ7|Y{g4aF& z#I^iTu>8r!1&;*cc}KH?R!Wofk1S{wg6Ej%f)V=u7Z)ILr`iHa@ta` zmlXg)thJ?g+X|SRcWy!CKV8t?(YGI;G0UUwO$zo8v&D^%qwWq49{Pu6y${BnKY+h zp8?O9c?Cs5crL8g-jiwzh6dvO$>jy*P4R5y||6hjjDy0+y(VOLjfiYDw60+PUuLgN0%A#2W>D4TeRu@mmEQ1IdzM*&~P=zVxxT zZ*Qb5*_jX}%EtsB2a>Bh3fqv7_gH#10h9;S zGdFU&e0~5Oa-bkLfLzSVM(~5f1uwDDG=oMRE%=^gJ_R;2==u)}pjuXOi2t}?;XlWL z0!*+*1?_RN;2{kdee?5zhgqZ>K+9I6WKl%Pdc7HG_eD+=-F&%#>7q;zFg-Tb@7D?< z$n~v-&8YBuLE|u$YC6NeaIB90=Rt)t^khL;VYr@rq*-B_UiNbP!e<+4pS{?r5T0`i z-{^!cg@{k0Ccp0K&E3$u5P_!D+&ip=cec@z*`o{J)<3h3Erg$_S|B8@uvRboQgUIs zUU938!l6v+<>Ljz$p)^l1t}^o3{t}wy($(q3f6epwy?0fMgxg2D`YzD^}wfqzq+wT zLWk*vxLZl3=8IW{`*doyJzTh6FYv(PLY#T41x7C|{4iKcnpPGD=)Al4nL>DJsRf!m zR|s!LHF@&+!rUOTIh1cs6E_w1*QsR@OD;m216Ch zogIl$D(Xo#?JW$X8G8y@B01g!g+XrgeBX<#nN$dK$K!>%|Iqb!3u^zf}9K+=M-$0!^Qn=0!$SwP@kYO|M-yoj;s4()jk)vSWHU%%&r-ckB`2P*B z%9Dko88i&Hfcoq6l0>@k%ffG)0y#DC^SYl4<8GT?@|`8H30?YY;fY3u8MOGX!q&lf z&hsxy2NUR5jf%D?`O89!jvMeS3NJdNypL^B^qKPP)kez?XjgPB5bvLMESepPXLj$R z50vuezC|0A=NV(sASJ(ZzamITGwAvLMaz`$9~z>SOB|+^3m9HhrQ|<6s;HV_?eVZ| zxN1X7p65%4(!ltlmpm*ZSK^9VkRvAx+tOe7A{HBbr3Q)-Zwv#LTv?IIt*KKqZhbth zsELC8Hds&(9v$sNVFXMs?Q8B82asL5Y0Cm62 zBSmL#r(4mT9~Qmq540XWUR0o}IIpqk_{E}y3K`O`MUl#L z>XoABm1n1GMK3Dl4*C}#Usvu47T}L|}>K<$;o+$h0kJe!Jqm{$P?Rrg+~! zUocdhD5w%{hoF1uxUR)48yPQ4?xooIrGzPTK*d1AZN)i(h8?u{?&5bF;b|XK+&Bc! zf%g|*iNf;^PV#%Au&oFjboqIQeG`HVbEHoug%!!U7`wtbjAjZ#&+tOW!i%S}-1PnS+ z{JECu`&IF>D)+7&5JF$rhT!zN6Fh-xq@CL+q9Im zPsta7YPl}9k}NH?5}Z^5#EWQWK>9+M~9FY7F>! zQOO%xYR8h2UfQo$pD1}TSS?4NE-7ZQHSmm9YM5VV!*_gp3G)iB%#WmLo)*+Ilr-xb zoJ2Mp7}}hKrj@oQL*6J6*~Uo>+4Olyf0DEZGUk{!OAav(UmeW4oh1w#LS_7`07li> z3^v|f@^S#!_vYS`cW;BVQ8ad63Dfb&O-M!4qyr_`XU!)~50$LD9eflLqiOl!lIFL= zYLN9o$?FO}pM6yF?Cs-o_s1ot7^g$E<;K(3PnNJwf-w|*aA^dHQ3N0||0fLl%8yIh z(m5AOjt3d$)6CyXK2@I1>m}1bGkwKSdJ=tu)&`bB^qEg{f=eO#%%@F5N&|!OY}vf@ zJ>~sOi_(fPJX2$}_b#1EZ7uMgX4Agw;n2Q2;Vgy7G@mZNtMmh4z$1<(_ zx64aEQP{I%mB!BbYf7IB#k*;}_I`Ck>1PVNPi)uNxBd<7yY#n84NAGp{iWC~qgf7V zaJL-Me$V+p!=uATrNb2X!pYKPh0U*@DQ&I1e{{CAX|vnt92{Ib|GwHFWVRJK{3_vA|DurgN5mgkqB)pHAq%R{l(SFoKo zvHVkmUSLvr*S3b&)E>8F)9E1kR&9A}mJsTLn$K@FFZzjc{7t~$L>m3X13#Vdi<*b6 z^@J9*M+_lqu}HOQ4nw$5idB&t`C)x)@hF#VjP0g&YA4I)nYQ@f+Epr z=Iw&n;<8(uR)=gSi@ur^No#+9=o3S%kNTY?BfDa3jKfFWW#3mA$)DL3p)oGOWHN#n zD`zoT&AjMzIh?%c5Nviy;sg`f)$P+rn$vxnN{_{Ewxhh2w+e!Vb4qrb8CNTrWrrjR zr0ls9QMB}@iWdzrHo;}G3O0+t+a#+XO1xdPn`EP%cUo<-)2tQUe8;pG4beWTkBeMt zij`eleKnhj;Rwk2DYv41tjlgSnrt?c&CK&wD_Cd|1j#DetX8MfX5~0K>qJFKK(u6a zhzeRf=d@a^JSXt7%_Ivp$s+LxN5_5lP;0v8(@D=8VnjP{1a%_dp{Rp%x=bdAU~g9t0r5vFEhoseAGNBeYS~Yy)!Agx7A@O7~FS4W~Ui5dc}6K zT4f{WP>|+CaMTFiTV$h!Gx8>*3C+a)UJ*%S2UKMRv^QBLlig)D3s$?$;!qNBfvNp~m~hrDl&FJ9OBnY#+VTbaQDR46}90>_rmZpVTU*eu}Jw zJ6&;SjGcE_Z4QC6xJ(wSS+u(ZUXXd-Jel8jcn86(-|v6hN98UCLlWaotDfC$< zZ#LS@4#CJ9U4p|!jy{G#w)vsi>kZLHi`i^7*#wKxX?0av0zQk}6D&5Jx{ zehI@(GGonfxSYIQwuwd~hO*tPwX8nW>aW^P`aFYG%~#dxs`mafSk-Kp{T&i!MnSY% zEf%yCC^8D1S#+2slfye*VpX%t9A`mK0~uDM+30c!MoxA*lxd%Hp+|dHwP+VsFDDj1 zGYGQUO-@d&A84`7A1=bLdS+>p5AG;*{n7mP3e*yR!no48|*wU7?E=DMzwe9OIx(n zie=C4FqzF5re+i80&^T_MhF8=i=7ObSrxVQh(b>NwcE&evYHoIM4;98=))=wH{qC3dIFRKEh zot#}XnQV~2@UPwI6tK!0ZIX)@tXRA?8BCpgqDA~BN@jFC8*k-hGbdS{Hj89(nR%xu z&_z+7t}(=LvPI+^Sl^78e4SiL1X-S(#Fe z#Px1PQ;1&{hmo_QcAJbPPT&ODBmiZT!wLb@qKaR|0Wq@KWOLbFMvK!fTOBr|3yXux z!r7c=h$_59(Vuq!H_6VsuryjFr_qY;&bwT)$tBw$+=?dNrL{L!2CO0VSF4F$J}T7~ zxfPu&+DAk1g@ongFk@LI(WXqb650cpnI(Z!rUXxyIt#iP$MFKkLmqZwyon}=ATG#>V5~!=i{_qyKxKhg zAxg5#fs0YCcI;Rrm)+(NO%@}s2qfAXH}3I@M+`H4w32l5;PKHlZMT%JpJ`6dP>c0J z71nP>n8ap9#!aq8quevI!ZPL#IUqQ*7vVc9-2DTU=(R z%jU8{^e2NZU^Axf+dANT$XzD8(+FWrwpt(%xJ)k0zYdEDvRcZrmin&EN6ju`_`V{} zXU(&|Szsh#{VT#_u)VQkJE@4bSci>9URES4Y~IkxoxFf?N<-`e$GTCIbiD-N5k}yU^BafXQF2)tj7G)xKDU*+J1=N- z#bVT3Y}mSqA{IW2)8gdOpeBoK5={=5S>ouK_==T=nLe6FxOu?T+aYbPTS^t@igRZ1OSJI#> zQPo+u?7k(10E%85>=!^*+F1WHSs-?{9ZC^{tFs75pWvD+lc z3AHRvm0*9v@hA)3F*Ja7lhJN=)G__>RX0g=P8%ERqiU$Hmn}7Rx0w4FRl5?-EW?;Z z76l{D=5buZ3t$gU!f{e-oij_0hyCgQN46L3I|!(V8TarS0+z^KV6I_w-S6;$=& z>XCj7$Q5~;QG$})YQ@Qx%f#czSB5!;XvIMZ0hc26GksqOC<}Ouud1OKH<51#P3sxs zz`3khIlZ=VCLCNyV5rRrn+wonvk6wsJWD%Dvw&cS5vLqZ#f}2UsvOSrVQPVMRx~WR z*sQ9hV$Ou48#4~kEM^#vm~fgZ+BhemTa{xvqtnFmx}}AWnw^@ZMg5hUHS2^wM^0<+ zz`0l-vn^Jd%oUXuN)x=6K*}K*tf`zzpN2&R&aGkhBBSrwT%8OwkiM3;@9HZF+xt&i)lynAJH8ksiD#467a$TQ8B&s`Zx zj8o1xnzuoihQH}_gD}HTXxN~cJ^yxi#;gC_?3pN*z6$tYa`niJNrnw{!qFM)8W~n9 zHpG4C{l{mtV?}!2#?v$C#?uc5Uo+Hd(EjTDY`8yZKl^-hn(^(-UIuFXYUX<^zA-A& z0N~a&lbdkbnHyoup`d<$1Du{i&ExA(tz5OBvavdBtQv zVr55iX8oz5x)RTDzP$zq;ELYgVcUm9!{F9Kb6V~!cKyc zDqkkMHl1o0q9LHxU$f~{40(Cuse8!yji~z4##1fHoQ>MX6upahZN|i$AE~tDoBvycF9*h$m0&IY-CX;g54U&uSN4kZA=Y1SuY-R*;8W9*90lsSq=su6#2j7IvNx z6cphK=6*&2rq(72hBN|9(L@-x8&!xgK1$Kk8!O)kiM2s!cUbT_OlGV`nAdQyNioSV zFXbU8OKNL8?7NhT-Sq91heKk~tgsM<(J2Uq@aKRbh-8HQy%UxoR>g`_Z4;lR6o~VB z?ybb%EZTGLL-T{9jhx-#6nR*o!Y&u~BQ74685XMzG@CeyY!PA3s@c<9EU?iwa!x@| z3=7c{M6=BWi4ulG;Fe}`s%;Wrl4p_37MsioW~&T?UtY4v5I+T%Vw7a3a5^{-Ti<$X zwn-#sU)7ix*+;c7)H9O5_f>_!y2XihgIfajBj{zY0&>6{OOhm5dpbyM)Tb?Vi&%>& znrv1{w!(76DswOy!v4V}Tg;-UI6LU(T#^$z4OpP?l3=vL%#Fu(fH!lp4Z9A`4(pqk zg>S*$zP?JWGC8vZ`vD&nYNlKlk5;vXO{-DnO`>8=ETDC5P8jZUa94mm3GB9vn&l+y z<`rp~7iE)E#DKzoGRMOJ2Iz9U5r&pV6FKUy82YO|0g`Bjxf*s4u=KHt@ClG$Ix4}0 zLl$8BrtgGQljT?+_1m;vfyqbR+-BJ5)~-F#g#7wxRcn$nxF(=S9UDqfhKarr+c)eP zVOs__3)Nx{{lf;^A4!*ieN1VJO>7j^Y`T0j)h!afkKXCLdH3Lhc@D49i4Up>7g5n8 z2Bu0d^*75fE4E{r#UL_@R=XX$Zwx4GO6%C_SzvV!^Ig%2kqMK36LzmQs0CniYEjI* zG%HJOyt&{u0uwpKD9MgCMp3h!7tLlF8$;MAX;23?UJ3)s`s+87H-4xZi`k~$ss+V? zr7uZ4R}~uT6fvbct%A&9;xJp$4Pn{IDH~783BzNK#-&ujD#|Fy@F0Lyr`>7=4|t;p zJ8cNLCKq}-U)R0_v#$&%9a%D>C=aV;0R^CN5G^*RRkrKH&PTPXK}M{({#td5-+F@g7l@$jC6W9t{aZJjJQm0N=^ReP<`VY-g*+=u-GSqx@ z%v&6HY_RIChi!_auejp0jP*ep9HJESNe3othX{8f*tWsaAMyr_ADz&FIAvJ8ITfQr z=)PbfYqY@c%ZVXqg}FM^UM`2(0z+e1nDZh8bZ5b;%tx(kYj@( zG~jcTyQ|`yA=XEg4$?Y&_Lx{7RZ8mcy3=mA=}IpND>QsgoUpLQkiZy|B&-VXSc7&3 zOC6oHZZ-&kQ6)@Xjc8+dLcp8IsSHM}S{%%Mjq*(k0)#>lR?L{iB?kto%$Zyk%yY19 z7Mv(u$M!I~{<=xWp$je1J}TB$gU%J!&XX`*0*z%4)~<%lN~X4)K|5tz%obI zTc7~EUyzmSYn)rW*RV^duRGo%GS<&B2k%+O;F?!2Q3MWRy04pPhOZZh=i!Wq zeF&`1F~x{hC;V#_KM3vEMf3NwSYTZ5Fk?53qZ}+!I0aGMg+&<>h~l{c9}nFhAlhz( zj{t1{dDz@zaf4^4;WhaWTHChTXN1OdmfxJjRK> zhe2UgyjiU{Q^Ard!QDiL)3pf_m*()M(F3;*yM);v2RLS{+33KcZpJR%ZpK{Vbi(iJ z0{j~)n=3A+SR|a-obsIF!ERSf+TqBlto*X19;PV1&#KQ#tdIJwWLJ5WxkLRGtEV{k ziKB~qB9uBjyKB`uQ$kDy~Sez8ybj@)z(MK2nbAU?bvn9!g$Tu|)M~>_W%aJ7VQ%rFslQiRZgC25 z)XyuAO>#@Pj@3(#<`hsn74B^qQ5JZXny@voIuJ7f$5aA5)3Hy5F~I?xy)!utiXz53;F|2gmOi)!(9$~7Wnf) z=>TD?{#u<@%>lFi3N@X`p&7F~Dx(YHBKBDr@Q}S_EWg+&V0UYWW=2vsk7_IdMJHm! z1Sy-$IAl~D6M4*NiZ`v%3ddl~lB&??iIac^=8X<0B^9yP3T2NOtpndEjA2R8_HvpV zx3BuuBVUt`s#VePlex3o_qO)AX`2SI2C|dWVG+P;2R4WZlNNT@=*o8`g!`=|Yu(&+c~aZd8AZqYs{GcLvHsOnA%2R4(_B+GCug4Z*o zLnE}!aJ90+4_M&!eVSmBOtKx$qwt-xTCwWe;4%z4B{<$f#aCxpgF~VN3JDW7L+}z) zVuV17!wYt8vK^{5uZ;o*T>Vu$NXfHRafta*U)99;P=$#!eXa_tnq-0tEoU`i>j6J* zWhKQP3nK_|4xmiXw>H?IA#{M<0;feA^r_geVKiYzbwHy4XHk8(t)7EQP(DCy0OcQ) zK1QfhBsk9^Rt8jf*s~h7y^W7r^}UU+T6b+fVIrW|b_O|jEX_pZ4rp%>O#l-mrb!$0s1lAHAauHHl8th`m+e$0G(@RzB0K>) zq!khy;uc`$!>Vr+A&saazh@<@w^}8tj2ij@tyoX3GEv8wW8LibeN25^bp=SMt!2pH z;2Q@=V;TE=Bf*>skG+!rd~u>hF!WXiR)COu*=hC93&> z4}w%5Qr-OEksVbz4T}B-MZYR4Hz@k`W2jqpZ4HY4|2SjNMac$5e}kg`)^nI!maPUw z|4nBL4T}B-MSnd8FAa)*1Ziwg^xt&4(4gqoB1ihri8mYZ~*w2@?y+P6c91ia5 zKWJ!B^v8Dcp&0kXHLBM>vO&?0xX2BP{+o^$8WjBvihkt?qe0Q%py;m?mM^wJ(XT`) z|G%KjpA zk&fbi^q~KIe@6GCSo%TO{0|?Ebs#V>+>M>^)RmR^%&@$K%L!ZtU>7VRMkI+?z3Y(} zUxidRi8+tYpB5U6(_h3Tw7{~2$CJleOQ~)Wr=OiqPe1$U z@lONbI_so69$J8#93Gi9F`PX0(1JGJ%-8(XB*E`L(!99~#v1CpuX}jG3);K#{Ralp zZNY+$-cLU;(CF#~x&2_?B`K!5JZFQwFdUg-a$&ODV3vxQ@h}bXhM`47TpYgIabAn? zorp6j3NV?G5OUFEbXsuW^M@zWXN=y%~Kzari@;yJ={4(F@zeFgw4OncPJ95mA& zUzL+tzb+V!gS`6dR>Nd=_-#Ss7`Ty(oS8#lWIMbI5RX)laRMtLQl$7rv+lfr3lZwARSmcv(`n&7xcmUet*}`~k3_8^jNhCHL95&ep+v72>lj@j zD!0SvaKg9(zDQQiE}`?n4%BEfq7h&esG4|azUG`+@xOP#jRY?KcKB?;1`p@Cu!Dz@ zE6jB3T+ra7`b%lEO)>RXY$vMm?U8X+;beHvh3(*8fz#SPR(sw=uY z91`55U@-#QPOV?7O08%_sFe^-0LRM+N(+}Q7tFih#e*R17!$gQ=;o{{*dNqeF|O-S z#$I&&HIq{1wu9bn7KU^{oLM_(LqK12QusdbFqVKdE@GrxU^_=H1w9=_W7nO)z~g}o z?6?%$I9OUBaZ5LtwRjk5dVPTt_tzk7IvT|cvnsgK!3f@hTU>CT0nYM`E|X?640D8x zfDUlAK)`SWSVwejrGa4aBXsF))jF8aY_`f+{O4bWuXW4LLl_>k-|8 z)3mdi?T@eO)hirecV17;`V|hw;Dzlhh(&F2Ir~`5b;h3vi$L55V#nnuh`5W`?l7i; zS0nrp;A>*lui1#Me__*IPgKiRA1!u^v0eRLRlLR6&Ijk}I78J>RGkRC+nX-TX;=Uo z7QluD@P8K98WzC%mfnU1P_f5rSO7hjsr-Mn01lyPi3_JSHmuS%)rrEwp#fxElgZ&U zc3C+Ba;#W#K9m;83s*7RPpQQZQ6XgIE^O|Kg}8$Y72uT*sR%yfa7Tr`G`vILNC97W zqgmS?`z)nyxW_%UaC1lp88@6blr0(Tk|;k*LdWjoyS5w#0e z^|*#f5ANWzlnQbEcME?q8vK?^6C&xR*41(S8`=8c4nT5g?W8EuHmTYbpu7{)m?cr9 zFsb?%{b$3SQ#+H3?wSGQbYgXDaw@sHvHpuGa6%{2B&B-0{(dl}dXSc+EmEuV{E-H( zWL8FX$&KWlBs#PD`i=K!GBB(9(Ocf5$RQ*mcIe4J9XMn}k z$424??JFXA@7MP914nl)d$%Q7j~DGXZr{F0dT2rQIDazWNbQ|^X4U)m6N*>w2Y=l7 zP5GeXqUr;FB;cdk?%op0OC6BqOM!!7E*W%qe;Wh*9>Qx{`rG>;-bvYeMF!V@WUsxi zHuC0dgPoMUbEqXPUIpCzd2l`A_x-KOB3n(10ILFN*488U`@?hU)_et20P_Du3}^PY zQa|vs>c9>@1-t=S!Kw}@we~u>-tt|aQ>d6vw$vPqB1b+u7;J#A`-1A0{uUq*_wvCa zL;wH&+ojibNB)=J3>MPScCaPwvl&GB$=Dz@TBHFcgFXgfHU)0Pntk{C-TmKxQ{ejF zZ8MWu53P+rdV<|D+133rO67qtOO4+4X*HOFx@q z`Co@h313*WvU zEV(rskfKQGr{1y#9n6%y3MKtKReQmxHQ$u&`Qp_6>Q??FXT&?-`*mML*7mGP_Pb*d z*(Fxz8}1+-Kdg3=(#NYKL;m#7UlaJRf8}>tM9R_^CHsxg%MM#aOap4l{L&VYLDQ?b zkiYbDNsEXfbI~Bfup2NMdw%PrVlijTcL#xUqVeo^{?g0J5oCo#-Dj>+@JSITcH z)@O9AV~zpq&w<_AnrHle)37GSkCFNFBGNIk=6>zv0ubF>Gsy5cIr?#Rf&o7%t(kMR zYe;CjMM3|{e;VyMI)E6up;Hc2nWv-aLFPYmRW#Z!R-3wUgwB9=3gGsn^2_SJfMcr{k zFzbuz2_fxuh&hW%Sy^qIU*=+Rsne{X#Q5MR%?-ne>3hI5K2+Irc>)rZ<+W~Q=;IE( zvfV}Gjmp~o%CH>QX@5&HF0Q7(_FG)V?nuAd#pLLiMZBja7cABq{8^2VkdAt_YZt5B z^S-ZIthPArUz&W*d>j<_Y#>usJ)j{wCID-Bd(o6sP7zkGy_a`00?t1TII(NN2*P#fSkoupEisjM;A>YhDYkuHdn9h`l;$!eoyJOjn$#9#&pn+y{y$szW52F!1MFMGu3XtJphzanZEq9g&`psH@*i}BMmFO2z4dj zT&j-tbgswg-OYp_t!+x_$D>@@`JZ(?w~Y+5NZhyYL@JZ`g6b$g3ucHf-!6g3 za7*r)@7`|tpSed<_O+y!Vt}0?bNS_WqR5tEwJj7NWu0qA8_YLlsSvQT1%fnBG4=bA zU4S`OcBMw|FKX#q^3>9+yMbT+bD>rqG#K(l+|=q8jf}lwt#A%aVPX~B_} z|MiD0-|TKl*P4JnBpfptICy{S|Ha;WKvz|KeZ!s!EtdcZCG-@kDCPDdqF_OgBC%mX z;Z~#*dJoNll-!csp$bt1EC^BIN|7eLNFvg^6{H2^kEkf`Z_3F%2?3t>`PTb9>st%g zlH8fuv-h4od-mS5&zw2cOfAg%lvnlohxGb~`M(_ZgwvZkA=^6uv z$ud@qIL0bjy$vMi`YtdWo7(}2DDTkI5AUf>11mT<`D$J-!{W$bkO}rF1%i|Mf8v<;ikw;-*HlPqC|m?@^-XEH_L@bxpG8x0&5y^=YT z1ki~E4m0LNa$ff*E9A>LLeFyNh)6Y8uzPCB=7w~99luUjS)%`Jj!?MoWrzGZLg9Xq zY*dkOKgn${po@t;P zKHHffm{A*yaC%H9JIxiII!SgwJy%O0A>`F<5L ztyrilrF}~+m-Z6LN)yS-Vm8Gh)FlhCnCeY*_1A1kaLqgGD;R!`DQ}R4Xa+EE3zWL&eM_GqdiABve_K; zilEP0q`RGBX(^@Au1zLA;VeMXfiNhC%eD^jXQktU5J_2(B(chRJeLyFw}fY!`s-FMr|9ulF>qvwJB=ylJ*T?8CLfDRMkT~!ODIs_wP%L zjNHJeA-nnjY6A85bz-Si_M1Z@v&w#R$P=3xJ!DcD2fS7O=B+KaGm7nx`wa-CTW{Mv zfc}QxG-bo~>eP4wzbE!h-o*Q=W>6=K@R2ck+B7HdV#4q%deaBk1@EER~$?6luYdvz;Q#c$;h| zN4)Y3Mp0t6Q}n&1iJ4X2v;KKC(pUD<)Soju(;l^nj_m$WMEm&5qxC1th*i4dLmqr7 zmo%{FKNJC&vPeYyZ6)kKABu<{?Hq?%4;(DwSGLg8KWD<%HTO3rsf)xyd|LM1@}Y?O zRl1u{E+Oj2MLN`wdrQ=h?XkXHeqyn`0BTcgyA#QypvB^?=OnF`i-bdcUhq#-uEL>q zStJ}PFLYYO9O@JdkfjNAX|f}#d3*%~JWx>)+831+_A_1s!~Mm=e#vS{LBGoHJCfg5 zB-zP}gx8%X<^7_ppCwqEmSBd(Lc7{77TV>OaE~n(;XQW0=pL(9S7b#y<%wt=Kv-1oTP&jbp0cY>!mvcN zO13OuiU#y;-otY>!|=`hH3?^4mo{c|wPJNh+9*qMs*=gT!c=RZq%dV zF_O2_E@L*An3xtF`B?VIu?&~I>{u++?gu^=SFEf)A%`+pmXBfxY`eK5%5bcTVl1x< zw`f^jw^)tg`_jv4V{ge;a}KL(GuTnilyWq!roS`w|2d;->_|zrEJH0rg;L-YVLVih z=6Cb|ri`KK8Ph1SE)kk&T2ef8e+D&pQlXnHk#$@mlGW{(L<2&CZko6qU!$U_UoKGN zc3dR=`gdyFj?`N9oJ5f2Yz_?IS<7^ZdBhT~5XjsY4na3XwoP9mltL}PyF@6(hf9Rn znJVE>&&*Dh5lhP6H`L|ry%0(N>=>R?q)MYb4zaseDGmiip0#Eivqw)dYb`kz;l1Q| zi-zMYNo^x!fV{PGM8mOPwjGchtL1&*lvy0~;TA{50UmgaKZVb=$XiSLBF2~W@1qkM z_+2DiMuhmY_`E5#=!6tFb)K=V{!ui{C#H|YwB<;4^dE_g^%EZnfh~^KM>E#V1h#0# z8Yp?jdbyxBR6}i$q{cJWGbFW$#5xuIie{|m3%ay>J%2f(HuH@2G9Z$1J@?uiF7prjof`Zs)}fDVsKxz z$P5{l~+CTt(VbbF3HQV@5&NK>_gCxDpT#~T z4(-e}y|GNF@RPD1>Up+Pr5B4b+!DQT(QjtY@Gk#7V*m|a5`~-6vx`nc{bflO7-61g*)p+aI?A4?=dlei@TII` z%vi>K4juKo-^dtp_CR3$w=8gmp1dkrI753SLoZ0QyOs$j@{^QTnyfzsxiE*QmXCuS zW=R0g$*cWAp2se+%MiPC9PO`7U-`ptV2p6uAIJiyty?Yl%=&=4e#RW_yjMN+cX zAip*#88g;Dlh~Kjz~^suP?pP3<<;dv8(vyYH|i2*Df!3oN_M z3x~l6(}t_dxi-+7lK_EAt_tYR=c129w|Tixg{MnPZrFJZx>qfMn`$(vOu(vgQ#Ds8 z=OEcXK3C{MlUy-R%ii{vqucy`V>HD{SskgDE0h5pI0GsIFu;|e^KvM|@^_#N*4ThG zDvC)csl=bjrRh`ry$B@8^ni3&E@A`=B#Ib;_IwxfKNg&@SanpcRDcD!LILLG3Uh$J zeEvqsAQ>{NV?Gy?%P~3|7hp^)q3=2^G_>Ne|51Dx&k3F4akr^ z!zi=IA1cKV%FG~SR}QqqNOAi%Q-Ri1WQnUl5G7hEep7WNo~C{5cj?}d$l^X1(MLl( zV2}ZnZnA7k{haGTtXfW@`SW1hHw^U;CXUaAad=C@CVeh60{Ac?9aa5`{ah%7xjI)! zSZ<~eYt$0wt$d9Da>b0dmj!Q`66Xt_i#VgdhPSD*t+(J!rk2mtv zU=l6;@)Ak8FT~>cP+~3hg;>jVzYvS3c?b)o<`-fu^FrbmVl5lK5R>*t} zZ5|-zi0R@78zfy3AWFK^1b*@v!hIZTP_P)-WGq58Tely4p-IXvo9gdG)`L+t8DB|; z)`Bn#+K`kzO!A~;))#9;KDGln1zZT(sNS4eUR7}P<~p$o!(}=FdOUR8BiM-lQm|3s zOHGj4L!)!@fJNw#GCa`2eV!hh4_Q6(p1-^b z&$GOJ7>eq**2^sKO*!cDQDkbCw`!C)vb-LSm7Rm-30|cVP2KBnNtYj={-CZ(v@;*+ z897o6iA^w#*#aN*=nA1k53i6u$hAWFpzbR~zN9<8Cc-iS>x;)PQ{jQ~UWo1q?{oMH$cQ@)i$ z!Xqh~l7~LKRxnR;hSXlktsb45kIL#Rg^|&(6ee%!cc^T-QefwWCM$(`0VFdoyqmI1 zAm@kVURa?zhDLbm2FJj%<>WfSf2D{P zHp`B@5*>M{I1i01RQwa7VV3O?$u#O&pdhHsMu9~MILy=}1~2;x?}BFlqQpHhE8+M@ zk1abAN%e@3^YIfPUnL@Dv1vpo&*PH9{Shu|omy@f5e}wxL|C#XB^>Ixg8?2s3mj>D zM8pQzi8cn+_>DV|k6-U^%(>(IU@OX6I6plEKf2BmWw(f!`k{g)I`=1NV><2flmB_r zALN-&0SxykY9CN!!GJQGj{g}OYwT_nNFChW#(q$0Hfy3LD$s!BJ(ILl(u=>;J7(pMsgOc&huklgnZ z+;3n>Rkg17S3*PH{7PtuOTwa_YY0$r4dHlS_=;S6z z6c-D9<~nF&Cb%XYgZeT}+6rA^n~h)pgeFy7B{Zr0DxpcBkslk7D$;zFP$&H5w&UL$ zK=VicC7IkB# z%s&T1Y{RdXmw_?1^W2H?uxBh85)SoDRq(;%@z`llj&k-Yt|>*|g&<}dz3l&voef0z zs=gt?Y8kV)ya$2I1!MO&4ZGi#0lUAf66$hONc3b`)cq}ZrMz$*48q(fzc7ZLC*XzY z34!ox#s=zYU#U=O7q8=l8`As=m~58A*1apo3LIQrQo#dL7ih+5U0|Z3JV#I049E;< zm(@~ThA|8;k-@8lrrTj5qP(`1sO6`j(2H9qjsmQ5>(q-T)D9%w@^rV9MP=%i zCW7-lOt7T4B(JXnmN0)z^AvonmMI#NIW3CXK#MK6JRimvdvJ&*YeqljYz&9rs-C7!Zy?oR3?tKLe-vM%T+CQl>~H9rEQ=NO}VkT zkc%ny;wS8NRC2d))i(-grx zO}-zh_NIn&cBWC(P879F)s%t7*<{FYev}Wyf3{hp@}I3y<7k9Ch@*=h4OPWk^a-+L zaGBsmw^_;u^Tt*06Q&48x}efq4WVX2^_o5i)jQ5O>wxD^2~A<0{Hrq0&@=}O-#=@) z>M8$70l&7hkvJ&2Q)2#WtuTTq0>19o!U!5!QCi+z614f(!e;`8X<)2c|Chksx}&)f zxrPa5uJc)%(=sqPcCYMuO@Qd9XX<0kW6oQ?;FL@aodSi22-O#y%s3@{TA!z;`^+@| zI9^5Vf)|{K1+nEvH~{K-8g`RAz5hu3o^?V2#!^EEi1)Ir9=T4;y;>f&PRu>tY)cFD zjQw4L4WsF4fyeM(0r-)p2vo#QAV%JgkDP+@vr@Dk_D87kSj zA_U2N4V=~4AaX;$xMUDWdG(p~!U_Kb`LV5M>kYyQPkSAGP|2OJO6N4nFns(iEAl!Z z*~7@kBonWII?E0XR;fCHVZa8izciB-`ho=(uD!iMgli{UqLN!IbmtaJMb~u$vsh=y zVo9dGB=f-r;q=x@GI2g2`AU-Eg%v>0G6sO;7}cJ@$W6`Z^{T0Pgr>c{Rc48PkoY>j z0el!JpQRIGmbR}K4(q30n5B4X7=u`;!bTY@nKlZk>o*FAg|BK(V-Z22!%CB!H`~Y^ z7I{u~=(15vlXs(tJ)V_tPP%cp8nVANM9x;M+KK}X3_bT*O*V>2dvl|hw3LBx;)MPZ{Cp731o>d(=cqXRR^ z3!6kT;Mq-bRgYjuULr#`i3N?nY(djyzP-hGY_i!qnU*>JE?O5W)DT43E%|!pun_&-JC#7cG@QM8-C=27cTePF78cW zEjd}=Br0cU!aH~scZ`($Pc&h2U^Jv$CN1Q;}uHY1RtAoSs!^CaQwZ-lj2Em=XjpZ*hqlp^1V z*+0&K!<)*MSH2OE?Il*zo1FWGPdtJdF$naGohI2qu9OXor}@7C9JA<^Hgn?;>z6Qi zDi*??e)%^{35uqJtW-Z7@1z#FwgS;UJ55-$5-+)7HQ-33(u`i7h1AsYnP9!iW)Z_Y z#_B`}PLn8>$Rjj02kVTPBwj&UZWcD<#m&N7Q^_0Z^HcG}U^CYcfwj?Qt{z3xLE>r* zb^@|^LP)S%EFmPoIm5#kbG^x+%|c_QMtO~$E4g?(%5GuZWKqZVd8{vYEDIz&ION;) z<#gU$Y}c*PYd6>h8(eytIt?#)_N)pj_I-&AXHn+Cy)1=BBT1xCR!pJ`vS;j}UFO66 zoaBszHXx+r!OF4C(hrd>!VlftENlw?^6mB#iTK85u2}SmkJz4lVW09iq0KLXFmDn5 z=OYP-%S>~z_vL%`WVEq-x7r3I+`L@J1Ty7%ev1ghmdd`U=MjTS^gk%Gt@3*$lgns$e$so{VfyYWov;P*FVDOK|aM;5z`p-gW+$1rEXu^fn zlJQ%F+RfP_Tvf+KqLP~>py9KsqV2PV>)oySB7$p4TCd3Obn9t;*1}jXAybJ-qVjc3(og;rBEhWj@aKw9`n*S{CQ<*M@pZ{DtWTEV{_<0pw+35V44gR*@I$wX z?K@yN9Jc8l~JYp5Xwv$i(LM~?s>8Ev%W>|d4XUq_sFS! zOJ$l9l}P-vQSu$!K1uD1tu*&B|7f~l6FksfS-Bl7vOKt2-U3!xuyhK*EDxS9;ZV<& z5J>pUsz{e_*V7? z9Klr4D$Z2PVw82qBx{%>?oe%DktNAfw{nex*<;&5(rX(Hbi_**+hiOyP2gGnc==Xj z$~K{H_{-Jg2Z{2nZ9?5X)xdtVO{g1o^$<=}0=ge%r`6kp&H<1kQ|p0@>)b@NGo3pD zhS+o3Uu8ekbDdL(XQ0etEga}-g`=tLS}1m$i~VM|G0~v--DV!1#oge{@R=%*=&o-Q zo2rEE!bYE$^%bb|q?(`PZ!W71y6r;28g3T~c2Rafea?&UtlPvis`&r2O~hU})5Y!@ zVRucj6J6{#XAkGO*l)%jd2+k3yMIWOZMF;3^@`-}cUk{pG2UX;hUY{BH(}_^^+`nr zMz}s@Y*Y2=JkzIYR9_nh9tAg=lU?Oirp626x<4gx$eZiWm~BFTeA|Tn+z{LR&ln3G zluu~FFWQt3*@m%U8e>c8L^=U6$4Nvi{O#V2G~t|@HTVQ`clGg?(*bnFl_`s@z6aZ{j|(zzH*vGEeH zgJ|G0iB6oniUj0&z9*KpIgQOV&-Y03EZ?IcKSD@=B;t)7c8g8tJ#5>{Zm|h6{6-Pr zWbP1YpC6V6UM8P_W47E{Oq2_|l6nD|pN!LQP(wo@?Skhm)E6uGBHJH-S&8m$KndFHFqPNt9| zaY%p;ezXVm-^_dquR3!<{kbx5o;<&kZhUY?Z8|=tMits+-G~;X8~U{fb&Yv`XW3A~ zUv O*mymh_J{(txXFt-{s?|Hj7CZ&n39CgXQ9HS0uE2A0vWX6K}tZMd-~orTzy z=h>K_rVGX|Y(PHPNl$+?(n%IzNXH<$c{^!B+mX$~Uk5%QYj@I|iz9lHRlKbw9Y17f zEcp;)-ZY{v1H@SCQvbTZ9;JKa_4R?V3b}~UYz=iK=Kys7j5>;!k2KPAW8fu)+~ABk zbv>oD0Muh=Fe&o%H-T3P(d`m~=;9yInpED!Wxy(5+ZuSdXk&wDW7@VrpQ4S{XycIW zfyWCQ2hOlop}%eqm`J-Q#Lyjq0fi9$S7NKssyhP)@=6q9!Op%ek zRQ86PbnS2Oq!?1p1A%^p;~yv_eRDD-9oi)%?MDYD>FK+;r0Jq>13BbVqym|!KjMv2 z)Y-d)r~xTN-DZTIp-!DYeQY6#QB1^DBGvK(r3l$4g}5OnScTTDGR;DcN_Nq5cwZn; z2ocq{3j!i$-!7qVDh{r1Hw(Lm4+I7l_U8B(90*uQ!fr8B=%qgxXf7chq*D(DJ|gvZ zQ^T_9ZE5ndnXz=r^E$^oR1ox6pQU*1if)h9l6 zi+pEj48;31cW^MZY_=j^&N^MHaTRW|knsYk_Vl%<=9Q%t>yGi0HM@ny$d-J6wVRu* zNXqFz6@}~uO%@E!E!s-geIFi6j$s(8@md%K;KpkOW1uUUznkVae2eqi#u6A=s0$xQ zc_ndsL+P+%ml*0dc08>?Xhug0*SN+3Bz8?vt>Xe#3|3b4ge-8v2%NX7mp@F(?iDgEwU@IR$u1l0q$nxWutPGdYa%h! z-76OO(AZ!^!O<^3w50LJW;E3qia~r)K4?<#3>FX%(-d>y0o_AU2)4>et-XS6P|g2x zY$xryVH!yuD^CM2Cp4q+m4arHzE`;1{(FVXZAYEy+i-(wrQmjw0ruH(;in}5z;Np+ zVM&+rv`y~Jez^Mv%+#eD@&`XjX6+U3DZE#>r!$p<76r$T0T6CCqyzb!w@c&s9tZ>` zB;l$7ZaaaO`z96t%Uq1G;6jSW_Of>?+C^?w3s$K>KW;axLgfDX!Q=|cb%tI(f9)Z8 z{SWBOA6YGOL?8UMmJ&-1N5SFv+PcK>@#$vWnqpAxItJ_4Qffw_XqN}ZG~qW2R*w^^ z3WQv`SAf{z?+T{44F#{)03(xQpCDQNAWtZhc|h=_ zg4{#Vu}_Uc;Q)MMWKMeU6$SgeLa6B2!%hOIQ>I%di9pU`-frh zqpo1^74pU4b@^iOfaS_sT%Jql^bx_=3s+Vw1{}>!jK8vHuAC;>_{u&8w zrYC<6x^>GX+pY6igqR#zJtp|HLNEUsY(@)a53$m2XM$e3dt4B2;QR{NZTPaBNN4Ci zk9K5=PV1BoCE@HXX4FPgGN;;T<8#5Y^k(LSKxFWR;FpTBiN-Gtx@q3$qZ&k(T?!H< zGVje`lUTa*518y-5?et&&HwGKmm;C-!I}!$97jLs-2XBZ^!)qfW zEh%(?Z(3>k%7S2KIr&D${WPvjs3wgcHN6&n?StSW3SPES5s;bR(Q6+BCrk7Lr^jl9 z*Rq0GC{pUQ%!k2ac$|dJ*cb0;QHAz@`h*Ry21K##{EjYM6nt3)LLAo)XDy1ff4w;9 z6z#P&q*_Husq>UfohL9$J(dP-r2IY+$(7qDY*Fcb!WQ-aICz0H*e9a6RNg2JQH6ax zic?BcLxWH|`tHTxJkqHGO;{Ryi@NHE@YV-x8{Jhu)Jp6zJMUx5`l-mQ&w|gyl7T4g z2zqrdO1Ap#;}cGL@1tpF#ymt`+=pv7Csx7sIKOeIGwHC88vIzh&(NiR2K&;yc|#hK zg_7kQ$?|*qgstnoCfG8DY(R;{UGpV@uK~r3TeJ1Sr7HU}pwk)JmQ z=PBeg@XKH;cBKl(*pczpYRT#%DTwz3t8>8WvgsYUx1-bc2g}h&sn8^{u>w`5h94u< zz83@EDluZ}b9MwflZK+6*8eS7lMdJ!JcQ(Ex*1yNANoiF_4gU^1d{cr=qz@bmhYpx zOx?FpTy5e)T}Yawkr%DMS$;-xq}`riLRsSco~HL0(UzvHs+2+ zBgIo^3bG6T4#qv6aUV7y$G+#9tsJI?mZ2Be1$5R>3tID7Fhu@?zSsgPS6I`-e6y{b zpluwXBys@qWqT8#<^EMgUy-4wBzeE^Rdx0k`l?E0v&)H1O6x|UF|^Dnm~HPQm~G2` zVYZF?x!J~Lbf=wI-|RgYJhS0*ydgNhd!gv6)62g%sX`Nf2u`J@CgA0t3iQU+3Ec|~ zI?Q*vDWj({m?jK^f-FCf-U?^k(g%g=kWO`}p-iZ1#Pn0}Q-vlnI)#~MU2;WXZ3gZa zS%BWZ1m9MaOopWn?eYHWRcPv&U`sp><7k=nBboanku$+q38k?oblpEeoQ~Yjgj2p-~m&jF-m*|1+&mamwgaNXvK z!4C=w<0PS&PR5Fu)LAY%^-{0_DSJTJu2KgC70fZWG`R)Anq^6Sl$fPyDMz1jKv!h7En>)OunK9&;ty&J*@|d) zZpfNSw2^2%H)N?5LSrkFhYuDvWNV^uQA5^IBKarUSY&LaE77#{q3vnjPeU7!J_m&^ zy>U?JlJ}tSgX`*rLUiocp>kyMLE#K1a0scg{SJzG0XR1skQ+A}s{ATeq6vH9fes3@ z@d;Qe8se^P6nc!d>m6*2=kk{`Lfy#5gCfWSD4%Iy;z6^Dv3e!C`u@pw*r6OyZh1Mt}38+{Gb-`<8s?bF(LhVVTLn0@ImZ$ZhNFl`dQkebbhS1Z* z9);Lv2>r+)c$z7-2(9GEW2R7Zg>;de)Q`6EIa8T$BIoR*he8cVzeB>p_onGHLobk? zhlG*YU=8If4u zDg@qQgUM&#CLnbV3vSB+3oMIrpJ-#=iTneO3qzS^E+{`l#CPpdR5&i0`dY|OMjht5 zr3|MN)`aSkEtTkmyg^R2xC@%bLZ854ZX{y!BpbtN+UigW-LNCrg5-!c-S=wSVZINc z5BCTiA-O=$GxmK(JWo~~7RmPbmm8L6ympK|r1oL>>eJ=3MmHyWB)%hR+hNKrM|F3o zpN1W!jx=&Xc8`e{D`EIy;ppT5%i~rEW-?y=c~%1wcSM+sSR8$3S>`f0 zXODb7T{tkbf;2oLtVKQED6K_BoGW6oE`zIvLhXc@5D;_?xTMJFi!*l4B+ncX)}rH) zV%8#@cp;Xq9TIZTW@8Xwc#ntx!*xUi7#$f}ab%i+ab`Busi+%|#g8mYNTT)^M@^p@ z!3@!Cl5jr7vJbTlin0Y%l8d(2r1ZFQttiMUDh!=0iYzu)^ zsZDc^hw4O+9R1rFp2f=sSGMk1s(Y^FG>Yjr<|!ft5W;QvHy?-N0}Z!NMC;|G=eNS zDl+xmEg#0x2frHYW6h~2M%QA0xoK=$qVg#nY1;ZeRq4uifJ9w~TWF^#p+TzQSL(85 z*__6`8#0rVAj%#P9XrbHK708B3`KUo8;U37!ck%IpO>Tn#2*m#oF3Y!kiR*;i6h4OT>(9#N4i{ zG8016HEKEUvp=N9;d(04ppW#4uzW0 zq&fJK*i&;*YP%*Q z1)KpvGJ2E4Xp}wJpXUbwz@j(W^sK}H%oaNbW@Y@x0q})4D=z`SVA4A{z$3gyLfA|u zQDhJ{t6hMLDvrXgcbHWaVtUS>h68zWVW?8Z|2XSKIe+N?mUY=3f9S?a^J|jJ$3)Dq zRLp==Y2M|2qT& zAvkr+_JChSCx-0-Gqy+p{Vyq=U977A#>B**4b{n*_P@)%cj|p$fM+Q(pDanZU&E@3T@?XVJll~4;pogqPCL9$*Sww8!xutD?SaqPTC(A9=RrsS=}bxhH&e4{;AqWmpd&%@=OpN9sNC7&KI7B1^9M&Y6x?X?m~`2-O(Gk)38 z40T*p5=7K|b`5;|QAnJff;n_t`1t+DMbvz4Z77pmMNcH=Xtlqy<7uU1fo9?$%y9^e zWj_GRH*P@89lT1QPJ)PTlaRz?H;mLiQ9MvQxdDNq`Gkm<4JX7F8(=(g0~)@?mgw-M zzl~*ERgDyE3O%GK-RXp~;pb@U>;6i*2W~S!eFAN;CG>V-sI^~2YA3c}|BFYle6pXF znlN;0=xKc03rIUto;iK%gow}Zk}sp$VO!|Df?Qmbs$EhAAdk^D?Fjv#C?7Hio?Ok} z6?#NjDlqDY3@VRQX7Amh5gLd}dqN$tW#cpjL}cZjPt$sB1dr|_@u zLk)1Tz~$0mnc@5KgqX%tCnBl&h#i%iypbpOZtyl4sGY$u*&LoaA?6U6`5dYgIwgo8 zjZq*iP6{PydXiy(0Vh=X4m{-m3!Pd&c(N32el(O6zA&Z?9dj_0OfPuGHm9SGB06h* zZCrI4dniv(cVDqWsDzCz@q!~eT%G$S1#5dIWJPFK5=BD8xFM|s&( z6vIi8f@p$z_E@{oNs)qhMl-!Eq#J)SRJTfYYE|)3HT8QE8B+RVxb&YVBTw?A1YL3} zlt2fr36`QC9)!4(e+c2`#UGfEUdSj*3-*qyLjO4xDo2w~7pa^3L#SLSode&;ah{w| zgTo;%);o+=y@BSQDFU1K3;L)1T)eJSj2++VQm)NOr13xeuQ5UF7CJucPb7075SEt- zNpa4EpjeEh`zd6j@y~=x(VIU*Hm82Z!@>U{0hNM)tn_r%k@e{(KmRXt!9Q{G=}8gp zyjN64<=aEoWW+;r4u)#{kE)T7Qu0~M%l|m-Dr|;|T;;bG>kPpM9bXTQIVvWe_|KLr zc>=`9%qG?#U&+I;lGW6lZkp@_8_J^&)t0W{*18>Sc>z1NYjQRJE?0BGN#StYUkqiF zN~gr0I_?xRw9-^xmox#%-EDDGy-vDY$0^}%t*45*+cosNVaOvrb4s||j;DmX1sEFw zKIqIm7v;~sB*!>X!JHp$e>L=0scBCgzDnW&C6Htm~uGD zdOF$U@!G9MpT+HPdCm9=y36Bn+N}nI+v3G1(Vg`2((I~{l#dQ~E0yFhc|8uj+32x& z%_gJO>G8Qu9;3x>F*+Q$b%H}KFpr+5Bmt?zX|Xw7daK!BG`f5iliB96`OGGZ+vKIr zKZaM0`2U!ANJ+U1c?-3d&w4J&d`HrBpexHjkCe}Zt;RY zi_ztAI$b6=O<#1lYGk}J{MAy)POrsfc6kj3vm4)+cbc3=lhtc98_Zs(!|S$1z~p)* z+3wQY^m>ES2r#qTXhqrXwi@kDo6qO)+Udr|M`}b0$_`%y(7VuHzIV7W`OZYmRLL8z zr!C54*8!x-3LzU@ZnNHO_jp|RjHOR+b^4qh3=!hao2CxM127E0hjD@jquyyS`*85j zXR;VA2BR&4nOUzSS#36>!|K6oSgmHXIUypw$LR1mOm?4#CUl-&Ewa4b=#Q0@yO6fi z+`Yr~$#}5?$F&kDXFTvr^Hjk6$K03J?Q&cQFuhVS=jNPmEn7vq>K9djn z=x{sq=xe5sP}PW7b_TD>;4_(hMjwP|vO2v^r^nc6kg|pV@5iI50RjtcC$b0;?_(_;DDt)@OBiOm>gkZgQHgs&xIB0bDDfUqZzYlpw7H(X--n^Oy6hai!kLbw7oQ;byjD*E7aVg zS#&m=-C*@PeI}0^_QL70W0+1i#BR5_j9$I4&%#Q2Ek2*Yfw6fVHmpH|-Jmx+-Fm$X zM$u+7F@~!}y386rMaj7HOxYYo7nJ+X%4#VJeHXde)#aCRm!X-d^VIMrNicp6lL?00 zV|PLTK6pTv+YYPfvv@rE$oP*Y4}^YtO-@)Hz23@!0 zZLu3|R!q&W6Kg~k92vG4E6!(vjX}cQ<}sNahzMLxkI`*#vzgZ;7J+Y69r)cCNUNG< zNWL5CHm^=L(3{U?S8stYa$0S@h7`Iw7!bD}Hreil{GrfJcxoeCUmlmk;l>xnejElv zUS$$YzS+Y)v)gMon{6g|JEPZUG`Wlpr@`tnG019>g0++0RWj~8QN^6tUDVW5Y|Y(S zau%$)6#ByMVbzlFHZmC1hIr>as|*$jX436(dtmY{u#`5h6>d;(v14hO+|I~^!^6F$ z=pz%e%O@LM4iiEGyW50V#%MAlKC?T_ZVPnK2Fn`B>7O-UNk*d&0fE_SLHuCWBOb7! z3w){FU`K!>d|vC=tix=P-jO!#GbpR$-KbKitDX+b&MKE|H92fhObb-h0RCJKw;68P zuD4m7a8BMx>Y4WkluEKW+!nLJ4TlKkoffOpXmh~qV>%HMdm=sl7`{QN>o8&sdf-|- zUIRR{!C|$!Y#1rxIiHy>_YAKkLd=xA(DVqOaA%q>Gc~-I^)T(xFS~NG&*e55VEJ7p zJEDK^h-lCXNkSv-4xdZtB=-bKCYuiuHQ@1>(_?lS4R)i&VKW(>-vr}_FLiIIU9 zhkp#az+!0=JRGJEF574KxNI)B!GRbRe#acym^^(Q9Qz$f)AS>gjCZ4%{={^=NP0ZG zEG_+J79Msw?0S5=$VgLBs^hVF+-{r8V1|YF*&Hw^HnY_U6KQhWXrS5=)qA^Kh*Vtg z%WgMZvdirBTFqvk%VDsYV1B%j%kh&CTi$VsuvaR&bnc>+#hlw+#fSf_Tx*yWgqA+Lo$YgA z_gx5HEM9EuAOO3|9zg_ywdV183>KHyX2Rk!-@ zfxu>nZO_aGtI30Xtw+RQ<10`8RH^GV!KL_YCL_j*#fXU8W_K8TPN&1}^+uN8n1*fN zooV7_dc=|`ccJNJ>#TDfn-g1RBeueboLqKT0VCpKJUE6cw$jT=cB0&mdVM~xiTMM) z(}6vX-mZ7K;G?0ndb`Kxp!qRyRKlkjus_8cUD&1jAQ7xxn^o_&xGXRm*g+YECl^~e z-<`-?vF+P9Xp*t+ohkD$Kd;NA3iOS|S+yS0!+BYo?ol&WQ8Z!vjjyv3o4=V+MB8z>N9E<_2*ALNW^kKvUkHoXECwh$=m9 z#Od&iHf(f|0l{i?7_lgk-f%fx$VY3U%DYjfpB~OiyCdQ7jLD60Hax3(vV%>S#q31j z>oePoHuxZ9QJl#87z{3>Hiwer)$_eOqGJ;hJx-&`Vu6|WSoJP!E)a%&GQ4JFL00w> zSbK}b$y_tsi`ngUGw)(E+l@YKhfFS{QP`A2W3ffLGj&`YKWLI6>5g>qB#Q-=c^k6o zBx74@v>Hu5z0GGaBcOz_H)D%#^f=t0YmI;~yfk(-9;7q8dTh$g@JkLOT(7~Sck7Yc zGKozl_ic534!hZ5b=nbRyUo}bVB6%yuE6N9c=SG+hYY}qyh#|voyj^x2IbCVaev=g zB!e=KXIFmGpiQAz5fe5yIBs2kcAwD*%MDG#?$Qob@p)~KH_}Gfm>6MgST0X^bFbb4 ziwaqreNM9#+gGeSy~$!n2GDK81;&32Pn6p_)19ZT*tYI2I$JEnyrVP`=@ojuyNwLF zCJ|vK!Cx6XcokNUodMRF6J`}j0}mV<=F1(yCI_hptBr;KM!gpqJ+s4t;0xZ&Cs45 zT(Zq!(qn3DcB~U-N}Lv~M=w%42okXa*Mw#%R*wVuDF@pCnV{V^htc7&ARptyF4yTa zIwLt9Cn1%Bxwat?)9W!HgsxD3D|Y)vY@T3X^xS=O=?0%?{6pEUnFk;MZu;o0-$syRb>%dpX!iLnQDP%zyG- zUcqMjTs5WQzVnn7b7*%_Rbx^2=enZ|%}%!VvhCT4DR&ta()p)`H=;e7ePE&Me$VQ0 z?}@^_CkpqTD3tKnt5~pl?}RsPQQ*%e?~>KO_e6m``?>c-K|Vsi_e7z{bBudW z6z)Ayxc5Zi-V=pl4>RsPQ7C)@bMJ}5y(bFyo+y;`_~+ge1@#Huy(bEqCmHviDBOFZ zaPNu2y(bDd9DVPJLiFL+|MMpbZO9G0+ri#6`!)J118$&CqA%r6=9eO~cN>*Mw9YTt z?qP)$E@@9 zNca@(cRsrgNjOc@k7v}#U|dh>eLaKy+w3j&Z;iLvzbp8^XLhpRYyeYwGp?s_MyG%^ z_M0&_rT10-@8P5DcRv4@u`q>Gozgpeiv3Pt7>4#zV6b;9_Uqm6 z@y{dd*FZ4Z`%(65`vLsZn*F*7hI_YRzlI-ff`1=lKaYX)-jB0iZI9!hC)lsIFpl0& zvR|`Km8I$9Qo7RtZ_cen3x*u|m~=gzogeOstM1d9gwu%kG;MP;y90UtG|jn|J%V;G z$lgK53y`q_WQGJ8D?w&o0mw%jr1ByV!L^&OR=)4P?4~;QULrLp;r1jV`z(@uPFzKw z?*v+W9feUoB|-L{j(~C-+&vLd;vXIKra>0b0yI>B)mh}E+FvHDaICVE@X^vkq~1_0phZNxF{fQ3W$pmB2p&2 zgVg$w%?hdhBTb77cOm!xD5eEvJ}pMB;o%f;Zf!s z)~X6w#M9I?OkxF^pAk-^1!co66?_@(8HlXHPXg?PM1VO2m{kMzlmN3zFnjsRLck9f@Ixg0n-U&nj<(540k%MZ&68lC zNidW-SpSFs+abWVO0a_x3}p`X1+Gno86j5$*d+;e->+iGD08sus{~l>U-^)0{3?dr zM1rBr!CI{mU{46JHWKVv35GHUn}|=RGot+jSZ@h7T7sd>!0=+G;YrL!SU`m&)Ite` zGN2&8zsm{v;bX-d>v{pdR>JR*@F;WQ_>3$EJ0rk;mSEQ;7|I;%FMPz5@tAOikGLW} zOv-Fo@);o*lsOnaJ;}iy5@0q7)=q+<%)ut(!$S<4TY&YDVCfPJWe&Cj-=4TC}T~Ggem7xCj`_{33XmVp$ue@UlkpfU#Si|@RhkX zyOQe1OdVU6em4Bs)bRb|D@O{R4M)n6*t7JsYxJuR`C1I=H<10`*YU<6n`e}_g#&MO zx$HREk2g5*o{$p<}6%# z4q}ns_(c;;3#KL(sk*QC`>e6%SsH&fqxbFF{AV+)^!RJxC2=MVJ{ovE+^M==Qv+HO z9cX1Ee5lktToBhr13}wF#-`GyJ;E=?wbxdszdz;)>W_c-DbnUFO>%}?7wvU=YeuJ} znykYIV7G(3u)YXsI-y3{<}}6?o=SS1rG8g9Gp>)8LYsl3J5`CIke3YiJc}GgY5-|5obnpdasLIJZ+pX?2|Y^>dc)7g&AJ0l zd3#~@e*tINp5ejdv$J$e&+zcL<#)g-uXy?N?l>d)Z-l2Qaog^IOl}*#xid27jf}Lq zw@6<*fixk0Otr`deZpxmai@#WV;Yk>AUrVcthSnK%%B0`%JlaE;U~!Hv(zy#{6Ps_ zW7EUq;{Ls*>%nwHl;{<>`EKo^z0wASUy7^pTXf-2&}v0*PEC)ce-8?e#|O~Tr=?e| zpyjeGRh)6vsPD+eYDJN8eZM+5JS?thF^o^p)k9$GzyiA)uxKx)?;3Gc5!db%5!Y#o zFL&h*4eyTYphdi~%eYSDso&_KVc|w`Pib3<;Y_>@&d8ME;U|^2p4zTl)=47~aJhe@ zeMg4t#<{i4e2gnchDXMY(N^!vC1*5{#;sUpH-aR_} zA|uIOxYvlIMhUF5>k$&Q0@AGFzsH2<#(k;9&Ma4QuBIjmjbGfxG~ib^-390Yn)Cbq zs&xLr$*baaY0z=Ypy9ZM;8;tMdAe$mUo*mgo++Kk%mErSQiQ3_4JKPxG>nj%j-(&sekb`6O-+=z+V=&TkPviLD-niXe>dELymSsP_>X>7BkmqT+*-uqi%$F= z+c$23_mlw7SEYX%miq_|ZJK*^d@8@{KW@CXnk`mk1kHJw;=>#NywOO*%o`;jZ{rHJ zC0V!d(YpjtC|A`;sm$=E>SW=$=pA1g0{u(q1p+nrHv;JOSMaTA_JtTaaMkE0nr?ea z=*D$YE4EwbW53YJ3OTdulYQrePUbOD6w%2&=fuq=lRge-(_tTnKO^U*MxNEea*f=7 zj%y@+yBDoXmz@~gG_hn3Xd2Ym8rf6|;EALr>#Td|5b1R>^5-V!TdD?$v__d)AGqz;RUzz1I|_9Z{iNz!p3*!X~ydC6LH^ZTk`*z)hT(erY1@Q zzqp6^o91*2xsvV#(@DXHGzM3V>|GPCMQFx2sv~92a_10@W;>Np#2B^I_;o*t+L|bR zdU#!UD5-iutfGVqnig)^D_#(m-L@gzJ%%*9AZ+>rS~$Lf5-$jw4)~}|zYR&gh)QmY zwA&Icr^G$a@T+>9`v79Lv0K9r$92= zpG~}p7Bc3Is)bQ^r-$WeZ(I83z&>6SmVZtWA8P|>Hw{#W zC=|cc>QAU1`z98+VHb19X{9J^p|(aNz55S_7mzL&#aKFBj5upeh*#*hC&J0pUwguF z@vBS5xT;Donm?QN((uq#^5DBD?#|C^F{Xm(8lH&j{@BH`kz|9WuAVZg#38$*h}gZY zk+>7#;|f0HQf$lvqhNf@?u%l~oi6g*um0;}&g?j@4!wRFyXwfr;%le-;*rhc)@!Tz z+KC_^+;Bo_(GJCQdV=InD`{>{?xIj{)AY|zwGZDMR3G<0Iu}z{+>eaDs^5W0xc>d3 z@X!1^b~l+|_;>8$ZfF4w-QH~pKyer3#s805j;{M}0 z+*IOBO^s&8lH1Zgw`*I_mJTIbF-Y9h8utzBug)`fAsa3U7xM2@bZQJac}cjCV_G^9*=)k=*U5G4GL5GMAvtoN1?D3H!iUcUsVvHYAk_1Y>ap#Tkn&5Eq4R!Pm88 z$%7~%hL5IoIu*!Sx}RRQ&BTW=mcG*px4q(bOOj9^uFM1qc1vAc8HQYSSn0jSzMRA} zV^R((UuPx4nUKNtaZbTscgbJ3TljmqKq%)!^~Ck0Z-7j6;q zZc5HVC(AdwnQfKunjp^-=UR{neT6 zXlNL{LOPH^?9k7veFecb!nYQFQB zeVHB^N1rUAL&pqyf83WPb=aFhuN3W2%uUUgL(?)W)J|Iy9RkgrKqI#^FykiDJ-0Ke z&Pnw9xbs>b`R3!yW$K?ypN~7EZDHm#87h}4@>5iQ?Y+jN$`xVF z;;%%p33pcEitwjf-lmgjOaFul6uR4}+6eY<6my64`QkV+1N zPEoU5s~DyetxmpHi0MY8Tn?S7kh5SMR$Akg8mZlcWcbDNo37B*U%Sh>s_x{H~c5X1o*YYHBoE`o9${pjyPt8oL_JSYxN=G=xTizKR- z+*X$MkNfaZTF`D}4`n0!Fy z-<$+xEMp~!wx&b$aawZ1$ZBh%W5zEY%5&z1cl@;Y5SrbiW&5-B@KsZX0mpGw~FgEn*Pzq{-oYjVI`BVMnQy?taJ7M zkoMexQ54;~laR(F5E2p~q!Bs<5_;$XB#;oAAV?3L&ds0p`rv)0D5Tj zZ^}Urz>DtQoUNQ&o7Z_;a0FX*aVDgexf|fSfvQ|1F+Y(fhuxHU^43SJ&3Li|e(Ce% z1l1r5Z^}G5@21R?V{giVDBz31*|b)yT6{~jW;p|^N3eI&EGMFT^mgv1mQxAE?lfdWpDsQE|8+Bq zowofOHHYy2R)4cS%`MN+R=7qC6`G?G&27DI)INYIwl>M^qZXDCWYFI%sikE!9gI*! zMnFAl2UYh0f6HCzz6e$$FL$NKwz5njQ~ze?T3M#i7Z9M4Xh)UklqVDQG)cESr_hzf zP|H-QEiaxL-|t21d0xe^y+o>GKeV-+r*9Y;BGgVQLmjG^p5PK>oh?sWrjjqgFnntJ zIj4;KBxMgv-D8Po2@N)cduWCwjF7W`%Zzdg!-|Zu|8Lnb?P14GSUN=cV95KVc=I~1 zCk$jcy`S&O=Jv5PCZ+$8qJ{or5RHWV;|cF%sYglee~k0mk*XDHu<*0qd2Lnx+|)0( z%s(=pg#07pERYj^Vm`@vY**H;4kqh z69-$q3m_{1L7z%aJ_eDg-NVlwLP_`Syn4F`WA8kv2F9m z3zh*i9v6!v4JrTB3XV>M;wib?`7xj?N$|(bpQ3MxO?Nbg4O4kVu<*;4)U}bngu}`) ze`MF!MaG~c<^{YCj`I9V@WJj;N(jAzwV0S}P4Gm`w2W71XDpM@JM$JhJIk`1X5t#I zHryeJ-1})`IPg;S&{6#C6`osF1Bn5A}4RjjCcaW9cwnHnR1JzZk-bc|A`TnIcGWd z^ilWbN{gHL-;32e}Bpa#FnZrQE8 zu0b+`YQr^9F)Ev<>IOnV3hi7Hx!%7~Z46tLniA>Baar~$^!RPi*xSPxa^*yoFSe9C z+x1SNr4FG#V_XqIVH+%y=^waQM9|N-p6#IRn<%X|(aP>9I zkG>X>&TO)rph>5%#HxoKN118EK}7TfmKwplum=k7>5>#(?; zQJgGSS@ygm2By*75h+bO^Tg%F#o{t$+lxcv%!#P61n*KfrjH}+j!apva$sG`T6IUJ zEcUiVp=A3VnX=x(aAFW=y(7mC056gjmIKigqd4hDsU=*i!=8>ORI8mgim4d zrBC4!WW^5WESqV&dr;!_6fu}eMICWhckGdxl#+F|#<^7eV0+xTqkS@ZYqJ<~klPwG=B4_wuDq7e_-Go12p!4=U znJTv3ld0mh%a-?ua)7fo4s;r+8h>?9W{a!WEJ=O}eCyYwfm<73Eq_@Ghytgn^bMS) zfr*6i1sH%Q43I`NE|y%50dR?CK6n!OuP4jdFh7#Dy=__Q%dgMfw%mI{YJsnn^VCw~ zuH{vlavx}W9Y*x1wePcX_bhE_ZCoRgN)1$^$;S5Iv)mxr_u0qyEuYdZ2*$V$(qFYk z)_u9S(gDFDdVAo=zvsD!mbMBVjv(X_&i#)pb?7);EQB6@e@%C5O+CD!2OXetAAFzj z*&mBmti#B%`)syi9Z6SUihMkUy52!5V!jmHZ}I&=wx@JJB-=u)$LWS*FmqH)x5Oli z@AC;+3Y*ijW^Dp;XtOhH3I>8VH%>mhw!>{8!x5JtEAB60ovQr6x=peUrvKqG>LT&m z`*KCMMxb@00y`i8CJ&Na!=NG(f4nav5l}=V`rs!b(MR3%5UZP1d>|vS`~!JTYI{lR z7Sa$3^?mkC)n@e`$W7ec!Kag1OsMq&Y5&03Z_hWt_OF&vlAR8N6x#pk*`e&)Flz_$ zEU?orapY@QA}H%VkULizxTa0K}+eh|pIuDdumqPk4) z@LPl6krclGm1qRvNksV?mTpOjWJ4pYcDfEhvQ@X|Rc3=4b*WF^z{Py9?gxOZ@J^+; zlDI~U?&l8LSciU$i^b@E-2=9|thJqbm#fzYySYer3-Wo_~$%n|MhJYOKBt3s&o4F=DfJN!BYQ?;)#S*_uwLV6H;y ziRMxlsv?Z_O5LrBb%;V=#`p%Q*Q+SYRH>JmOYH?4TddS6)vedadkV6H;y zcg&^UsEV-7D|M}!)=RLSi17_lZ&FbXsZxJ!F0~hIn-8fy;36j!a_b?>tZQvW?_iEX z;=j!$-mJ2};gxuJiuGMT8u17@wHTczd^xldjlsoybRNn9y|42`vbm|&$O`HUJ=JB( zDM~4>p|uiCHc}!Hk61xNYpkBNq37J9N?YoYj3+AoFA`5)up2&%W!kTK!y6|Ixv=YO zZ2g$_#{%;QC?B32bj2Sc3cxrTYH!d(|qxJd&f>J6YBvCCF{S(r*adFu--`ZcQ(t z1Tp11A1iewgQaT$VbN`#0|W4}EC?jJO)R_|%iMGAot|RhQ*CuThx=Re6=gJs z9Z5%GFy44@;l}pwtZ^JVvBJ7+Uyf2t+j)X>tSyu%?4p{Wo_>R^F-nyA=z^^nVtq(A zW4nl%|Hh|+m}Aq$p6t{@7D(ZjW;ZdkScgh9R$imG7Di`BhFSa5JqS{+q+fk`5oNg> z{L8V2XWEutyJ1lXi@V&QJUbfQCzS5T;5@nc0Rg5gDOFxi$uJ^lqqd$-F8QkP_am%Z z{C)!>i$_}9&tvPf7XRiy}x$rj62}d1I zTAp=S0C6cS{F-e9wPQGubeAe@2jnpV@H^VsGopO(6@lxcE^`KC|AVR|`!NS`^kkpH zR<(6yuow1NN_q~@v>qem0upDhvDI|P$74qqMrjV z2~9Vk++SdYrO03c=V5I42;d?OF5KZ;W-@GM-*%WIhvobEx+Q6G2 zUS@@jV(YL=ORYcAG=gG?_o4}nP)SkTHNoygIt|Bf-pPgBF&CVikj{%Ht+W}5zM{X z`j-!9^=y6xW}ETmorPEY)}r;495!~1wFaxQ#yW>yK}{yJ{Px@zJJ7#zu?TGdWar*I zlc>iy_wdD@G|&$@!eii;Uy~#~FzmN z9$ty9`l&!{cSpw~a75a4x7Le}#gRz}muOU2Tmb}p7dTtYQ%@((N#~0l{bcHyZMVKv zl8p3|zBmlS3195yCwx)q$aXw$FZ;^wuOVTc&Z`yWgR4kEKI%?vwyq==RiZVRlSo0U z{kU^NB%RGG?HRSj+A4&+>&GVM+wj5HN2(Qfa4V{>V{GNm_1N6WQ-X;N4qja=h)`Aw zaoO%%8Z6ITzKm?me4ZP=t&+b)Sm6O%4%^=Fm1^XID)O&IL_QDPc-Bn$@>H1T(~qpv z6!!H1ODL_@5q zJ$>pNror*lsXRpHxTLn;d80YbU~~99?~1qu14_2J%eeg`k1DOxp-Vsl*?=u{;M^UJvwf! zOt$&U2z-%@^qwdY)kPH4+ zCHWI`m>309KX57VVo#M5*53#TFJW|8r)q{UxM_`d`_7ZrY(G*7e(4?dbpza_)7Aro z)B}2YhkZwb6McQj60)zqr7C(21m%4_Rz`F>3Am)F**^(k;?QO8&(^JUa0%p4qO%`} zN{S+X79u+PD03(l^eb3!P6^qTGdU$)TfR_2_Ut2nv!*J<0>60Az6QgIwwzZ&wk5!e zw)DY`XVG}`Ij0XBV2ryg zKdasnA0THN6%j0=$9GxSo$J=Eq)7nVe8W1QHbsDPq%eNSB+7>VX-%Q&xQ^!)(lmfw z`x7PtIxNF<>K9d%Mo$*S6L{0whR`9HkCxU(<6^;nNPwKp=@1O;e^uEJES|k#s^qmF zZU;GVz$M6%w{BYx`DkO$$vf70zA`Du6w02IUOJ)`A1Gy7s=lTh^+ixSzCHZ zaw|Xv@=XjT0{Lu!3}gToODX28Wl}b;^8|(3K2vC1APN}aA-BV9J!n;2EIcGGkZmeu zn{0y6p|q_xZDNLSue5Eo9>FlRt*%~thDDUlflD-tvsq5YaDgnb zz|oqNzv!9xC_hW_gR@6$huv|33=d@AN7=GSvp?7w<;9xh;APe=+E$yaxyI&1+nSN{ zH`vF~wzlNt4W^W{H703)v!>;2SplhVw0e10wtY1uxz?`BVg9e?mcPT!l(S`$@H?zl zd0RGVf0s??|5v@w_LsNy3XFrTz~wbYvU`q;)dBpi0QO7;TbiE>R$gANU>o4a;Nf}& z+jPI*VdgM4#@5g83_Ki+u?_Yc0E3RyinhLFV*q=pqRko*1P-yhJv$O(i(y;exd`{g zydh+81hA>GAnt%b_HnGO`<&s>D*3t1;I5hc+=Fm4Lw@cWc;z`i_dL8~m!Er5{7nN@ z@^iUDa9c1OHi8>}#ozXDOe881NgQOJ&!5COxdr^G;+;9*IScutIODO1KZyeYi}{n7`Yqv4VmWase-bO8 z`TR*t>tEzgVy3x_KZ$w8a{eT`pcVW{bX_m;Cy~xx=1<&rr{s2qdl5(E4PMAfCD^*s zLSEtB*1VCrHk&x%eB2IuSiK;oTe2U&DY4}jp`BQdBwGqS@>r7n zaLHSrjoF-n&)DIw)*MVTm* zdn%AksAkKF-p?^bBZwzqUZBSI6hyT4g9lH}^n`W_0q}`6Y!|9Uajp^YCoi{UAiw=O zmzU({sdr(Es@#KtY;H|keh{Y!dq@*K;k9h%f=F|?UNqm13%@vLRFruoyWY@tlMctEc*{o*K_!?}tKl<7`K;VE zd`67tT4UP)LT4d-mKf_uWYe31i!H*%$5yP*CbNP(C7RhLD|(Fdwm%FGU|W~;3Sj+P+8WR;7$7kVa_|P2>$S9{ z>QRNfnXPOs=_eRL$O{NRx3X=}BXDseG;!4n2i-w(VCX2)k2#SiUm9cU?BETjkuW-~KvyYvVKA=DcT{ez!mix^M&j<)^^O~q^k_w|{!Ni+=? z3+}1GY(kc8x*oy6y}UF*vg96Z-V$J+KLfkQ7HL21ZY*b?qby6wwsrIy7!29A{^?Ab zQ$(cxf{#3-fZR96r~7X0Y#T;i2xeuw*hbMAm|nN#4(w8~lEhTijFSr~j}an`{nd zy?Q{i=@1N!6EB6>_+%kGn|j*X6Z#EiW6&r;5<4u3MVlL_NK30`)wT4z@$1Wa>OW`u zl+f##p>Vp(!K_n1+YNdd*9b4o?GO2agrLw-5j=haY%>)-2Db!qxJpuZofyL5LI&AB zrxkQWc`m&-$X16|!o?ytRS01Vb8H!U1R>n*9NS9T03!(D06}ck={OidkT*4N+j^H3P{(BZgJ_}R64woY^$E*5?^JcOMe z4#qGd^rCakU=NS59o54cv~6T2oXZBGe}C31!~$1a!?G_@rilr>7`$cW+UhFgb(jFY zV;_kSnwuafV{F->I&-oK`71h-Pm8c?FR?MKSOAU3C0b*^lNb(lW;afFOZF%%0 zwhQm;qfVd_4VP^nXUp|fmonaFr8f{B6OGh*yS+NSgNsEY!8AB^g1fgK!C?4-QZp=z z90m8AXgjWu@RCMD=9nM|zr-YvI;oRwduh#*P~z>{41SsSUlMfwzJ4-+bC6;mqa7!# z4!Go+S9(bg?5WitWKc;tSMRR_;d_W3OUk)=dPzA~_aXVj`URtWHN@rVw%4M}8=t*C z!}bPUjWrg{{W2;+LhqRg&23)iNuOoQROn`eDBJsk*|y4b2QKFA?FWD?eNC&FlDI}V z$ecNV@EI=lBD@lQH`ath$GL!T+=xInmz0T1Cz8RVtg=0^N}?C{jGbp&sn9E!sKFHq zOi)F)uyld#Z$j^3RH4@!i)~G)A4Se39RFTP)?$gRsUE=~ro)6+w^v<5;}8?Anczu8 z^m?W&TiXUc`Z6!2Kz-p)TwkjVVqQ0)JCA2Fe#fuUz&GNXCWxXl5|{n9!%B+2W##B; z?Pw=lEc%vqlui8Hk&aT|b`!!NQ8~8VI-`y<$hSmqn;`BP;V$dRTW(uYMwuWnQ+{j} zzxGIINfsA6w-RFez6mz4Z4Xzc=#8h1*s>M%syvDHf%244NM%X@6tR4V1wdqZN{BbFQ#~X*THeRHexq$D zOcQYPaA!xlR`jK7u^yORiC>~PM!7GQzN6EGulfHYm1aFR+j^3+p)v=S2}MeXa}*C% zg#lb_JeVuR{)NJ|*p0O>c4ZR=Pb&BNO%BUEhXa!O*OqB-Z`?O4G7o3kUab7JGf zq}w|Wm!X@T{Mg=nD|azjql&q@h?p+}6Tbgd==v_j4}@nRK{6eb-Y zfs@xoWNes-NOs|>tr}?#KlrX#nhuP&a+NTtJ%B&SIem1UZ0B{`6f#N`WVnt4_rxJ# zyooz_>i=n5qmV`LOW(xJRqf{k1xVhWzBg?T6tXtV*v{<@aA*Fp%}~f|Ku_P!-849{ zCqIWxTu{)Aj8+u|aYQrgjJ+z(J>G|Up00Ooe<<_>Za>lUeH+Hs-nV@~zr{78tDNxw zhU*t`u^0jXAX_!KSp^e}2|K%0ruU2(1Xvt+2=m;cELJ{(b=A;P$fvwAiP?@0f%nEJ z84mL0ZSm&brpEMe0@s+FUP4nbQ-dRqS4r2wFuY^+3?>B?71|1y8*nF@;ffJSh=0LS zLc3vHp=@?3&y|3JbcJT)Dy;>E;9}7N0LZ#MA6n4_qfT%^Z92t>L9$D+_ks&-CI~Y_ z3SOs6%n(Ei=wvdqK%SYZ!c0|YL3@R|Fjb+CXzoq8SXjVSinR?ZSfEERFnivN8J~{P ze;WZTrgXt3A0u$j_oWLeDD(#`nizur2bG}IlvAc)bi8>TK#3j26xEi)iHnb&!4moFIRPqR5`Z%1p0 zlGn`C6;X0AuHX`(eT%`}Y=+C{lTT=nZPHZYGT&*XnR3-OxTH?|YK|;^eGE6$uayft z?9lxgq5SDHvPxKMq#m3bYr1NzN&maC`cx~3R*GL0$X?7=jd9drpH?r}KtIE#5k9&b zmEe}I0X}M8=k=biSx(gCNYD711&b7V5|NQh+KIIbdeHN@Sj-nrmS#t57Yx%Q7{c|4 z+DMqcoYU<|F6g7M2a)y=0=ppwzc^-w#@jX;6Vj9nVuQ||>cYl%-cUt}X5r=SgK1>A zRxQ0hJX|*FsMLbva9{3@3igpSSqH_NvV6Godw>>xZ_ZHqy^p%<^$U*BUYxSm?M2qR z+@N3~9f*rX*6S6{4m2$2sYfuF@i$-gh%y(!Q@U{htcETt!fZ*nr$*C)FoiDBRY8}E zhL$%}ZVST27C`h|1gjYpcB%MPK>Ur}1am0>R;0iiaP;@+q?{)>Asnh$vjHvxg8NmK zPh}hK(;Nr5~|&SIJEP1^A)7_{25U{JvbdPG;Fclwu976-~mr~eAUYOSw1eGGe)QxM}L{#eT3g3-R}b__0< zN&?}tJp4Gde}qO{rYZPfkLY{ChZc+_3GjpW&#^i%@Nxb{;db^oMPb|9**o}RB^Dyh zjm2sX2M_P6ijl3O&*wRr5y-1Hk{+G#+yXoZO-c zvPQ>&JNfEJRFwyGcIDpFT8F41HRVzYml(v3Y_xSya0Nat%9l6+Tny38S;`e?^E#j?My5gR zMz>iJYBipsyn?g=@2EA ze_E#%&qZyb!U8Siroz#k+RqfFV*#N)voo7{5=|T{kuV>b*Zl9x&_o9q>C0P&0Qfk^CkS_o%ALh~hYuOv2 z2}VN=R;+0{xhVCRyVT+;Tpp2Eu;@%IXyOvh$etR>_HPyXXEE)T?yKE=1Xu(8y@yB|J0}!cmDPoYw=g;gC3=0TmDR4EM%J_DVhbCRz*8Glpz^Tqi=dRU zXz8v1E`rquGqGJ{UgtI9NMRn2f0`Zc5w>9)7~*uSnWkbxG^x4$rYEYo9VWo97eipY z83B>KiehF5lMs}`aoZahvfb45_GcB3rH_5QLVhbJ zL-=PMGEe&SD3XdD$(Tkj2UQO z>PM@h%C$r6(`g-4z$VUewqsupv1gE~=y_ffJuuJ$`^C(E$MJvEKUIqD9`4Pw)fT}h~e(R z!SI@y{gEw<&0W)@1e;L4R}^bL#@>@o!$d?E07Nd2u}=-fT&1R)R*tp9Wo#Hj80hRc z`%VIALQ#xnRP>xrMcYoWk0hZR5oyVieLu-Qob7xd7k34>m-1k+v9Ub+G0)zDVhq{4 ziL2Q5B0@}P1qg>H+ei6A_|6RB$`pHNJ%XX(elgPr_K+gkzUS@zeYt7cRC^)4g&7Jr zy@^VYn|7RLhi%pp6_8gOdZ~-56qtZKw7h$|{Vh_q0vkWW{vwUWB!ne9&a`hL5f%6} z-gt01`wugsVzPzVXmYZzXW1RTG@dove#6&W2nhv_bU!$a;Fs3{aL@|aGrDh70Wt=ClPP<>vxZ`1>tvujS`*e)+(M|K(irfja-oY3B=?@G=$0(%xoz zmRnk!%y{7LLAKF6QLMpqyHBo@{B@+TOUR(~qDAAc0xO@IC*(%=C8B(lRm z{sb++CeBV6$i^?S@1YZUkvHL;n|d;vjH|$x6jE7ApBnMppc6Z+k9fk$`b&Q7-2S-Q ztoaiATDq(V#ib?`eRX`VFSRH8!RZ%v?ztKDJtgz)`-8})3Vit9ho!8x|9{?mDZvK4 zbGZV`-RuaX8y*X}p@Mt|2A6dX_6I|#96inL_L6Y+3)2?;z+{KL35~@Vs}}9)Ou$Mvs*(yO2wj}8 z8dBE`VaLMA3LG)@HY~42yX-Y-`V+wpx$O1mGfxCt<_2oR%)nCLEnQwOB~Qt*(9Ck! zlBK>piknW(O>l|Un5_Id*u2Zftax@s1l2b<7Gn_6H`Dd@GYVz6T$osNKrUP?Iv^Iq z3OCy47D4DmcbLJRdCmTZ9@e0!`u>7mF7I)5Wj{-;=V->7Zbyj?_T5Gv7d+4OC8D=m-etwR_%(yN;kyVNZL8?+9#9VK!y*qdvfvA^d)9oaMNCR3z+Er_?~?? zArmXg@%1uu#J}jq|BaU>hD2LZRc!|9n^EyxVNA_MM)Pn4zj>E=Xa`d8ZR4&KH zU0-#yC-AMNJtZ7TCTO10pV|`@`d$&d=hiy*aXc|(#O%b75xMM0ABK!KR{#vhXD?af z#35<&Lq)L$kLamK{V}$frHZrBYc_8G*e9^5NiOJ_S!A<4pvP&6s^R9BwjZa zhaB#JDEv^g<|8vq2y2I;%d*0r4t%~_L!4!TD8hK&7xta8@F{44sXr90Vb3$c7Kfr6 z`sR4s1V;=8u^lz1_1yo(p6y3FVtiXhOQ=UgF@a(uB<-So3fv+oR1-H&j^xyF zl#pSuax%&;!HS`>ki(9o^K@W*7CJUo&O!lPEQeqb5XoY~gtfi~%OP81<#NcDSibj@ z!KPfd|4l!~?37?6cd^Yye!PWBH1#|`+_b+9uPwwuk=IX!`+jg6R_sgTV(z|v0LYFtXjxH@0h7@r z_VOKj0vj)mN{AJ8K}57~=0z_23y0_-dI?AZob{u*!SeVBu_#|R>t0O9@n z_LNX8znZBc9@t-}y)lNE?38?HUq%4U^3Yzzz=yxgc%tg9A(46kO{CtUXrAx@ zM{R|^TLf=KpyL?f?D$Qc7*EdDHMMG+sU@NwE2_B^%MEr+A*bVHC-x&}tP9WY<79Y# z72?qTOI2oS+FII_sa1-%qUgt@Ra7-YyQao~QVdc1Z<{#x~OXF~j z=EMzfv2bEQxDn;3sz(rUvZm_WHEDZ{ARIF;-m^d20rw;8ScpdNje))5>@M$c=wS`c z)y1q82wGNb-SCX%e&jPiH==#FQzGs`ZX@$T>Jn= zyisO^O=MzZ{*w`b?2TvLk{pwZ5Km--R!&QySB(gq1KSq&VtGA=L6IJ2iYQapMX}0N z96zvw^Bo}shOmZi@mVvh;$rSfRfxHy1Q~M)3C5U#)qmj$!nBZdh-3Dth1Js00y?YvTBh{)Xz% z;^kFbEL<7@g-aU|deNs65knDVza_ARO&xG^gpLYKlH)Y{*i`#q;p9XNmuTX`lW0~q zfAOp1+DDU;NVP=ia+SFNx-_4dD7N!Fty?%IDx@|1;`@0mbZ|V)*GQD!2Jph$%vsCL z03UTX8gGD0jrq6Gb6L0Xt}HSlQSMAV>he+`yE=OEAhG~T^v?F7syuuMoI4SFdHKrZ zwJ9@$SlzacS}bAc+)&ne?Bp@zRTy~b-EWrx^GaI>Tq6Pu^xn5m0~4Flv$$;PrZfnc z)6tbdu|jeXh)Xn+dM$rI1eEffRP&gsX8#NaBUg%OcuW=GlB(fb=L(bAm=n{&Sy&wi zu|aY35?Sr@g?030@OtRyd6YaXqW1R&a-o@y8A=#CcZjbQd^4@&+CGyLQ1G4Az=it1 zBlSUW5r9}(8GyJ%Q{OYAlVcB|%_>2WH>^Yt(=2~a9oiNb3+HcEiT&Bdv0aY34Syc#&_-~@+PZ2H5oz0SzncQ6JN4s9&Qs_eF`ATvJ z{M!AV0iNg{4!AFWjX)5uimukd^U#@HNrn#K{jZ_Zsh7h|c2#2Mntqj~!2Q4cO|<#F z9WN-#_nfo*aF>=bN~kBfk5`g=x-a!{oKuvG(g{jWpIsX{fcJ&Mm3Vhwr zhp$9wWJRL>1{C6n`eR_juiMm_T%6s&C7KyM9R@kRfxC{AjDC_a*wKX6!NtN)swT0M zgB>gM2!>`)^2&x2spyK$Wng`W6t#>|`rx~#%$qsoYNFC*E;XWZO>X)sFJPQ8a~lombr+vMDkv%cjVvEQ9aT^Dt{5L*SRbyXvDV zJ*cv$aGK+Ng-ot&?3Z#LgUH}KJ>3znkcB`BI;IFMh(~$hxE^t=>%?#BfC+fODH*b; zHJhA5vG_7M;}Xq?p6jz5s|ek}?WIf3V%Yp4E*3$zqcTgI=dhX}JemhldcX`}^?XND z6NEZ#U+6?nnIX6rIN)9iTqF7mA<{Km>=kL|LPyU~jG)fCA1-vvq)HW}o0xTfy~xpv zfF?zbomn3sHKi|GzAMP2A;{N1hv`p ze8&MoTcS#1lr2;R#{^_|hf6e)@FY^qi{iDLwO3|WCVi{Okn7Facypf!xt>*IPq(eo zr~p>*lH(eg3?)45ChA~$*!8a>!>%VQ40gt`mFd$`qRd5*gGBQ>PxDo9%V%f-(ipF+ ztViW&NxPtmTvsWIrY>oJPy|mbX#-v&b2ur+Gp?)Hd>Po6cH1nDf!RW`z|N3rSD!2 zCEp~l(oRPmaEiVylY1=Vr@?|39y<1aeVw@3{i!EK**Ds&elcmq4BH z`Q)nV-m|YtvG@Gb8;-d&0}~YC+YXgz1R3l-S7cX`LV`Wlw>VxPv?l@+fgB55Wk7nj zLNO(|DtU9O;~x?_1fi-C5&gDfDIJZg2Oq>Ks2)IIBKv6?#_4at{PSX8pyu&u z8chN97E5fHAbE@B+K(Ndk#kj9-%nsT`ZJ~{`mOsN;M~^1-Hvd!yLrD@*5y;jv-A>% z65ZI((qa)BL-iiYGeVs7sGkrD@+P>4GKTHj<(N$ZsA;Iq5j>WVT zE*30tkXO}#&GO-@I!%pA(wlYgV#Dyp*U$r# z*8yR)dpJU3EJ2oa4-G)D}Q8(8H^o}EumVvC5` z!wFP^aMUc&h)t**wJ_Gu(Sr0`Glo%bq!9=6%wm^ z;J|m9A8B1(T~*V8h*dS{d-)OD#OiYM#GI`hF!`u!{*z-e8LJABtK+~=osXz4mXz7b z+2{Q|j#G{v;*3|t0VJ`P;fX`p=L!f94_Ao9Mfee5mkc%RSKt5|kAp5GbnZG&K z8aO1s-Jkx6VMVtAu+}I6=Lar0o>xLcYG_u#1KcvG91UiF0=#6O#>-DI?;%+$RhxR}fn;c7|-~-j)8vkH>|p$H&m}x#6;v39M3&; zj8W)Kj4Jx``?y3z5x}scr2-T5zy?FAcQESsh#ZPbG;_g|i0eY8ylxu}%WL!2I@P7t zgqj+dv}$ZkY1Mju&RdGoT)>J|)-)X`H*A%f(y)LcR^QCI%k41pIgn3%Ox3HqUq?F8{)jJ&`q44HzR7J zlWn+IGzS2Rq*fF`B(*(81hT0nqhZdjp%_68wfr#WQ2HDO+PN;$juNj_2Pm(1W7 zyD@!jB->lcIg(x|f-=3dvj^vNw6ybcy)Fhv`N$;V#MXFx8RuVw2G&Am5ZTAC78_gE znN9t0jWE!W)dL#P^0?TG@O+fBsR@D@@6|Fx7#{7+F+sQ)?X1IQyyXlbFlqD>pHy-UQx%+HCIsSl4@{wX zMgjyZwrYm6lQ}{OR%)iR7F}e9wW*>rRj~IuqUt6kVx2Ih!5H8sE}`1I*svIiYE+Cd zan8;3O;j#(_^^2At6aQ2BR0n9#WQ%x$0lAPW~GG*&Z+cEOjvV;Be+VdC6fnvM$}5jLvLm#{NDC#pFkqLkho zR_q^@(Iy1PrD0$xZ?ChgXGTkBg(zhd2kfuSAhX|9H`-LFn4Zp+WtA5=R5Nz{i@Zbx z`l`By){`ZE4r_yF$4p5k-D}I66k666N-K?cU1y5*DmHf(j&Z)?Pv79`d2^>|_}6N) zmnS+0)7Nl~@RSMb2DGFf<6#;7w+w*uda^u_m~4&kXEJI~j4gbVH{*rQK#~32~4Z38tGFrgroDEElm)b&3D$ON6irS@)~RbIU|T! z;OtG$n<0o(VLAk!SK}V1kL+pc^+38<7CC(KLg!3+7ZcSYlhiSIHMyHCbGQz{z-y)% zuj0n>mlivxC^cB&4agByIZK?e`EKtmXFR+9Ft0T0u+-UCX~Q99!fvI5<_Wu29htC` z;D5g3ixozciyO>$c@e}JFU1+7V*t4tk}inT!Lx6fv!Wl|+yJ7;t$xkct5yA%){%#? zro8N2;HTJy)NF1{NYvUd@@htE@D2m~oL8KRpYo;#&$`x}Spy+#))2&||DrlFZ%r2&MSSR_;>-`PR=jj4Wl+R+drQq!SCaCISe7V=0qsiL3Y|(4Z z@zi3Zfn4~2O5@eKa*1VaNJF=+*PmIJd#w%oqWIfax;k*g&%1=Wa+<=_-KuMgYdJf)E8@QbgORMEll z1RD(X!-Jjs`E5rr%Vdi=Pd2KToHC(`LK z(2Sp<>XIUl8e%QP_%|MxXm<4Kb(ibaQ5;(%yHtCBtg|B@^M9zS+IP2eEcvmBl8Sl{ z-SW$dLoi0kkbf5Cbeg*!Gq46Fq{# z_sgs5VBzFK+U@<$$_gEbsfvi|o64phfSGn*TqC+QA;v^pEW`kWr3anWOc1u`zSw~- zFhiJg$oZ-s!60{xncRG2lz=tS%imV zB3bMBG5(%%N1glOZ9)Vu-@Fd{##x7cf{R7ty_d?^H_nbG2%+CX&vV2KVdb~ZG(CdB z2sKnAV5w!}_59BHl|p~VRK@9jEmUin;fkRprl#3|g`R+<=U-1IJ*6J1;Ym+<$hy^Z z)nU2cJNJ>;dNSoz&_VH(7f_F(Ls=vrq9;a_KBV~Rq|;3@>WS4$r5#(@ z*42@r6gQ}zF~zk}_3U2{r?`pmOP}I8XmBXS%>#P+6z9Fw66lHe?*kg~Q)}(mppLE% z6pJmx9+w~`tN#k-d{;H+4xOR6Ik!sH+`lpDnrSyla5vsZFGaCK!R|6a`+`>gj?-puJVApix7fst1-zcI3E3 zlatlB;hakP)|Worn{&bQCDOCL?8x)~bZ${t^{%cszC6#Cb#;Z13gea&l4`uebsPvDon4}Vcr`XivgeWB7Fr$Zr!>l+<> z^OE(QLQVrIekfDR2?bsdu1iHW_xwwB*-Ov5>a)3%rv#Jrs-^|9_NZrOy`mlw zZ*BmvtQe@QXE*B2iDVTUoE#cuo~YT?hfb@n*@WW}EWgGzKn}&Tc61CX(b_PGWuKi{ z@x5#c*Har5(@bde(C-CYgOm(L2&NZV@tc>La)mWjDCGo566a-as5H=137)(KB0l}9H$)T zQmAjjfGFZk7%a6+-nazWtyx)@o78S7_t0uIv-@4mEV-m&|-aOqH@Kx|%6;2F4XrrFUXo)#(CUECzNn z8hRSVx#0a`9frXZFPm}Wt6!c2@viR_T7bzKB)#erw^k)rCHS(R5jR0gP1j9ugPxL? zar~9!T24R0$YPDbgG#ja@La9zTB^{mP^C-=>#Mq84G|afgy08&VvV6F0<3L@usPLS zHR*XH7Wt|n^REu{bXW#c{;jHn<&?b@F3}`s2{l|(NpK?>#{rE{jhJ@&HIi{Wx27xA zk5pJJsOw)B{J&Ep>Hi%Y$(d&5UamOyNds3m*1nyq zEPMU&&#&6KBFQj-(g(Qrs_4O>5ucZR+S~QC#1HM`ief+1a~&qnH!_BMIrWlWz$)zH zO6CaNSwde|75+4UECx3Ez>n7u#NcKisLki3Ahrm4tfCA>T!M@o)EJb0Usd{@Ml$I4 zG;xih2eFMsyzd9=^S4$2OvF1TDVW6L5{(HwiGDJfg`Zg$!IGM}+Oz$^)k0b2X0Gn^ z7U$z54b)TB#B^mBflG>VYQm1yo0Z8PE!BfT0+IeIkqz!qPY0$*GN zamA7`8pCu^?J$<@u)Cr>zs#{Z@Fq-BEl>`_(tw6XM_@@&s`7>0^>oP3B;T#~xl6D&Ts2}^DEd6ok25%AXv zAx8x&WCr}w=c47R{?kAsKG=X<1TPH3+XseO;_An69>_jKA$B08A4FTdAY6KNJ9r9c z#3zXZrABq<&#g_dM#bixmHk1FgAk{Dt!sZ1={X$-!eHa#ei&?=$MzFWa|SF6$pwjqVQ-5 z)g2q|T0mQ1Zek6mDJs#R;YnoHk7Pug8R0rivk)Yj6+DBB#S&Il8XG&x^|l_t(4Bv* zs)pIi#h5L*uGR`2jj4+DvhCZu`m>5-U{;Wa>jcNqX>8LN*Ks|Tfur|p20D(yn7BkU z0UI+8g4UKMgO+igx}beEO%5Oqj(0WoBk!ci_}s38kie$Kz&)jhW20Yi{Z69cHaC6n{^A8=6Zb*3zYd!6xIM`=?Le_2GGuWH zGH0uqpjt*#sam_HJY)~DJF{HrtU)IT+5SxttO(gYO=X@3Sdr&3-QqZTF3)l0DRe0( z=wo1T%gir}^O7#}!AmxRApGF>IxMQlK(3~qc?(BFb<{KM3bs*e9HZ_$aOqe{2 zt{-cIH0RC{Z(avbB3gs_&CiTnP)+$OG#F3g;3bMelx9Y6D6QTU`w*n(LrU-l7*Z~C z4P_G?FieD}38YLjqi;kRu)sIUvDPcV2NPT{u7sz)q!RGbk1Jy}EHSRU2g>r10mvxE zl~^%3%U=m%nX6!wuxucB&&XyPGUMK( z4C6TP;={wjaMGoj4-a~RrQy59{GR@lN0t(-*DH`%U*T+g_*9CjJJv`}U2q8!^Xpf^ zr?!J=+^62c3J9NiqnXS+HP^bT5wgFTbgX?kIPO?)H^O_&1L@S(_Fey#(LLCn%5k)iby>Z zn#<8bAIVrO>)}=`F8#2k8(njJbHwZL%PnJ+`@@^17OwZ$_})r<1MQDjQ_Ga6w>!(3lHS*P=$T|Eu`+hu#H9PzRqE@$w^-veR;%3d%&=XtlLZL zvPfLZ$2MI-n!*qL5NW5XY2%hMZ-EtWk*t=+jI~DtoA~8tQS9X}T$4y&pr+4LUwOgU zvB7RRy-^yl!V&A5vX%GqZmPuWfw&cm`FneRa zs}=hx%3X~XwnU)9W=_ej>kF?$C`*fD7;nzd+g$&V&2>a_KB!qSfo(nPieL{9y84g{ zMeKP>wZN~MJu^5$b$Maa^3UP^P59Y>+$mz?pEXpkjmvY`GHlHeR|W}gWwiDsF9Ndm zdDYs7=Ef=qi&Nj1@9aMYy+c|n**i39B@MplTQGRoZgA2rtqcYyom$D!DZq-+DK_iB ziHqA}Y~gw3xa+z?r*rb&tZ!H$exRzWW582!G%nG^3u4!^R<>f-FTsaF7zoD`@~c>U zF}hd<;`4<3?GLUPLbk&%K5TtU2gmcBwUx|w0RO+{JKHHR?McL=ptWqGzMQhI&+Oe=c1c^VxUL10 zsjX!bP1eEjCK}XQHW9#!7tDNc6Vp!fI!~uNu6Ttyi&1X;f2&;Id!XD-Rk;szLi7Ii zJyp4#_g$V6&pl+$XAX0RO-GU!1?&O&+$Ep?$A4OE2Xf&R!03C$WUm?jYtU z;U3H~Mz~|wmdMLS=eE|U8b_wfE@F4^>14Jmz7n$a5|2svGgs1=P0vMwO{3aKn?|&eHnl~$ z+ptE_&;!(NV>D-tHqx8```>X|S`Ik%Q91Q$BOP*kMdXmR*{SmGnyh~XHzj#(jOP78 zRe3@iy=RtZhhp4KxQ(CTPwmLUHbzH1V?YJ-mgl@Gar0JXAVg&r8w*@t1+L({RGUux z7RWli0y6Rw5M*o{>A4`ix$ZtYr09lpFSQ}$g>CAI3x z>vqaD5ZCSam2MEk4yK)~=$E^tIm@r+P7Y`cD~0e$$d^C5oEESirbWx6S?bQq6pTsegn*2#D9@m1Wa=BuSxi&8p6WnC}1igg3vlR9L9RK zau1;MP`P}u(XTa3PF`rs_B3%{r5H_KQUh|z>8JOCAIw|KzgbGQt)rh4^to35bS8CU z4*b*syv(6&gg|yT_YaBH$f>vY6eZ_u=FXw-U@BrMy>@eVd%6=B^Hp@^9k%KG- z;I2>q!c@ds|9{%D_UZ1HMGz9%E@fQ?MpH6eD*25x@AXki zNYoL;894@jGr;p)TlWejv>IZiY97-A9HTBOmzuvBzK*g(PrKU*9IyJxY)@NvG8?cT zUhBoQgttU!!bM2olG@2v7K#(BafZ92LVI8VG+Xw=#lkc_+Od`$-Kly6ZW_eBtmNMH zUvSUPbi?xcY|KXZn`oHDxL9zX-Hy%dyK>rTPXA02!<;y1Mh|Ud#`)?M1)FB|_1??bx_(;LJK$u|1_Vvih|m z%tZ~e_TAmDE1?$=RqSjxP`Sa`$i;Rnrl)%m#kfZ2Qoly@t7_o$h@8>uXFu!CBsA)2 z6ky!ID2&w46qR9#J0X$qFp4%OSj5Px7+8HVLyE>Fnm|FUMeS)LXmg`1sM+es#!kZ^ z;>E*Zecd0>Ok6C^d1dy4q}Ux7i*sI?PqRPzxhLrnc-tXXDJHDMqPMu!Dfel4tCQB& z>erNXqKR9bLI%3q`jP2?0Jl0-)DRjKVZc*$MK-9xw0aab5yBLZ3ZG+Q^!y+lvkV2zGaSe;m!HTD*Ab-I5}vpdmQ~1 zmCHmPH_zQufO`iFu`G2qjF%kqV7!FMNbmW6o_j03fT;-YInds7Za(bFn_vuG=pIS$ znqbJUedt&i{Ot|dK|OR$v1?#U!ELpE|;#^V~)$T1nRkyk8n-wGj3Gh`z- zHo}TVPRfvt3^-!(#|KxjvgM;L^q65COI)fprnuDd8ICU=``rVU6`gdSC z?|wF&K94~Sg5Q#$lRB_&xA&x@(T!R$p6$2*+iSb0tjr@Xb`Xw$fbK}_@myV)sC^X~ zqV$)~tryk_L4c}6eb}n2K<(aZ?hEt{EEQKE^0Dh=6ZMLf*Wi5TNA3-D7lt)x@KDOI zQ)+;0u2y`|ft?HdEM0j`6HEho%&Cv89dy5H2>B(0z5IrICH>XN6-nr?N(ivRyU(fK zeE^~!-iL}Z_hpfYqs{Ar)-HJw_AB5sAta)s4AjycRUdEE(deG_d5PCOg^$EhuB1wCC`boRPM#^k&-6M_jx@*XYQ=(d$MmOQ|w5;qkwj3H9qWW)q$+j1EmrZJL@|JE2~~`b|hYLz}$2I{M5gqENpiT+rwbHcvYuAI?6Ej&qQu+uw9G_`&6dUcHWu?9Yvs% zKa7^~vH{D?bL>qoS%ZrtPDVtsZvV-PjA&-!Hzt-6e)BJ3h3++r(I-*W2mD+lkg6SJ z_gET){2vntD?GHK6-$UYl%r(I1ky88O&~L{B%+g?#!GYwWLl;%fmBmvoRTRMNI?-Q z7EDF-l5b%cLmO6C>1_t_cm}Z);pl|`jv|9h%#<1AP^K}1ct86G5QYrmm3mwzJNLof zlt@G4)~lCRAMQgq;f|*Dnl^+Ck_NvUH)5^7JUG5=tA7ccxcjT9e+_)D4CIhMuw4vs z&``C@@0l`(JeB1;4pLRv`$giwTXQE<=8(uNV-BgW;sONEA}BHVhY3vaG!mBLa>7skQi z;Jr&|M+|T9!X_&G(^{!uVJQS;@-}ti;m^0YB?{*d1H8xvB3I zH5ON&#RcsxU7}c(#}}hQOH~D6Et1FROqo1-f=EwD9`Qa#A8JNSm!HIQWXS|#%Tg1_ zZY+&RAfNCOoIsRMxVf-DwNu6XC`;y#vqgxU!bC*=_!GkzTJC9;-c^u}53^4RhR7AX z03XSQ+nrY`guI_6QixK9{U3YZ9T&y%{_idplr>6J5ETVW?05$p#f};qf?~slN>#A{ zVvhyv#s;>r%QaI?)RarN_nugyF_tuA@-fkLV-kPQl;vh;?+(G=pWjzr2H1V-d!Bjk z%BCCGVI?Zqs<%M>~n@GY&z{}%KlJQi7L)L!?ZqF~^0tEeUl`k|;&RZ}#K zMxw&QB8<@?(J1)sqKP#+ds6V>6i}Z3A-__HC)YUSrx^NhG$Bxm`hm(;eJG_o&&vw1 z#xoFN`iLDuJ=3udp%iH-#xRKkydP8Ti1su#cadOA!^Zj!qsG#_4;`6|GYTUUhGXq2 zPDD`Ny|eK(JGzt9VF#iDpQuJPq6D{@JQf0OLs>#o`_LiDDqdE=Z4i@vQHPs)W=S7P zBvYNZaNw!FU}t2E8q7U>ztB=5JyT)0?t`FhZ#i#}zLj6d51U5Q>Z*glGsQ znML`y4<(c)IwK8vBZN>Qc^RPvQ<%N5I7%oDi9-$+Rp2pgqTSuj_(*-|kR&lqn7hYi zFl&#f@O~|ssImVAeF@0KuOPI^?5{Sg=BG9hFp;^i(Od(K{smUU2k#%OS)z^)=LZFw&iE-)dBlYNk;QV%iKD#oA}=eTJD$ldjw8In!K$8F zfc6;8Y;|FKoUqIkH<9Ttz^%fT7jjTSq^2a)fF?meIY<3#0kyb8wdiC~1p!sxqT{jt zF`=bX!mxr8@Qo)=dR#x@u@Z2d#&Z22j`GfDysUuhWF~u#;>rz8)HA2!DDQkg(Bgns z-AqC`?aW<#{=$qvWyES zHbq2*n(#EKPSr>l*Mvrfg@uQOheV*5hsP$??&e9shf_f3yIu4vg?P1NMSjW$JU~K6 zS;3NeH=YvEIbK!(b19QO6)z5K)HBBc0KDGvHT=}Bx4g)7L4vHeyc;j9x2S=<1?a+L zDPUp*VG$P~!W6(?gUOzgMR5ULo?ISd2=at*p2R)@(W@_4&H{*QS#po#DcjWMWd#sd zGufJbMG)09zJ2M!%VQBD)eS&I7G65wwjy-1l+aD>7F+_-GQLj6_ay+a`Eu&}2RBBOQN;S9pibJ0w zW^)mfhM^Ba2;zY_p7G8>7h-7HS9!MGvkN1yl`h6%-a`3=KCJ4Ixn| zX5)#8b)NUEQpKr)s;8dzFG=3VDGz%zwm9miJmvutddn*;xkr5|<<#uQ^(+BgJCm*6 zPwXw~nX3IL4F4Vo_WL?M!Wo=M)Ox+l>g2#zdF%`c3h&F|7DTiGhC`6 zQLrzO^;m34IwG8PyG9f4aqC2nXHOm@0ngnm&u;xF`y}zQ0-mok*`Yc-)iZTmjn!><|Ae1Dp$6$e&7Z==Kme+h792@4$>r00@ zA6Gu1iu`ti}quleG&dLMc z3gMoL3GTax`c->5fevpT=sceGnDoTji*KY2-(N zywZ)wN$4U+Sz?_NDCG?0WrZ$skjV~85GhAJ(?5YO-%P|9^2;}enQDKOFbS4#;ANCa z`sEunmJSJIpi?)?h*xD?V~MZZJTT`kt&XqTtrQ9vN!TzmKl5;nN=DW|qEUk0N*)mb zy)!JWWeJpEEWE6M-U%kVU5B1}W=jH{Of7Sw!*yiU7rZ!&vBNizeU9NiL8#^+rJAnp zOG!+Qlu{|=2^hycBzTS`2t9#}bPo5UBb_(;l{nII$1wF<0mJ+OT^PT@^lJiRn1KFV zzb6dihmU9&#;?D~Fqc?(HTqMAiPl+(;H?mbiRER4_PosO_2^F-CPL>?l>m=~VXF0~ zqnh#k#R=3kW(y<)dQqcR`V)FV7vXkNMT5Z@jaP*67$ywHFj1!P(D2BJ5CeLUb8sSB z__V|J8HSjbU}hllos_DCQ51`^8rPeD53e+i)vRO zSfSez+{ou(0H|^<9gaoMe5n!9BbBNZ5Nr^jKIQWj2;v78^V$BCAnx$80yf_<*{^lj zsAq2Vrz4QFV&O4j_yDon|H48XGJtmbxxAIa zZD-;pcW88Yv@z5GoB5A7lb#=L2s4I7L_~zZw(K#-CrUkC$l;n+<&fe0LBEov zd`}qFu0Ka7dFVKF?b79JjkcE`hapQ~ETl}W*eMn;93OyMZ_ z@@H8AJxi&S-|>XslPFce+(JE}oKsi)l^TPD-oPai$Wp9^@?VC>C-%R1I7w;7%M0)Z zF!{!V#2%rZ2_8hJ8?cd)T{GRN%T$Arv=gQq)$kA9;}vQ=${>|HI-f77Ro;o^tY}eG1kwB!mw9bJWi}EGjZO64pq`kb^d}Dbf^WGNGIX7qj5;KfM$lBZr4lDHvxP ze=DfzQchznxXDF7WeAUka4l`iq8|vKhR4sEPvm6<;zHzda3n_iR*To#T;_k|F_yQLwJy`391! zBvQhtl*kC9b)wkKTi_#VHz$wGw@4JnBE49=O%o|u#ObW`=B*I27{$v7ZP=UH8xG;& zu}E*7M^yqmlCemmL`oF%62-AdJhKH7!n{O{Iw(;kiCga<^Yac5i#Fhi2_=b8=>Flx zFu09tK)0)1#w1aKl=-(SekDsuzr)k5+jtCwnoneLZ%U*Tv6q(>@EX8m-$)cGLOt^u z{2%Mm;2OS)w9!iuVX$BABdY=&bXcjv7C1ZxbL^@`u1o4zG9VvkeQYjbo9YVRF z&k)81llf@KB|i%v(QrZ55RnTqSez4vP%c=bvGN@(QSe3x71($YA?-2DToFWvsbICv zp(+6m2^EYTLa0DGj1HVLkK-2Q#xqkOATWU%bNUd*1RHuE2O@|Hi!i|h9UKva8pA@P z;d6j@E&vheg{qKlK!i~CoJ;;C$>hwxpmX=*Kmsa6&Z=h+owuLCB%qfPF)H6P zG^!l(H5{+0wZ_X4oLUa$I){MM3oQPoLn#Mz=4Az(rZd_0Lq(j_GtomS2Q(cjprE<| z6bJ`Ez1*L(t)9H1hqe|l8hreu7D|vIIc9i>dk%{moDu>^8A1u54+K*J0k~U_c)S@V z4eN%|eqT70^?L^&1nKv0<0G1W|MpO^-!EX{?SZGA@w=f{bXG3%R!GOc%gYGOw2;~R z7Q(|F|Dw*LDghoz$KN%ScKphy@Q&`D=Tc@4goMto2L3Aa3YaT+Z3;7@2M?kD!^0I( zhDg5un<5NhQAQJaZO*HYOF7c)R1OtQJ?ig9%m*`tYL2}1)O48p@-Ae-HyTE1pgk`u z;I@*FT4H7Wn#bEvB!J*F2=LnWX_GOsL_dp_Cd5hnATd zw(J6GxH^nd!{uR&8vfyfAk^>>AJI_5!(k#d6tVFBfE}?hHPjoefdyY-S54!8*NOOi$Idq`tqF>2U!Dd)Pn82eT z)cG4M^0C7yDdh9A0%ET+**U{SQc%y#8cxRs>*1$%g77-i1qnh3V}}cbpazmYoDhQ7 z)Ua@L;EfahPN<4Iu?m4%Iu_^EyJR^G6|h2hIkacv31DOud!0do);l}`0$T5|EcOhi ztZDCm5E&);$B}$Pr?|TT{ z!9oYWgbDsPj55JxV5t%Y2_?)DKA^LN`XeYM)Ez-70gbP2A^W|Me%x^c*N@3!LB|nd z-~5<`*lq-6gJi6u*@z3L|wMRSED&*dTHQ9Vo0t`3)`P z-8Sy}caWI_A%PIoz{5wVgpf1nWNq(=(1<9L5uRYcgg`H8;bD>C;pldDVK(%0&q90V z!IL|#gy_K0Ctwi`Xq^fsb{>CC?EVG z!l1eV7|19g9EU_k3CHM?BJ5b8DI$!Em@%-2UPxabCJ!lGWGO)H5?(NlpuA8Q;wpg` z+-QZ$osL7_2&nssuR1#30Q^QmDlb^$RIzDu13N4i#=Pd$W^7W>5p4 znWQpO}W`VaGNts|EFDsPPk4(0o z4j}bR+(^mm=qjBsEi9U}yy)!avL$2nk~ZHSkZMf8a^O z7IdMxxn3({XlPhOR2w6ZK{Tu>7=wlz3~dde&rO)pj{E|P0q_>9Aqr*@aHkz!6_ema zwo)q=_B>RxOp3n8U~7tYqc~y^`bY&Yx?NP{C`uyzcv%5!iOKdEC6b7Grq?J!BB(IV z(w=@o)VZ~Q7t@CAc;YSfP|!bzpOfI*p7{6bP0Y`6Ll8Bl@KKacrlZkK%z@3_K;2%C zbK$@fu|Th-)Oyh8VlA{M`BdGOk)coSiy*v^M@>LjVR`3`qAawDmlY89X0q#b2&-q- zj3O)~Z7^7Kv=6PKB8f*s-s2L zs>y<_GMciML1(2kZ-uZ{7hXna=UU8O$I+CvTI)Qj65x@rR>jejwNg-FqK>r!m^ly< zSW6AuYqZK*)n^vgX%!g}86Fy8itxx=rZA(?Xo^62@4(H`c!U*OmO>GYUUtgAEP9<6 zpYm7oc=UuG)sUq-do<;&^}MWrbbTgUI9lW^^~@@O22Y7z!N|It5(P0EAV~&5vquXf z05zbQfIl7pO-J{eodz0lhjKAxF^KV7eF~v0tk>*G^$5b{`-Gcd5hc5@_LJ)ogir9O z2?#f586O!5Dvn^1^NiRn=Fi3Rm5eCq_yx zmXzv~D-krxCv&_YWZ05r2%U&fRk_iGs-zz<%hpHuqrvX(!{9wg-A=PE#NXT@g`$M< z7W&0EsSWa-Woh8J-=k2HltFw%gsJ-DBO0dapDZ$!k;U3KnKIQ>ot4SF6~a_Ycp02K zcSQ+h_7>nUjc9kGkFPvg=T(&guY|2)lj*ALOUdF?D}vbr34yBA$a^NMRCVCB({)-! z8R4~&@Q84?R0TVhg-3+K?aJtIRAhkLxACa-iqhrteoV1tDLf*n@dbb72#=r8lRB|{ z4Zjf&K>p8-DjUhhxvQ#(=X!1O_a@YI21fv419J^}D4 zPwhShJmofF!c!c+A@DdIyp94xE3DW2iS-bHw-3tt0NCwGwJ5gFq;UOGz_vTfw@M0S zsYbl4(1*J)*#;@%bwE8+FNLyHl@tLr)eWFVSgI#(Lc&t*RF=X8S6Vn?Ntu=sj$R&8 z?8#Du4uok69;b&cOFq+BPlC`(m<76JsoB|6cF5CH=s0Rh3L8gl<^v(@gzym!JE0Vj zo#I)D>ryB?eW0`A;H?mLI?c-nt=gB_I}YLD*`Gt_QI!CXgqaFbC^P*J22%LzRL=Ry z0A>p$1ZGmBUYVjYlX1}*_;hIRGnHCJMVJhcrci@NdNM_Z8jP?{Yv;y?Fg=w~`*xG# zn4`+5EwzRn(yFAo?@c3E{uSY=A^hZO1723ZeF&4Sn=1Au^-S$l%2HwQQ_E7rm@Y^V zma3R4^fxsSuT+(#^0UqW+qgrzn59&hFEl$82OL#OEex;R$ApZL7irs;!Xp8901ucz zRjDlLzNwU|#`3ZPxTBbCnhsp`OmZrvs=gw0svCfgP}NG@cL-GtAykC|=A5ZX3bz!= zVPH^h859XBt2|_y&N79LMFv(crqDUyl#~+bs)R+WvD_T+qg2XW@24{Ey2*z`xa> zqT#OVsUmlcXTe@grQG#cXXPK>3gIr_G_Jo1%{+nGtC~i+>mQv*RRTN`?z)spxyzU) za#uF91rh>xsZoCl{SYr(Z9^CQ&elTbub-(D5^cn<-bA@yy&{)>Sk;P*!aJ^!)hpOW zLDg?n8hzyJf7VYbtM-PSaF?tv52nz+W-sfL1E7be+Unc%3^dLRSED&n5|AaWwvSQBD1Yzwm?E)HZ^Mh^kQav`E0!k z(Qq3Mc8&a~sD@whDm>;f6YPH)Wr~8O79)O^2bf4JUDK5`GW5JaSnEk-gCbA+DeHJ# zgx<1&oVekagJAqAi2CY831~n$5$M2)vvoPEE<_1tU-CEzm~CUZTurA8 z^9wI4V77_L{-nc9J@aEaWtgiXBB~oegfNUhc0(9uO)50p^uvBm_8CE;J>G14-3a0-7_eAbj@JwF^-Rjutx?yqG6AW43RzTEY{Qv z${x#fRu=PC2zzYdWrW;!GJ6QZ!|btG=TVgakAyu&Wl;9`FhgXISD7u45ZFVFdPD|g zkL@U@?YVlbjRr$hbST`p_B@}92n`K2hNJV<&SXijmr&_7^Q)inE1PD_Gw1x2t2}-} zk9mvbd?|yn%ul?mfc2Y9_J<6SWz;iw03WhGL5eWVr3`^- z)L=e^2Iy_}N4^o~;GU^lke#eU5e^AO$qP=$N_|oFh;xB0o?H=OfaSg>lw5eB7V0ZPhf61hU=mN%pb7S>yM$t6v@j9Fu%)W!^Vg(t7i;jC^6L^BLJwn0RRax zjliu*i0MsAOt4WWlwWC~0Uj@{8bKt2nUu|f}21MweAXK}M5(1i+x6m+06cbIWhrXs%kqbq$RP8&My zlWG&Vy%Hiq@ifk#G!VYAbe&0z0JwV+FrA1TH%>Jn@$9`e1)@`X-Ecy0R_%4 zSjuZ>#xh>}l@E#V+I@UP!)y1)ioAA{1$%ES<+U2)xGqMlRL4hDD}>jY@G?SU-(vQH zVG~ZwYt_ez9#skONOhH zghodiN?4{c!3N!iaAOE;H;13UgpHU~1FcJC0PU&yDdx4Zs^3>W^;1%LK!u)mkAX01 z9ObncysQBJT_!taoXBhHnVfNy*H*w!EwBB^bU}jf+Nf~?uc?8I7+1_|3IF?)g5JtK zW=>u!MjYQ0loKLQv3iRqS0{L5Wohvh>bo?`1nt*(1O>EzV<@~lj`G?8URFT+K9l`e zhqij=gK?DCUKX)b-2j$^*S^C&mGIhKmDh?3sx$B)-kUgj|r zI#(5zw=I)W*~h%BfOkbE`+lZKW$KxC0V6y_y8u76ROZceL4r`3EmNQ}H4rm20AA0U zje>nIGyoEF2bGh=iZLeh%mktcz3fR93BZ`XlHb2n8yW7OuUJa27~=;#ZUV->Ecbhv zl)x&E=X#HTaaATO!^casyOyeF9%oVlyC)*3x&Z_UfwjaT5dy1-q^7HD!g?vLq0%D5 z)Jl&DdOX8g{IPLv!J!6A5jqs%tY(>%vz~>xpN_Nq(1pU8NFFwx(pBPkMptuqz{vn= z7Cxe(t6Aekx(Z-%P9IO{YMai=X5I>+t2cQWp=s+dd#^!wn65VKJgO4lk%6Tvd9-&d;3lSMKrX37x1Z%lPhiN>uU$_noK_ll@QEiPSTX03A$JeiKBZ zYQl6uf)Lf+@d8n)fqVzhQ=*DFMu^HCOvOYMLD5wg#1arzZ0;UkL6L%+fU>WZN{b*H z!J{Q08^SUUoj~a+mY2mf%soojg2}>%(HGf_2tVHD;%qm1HoNUvUpaJwfS>9P@FO&p zjT@cNR3nw9aQT!L7x9hzgIbyCHPZ?OQ(31#HO&m{oDiH#II-Uw6JSFYGFvZGS zCoq~i$Ol7cY9BtLp{acnM4F0VVSY4$($rTvD>r#7gr@N?PlH;+S5n|EUqqO05lll>AP@~J zFKGYU<}7JYSu{I;VD@90ZA#@6CaC!fFV^yz$T5)6r@FDELnczT>cPtj*M-hZw(CUk zlCPfWJdv{1aQLYmR&`;zAVJtFWTMd9)IeHJq%*|1@YTH&7we+D`JYy3;XdnP>QP}X zeE(>iJfMuq7-_Eokzsh@s}6Au?_9ZSWYIOCZTx&yP2~k1LILhr2E+7;l)?&lSq!)0 zd`7TGd9>@KwG$FPW!Qt6SOy=IsB|bso-QJ(`T!&eZ@q*25aF%Pl(%4Gawy-@fJ!Qm zs+ArPH2k#7;Z+<<1bP*wEom?A$DydG+TtcaHBU=jaL>JP=0<5E9bw&`$f&E*B(5(I z>MDZemzWUk3cNJ3J2$ z<1y5!egUDcGO8y(S3o$djOxK7;4@Lvc|?VdmCPW>okV$T1urY0pTuOBP7--cJ+o*M z;W1bm1hjQGB1bWOkRn``J4xU&HJI#4bmTP`6`4M(M^J}e=MHtkCp_f)M;(pB^Xana zV!VOL;ERFxK5bAMrv&N!JbD7sV_EheO`;TbiI)|SPGhncbV#db&Q78%_K}F8>IN_* zEcQ2MO2T6B;y0co0v)NvRGR!qA(l~>VDrdBzL_jv=x$^r_UA-861xpl{B$ER;4wU7 zY@S8=?71w)XMM6bK1)z8$NS&|8anHhCDK_o3$uF`rLzgV5kiXNcq@d?=JGN^Gv_dS zvmiP=VH~IPs7ioGLT6pF=qPM^mN*KV%4~szz-4OGow8IeE4+-kY+ONwHn6p7bW{|u znfNG$hRaN*Xjlg`z`hB$4d*AqkgC`~%TgFX$=8n6F0*pbjbpWyk9aVJ{xz2Y@Lm>W zvJ1Sd0Q@W_dnQX{GWE2b1aK=Nq2l8dw%ulXLP_B^8^$h{#MJ#(Mo3dCPURFRk zpUL`VizusSYGhLuld=U2RX2bkVX;oQF$s&!Qdz9H2A@1TQh@NmB(?mXT$A9^*+Z^N zSgz2?2!plHq73#NB=B?$_9A7lN!gUa#%D7IE99dg~oNvN)G#QwrOo zv+@RSg;3ZbUPfr+Rm|Q#2oF=(8#<4w1b8GAwj`TU*w@)2g{@(>KtiA}HR^@ggu-N7 z6nZe{a-d-~eqIQ+l@E)KGK`)rQbxzsb&a_C^J1K zc5fa*fyyilf$lk!%0}_B0@~Y|>~J00>X{)ql*+p22vnxJ0UQaHEyTTvP#GdrCJ&_L z*xGYJ3HcFdRMn7Dsj@;`f%4XvshZ5M#?JJ7^oSnkoQ22ZeRv~;&Acab9Z+cI*O+yL;xOyvP$ibpu3t!Oh9)Z%X;}_N?A5uRzUYdCR?OKS3R?BGNr8L zB6g}9z>ZMX3EYVYWxY*DU+~E(sJl{QLe)yw1_YCn9`ZcE@`T<*xaw#Q<*MB|C2~~> zZ}A+aBd@=J4B(rg((gzLFQ%)yxg3iSx~h$jXy~eTu1HtMSgf^jDP6VGS&8DU5Wb4z zWrQ|9&g}KdrF<2o^QcOIN5WUWxsHxab5V#{M)DRt^ z-}ON=cZ@JZM#ExQNEn?vCZaOw?vW4I1kNgxE~%j9Jc>fEy2LVHl1n+Oh?f-*zrbX- z=8Bx9p4kK_;hE#x@KeiKpD|sKAe^-%SKur)kcH3$FyxZ+qEODcEA>&)tCz|{uW<)= zF>^Vw#>^!TDziF)dk`A^K4HvK_$63hpGz6+E-x!!{W+8UR)@8E=Br%F zVCO|7RX2bnW-u8_ckTpBpfr$_Q0cHFV3b9XfKhD3Sq4^ zyo`|cx6Ixuhz`#g=jc4D65x@r*5E0Wwf0UCS?eyd1rh>lsZkG@qOw*@jl%jUujb|Q zt&OJ8sL<%>5|_P<5in~+!IO{Rp;lSdW2PU$K6vV=_!=HzU5^F z=zn6ex2K5orJlI~aAEp-2tT#-b)V^i1fj3fQv~`_133Y0L1&B)k}fwOh_`T$crkmK zOcZXi6)}8yt}MC)>p>{5&t({~xou>fOM-F0RIaBA7(ZmW*P2RcD}kK0tb4GYAjU*g>5~RRTN`8rw3J(3tcmO3t#0HzO-Db0CD7thw`swi@_G z2xe+ZW~jMbx#s!n)_+F!N+?$j9r$W>BWWi(V7c5Fm@P6QJObXL_Be@*Fc_l@5ip5d z@o5&^8ZCon);_o|StiZo_3-e0t!eK2S~UiQ?=;G1EqGa>4SbmFbJN7Wrk-gujq+JX z_^IWys!SIo2%q^*6MCZ>$TQO@pUp=FFI{c|ea9Wd#k`{8`=H>{IH3O0su6G#QP!E# zc_YY<;TwYc{_E{#Ir9)OdGhrHKv0)-^svE$Kuo$je%3?mq_ok(W zykamZxzZp>ASt~Xfn<}1G;6aoHv+N4!xZxRsg%6tO?_JOs*8LhcOd!LG)i8Fr!n&S zfscle*ByLBLtb~LiR4wE#re%NN?ui_a~+6Ssf3THRtS03<7I^AZNTi+o=(ZD(sa?I zDghn|dEJ^u$*VmI-mW9BM$8-t3Bxco@GqhN;l-|<$e4GfaT_DNI~)-SADs8dQ?L{h zW;BGuB67l8XC?yQVBJ=w(M7k<7x**9)}>K|hmzK=_EU!O7z*8~6-#>XbV^iNysUtC zGbTHJx=2*&nX%IeQArChzAm>oZNY4SBq6N9(*?p(0~#=0C9I-FSAekGVqHvF3}|$} zAt5ZR*8GXpD8`8!7MIQ!!Pm-TCg2;!^4&3=($#ystblJDCi^zUmwOznO$BuRBe-Ei z9#-8ULZMPo22)zUyu;JD!-MH5RAdJ>_kYttxI9R`|x zx^WhKO$k$#GJ{f8qZsMQRSINGr|o6n$B)mLYw4{wD~RWdIl zG;MokFA2iK|xdnL!!qUtU%KwhxniNP*>^Ls!rIF@p}Mz7Zi)-2h~Sq#9y3gruG?CMjHRr3Pd$ zDbpv$o&wTnCdUdwlKokd(1Qp^HJCv;sxn0WbQ}e@VK7G}%%mI@KNA&p-4TKI`_8M5 z?k5#Cli;+Bo@z@nJD<6IYCaFiR0;p40At!Rt6i%y>|4d`aySRLf$B0PH0={ zC6th`x(UiVWDfAt^m2G%6Sc1}RMT<(cA8Lp@`kNrxKyF=Q@>8fnZ1NRnQ>cBasa)qo0S(q6m( z-9B#aOxg*rlZ*qMvvAc-fzv!H+*uTbing8fsl%5Ly+X#*9tyi=k||H3vr=3n zNpSEiLU5=%%UP-j=T_etU>3`bFK6U?Z*yu1YsGLc5%(<9ER_GfH5Mg*Z|jA2|Fb$$ zj-Mr7I%hE#u^_u+b1gLM-_<+hQM1HrK%P?!SRfePuQ|ma_ngIbz0g^t>nWO83+oqU zl@RMP8f(EU!U7U}>k~&Cc+tE?enl5;0SjX%jn)x+$?PS`ALzo}pp`?HE}Qe^lVI-d z=HVPoZ*z(fZnKhv2FokUm)7{=IG)R%1@&h_cV>7P|Spd96}mHW&WwzqbaX z9e2%9N>%=F%vD>Q7YMHP{X5Ww!kiz>-IWHe6p-&!uK+=#_1<7qFn&fi#mH;GUaxU- zh1n?Q@U|E(+54`72cD^oc5iwiM1CF=wCMceO5wnmqFRpVd*;fO8Jli^7z}{9yt(2qI}o zwE(R~OzSN?!$0RPB7Zj#p>gw8bV3CKUo^?PW~2OXHzoVLie1wxMUuV9i0&VqQb&Gi zHu9amIRssJXwH(4!XH0x9^-RJ6z%-}Rv&n8f6v8DfmmZtx2-+=Tzf|Nn;H#VpHuq= z49e%NK=S?Blq>GR=l}NY=z*Tew9H1^{xx?&pL$!GDi!Ax$J-T2mA5BIUdX)qKwH#r z=Gq!EDB*FX!h1sGI>H}uT2Os=L=O_?)I@JQHh-uXu?O`FsLnQu<`3gGl8tjvQ^_)3 zrx1+xNtSRW)|EoMY-yoY5Zbh>yEZKWJ@_c)ycLlsJ7vbR8y-(?Bu}10+c(RJ7uUWM z=Fs*%THZ2IUJifY_FXE9Li<*cr_3P@EWz8Hy{`qL-8XVudTM01rT6;t8|m|Y(mN>l ze+Oday>qw*F7UQ=L1Py}1D|q6!5a9uvw`8|Hi)7gI`5brTIxoIFD8#_Rs$7Pv8*p) zSn(y?ZJbvVjrFn2XfU>`vmA7V6Z-B*GVi1{Jv@I^8(<-b%up z8jj&rEqi3epA$udileJrLX`&mVN!MebJ5Z2mZnvC1#fhq$umKyj<2PQV&pY)=4|hV zUiYm6U-?>QNLoii@nx{$2Q7vHV!$RrP+OABuZjzdQ*gXW@y zE89XGFW0iX;)Qm_+UsxVIR!rc)5l%~w$>yBM5-=nE~OQa53Xa0^K1KL#N?Nkflx{Mn8^cnN z5#=o{S?WPvUTw5;01WN$7lcvv`!6)-Mzh;l)Bg*AA2bJ}psXp)<-g}5-_bkz$Pg2r z87sH>+JdWgdvq>vUSR!>xQhrQosGq%gv_TlC(tju8RpR(ThF88z;Byd9C9!CL;F>a zSD0@1dC2%^yPw0*(o#o~ht1OsY@Kps`f;I^1<9FUPCHP4*C|E@>Rsp2K`lfLx9mll zl}{dROYc0|mZ6cB<#J>AL)(_unD^j3noz$e%dfHtI;D1*@RlHUGTM?OKM&TlO?k&D zMslg2N1GCYAlH39@+ZmV9;M*k?Jb>Tw7cXNcjjrg$I5Iv3ngq@5`h79QnMZxh&tvqa%YaL|MYo#{hgh^aGuz zq`=CkuyzrWz4K{FRmi6$)up#(ha3!lXiKVkB{~qVpHE84F(uaGE6JhxVomvJ<&Y9* zStNG>bK05;bc&Ihs+&)13Zf`e|7b{)naq;O$}b+~%t3|(OAMNs1jC%A`Ni$F-z z?HL$MrL8^KW^3E5-W%@CZ7hEUnc>pA>CBxQlU|4XVb0;0ImD7I$&cVKJShE3lqIG2 z4YUz1JG z|CBDgN7AiHAiep+B#33NUeep$UIkp2qXiAY+ncVu zJwctkL+j*L+Puc{;WUD8l8mW~j z3u&!@`cu}*L0T*CETpxvcOh3RD{!r>UI(>u^ItP8p*TZfwQ?MS#1lEtDpReTB3CQa zIkS9u$CeG25wh|J-%vuY{mfNskX7den=DJ@ii?o4*^;JsFXD=htW@mZY{{3)FM_>u zw@0F)_T{T^OSP9=86^ef*kV~FDfM}4q@X5m11Hb%he<)zUxbX?EzfBcf&;e&qlMco zt&}KU;lfI5oD2#+J1irr@*dcV%eozw_m$qf2FYVvk!3Shi#CHnUX8Bokc;~$UaL4T zizP^_AQbu)S18~@4{~$yP;Wd`La|oM8PBU(cttAhg%Ff(vrJZ&^YHFdIazs)6BTb~e#~kA@!HpD?{ml7kmh zW~;xrScDtR)m==PE$nSeMOi{;jTTcn10Av~=h{78^>TeqZTH8NdC%{i z)mR?G;!6{Kl6w)!EWY>;ExWwrJQm*^QI^Cvj>QK$gl=8O@Fek7LkHRvBI#8WQ*@x- z+Wp7;P{C(Y0_2w#ld0+Y$7?E~RtGKNsNJBM3Tk}N(o;SJr?eB*THbV`x*zhxx5pnJ zv^d(Z@`*%p4!kUhUcl$$0Rg#zSHvhsNhT<+=2l&_~r+nG+hMY zj}(_caTjccVm87+VBaiXZ=@Wv>{EP~fDktwNmK&(Bcv<&EM>(BfVeFm_<=A`+((Wq|o8_WHd&|>e4BhX#O`z)bTm-eSERV8^m z{Dr43V?|j~OaqtDVh5e4ET#^mnB?_K=(T&z61u+8^1Q_=zX5+}%cd(s;Wfwv%Epm= z!QwB;`<94x(@QId9)D_CCZ7Xy+PdlI6eH^!FGD&tiU!LNMVZQFFew+u#!Gl+^bg<8 z!Z2WX8Cx?Mx8@`{U@2`#zoo7kvc^(+2kY<8EicKT@CRqc&A^Ii6HI#)|;Y-W&D5>9zRT2D_AkSdIP8F3% zu*odgq5ofkg;$$48frKi-?V&Cq3RCokacTzVebrfC~3B7ifyLJw8jWR?*F8%r5=)o_!HPCx^EWLwLjj7?r(6F$K^ax{kT4-c+ zYO*OhH6kK4B_%mJIx^W2V_29~zCn1H5l$J5DH+k>si{#>8DWve$dnX#eJM07Jt`Uc z%CzlL14CF;dMbP;H!L*`?wFV|qEb>LQX(Twsj0@~)bKD=`1Q1!j)Fhue=e2i7fq^R z9oPVNd+_8JCDdDBK=mG2eCvms3lkVbf9 zdU%F0GCAB7o}Lk%YD@_YO-Y7tFE?CQ%TfJ9+tEv1{ z>aNyRKDCrQp2j^fyhMMU#7_*@LWU6QYe62LGl~1U5_%M3J>W-fwX4@~b$r_u1#Q_D z;{}iYI`ZFI*jthlx}x1%x80S$Uy9;FtueBrJ1PjZHkG~RqW43sP2@*&(5+BwguG}G zsvTzSF5g;;Mu%B@jQJi$0?RTT-SPju;9mc-%t!Dv&a%u!Fm+v)c?+MNnz^%LxpH&X zHOqX2hYcj^fADWUpq2SA{*64u`yc*|JaqLK|3+3P$}NN6U`&8=<_3*IS&O#TLHDOz zdsTTBA1|J7OurT{EkpSot^MSnWhi)%HP)vZ7GPs}K+K5Fx4+gLXPMK}T0?%XCpysE zdQ532n2D34n4MnCPLxMG|MsGG(sXu`nVreZPO?WkU1F)7l{z~wGCNzCofkdYS<;8v zc~@uWEoSF1v-6fmJE!BQotrv4*O{Gr%+7UBb|hc4zqj?c;{Bqwwcyds7in|(y-1s@ z0+w*wT!Z`3aEv-TAoh=E}&M=*wL}q6!vyV=2LfONT+xcUXI4$ z{HL??h}lt=)7EiB&dzaW z=PI*v+@qbik<`v_Iy(=T9eD+9t_L3NtQke^1g;R9tIi7ATrHWMI#|MOb6put?R3}K z>B{U3WOllGv{NsI+R4({nZWGKVRj~Xw3D1l?QGQ9S zPJ5l5XlAE3vlH#n4ty+;*h$yfNnv(!nVl4mcHo<3#Lg<6o#o8VR%U0pM?2jnP&*Et zowu2tBh1d*9__$KK1e*bbauXEc79@ZzVv7Zw%I3kDz6gTtKur!UjD0SdsV~|uG%a4 z7La^4H4~~c(}tPp%*?cLXNHhGY%)v28LqQ4gxML#>Kn4Nr& zc3}TCVrQ4m&a2GMhs@5a9__$}NW{)%ot@8^oo|?(&pg_JElG%-$2vRzFgsOO)8_ie zqn$m|shwu4#b$4^nl^g`v(p4ixN3INUhqaQi6=p4C!X0E#q7kpuoGA6?3zu zPEJirL#PJH7eY*wU#4(xV4fbFQxWtPFL-(pT)Kf%1pqM z5i+!{jP{$WdZV95SgSshT2be*gjm0?Z3#EvLf?ABU{wVKZnHH&$xC!8w zQU~xW3*fXafD*@VhR6UswQhQ>}+&uL4?ozmyQb z>{16XhXqi-K&;og1r900sz`Dx=DaQz5ek-X|MR7GexVYIIaR-rH=e4(_EZ+++j4V# z)N!n}Fur?nJmfd*cE#8>QzmBPe-om|PL52QmEI;gGCe9KDl9TJEZq7i!GujO}5TfW^>2sBKnp_&(=mUxz<>D zN&)iSX03%D`b_pgZ{%7xc&#Y#M#fEY05Jz3ZNW&)LI<*~P0*St)>MUeL)P0HID=!$ z2z+qfr(B;_8jif=mAbAt1%P8Hp5d$1PjyU?2FuZ4`3J*c9a7at7hrN_WoFUjsdRrs3`r+0f zr6qruJa5vd5M`~fw$&=!zPG&*`h118nbJX2@B+)IFr{4`t%lP@Ur|E_7eTA6`*aGy zNLg)duOz!ra9CGc$4f3W+7(*Em0TAZ=wzXFiB>^q=X$iUc<^ZTTwh}y;8k@wXB7I{ zB(ESeVuQ7jyuJ|SZ?HB|5O*HeY}2*<{%j|$MHjjrG@^d#5Nw_RPQ}4{A-BhxZL+SAL5+0kQ=6=(ypDkj(w}k2 zYJYBvih56}jYh4rHbf6MTc2^|A$*JVnsQa=VdPfp9`N7*4>cvPyUaTF*>$_Mo5BM_ z*n#VjEGrGB5S6V{GM z6BWeu^_BatK^K&*Mr0V)JV*v;^1lr?dSis4Jk#(sImF@hhV?aXn2Uf?J9PfeykO+x zuvRvf@j^VpVXd!B#4r*5oVW(6q-cdde+15vp+?>sZ{&M--Z-}>3-8V|p&Rd6Cn=kG zgXCg{xFfv5P8lzZ^LKZ0U&ae{9f==U(<&-^IDLBEhj7?+za}kY-U>1vu#WaR01^Kj zcB8j)h}R}pw0=M|l%{Pm`w5o%WoK}Qc-f0e&jgFZZD{Zsjpw}(4q4X23!YT_z! z5aV~56LltzV)|{aiwcfd9r7=0P=f)R4a#qvAbsL+=TU2#@`yi79^(0J4N5;|ov&5E z9L)t$hX!%~34*xV{zh}hPsgppB_(hzM5xvQPU~4`T6L+#0CXYgU=+GPPO9SXIyG;U z{7a>Nflf^Zh^BeSV{rTtCp2oS2BU<3=Z#XjiZOAPThN#~b0Urlr>)&2C4oCc!ORXG z(@Gi2A0}WXtVJizTHCl%_%NZdGTxPf?VL5zg+kEsjK<0wQNasBLG{{v+0KOqiD|W{ zAwx{lFIYRcP#`YMt`tUpYBg#V$W`0f3a#{5(dXL?|IAq{zrU8=_j1aIxR57P(vBCc z-%9ccP=H+->NyocbqYx8f3O}J9X=ye;hWkaU9rxRl$(4Si4{hz0JN)6oMF-+x zXwc~@46gO^=dN0#l!v0c0teKKc`k}ixX~2dxMJ;tZe6oJ&SRG+{n94$(&IL`1u|kSBtz$WGC%RA|$@3<-bhh8IPLYp* z8F<4=If!Fq7e)GX;J$VA5yeN}Tdzv;4fqQlZBxF`$SGUf%E#8x#}h%GJd5kb8{T=t z9eDqnwHbOk6g%dI(YFa?(y!xg%Wo2WD^1Y~cDFNRf&4I+Q#suP3T% z-rPuTy`DnQ0$bBS&~!b8p!|JnmLzwFzc2({HF6k&HtQ(_AWxpqbnTlw)#vBtT!UY& zE9Ge{l3b04(7mzJdi<6}B)Weqx4Pqv->l24$ZOV<-pF0gUZ(B88s+2zN#*TY+Cf@@ ze>WoXMBj|{sPN}4HRNn?f*;SF$bpAvE%YV&Kr&8JM@I}TGqqfGJ${Eim7;c(#d=5+ zD}0bf-Vctt?&#roO|~s9FMkDp!E>eDmHc07?It8}6&@=+QppxjLH-r~!mnZ%vu|8A zNh62eaM&t2CRDX$l$X6W(1%N%!VR6mp)y2@sD+hwTM-JPW7jb3>3MYivfAEKmJ13AxA-mi`*=@m7%Juk^^;4e&itu%6&^lBse zICFJWxb`61kjJ%OkHlBl%2p%~Mb!6T`1T;)Z0Trg+Z`o~cZs)Hk|#hg@cNiE7`tS< z@9-|kTL$h*Jj!4*OUhx0N5WSpIyvSTft&3YE^-x*M#IF|0fAGNh9(>0rC4#Pf#cKMy~BuZ2J21QdQF&zFCO za{gXf6YY+%O=#eH9LgkPSJBn;v0ZHMDx3Mp$!G_0N1R^J%C5HYey-0sp6O=zPWQG=bs;|~*49mVsF!zC?PF^wI1qyS&Q)-9YQWj!U~Lc&y(wrDWy!!z+!@lh z>ue${Da9b)3if7bXJ6YiIU0^(u8hz~<6hNp6XnV}$oCyQHp4xfhl#UJdbpc&XA^AG zTcM;iG9xC}eD;QrA?-k{UZ zb^b8%b8!<|HNsX@fBhVG;~76oS_JpMGToT?$(4z(lWbvHpF*hKE<&ZRlJUVi+h2wC z8RWa(Mz<@ewV4*-vzwh_^m18kGbuupG1}Hu4uL;#^|jQ9;Rg5LOs6LxPNpZWJ(H_+ zkn3}5RQ@vZ-L)o#?4mM~g*9B`57*(4&D?C|PO7a!WqH6`IJUk#CA ze{O_4WiwtZZYz)8Oy??Ki455XVIOK;70*@byO^uQ1r!60Co9Pt9_Kcd-(aD>rVI6D za0GJ|RD@8vW7K3@Q_1mDj?E^?C*cHs9nLxU8^;VEgH&MNg5Hh3xymtevMpFb_UX1- zsNk!~Rnd}m{J~)P3lP>$Yo-WhZgjYrgv|s=j*~NO8zuQi@QmM_b9&Bms*pG54l|T? zvv!3f2ugMxN@N2uS16@8Q6e)N&&|G^_VLMGZ^G52!4|G9gb`Fhu~|;W6U)Zs0i(6w zLJK?^Th>g#Beu}7XvZEm<0N?y{DmvLzeWz%OUEs=!a<&_LAXwbjzis?dwn59GM_~< zPvZgC^lTQ%w%D6XBzX&qWTQq7N3xJb0`evGHFsBlPRn3Kd}Isl;s>{ocQhSSU$mve zDh&Lkt;)9;;$J}I_$AGWD{N;Z`R6TS*?lO;9av?HmE^}@Pg`q;opPksK8HN;Tbd9D zsWBcsI^5=uINQ(hxX>0LE3LM2g&-8m1$V{b@7km{8h!iA{)lXn(Q7L$neN!WrewNq z#U<0mF>ZtHZ%Iypzi`Qn(#YY4irq>t$z9RyYfo@VF5xQp9ieNK?RBHEyqd+fLgNz` z(J~TS2%5UZmLAzSLJ=n^T^iNwUNnhJaNLu=oB1rZ^J%`;q8BsqdZhk`4sM_QFrcyH` z{Q@cDO>&eb+r+kQxQ((ktSmi)YJWJ-F4X5+!^OZFX}Pd z=xS5-y*B>}aDx&=lQ@bUC5XXd)5P);yoLA++>*S1BsbW(eib)al|?z=59NKes*T)n z8^xr>Hd<8;={bT)1DuBj6SuV7otZ`(>1vJZR(H(##MWI>Ht}}JQ0M+WSYk5shw)IS zDi&1lA0(j1pV*)i?YC9c8W6@U%Zel6f+x?u%sgOwPg36Jy$Bt9xhq{ySApQew!7|@ zeuIwK_9$QQ-pFL=bM6RNCY_JMWXSb7$AP0Z*pcoRPLb~I;Vc#l3!FEA$fVS~;btJ( zVY^uY{d3&*fl_Wehl-HB&6N>yk>$-gV}{?zK>Agb<7MfA46Bznl>@g^daHx|Xz0y< zJG~-SJZ-xq$r11urnfMS9OjS)+i4;CqvU^74sq?Da7Y8!=hWEV!?D5gbI+Nh<%6! z>YSdQ;}7HR=|A0f-VBwLA4RkBo$aXLs_kp#j^>PZUH5ZW zR>|fwkFVKoNQ&1E$V#OeXAVC6VKV#i+JVep+EQI8{8z7Yh!Q9&c!6bf`}Lc_E;Op` zT+>!*BWlRtV*5?ohb|PzUC|g<3W2w6v$YBWtk+xtK&Zt{(=Pi8hIM0i(C(CueQLT> z$`0C{?tX2%DarZp7w%4THFCH+W$vH@OpqtTIyc_P_VTXJsa@$Ot}DH^gLb8tVFNb& zJ&ISqx2=^A!ykWXW*)z>qz^zEc>k93cWuAQmv)FlyuSsp-ao>G_*<~19pOprySQMD zjPO2zl<)`-f*>P2K73ET#_`5Io4LI5Y!O#-0u?IEmByr}*6Q@DZC8-THL^J5MHk7U zf3p=R;k_jPku7w=$|86@WDY2XddJ~t_>j3^R=|izasQX{G zZSEA(T`9cu&^E_~Lc-s+h01hS3Wi6v5n2VIM>J*_^EuILR_%XmW0lpsQQSNYoR_=j zT&S{VgP!}>mf&S6f{#D^db6kU5^sd$ZYx58|Jk}LHq99zD{f5HjF~Sg!Vf0J_-*54 zolQfY8*+4cY}+m=XE+JEPBX~FwSyH* zdiU>akJwP%-VbH(%WI2vf4{vl{53*;-z?JLKtXZq-R)ISCtrIz)XdjDQa%Bmw8M$v zsshfL4JRySI-Xy}@K{XGk?}l_2PH`Uh_jU)vuoJxutOnEU%e&^1ew8H^9JaW`7S^E zen}~B;dGtXbA>-l`eS(uG6vWixKNlAU>~8>cclU_HjuZ5?lzEQK}Es#5V^{FbUxVL$ZOq3Z#44yy!w?c!O(w2uQW7K{-Ia- z%n)F=zO`?(@y;9sxvq%F+EDR_s4Vp<+9Wu(EVBwcDzGdQ48Z@f_A;ym|Hm5K76jQC zEOOb(!M~9wU?$_=$c>>~au(lZn1X*J7sILeHvk83K`_q?@ml}q%3HiaG6mbs z9dQ~&)z@#W=lHRWeMfoJ>15T)RS)oD^aCL$!tL?O3GO(3Q)P_F-a$TKK|4+M9EDe- z&z3{5v~FU3=$xJpfX~AWNL1Rpk}c|J@1~OtMkJ?rR|;h7Ee!~G5W?XXNE<|hADK6I z>TG{i$>41Y$Tx7IN%$T=#3@Zd3DJkzp`wOUf;n%&dL2i87kiK_!RENphxm5`oK4(B zr-Z4DKFnEFQ#UAk*~(thW|ywRs1;tGRGvS7#94X3s59Y}p4vXQ<}2^=D3G!0Tig*& zhZT7Yl0KYVpd99exMvDa^M}bL;INfGQ>al8+NmoIpLa~2DMZzJ+j~ggQ1tpW+*_AJ zyN3%MGECyFIKxNLvGyslWTS(l|8SU$YUo_&k(G=@(1t$tFXcKmIuP-<@nU!&;$@@j z7mv`MuK1#i@0hxANG4sb&w*8Zp@|(rANM=|_SQyn4;ETCjZZu*iGgVF*T#PDXU{<2 z_p{HFN3-~nG_p9pUNkvsZXG@M#0>IP!+s z!@bI{A6Bg#ijk|-K&$V;w~SsNy}2?xa&He%zT<4r(k2x26Mq<&wigJJ&;E%DiAp&; z7Z~XV-`UXYQT8kDj6ds2p>nc)piUuCY3xe2Zi;I^urI^j+l4~J7`s8qa;0!!jJ>W_ zLEwm)w7>HWOoyan#@egP$`alvxfb4fJ+YOtnmdNNHTd^B{M!Zp-hh8^!oS^)zbEYJw%hA%JADPxj}P2gnY1Um zId?a3?;&L$pMmote~dp&su2W9HHr#}%2iQT-e*T0gZ6gU8W%8lQI7$A(7Rgj-fEKk zz>Z(f?vCzz87pwKyvl_ZSzp}NaBsAvJmy1jzJgh4C)Z!dTb_^YD6jEegH{33hs}0* zS<<8+JE_UumReb-@s_*-Htq#cprWE%jkOx&q09Bp?QNlS;5EoYm*ApK)4h`g1^h|S zqG6TGqmP?HsC{`YH83(p(PS;ayw(L^WQ=#O+1}?RWejhWL^!GiM3}`N#u0jfApNAM zRs$oJ&kK{l#_U8NwcOi9u>Su@yAJp$i>B{g3MHoy2nirkEMSFHk|-iz7iq5r8wx6l zC<69^3My6vqQcsc#8;Fm5PIj5OGxNNdXa#1=^ZKG?9A-lJp0_i`|11p@m_ppc6R2! z^WWKhstyOIy05}Dn0S5uEv^RbeZ#`(j=v%QN=x^K{0_b;QWtRrN4{;C-_@yWAv7oq zLb!_yPa8AY!P!T;7+G|B5&2S6X6R z^s8Vw-kWvi7dqL|GA$pTLaFsDtubmi^mOHn`IXifXH=i(%*l@Mp`Lg4sN6VzsP~Rv zX?b(&uXJkT_RRbzyidS?z*&u|p;hPDo^TIXg(=@+Hm0-M){Yk+KaxMZcwlK*GQyxT0l zm+Jm5m1ktcsbAFt&GYN~PC5E_?rYZlKYQugBL5Z7RVuGHq!V7lzI=EHZAy?j!)cNE z;z)RP`{G;kw|knRKHiUelS5tSXoKODqjgk#pMQ~~9q)h~?J}HP=nS7+(U%(r-I?Fs z(?|D?SItF!9i+J59Zu)o-n}b-j^|6Q*g+^AcPbU$oqx0EC#^(R%&Uab^(<@Z82AL+ z+Ypz&Ue}q9;fXbwq?opKRckXA6={~WF!YMZ~o_otK~KXCVcQXV!9aQE(RfV=m& z5yDT?z;|DMnzIL;?g^m?;y8lM!|7c5M$v5u7&@0;`~Li<9$$*9pBqLf-1*-iB|)aE zdj}FZ&?nFx|6qPypIf)>&O5I3Js?f!22r4>mhQYG)!D*|!pBiuGXkSX3LgcZsdoo2 zhmS6CoOmez1>ZZ;8Km}`Bh;LS^RMu|DJ9yM+99KtgvkjsI_1Sj@_ioPAlVjA+lJa! z4%Zg<#L`7EE?pnXf7P2mf(q7HZP~FW9zBA#dLFfFh-c>`$cA*vSCO`R_dJ>ZgYS%t9k+X@#F3Eq@D~#CYJBo(aPQA!r@Zl0 zer>NWZX}2d88OA?G%CB&S5+RyJc}EtT08@*14jc`QPxxHnf&X0SIGvrT!jX;pM@o; zqXG7?vmx}5DI1s`jy?+uA4dZ#7p~>;lu=TG?dg)g(AP#9wNl~wFik&h*fk&iO@MzB z;ol_qHyQp-fqzrs-!%9)9sbRLe>36VEciDY{>_1ZbEh=y>d#M#>N=8N=ptPb!0Q*f z)Km@L_iymMAiWFH+4qV(j7YpNQce57f4!?gd*4U4?#0@uIgxq4>XS93j_N;bV+Ga! zegE~U?JoZ%E-UraxUQew<@?4q<%Mpsnmhco1|TI2ic@-i!3tfEjx&K{f11prYFrm;5 z-w}qAIh3t>=5M}R<+f5+c%w$~(sop6$f$`}_OXdTWj1m90Y!SGJ>YqVR$` z-mVb7Yt?gDplh|T%vNg$`losC9!0(0F^cXL41EjwsjR0`JEvxKdOADpNqCR`)7j5F zm6Dm!`Ki>5ry9dM^^@sa&==Iw--7l&If`yO49&0iFosWz5+8wn45HQF4g+WKd#JbS zsLdP$(>{L$8n0xSiyMrsc@*)~2=Niyt-7B05DC($+7y;prw-wU2#ba%U=i#Wh9hoZy9Mfd?$ z&yVoudgh9tXK~PZBZ0$fT|s}zW><00dq?@}dAz$_L4V`aQ-j9%hk8%Bf*u-D!=P7) zpuv-6GYeZg*1S2jbGz3GABxG&R;UVa zi7nrs=DS(yVpRa$l6?OPr|yCYpxY*#?!y!P=|NpRv)2t#cVuulLJpZ1-la|Q|Hs!= zTGY#?q-VtuXk?}(wd}wbwWh>R_9u9KZwM8-A2rnDSng4pp$nbzNXW37Un8%X>ha_o zRaCRxFT)GU#!wykQupClaSj+mb>!vg{s+9j!GGx6K}I>$bRAJ+sE&X-){zL^;uVhG=g*4kS^4e2^0TU}D%Z{XV}-N5I5_ke?X z>W5ayA=wpe6y=dntfupM)OoGnsPh`XiO%a>2Ax0j##hMnk($Q(Qow7 zaShdH9ZXxeQX!Il_m2CG5^ap`(~)Q+0X=<9 zt#_$^y|)zpLnm6XLro`I{%^Fi8L2_$`;H<&`adMwpETZwdAtvV#`^;`XOaIIUxl&4 zPaNggu{6pD$bsbddtc|14xD$CM=tT_dNapTcBPLEW>(AXm13W({jsGwFIY;wx)z$v#9^XuD z-jU4#c?7c=bSRr`WzObRVOwA}yIWv3@3dQZXO2}jt@k%^`9oc(zxIVrXGDQfykuh= zZ}0Ps6VYJB0J{}7`U}I@MMr9fYtV0#zm2njMXP9j*u{Z7UVV7>5C2M!ud%d>yPO%9 ztWEbdm50&0#^cn9GXGa$8cf~dzuMO}T!Wjo`U{*5Ebq+ov<~m^{*6!n^l$NXkw&fk zuX(=J(G*uJ@`%XbN4NX?);)juALCIyw+v~h8t(AF?)yx3j^`pi7Dqyc;V&#S3G}RD z%1-|c9^W@Ym98*w3#CLJL)kx7V|gUxk!rFBrp9^WXle}T zJ{?n|e;iGXKl}wdh0X9EdTQM0P}5Um={TyvppG>-LT7lwCxWcrepn$^RDC=FUip_B zKgIt;ZXJ*BhVkH)A#LbR_cK79V^jj9>*eJ(_g*nx9gHbx;(ZU^ zo8es6-@x`j!_z1b&hxtCRnMPt8%;TU)L+r#8zOz{`Fepo^V*ngeLG%tnppUjFJJ0f zaip>?R6`xd+-3tS3e=2r6!bl>@Dpz_{5rQ8>D(SPI-LkK_kKHmP|rN+zHw$S1a?ne zHPz}A&~v-=$nySXwzy@yil3hQv+r-IYk8l|y2nG_i!n0NBU;+RyTx|R^aQT;8B);P z3kYvK0TT8sD4G znf{XW12et5KH|vq?)i46-_9PskWZQZrNhehMXlqc5lr--rHU2s9c(Tay!!|Scz~-z zqX8Xal6T3cBoE}NlRO) zY+pDL!tlN=k}zC1K_s^Y!z1ipg9${vW>VLJ;X&4IGQozyNU|rWvT}vZJq=V&J(yaW zeb`V=Ev7FB70Cx9|7N9vWOuX}(xyr@vOyqZNY9+d&BxeHFpnp%p3J9{SNB4<|BS1u zMin6I*As}WITM(yQ=}6})`|LvB&%m4Bk^c6iG+Ev!T1S8*wrpeze`KV*j-Y`8kwg! z{3-aXX| zs(3R}RPKib)iry|dtmslEbOiZ)Nl*Rt}01X>%s^;HxwrN8cd9wu07bPD<%?an@C*? zlowbxYoeX5Mv^g+YFu0Rb=J5Sxh-fQZLgSU(bhOpcOubtZ?l5<=(J=&Amw#plNN$ajOkt&_l*$QTBEA?S+X%*}hWO!r*1r?c>70NZy@@l=Z$~ zM`*f%2sK;dM(X^-#p?^WcvY9A6;yVIjB$Nej|N?0fpLwpeHH2XCi^;4CmdgZ|8)Xg zfX|_0`n1ORYHgkHb=WxGOLf}6NqN^!BqFbx$V5IZy+R_N)JG(dy(cHyRrfvi_t-=t zaji)rZ_!E(eZ*Kn5;v4O)>xSrs9ZaV%5IHGc8^8_dc?AOXd;of^(33TAF^+U1~&?{ z5ar1DydN?iR+b8ATRA2@BQrBARCi;NGm{&ps)IcXx@q>h!5(&*L`?1@buDB*W!-ls*-SQ)w;XdB3_Tjctr}BZaPn*Dh#P`FtwmzG$uhXv@Pje{JH ziB4&pnWC2UTY&|*a*QR8)#8R}YW#}Q1YL+-3e>*Omn#x|<7L1)Wd(OevXgKI|IR>d zHTSbX2Vb$&w*dNu^$RB3L^hH+5R~3_u7h7Ek%x0z&_E)OnQWD0d~1GRt|&(0pxzzp+Mnj+HE!ek7q#!ay? zF_Q9Ah|0(8h)pjLF)pYfBgWhYRCWgKhzZ#oIi`&BI68qHg!(i5A+cSnLn6flX)7u*Lw<)`4?#=rP1QnancBKd8$;ghGjaN zn+V=%F8|lnq0xX2k;}cN5SQ0XvAH~(ZGncxW#jalQ;5rTS{GD}Zk&>lE~%Ub*R(qh zn%`X&MUpP-Uz(^kbu6e7lNqjY^2eo#zGE_2tMtrc2M#;z8Xn1 zyog0_hU=)DE&*{bW~(A@8m&Cf!P%KZQ!EA>H}(Tgn!#iLQ;%xB%UE+C{WXFuL0IIiKM-0+}D8B2;$zI7hYm$K)Od`RfmrVyb! zf+zow&@~}TdQB6(Y>YvHt+b?=>K zliWz|o<@cGY4~*(>Mh(BG_X)-PP1rk97&%RqWcDmz$rkP8(f`EnYS>fUzDrW=SEOEsiJ^DYI+=L-sm zZBii^wFqjC?WjoLz3k|0osztjo-viS(!=Q3zuZb6psn=YX+-ti)0pa&r;7wcs$Z;+ zIH-QHs`nLmRky?Z`oibK>~lrctZ(2UU$V>44bl)Yy@k}#Vw9CT6VacXZWGI~KH)uAn?9Q-;^*W-IYdVy5` zk3Qm{`hQfr@AQ(#S=B4Ek8Ng9Re#lG=_P3ix&E=#v4$(2?R_wVs`^X1*LrGYpMq<} zpct(-A2`W<-gQV`$((<6uxoJ(d37Fgh1 z#ZFh8Nmcy{scV5#k9F(Jw81fwS~IDtSDa~`J2c(QCOkTxu3ym$d2!(Lf)uFKkP*SS zMOZ*>Gv<~U!@ApcRitnOcJ(gZAJ_HUXHZ>lM92PRUB6bm`0w?ZRNP;g$;JIU=^8R# z=_8WyUNzI+nBTxoe?61fKHX(yinM}kUnq5~@oLESO29q6GoRw>(P%)AxHBI(lUV-O zOnYaZ%C%aS_Rp$-0-SPGcQ2mJw8+Mf>tJ!F??;?o-lSK97=tyG3 z?Cu|qaJLCCl@|3YUamheoK zH@2Wb`0#angU1Ck!U6}w>uDp&0@)C0-? zOQ5B9+AL=CAJPeA^9Fsy!R8IKY&PG+?ya3gY(D3*a#~tJHpkBv8E&z;CEL4rHnI7% zt4E^&JtCV|<Fa%(mIwhHZg{#b)F6@>#^@jMQXUY#v-tkW?Y{`no9@$(eA=Med-2 z_hUkm@#Woda@!87d5PX%>D72k`rBHK8;|aS4Wd5L23)QdjgaK|3lan*Dc==z;-Iy} zf&@q`nuUaj$Tu=d3lZ}o^RH(Ug~v!;3z0`Tsu3FX|%>b1BR z(%_r1P@{t(hkVy#4eU(_C&Rc_oX6Kr>?_#U-1RI`d6NU}fpQn5ZltT)P4i*h?U_S` z`0Q+^?v--{p^&=u^btv2Pd&A4oz4Q-WsBM6S@y8@9HQ@SE=$d&C8Y0zQpXydE^O~V z;G#aE);!d!7z3kKo20nUt~rNj{MsCQ>HPxRtV!C|KHEf)G>51RSF$pkRL)FQ&E_ra zPGvc)xZYg20R;&iR$NwPb)xTU8MT$aud;^&=MbYuNL>q|o~%1;j?HKz`DqR@dKUaT z8T~T1{fSZ4j2=jTTZ}dyeK9A<=!6&wPEs16$w^$z)j6yfp~31LR*cYWl;K*?^kSFS z&LL_alDZZ&Z?Nt@7c@q)2L@Shv)6`#7HMVr`huiLZAgn3`~}J3W7ol9X^tFQ^|^vt z+F#M%yXq4@rjTK1)5hCeZ=DXj=9Kr&#hDPHt5~< zbJ8!Q{4@H9gYwTP&ldM?`$P8nskub?PhFNil9rJ2-%A~9)cUeL1s-b3e-!FfU}dzP zA}Q{+pO{OOpE1{_y!nvB6IxsDwvF?T&BfhzQuhG*qmnj7{> zT?@+oth;-zJvSK1j=3~9c>VU=Fp%5sAb@dSzLJN+dEce+X!%^48|oY`C>IVDoG3!5 z_!q8fr52a{Pr86$qT2Vr*+m2|_Y0a?2!6|v)%MdAk|}j91P8Hh8k~}Fu9u7?*-xAI z+J0;EZn{}cpyB2n(yZBvf-C+9bTHz!$HV8Bg(ODY!HzmQy=`}$ky z*uUJ@!$&NF-^TddPs@o<{Jfm_O}d72%P4(B&Mn?ietRd7$4(FT)4a0SWo3c1g7eB| zsbdYL`L4+Za8K{+7r1&f8qg!|1b+78eB!xC^*kJSPONf%Vb?&x+6Wk@^B^nqS^6*b z6~xD;WM`(Qq=&Wx>DkH2>1uPUobGxCsS-gxu&g*yjfpHT1G%quLF7Ci%U;$jpqU~~ z>S}OAhKyp}Mk@ZeV}dk->kDXef2YO*H}|6T7;b&N>UaV!yw@zS_V&h;q=MiKQPo7P zb2(0Lg%A~(S#w?=*iz364h`Hh5N?PI%mtC;h|9AwR*V0W+1sZIi2uE$u7yiJ>%M`w zh>(roRV~O;br&v<^VngVjv#E@-{3RS@_A|VWHmB7g4lBuwg*qih^+)( z$R0iccW~&ZvEGon7CI%Y`%0l*z>K74AuR#=!LM_BFrVA@WJLA$;0gNM+8!8>9xDtI z9Cq#+nNaQ`G6U`}#iF0U$XH@T2Dlx*F#BYidxSM-QZ_mzQGs`fR7<$4Jfvh~j%gk&EOqeZj|9G%iT->jH31sxbLH!ChIQ5U#(4 z!v}-A-ga1Yc!(XoPIt&B0Im+uI=zZM*7{%U{*Q_!`XfcO`)@y`-IYbK`+r9|g*Ess zeZ)cgx77G+id@&)Pq53c7ZL4;xGa4qEg|j4N*!y=PO`mG;Gw2HeBIadDu6Otuagva z|1TF2?UxkUv_Hc(U)I`k_ivo4lVu0X9^ps_@*|UKzEO)v^5Tm|aE0dT(*$toE|*SyxsY$=^l9`ov$7*UWPM1-f(J<-lG^YzmLXg4T+D8# z78B`PN?j{~DzNUI#Wv}U^+Lqz?y|us6WcXj280ViVZm* zlG?HLwEY#ST#5bdp*!WhdAB0se0w_fFZbqE)Uup6m3L?{)%qWbxz-m*uaNX}^btvV z@0??poG`l8_u)#<;Iok<`K!izZ&W?g{?{Mqmy+QSB7d=TG&$6xh4oqXc{oU zB&p|}VmB~v%U~^Fu4Q*$pGPboD0MAh%vbyRAus|lBluJcVEvY`B+g@pZ90Om@n+dc z#R|T9SWAtrSy(L^2i+Z8qFQ*pBXoCclWl*+mi&5-4Z6ZDd44f%$$u#R#|wD)5??NS zt>$1xQA=;xJmz${5|Mbw>1cgKavDBgme=0Beoti&;ZAvcok;_ir7NW+7E zTf>^4oW}%@ppbJ{VKsI3%0hVBCA@|BdASL`*JbQhCO2b0UoIhv_mjF7PEA<%lM=gL z8A;y~D(AWI>s-V)<+gnpTfK;Xnf|sG@y4Sb@En9L=g4#lPv^P=pq%?lTk2(e0>|%G zxT`Qhbv=&)0yI|!Z2@#AJ3h07sJ>F_S^(Y3y31Su8Oh=jTE)){g)UOe^woo;xQahD zPh~YNtgU{l864&CQ6lLh;Dk~BeIC!@`+B+X;iaz78*bWb=CJKw6-ar%IR^LMM1u5Qk^VF&LhCCXxTO@HgoI6dR#q0g-DyF= zWznf{^MyLFp`eF)=&r&lw%}mDrHN|TU9d~HT8!UTkm#E!W3*DY1IIYEl(@Z2>RNa_ z%({z8ZEhRM{8HlfHu!aN+kB97K4Yl4J(d2pxNSU|R7%|Lexoj9St+pLKL*pxc2FecGwk3kx)2w zFTj6u^=LGpM_hn^JfFzAb-rDod$KLiunM&C`osB}sLf;3lHn1x#wzC#SWdTjw=fpY zil#SK@#B|tSM7nX5#-Ig4Mf^TkPm))X`;`wAacsS#r~a{PvlLMx)v_4v2K+GcFGz_ zr3FOZYvI>P-Z!{yCDo}X@3XyUFtNp&&^U7nz|u7tcw5!P9sf~bjaUtdUa)*FG-Zb2!v-7|o?5#gk_X7Z9bdUTD|f{%m)l)|MyFjQ^zzG@~=r zXAc)%5}lov3b%lTNS&J6SoOTNsJpuE5tx+2Npl*(Yu4V3B=s+Z$IR40s zuWaw`MO4MJTs;~M=n<=U{34=!w?%dpAH}vn!>Z!O>q{2V74RG0fu%K6sZ=%ak-{V_ z##ZiNrHObDHCw~E>^)(?WLjk;TN~-qH}x1@A~p z$l@=hjum=FUlwXQkcpqF$M9yDq*X|NF_aK?EUd3yizi)An z%vGbav*2=8uz<&=reQWiF zmA}i_(}jzP&fBD}1=1qcEn95U*+@1mCOV&lU+2Pn3Af!uh~NdVg$%Ou0+{irba9Z^ zP^q&rRppNgYeqrXDt_~V)=1@O4GJC?aA+Qf1P&l-ED_0X0kMW1thR)R+)(OTK>W_S z*DkSvFp>sKXjxuO<&DzW3n7X;GJV0hmmx(h;_lO!W4(r&)D+Hvj_q4mH5jr8P18C; zX!qOhitg62yZ7nt_)1sX#Z;JYq+|cIFvood=f&P%LbQHw3DbI*bOzb@lRo0$HGHcP zk#VlgH?yllmk_UuT$T!?CFJ#Lsbh^)8QWU{E^1yEgnAVK8Lgo#&CQI1M|||_y*p@KtZ*x7G=bE zDUeV@Sb*jsp`$H=^0*AtqWV#G^pT}R^_Qit11g{c`+zt(Bo)C=N9oo0&arZd8`;E>_ruv{IMD_RR*gvKEAERIm4&Soz z!zLF$;1yWPbl)uyjq`22`jD_57cfQP9Ce9H-s0(C9SL$C*!rUIF6lsa2Zj%yVSL? zDaX3cYiwN9HqtK3h}s{(uanvpxIJhfwI5t&ZNQB)_o?`$umSHe4A$8cH?GAwq&}0D zwp88M>$7GdA;ATBB&lY<==0==rfi1qeE+Wu&w`=~yEk+h5qhfBwV=3!b>T(11`0uF zBZZG6XemBEJ`{r$`)$+Reanc|kPH{k&?m)%o(E$}RG0k`$^lnUn`}o#FA3}@SjUT4 z>xg>zIky1JC;x6mo}}V4hbpgcIhF1T%bClKmfI}6ULP?m)c2u!uU~Fct0wz;&2r*$ z8<&-Pr4{6IC#jo~pk)02i-`&Xz*7R!~cC``yqvth~~^+(h3{8L^eZSF@MjFDEun zl)4r=SF-N7<@WN^NX9HDCYQjklgahDEodNyWk+|g-;J+WY470bUA_79BXUb@b5+Dlh}PA|aRh;MtSeO

)PcL+ z?C5Q`f@s@%1=IEw=?WIlp8ANPZQkr9omAd7y%TY+w=>zz7grE*zjoQlk#>-{zepV` z>@2qT6F8{X+c}|L#Vl*IUQ}g!p;UKWLEJ4~Veg}xu(_^e##)jZ=bv2>hKX#%`tW?daZ}w~#sBeBRdr@zCNX627+)9LXOYOQ+2?0HaX=9Lw6yH?EopMnf9F zzB(yeKQjKAxU`X;3NJ~PC(+=OK^YCn!UXxh-g5S-)zfRo0Com&2pv zx~$Lr3$AdzwjQqa0A_d!4c^SE(aKPHl>_aZq7X7_z}~`g@h;Hm930|@kh~L}?Amb~X|Gj8Xa&Dc zLchc9K?4chb(JQx0NXh8tnw$p^XkCoY6L?{slJ1SV8BPZ_f!rfFbrBIU;r|UMkGKK zrpU-F6h30lCafa?)!#40#7{AUS+2 z-zEeHI}{}bbI5j3bnyv02&QqFzHcQh)7QYPae-y}1@2q?t6#A#(6G2_yl%WY$ki&*8I9rbPXA?r>T%h4O9p%t!Mr+I6E-BT5R}ualQn5W z((*>CD)%i)@=cJzS{eHTJ2-YV@wPoH@`i7Wc$}6oT6p}I{XDUn7#zPw zq@;z%P}aS8jg5zqR9r(9_=Fv;=?0?33Jh70k^uCL91?OkBo5($A!VM&&0*{&^npB1 zTTMK^4Ep|eJRVLw?!1P0{Nx(u@h8$7ES7!s5yRv0<(76*?QVdn-`a7HVo%>+Lrfm- zvNKHDK_*X^I@SP~8r>Nd4_)Za!TEBG9E$!13K5hb}4lf;lA^w zToWR8w1!0GeG#Z85NX$VNh?k4YEfZ?2#BV2*ro_ba~Y%s$XxdH=CwrY2c@o+H8WZF zKQ2Iwq|I8|Y~QSMGISO@H`}JKgBp$&UPy(w`hm+->x4i;#K?f%VTBl2FWXs>yanv+ z+qyGePQS5+meWttu?sDyFHo$Dh~y*Tb#x7e+~fUqEt7na^a@EnUmr0f*Touc!Y6>7 z+wBtedEQ#0`CgZ$-O>`${G8OW2CS6r{S7W^n(q$vDv&Z-^R%>uw{R^nyv{nC;fvTD zyo5!Mu61I~I6oIip}%c1;<7+u6x=w7{N}RVI3p7t+Qdh+Z%7W5QxDY+R0`^F#)FO; z_a5A$l3QCC5W@KOK=PZ{3F2Bgy^8(JUPmPVkJPmwTF$zy*V!aDl9ubJbUy>X&eHum zw*?I>-P!A`(rp}Ryp9-t%jJP2ZyLO2CB$zXZN2w^-$T;_<<)}A1C_!kARLvi2-_IZ z_((=*p|O#@e19D={ClZup|O^Al?x3c`Fb4{?)U9jO*as$F5Gc*bzb7BG&q^9Po@2F zHw4(Ie&hh#WsavhnERv7`o3|OLYI0j$MfEk?tcMaAP3XyMG()-=@7QKx#Zv$j{We)T%ug={bxHv|K=2)KV zZ=3i_TWgjlMhAsFD-w8!4v@UOT6#wW69~@&8L|b>DRz0@dgA(KscXS=jCD7J;1QW+ zq-(Xbg?FAEyXgsHN4m%8o{;YQgLJPZaBznTbcYv5xpBfEV>bwPS(DUhb{z5%uW@^| zizy1PasLIg&jpt5k!b$>y+HHy4Mg*l4NUX)(h;Qj{rZT5=J#)~ci!Gux)-F~1}fyQ zyR5t-tsu`ol{!|)QEaa-xTkmCuef?N8qgyWz10RH`Un_a_>{Mp63VeH(6ESZyuN2c zkmzuACo>Da2dvlVOjFp1*Il)uhXS5UsVUG|$qJXGhUb?=hcVFZj}=M2c`{%tkt?&4 zg&TFrUj*oTMY_LnXk*tJ(G{+CXuao1Ka9hwoju&pQ&X^fT;LWQ~z!@_`agIuC zzyX%Bbt{nJ)fhA_wP7&?4{HEnsk~97z6DDXyX)IX{Ju)+TCh}Q-Fh2sSd66hMyln$ zjn>3wx|zFyHsO#ELmv&)QL$M8xYCK^87?+pw8;o3Fc??M^Y~hWeT9y2Cw}J!+KH!t z0~et41s3VGRL}SNDes#biPx`fWM2Ouy+K}otB)97``a$<TJcq7qzrpw4Q zhmje9XMKyMjx|Je+1`BcPSbjtt4E^&JtD2Y+(@+Ex6!8cm23+%ELt0{2W%u--+UiT zyzt}~v6?65?9^1aa~xl%vdtmq1O~av?FxJE%FnlGqbkiGzj%V2*HQw$PNDF_z$nJg{ ziQTVl{I~3e%_XqgGh2tsH<-@Y#0)Q!9wEaw=_7{WdK>QDw8>teH(_64z5F&T&^>>M zWJV)rr4cOLRi%!_@SE9Or9X(_XQ@L0j?q{T61_rS4G%lOJ>=fBKWv6KXIr3QG2A%) zJCHzcy@BBgG3i+ua7U>)xt5Wct=jE?S0VzzBZzyx1Fu6whKFsv48*>6GF&T*?_n2P z{XzVGM(SG7+`+m}{$bZABYENv;`Uqc3)~hteiyfe_nY>IxdCryX+?iq=bVg3_o#M* zpnhwPN9)*BpI(7#X5*2mmJD0eTD5;j3Yh^KHH1aeJJeK25tZ*`q!ude*xSK>5Vyxl zT?>^~tUJnuijfTegU+!H4jZrO>mHI0d^atwqRv=cn%|)gwtFW*&3qK5u^OuMEzB#uAGkst$S_=lv9HGq$>z5BsE zUDI!M^=LGpM`V1h&BXXOHrtGUoNa-I#dza&jm^aPqpt;$qS9cYUgir_=MhbV%iFyt z!MlxzzAl8E^J(x%^QQ}v)PeA_W*;p`@(q?@S~>kJyY}T~V)`hlYeDi9>;AggX1bC5 z3}NU6`W*OmR`Jf<7BsMmf4SMJ;>M8y(DVzq9sH}e^;tteqBoo{=Q;&Qz|}&0Gec6Z zK=q*5!s40mGQ{E!8J~s4i|ph2&BX5`QrE(wE9)L`VPPbDH`A(oy&b9P1|ro(JF3R! z^6H)I--2`7@A3HRkgb>&hnHbYHOmBHEI)g&pO9c!vlBN{&AtdazW|Rfup)n%R^)e; z5q)njWBNWXy}?r3MIVv$^>k6=#}&)h8ob7Cb}l3Ke(o~zi8O-j9U^tCuwQ3;--37g zjQJQ7_u(XO!`3x|(c zH)D%Eiy2Ak7GiGQE!If{(+%9srNh>*Dvf(wLylFsx9XG=xYp(T0Ug%Z{{}~1<3Isp zSWnolih=opU42~l$Jf3dEu)j+x6`qIdNTaLFgQ#0#TMf3XIq%N>)mRX-f!3z zXjrA!c>Q0-ZjGF*dF)cHtwh=kscS(ogmqKk)$?$xxX2A7X{g4R7Jur!d#hb> zhjP<~(9H=zvDQ|r;u=3{KvSS8#SW#XCdJYA?6OwM2XwRr7`o=EEx^d1lhIf-9nLOw z-byrmSL#}k|IE5?QRHHJF_PD}5=}eXfthX~Fx(Zx2q#Ypr1D6GBE&#|nKZVc;~2-! z=kaYM`v!)wsOD~=qWamE3l`N#i{lMbfRD?!5+9drWj-F2P9Pr-=_3w49@=X2aU8q1 ze=G5^+MgmB(MlD4#8}B0v$RW`RIx^4Je#}XPpYL=RM{#=@iq$3pJt7>x&F$H0Gt&6I6B3dcSuM74a(0Hk)Vc+3F3F;M#*$Oi+=+QuP9w>iP0vGm zCdP!C#|4|iC9ae;{S$nhWz<%#&Sp0|{Yfl+OX^w(O=sQL{?JUj{JZ7yd|ECiZ6k^&Y-5VwxXmVKraofGiKn+R zx7ie5#D1o4BZ@!bveI5!!IJxe)UgI@G280`?&*@--qoYgfF7~rCU2vX+i#mq@a1d^ zG^~3GU={vln^lF4 zBmV_lSHfbM!fmz|PR{atg?Ql8(@P5j)d??`9O0-Fka8Q2!!kq*jxFrw{%u6;^4mpL zT5xP)-RSK$97f{VPL+AT9jxgFg2l=ViBNuRAT3hR7}OJcf=QsGwxeoz9#8*dPoW!R z^R?TE%?Z%`zhm!-|*nhs#mGkKQ2x5?U&J7xqE_L+_Rmi9K9oQ?jB*? zi+0%SX(KtKk>E{mbr@zRosV(*Gtie_RPWht(b+h&6M)rpriepy)qubQsql)ER%-T2 zeW3{v3uQJUhL8Z8lfsJ;k}MgfhD6lPbL?ii>T|ZZw#xm!;A3Aasc$9B->iQ(!6Fvh zMsmjvs@3Vrf5N@vH~m4>n%8kJ>EXgn@evij7BK}J7s{_&rWVK%(k*xOkH8Ap&Ryp==_6{QTpDrV1 z(g>3JnAEYxs65*{1m5XWT4mUw7<8jB8;5A{_N8&29aN(ecOtEYu8)mPr{T120X42q zf&AACaj4UYF&P=jnM7?WOt1^ihO@B;dlqyfa)%UXj@AmQXPx;>?y%yNQSjBh^qqpR z7P+gjqscpo+;>Y|3!!+{y?v)mZX;=-{PFWX^>)~4^SUZGZ2{eAUMKIgcy0W+VJGpL zqLI8tGpq&C zd}DHY6Zn68i7=uBH`sLgU|~xI%kiYkFRTuacL8Xc`u~eEB3K|%u@KDW$Y$@NiD0$V zwGhl;-4!kbjb!OAs_U~u*oZ7NeZ53d+=D|FExe?NW`zGGAdFtm5C4lYMt|l!5#7WQ zffrcwPwu3ezZK@I3)K7zT+eE%a;oPl?{&Lry105bPZzCs+tWo$eMC+d-j=)VC4F=D z^RC@AU%cqD^1QTy)xWpYu|~25+v^4H=_UR1t{#mB^oSeu+jdj&&xNN&oOh1i!L~rd z+MpY+oA0KX;_=v`imKOm64Vr-nvSL0Fb(m3+Cy_eEvaik^B>l&zQ=~fNUH6jMM2aaD{#{d1g;ka6`Si3z~#M)zpqI( zb>=jjQVa(KMp-G16C|YKj^E(P!O}@0pF^`!!`#R(DsxcQ~sa6w^>@ zF`TsJEZ$@kad>Ij3J>PtWZkx>uLF7D8QEH{maP#cw3> zD(6;MGvPJu>;JM>30=8;yjs=_R#|$L;5}z&zj5d^3`4D=8=@d8l{YU?4R0(>r^w;8 z0g6`8g6WW@lruxi@4k?W7S+2wfJTB^)8ij$2{KCcar)RHr-jj17RaJ z0Y>u3UsU_=qUf!4k?9Y@#y$NL0+hq^h|Odb@!W7od8iEq&XJqFnE!zlh=ae=)@Q=QlseFmRJHxW!;DO+Wa<>2i3BNVMpI{uU*YQ=B5uqH+n~Z+g_`v z89$l>__d0z=XioUdIJWWse3Y#Y`iy+pfsfol&;o@MvjcoLSrDi`NdwU;J-*+3yprP z`xBud7;Pj&_fiG_!VcDS1Ht099`az|ZLo+xcN(5k`=f4=@4O*uK1Wi(2p8I3iyZ!v zy@qf2G@Hl!`;xzCf1gjs{^|a{$(=y$Q!sw|x$Wb7ncA1_6O2P@*VIQG)UK&K&pN36 z4SSiikEngK%gBw=$oN~9b%~QI)=+)R=34F}X5WbY2~>|j9z4AUH_a&`i!F7ETU4XOTCbZz$_;ffopQ6et!L6hVn-nF5q~-OMCM|{6 zQXYHu zxx4?F+kQ`Y;O_oY`rE2v#-oq+sXkA`n!U7H(Zx{!3)W{5+JO5@TdCyxU_IWZxzMnX zc~2|+C>4YWL}!(Z*g|Ivd%b)gaea@}wa^*Cx;tFx7|EaesCvVzT6G5LxJ7=MzCI!; z?%W|idOcXwKsC5Ia)f{1R+JPD9}F&jzhIVjSadj+9j>f9WSU>RkE-`^m~}2ty)Upi z&!>g@E&GY6`&_)%$(;au5(*2px^_L8s+1W-FNs+0VuMiRwF~u7%GW*4?__ zrn-@AhL|+f|At@ZuH4UUK?Cdf;{8?~H;ydWA7r>MMkA7~bUF43NO+ZQXfD+(WDL=z ziW{Fx4+uV3_{?X&lMWEslclbOPciFWf567aNUk|RWKUA{K47wo@^AXm5WxQ23mMX- zOHqUPFUR6+;g6*vY7xe|XK&V$S zFB+{plH$vkh8!UFpFCg}`qgZ62x~hFy@}wv1Hl;}F{W`!T4t*9yi~;Z$EBpeBc6D> zIdH$CI@b{vcj0yPjmakDflb^LG;kKEdeE8$j31Q`>RI4=j<`?1BEF4Aqe3^Hw^Fq`7gZAqe31@e z(~to7lfsJ;jgB%xi}X9#&BqQB>0gz)78+YwwY%`Y_H}as`C{NVUL%8`;!6RXlw`XUVXCjpeTIM4IXvN2}Gr;x^FCt^Bg4ZH$7xm z{v&LC%R#&Hn>hXeUg+KX`VSz1Gcy}!WvHBuMb#^0;(f8H`g51f2X ze{);VK)ye8$l|+k=QZbQjCM5LcCbuCOTV%^CuOpIj0A=<*{*%6y=AYv@? zkPLVCD@u(RRdqGFUr|+C?1*afc|46}PoW!K**)<75lu^c2(%a`oqt!|D=2@X9Ob!0 z<@{o}9(S0zo^se`X+wR)uoUlzZFtz`x{v+6?l5t^oy$sVX$86dl+>}N=Zo3i6WYZr zb>Quoir&_)UX2#?itG9Yhl$-E9JbjV&-Oq=uj|EpZ#=(J`Nz#mW^!l4XQ+|f#Lu+k zRQ=o(o|!{>2jxV5EmzAn&P!6OKh#7BCypNh_r&JOkgY_n$u16oFBt1@7)+MB7Cecp z3mY>Hk9E4yNXH%~g3pIvC&8<8d(c3F4>@cR+&J?cGz}3P<1z$~jnYw%|9P?DcNi&P zlBkH@VWbGjZW*QpNj-LR`(fhtIjL(wavAIX9fCxRvXP$9(iYzBcD$x1h!+d`mAWS^ z=!vkCOHNSFz_i8#>jVHp%>5CH`s{v1abZ<3&Z~|HURm?f73}+!5T|B)J?$m4Jq|p& z0NW#-doRm{6Lj|-p(T9VBTVquq$5~{U)Dz)1b_L6P4H{j#U4k9;DcROzLHju;KQYk z74o%g?`LpNZ`!|d^=LGpM)9knT(!EHeUDZJ%~MPcK}A7Fwh4C@kDm?*vE)FnDL1`vSTVe#&EsL|Ce zF#?1*0ENQ}5sgMiMP^%QG-WTZJ4y_`P3l@`+{n7kj@oD#$<0S;AAX%mS>WD>o4z1m zEYUFN^~S+j_AWr(h>;oQUK~yX!|Qq;mz%N6&=qdLpE*Js@V4N>KP2s5jnbWLZx^_z_uXqk zy^8tPXiXw1?z_hyB?4c3%-(mmWSiqz+qv&H5&Q-m;PrP!HS$N;L8Ydp!IwSt=9}v@ zoJ2QQ(4bCNR0{`3)`H7ui7GG{>U9J&cx~mnW08~les;UTF`{}isjFcVfV5@ZCMs{W zWA|+Y*~f_K_rtHVSpSEcf(A0Z!7+>J#*ZtZsb+fT@1RyuP$8-lGTMg2$F?HmWXmzSvFGu)1AF|NPFdcDk2*@*@IiF!A8y0dv;geG z;ZsVh&Dwn3F`fl3IxdnCXMr=?ML7$2&m6N$_fzcZsbe$))OA_8Odl~;a0W<~I@S#E zG}~)0GrDmGE^&vd$M~k94ChN zmAV!z-B`EJal3pO$-Bpi;@`rrlj7aEEodOcUpQ`2+&JH~V|b3F2*Mmz5`_73A&fQpcKP`>?&2 zwTrx`e$v&e(Slx)yEmO6?kdftR*0jwS+^6wINYd5C&weB|sF;%E&Af2C-+S zP7r6So)igaaW;o_E1k6GEhF)rB+j0)<1^hre7I}Q(k|hy`7_!zHysxoc^z;lDqye~ z+@JuX%07>$iapJOsPr}&zL%!Ch6JtyE?j`Xk+#V>J7LBB>`7X2KYfxp`r2HwO>lN?|bQNpK5!|-CYF@R3*OJFh zT9h@;90n+Yl%=4MvV;UKqsK0V6$t`?DICNB8S83-Fx)CbvtY<)_ii~woP9{@T50hc z>)!8z!ARPjqOI~R6s&b$j_C`c#9|8rzw9`yn467*6?4e-s9;RU*N`BFV8EE(J&&Ig z*-x;K`{TDx(*F2q==UG8^_^3|*3qYkts_n`TbD>DkgW^#5y@81LWaV*Kc3DmmYyQU z?sr-GOIkw4dj5`_p)=Ut8E{eWkKtxjoo)J4L?RcBRw+qwe_V8mm|G7{VM3)9+H=@u z5o^R*kPyA|LKEf>wVMbGyK=v(OfEQ_#Rdd(+<*YmFaS&{VT_ zZ%lE5fdFX>2$&OH-)@0(SqKhQ9>4|>m>XN1DBDD7)DVGBWKo|!(hV>CTMjL2CS?pYOzQ(Z1&Fm1QP3fUPXhEjMQ_m;7H1v<-k zOFQQjZD~i)v46Uyea=^$>p7^S<4eo?{$}DPoEB6<;>PPElDOXZ({`C%&8}W@nn;`O zvXUaLAZhQAI@Wx;hV8XDO=UL4)uYjX9j?QT4MN zS*f%x2A;xG9?Po032ESIwb<;C2sUvkYUzVTNeX!CkWiy`uM{TwK9m7kX}XP_>V2As z`mNNpz$jzgL8t8+Yb0Mn0Q#)-82EKEbt|_84PWBkw>{W-5H(0x=*u0tEGX z6t+@8(?kP-mUs;Uz|$nV1;)Qf#$?6+7yDIunrOO3>RR#dWZg}!_>E-!X<87M+R>SA zAUfnIjP!_0i|eQZ$BU|l38sc>dcrAyPXcEtjHdhMon zRxhxNJxIG)xUSdOP&MrgQ}to#5mNO*eZ)c42hZ44J;J`;cZR6?rnHh*b9w7HX#|=2 zxm3}ii>dM`oBLRM$eY;LT%8&%=oH!7<_xiQ)ES$tC)ploSesbm_`RyESxK_4s!36e z;dTGbuPUw{*I3{4k)F{wMZXajzHyC=jmb_i3KfD1D*h>08*AEz7caZEIMG)sBeqi4 zTY+wHC^|#b-6VA_bk1@#>j)idM{A_3&k%hN!LO6P7ja*pf%GjpW6{?*QvgkwzKPKg zG~B!1q&UGBjJhG*9D~nf5sfu2q+$aDY_1+MAf$*(m9v5b7A_Uo*GtY4r5i|Hi!d>) zd&OCMN;8tWXNl66oV6l0-9W^+$Gum>k9*v+w8!0dT+hgnBZN{MNsckLI*;FR?DxHA zXvcdu@e+5uY2eTW$R26O+dR2A*ZcNaT0_5amihgobOibRy*}dL_xERQe#f(m-vAta z1MPjYT~=mDD@gFAQpXyqDr|2dxTkl#Gh96y4d@Zc{qY8CTCy7NS<_w3$}Fy^_E#q_%UQRJ3mzlse2#X<_k{u%HOBN+PD@*OAxHY$Qrti-y|maT{I|jz+z=9=b}fgB z10oFZ%k#K>HMAkjDLBa-MIc(J-p z59(VYlu5(#Y8wFgipqe!a;%4a}EI{};H6Wr6V)KKH z*TUvjcKVx(;MM3QKl{c@T??CASa%F!BT~!=MpBC5L*`)6ir#bu(R&)KXzqpd=++M2 z-8S?Vn9{M9R1Pb5W4cJp$N>eIKRz3(oUmD{Bi80=LIsAjn|iY z)WNUk3y$OZ{oo75HB2@`DKiB=F`Uqp_K?ub4frh#oYKFM@md-DF#GtmhuA$v>RQ-5 zz`7&A>*Ee;8p$t!3D6r}c9+|wq=SH>JvY?~z;4gigS$EA2jfN#45Q&ThMUu~IMET2 zspG`$ppL-HlyYKrP{UybaVe9rTDWv%hc|kN*~g@=h09~Cd&q^0k?i-VWk1Ys?%8OC zZF+&QHL0U6^;A%gJXL%dvO4Iw6&rAxM%#rAMperzcw~9{Bzp>Z7k?bcR~>%4mplk0 zR5{xgw2HJE@0s@fa~If_cUJ8lf*ZE)QT4tmNmT<^yi&t^rSlSa%hE-bcu#8ts-TdS>+`ff8PrB&JcX2-h9`<@KxJiR<=?XcZAxVX-N=*9QN-5EReX+PmNMNycu3cd-U{m8SK+0E zpS6QB8!nnPVFVaWr}KFD9(xEWq*?0eph?vp_;f*%Mk4UZ*P-GLh@y(yFN%4YFMU8> zj@3sbFFj*by)WFW?7r;b=qReX%Uzb1NK44hKc$Y9m>;pd&8qUpB`rKlLY)c<8>P`C z#YOh;C}L=Iw7tmwj7<(_ZRaA}1TYMeKo?+ODO@Q{%Yvt(uPVMQHXS}J1+Ob=r|;VW zs)iBaSDb;aLKLlAsd^cU5`C9PN6yu+*sO~rhb!-llFrY>}DQP;S2X>^dfNiiA`+)LLmkl?K#z~1U`r<)~0NPxbw znZV?E8K=eH@7TR(qlv%0rLKj^VAk#B!o*14j7I)?!I~AM=?8*D0uPI-pzi*d2%H!u zS_r9{TH6j**dZiDNWa)_ifsLX-5jR#kJryXMPa%1^rK@JT0dW)>-{~NXuT|& zX?7Ur&gE0PjA)OQ>QW&iy=p)7oQu-RHV^R9QZ0{=N`4vvo zk82+n?@3U7rT`XoJIt>ya?@x+&$yu88;zXy+^teZmpmsFe`S-PU=>~C{BFnzP3Hyg z!hD>Zotmw3-qUnW&(?HqUVC6S_1b$<6s<*SSt)FhOB{kI5WthdIZ3`}Wsp|hj$@CW ziXkrdlDZZkqgnS20%Y!Q^W#NqM*3X?eq$5xHg?4EbfCWHDf+we zReAMA_8G@ID*t#`SG?8}sxQC+x3pm$)JQIFg%KbctzMEXLTHSW5n5qjpDEP&a=Id*iOJ>iO9j zHbyt)RhYnnf>3mOY>&kVO=FKC$8hbu1Ag_|c^QWuC)cHjX74KjyOZu(X6Ueo^XJ<20A;b=6+d z)hy4$p`OK<8BN%*YQL~Nr^Zrw?jLKH=K$MH)!On*kqMv?ykc2XdFD@0P~f8%nRw<4 z?)1vYOx7>RpP1WCJ^NpWELzKy=keuo41`POI zUQ4xakV7WGXgWBI1i?5e1Jqy$FMnq*52_v$N{0C=mJ=yyVX>4|V^zv}NM${>2}4F2 zMN%X)+-ZTy>wGDZ>2erJ^-GDO8pT#nDWi(<8z3;cG=Bxh`G--#3Q4T6(T02I^~8og|7Tc0~bD?Y@i)~3+ z6?n|5jVREgV2U7ZpFg1xNU z(glH$+yz#qE^ndgt#wRvrV|Jc7t^nl1E$V`#dIr8O510Q2I*=`Fq&7-+(&bIUVVi={Kj)k1wla@A9)QdYXl?@4xbZh7MC zc9*5C(h~CZgw(MH=M>vJQXWr7d$xvp6*H{SnoCkFy)(-bXRBAROYd2>Ig_=WJ7W{U zG)M=ozi=}moZDd9!q@gx-7YJTwk|=>zVIe{V697VFbhg=;|hX^R>qdANcWJWRv^;0 z{6EsJGdzo`Y5RmE3JE0`5+JmwAVnaRBuWb)N(T#|f)J#LfPf8sv4Fk23fR_euy;XU zyCNVOl2E1C3-&I2ioJaI%$bvCb~b_QQvU>ZX6MY@XYQRd`|O_8x(1YbqI*PrOIj}( zP~X+w39uIanJG!mB@JRN#xtz-o^-EY!`c@006;LZ=W8t!3n=~_Gq*U-CKiST96wRk z3ON1?bWA4xM&j4}`i`;JYh4q61JPX^iQh}EuJ1ZvSToW2aS$DmHsv`=K7LrFUQoK@ zwR9qHa}zE{1?t-49MtpHQI(fX#L?#{)1(J}8kvk`bFADQ`>V$Kun2+0!TxOnP{?)Yz!X=?@51KZ;U`Io#pXcL)=j8)zJH2T@vmNMo=m&_78M2`{D}uhnB4^> zxjEfRTrWNS>#&BKZPEx9Wa9SNOLfc3_QxY6D|P55vrEOz7gHSnw`pCI*}X(}Gag9} zEjPVj1Ms6qNWO%za9`a=PQ@1IG@sm8zbGh&`)cpdbC_G={rLCLOba|jd=>n{Z?S#Q zSKrquXK;G%tW(b5)K67eXuvsAyiQ7Wv~Qzz4LActw`H)rQDr}sHeQfP0(n0J2C4Wf zEkD$A4ixUM`={V$*$=N3)Dix&xfRWWM}EMIC$+=F;SJb>%Y((`{y|z=<&cEFm^~{0 zo#}u7d7u5=ZuHrwQLys5#_Uun`Zs7_xaeO?M>OFRu1&Rl_DJz^QK}>RQxPjqXe&(i z3aw)%YLwV}#mxur4)#Q3RIi0mxzD~T)e-&kRNH4CEB2sa`fTs{<*7AHZ;_ajhbq6L zQAKk};NoRQn?C1imL#=&Cx7a0hZT#cJ{}wW~3%HG-<4I>qPMo&$?t) z&QEQrRSh`Di)uzN_dv{_De+#qe?!OfZVl}kew>_78nlLwHMFZ-@62DAPT_Y}J;J0( zdPTETckSb-3xmyfR}2ll`QC?33Ko|10Q_$0U?I5zm0=mKVVC~ICi&Pl1TCk&26@5e;++?ZdUT0baF!Z$%q__q%^J(HXvXEQ!OB^-%G4R>Q=Dn2kz4Ym)#8>&TXDD>Jx%R(?Li)G0YfSn#=tzk4 zZ#1-|pCwLjZRkkm)uU>&Wg zTl2-kfsI^IpP+ROGV?_Dght%4tBm%NvBAP_l~*L34rAel{Tw-UEI=i)V>r{&dPn*< zsv&#Jq+CWMzKAbyQQ_&aAymz?9Ac{06Jm@BxUQs8Os>;$8cZ$}XBRbcwfq6CYcM%q zbnkJPs66tLrHxz{4{Ii5KMq3XE`B}bDR=SnsEhBa!dD5w;eq2afB@v#kiaQR|! z8L7uCuOcpvN%&vGe@pPo;sj6lqmgUle{Ce>ZrfN+AMj%aenS_O0Sqf7WJ#orc< z9l`rVEcMiunBb$dj=4BrCH95|Wko1l{F`>q_{b`)y=Dt1qtCILaKEF6W$M5Jr>rX9r(@*kX;e}YnS7ukVNXoDM z^d+MfrKc{^@tgF%NgTbZv7`JwTGwE8z37%ZtW1&j(%T!mKK@z4#P;zwiiz6=m+>1@ z=wG_e@g7}{8Ky!%t9?aF36Ij-m3oJcl=_{qiWUyOIQir7^i8P9ic1~&1zbkwO&zg8 z=T32VYhy?LZ?&#L=T_0hS57ID%r9nMijRnsl>7Is9J)#|KiuUG9bU{gZH(txI#m=Z z2y6m8mQ*3>6X(B>@`s16p6904)+q^#_HjgK5oz&j>F->Y1k7p-~ zdlac9eO?hB=HTyZg739U`QwVj_xQOkq3K-zVa=^NXp_)SiG!P(IJ$qSbqzqvMfX$q z9Db_OOFja0)VKc$YvI2ANjdi;2OIb8n*`u+-|jtHk7@OEchSWctc(o4usI?C)tlEU zWn@5g+|DOd<7KNA*0dYe@5~=ynTYV?sT<7jz*39+=p=CMA|; zTXsLvdWQ$Id`y%2!LY-yo}Z9Zkr@xcF`dKb0Ks&b`q~2=y9cLNh|^<&vg6RTAA`B0 zuDv(???3O_|LRpy9>W)h#^9p1^R+WtCR~&zHU2^E3p4#bI-;4La9^5Tz^@T6?@n_p zuZ&oEOzoT``RJ|(p-f%O*UHfa1QN0#MOUa_}=7Rdu;&=j7!Cb34B}J0OnNE?&|ddxV1INab2iUbPNgdyA$fk<}IJ zb@8xSu<#^w?cKDh0cV4#b`Dm}kdmb?kY0LlQ^)dtP3=N{lblZ)w2*Js)UIm1GfkV; zush3zrAjqnGI7(Z`28)0Qtu!$V#b8%UAve;nWQ5nb}LZc5>HPgP^4#{r}Ygo+eH8L zI5Ntbm(Fog?%7X_#O}vL?A){8mR3I)HB2~OdmJ1lk-T;>hk3hoTTR(J;x=-SSMxVJ zVsg)Z5psDim3%Kf`}^@FeXN>7m!5rXQ=$BK+BK&9*K{OA`LCN=%I^@Tzd(-AW2%kz zSINy*Qs{`c!jx~Pb!hGs2p@^PR{Oi2J!OA8qSwHPO!rTkI=c78Z;xTRe!pKt;pgg`|p9?8aW;I`>w|`S}Gsu!tX3x^{MO!QmAtRw0oTf}BmOGlKQ` z6PSt^`d+*{et%cZPuIEzm9Is2_WrhC_mY{x=CjbRUj}30 ze*IfHbtV8MnqxTAyn08*?C)rP&IuKbf(wc&8gWG6GS=r5>4b~c4GaDn1mPdC8l>W4 z24du3h!v1=G2?N+j?v)plQ??!{;r0Yxa66?lF~4q8)D4eE=QOYiOR8 zP@G50_SVVy1;vGU2%UdwKkx908bKlng6w-XGOZg1?;l>#$euKceqp~`hiZ~JRs6a$ z-I4oQt!rS}PjvrButYx1;ib#dT_Ilwi{a&Z137=W!+@9TchbLg591xW4Rc8=b&$M8 zQf^5B(7Zg2*g?_-;}`))@y6C$6j9pch@CLPg4PB^of zEtgs1>S}s=UP5|O+0p>LaKeTkiuJ|#K zc2F3obxrt(h;F|O8@`wH$)G+pE9g~!Q2U@=`r;Hk&uz-FA8-farw8C>5Z+vl+XrQH z@i8Fq7JKgV+?xnNT|fD82}d|{4_@bq*T^j@!U-qiFFomU6!LQ~OYC-+EsJl*6W{*? z|6+#=aY4FdOMn=8CxswGi2IWEhKc(;9SITl`3y_kV)65t3`gAeB39nkR+zZoYaKIN zC1USu%n9wJ@OETGuYnPHW&LD^E4z&|EpvN`EohjPwfA}%a)MUY-`;`M(p9r68sZ7e z+>&7BD-~J$7SjE0tgLyXlw0nMC?v6h+amb8sJP~Q{(YotX5Gm=P~7a4>A2ia>k>SQ zZT&>Icd+V_Q04T3!!jL}N5fdS01uE;4-1w&fXc)LxRd+0*&xX~)FIPV;cJ#)xxDBC ztfuoAp4hsI<~8B*Z(~{aKqGZ_ykn@6zNg&~$77t%(`r$e_Dc9#^8TErxZm8%Ke0Wg^1|8!&_ajG)yapx? za=CR}wFD!?aik;@{?UwJ^Nm}^fTnxndtLQ8>n7Yc`+&lg`)2QE3e^*ut88Sd|4p80 zs>l8oY{I(=A1hw|fz+TneL%!gTRP$`G2IKaj-mT#v6s`_(Y28N6Nv*!A$w2!n~3aG#MYQnH_k-*COY_ z?HON-oUiSt>7Y$MpCq21+T0QTGOcR>njpFtHMiBvOBMh+D&DukTDYk$lXFRfiZ{kH zWzBmsqj{L=4HFp@qN#u~_rOKN0!4F&no?j?Jk32SO3tXfpd&S?oFd*n)7-Iqlh!q; zOcmXA5mdaSvbpQ5Va>$s$3e_|&un*Q{ovI59kruzb6B3)Q87pLll4@k?@aM@H)W-) z!T-;3l5UyN2QcaQKV5^jeFz*sD9B#tIiB4@IDSM6%kcqp#4~gABU{Sw5~@@MV zG+0tqIW~1##KvT8gV}wK)-f03)5YAGXCvzAcOG8wvbE}xcO0q9Y@Eq#W3fvRj zc_;GNoOR<5*jeQd9iXW@w~JH1v~<-tElZ`i0pn)TZJ1^A)=L^>1xsJsazzY(!o~Pj zITZ>_T?}UmlXqk{W=^O}uayu8lB@(m`FHD?yIC$!lEgt6v^YHgdzH*V#~>W812Z7p zBi@x}x#D}g)-@oMi|*(M2wrk@mLo5$nHc>zh>^*A0Zj~(_hwDrc+}z8z+ajCI3gU| zf<5?qpZJU1;+6He_)D$yROIKsWA1}^EPW$d=`2UwhqI*iZr0u~b2rct&D_|AVC1`@ z4(<_gvpUNWcUQ#7ciIROw_dBdbM;ZN_csy_opkIwJD^v9)&@>L2t|s?pTibtC3)CA;F7en?GLEEcks} zMQZT(a(!xzLheL-(5_SmYx4Jb@vv7bN8-_1m-1H??WaZes32{3Xa>AsL@QT+Pl2&; z5B;p1IwIJy(>Ia5+`ml^?HxL_l_T>VZ=nJ1`m~QuXzRi+O|2Xfw0)WiHGvkAm94Gl znv6}xBLarxN*$(wWR>`ODV}nqdt`TNT?5HWqI)YtqOkIUn@AvC^QG~Cm8Ku=P$%WC zc}-UR;6LwSX}z^tHj=b)~*=mM@IA-7?DYx+S-x&^;?HYol*}Ugb%V)*R~A0 zZ?8y7%)@0mD7|Ad^SXI$!t6BM0 zwsy?ERqGmfwuo*3$HRBJz2thpLQCt%VJ%#rx5>GrK}&0lXKI)C2g}kX zYco>{=PH&X3qQTiak-U#)dayq}A?E7~|(pX~-zmpZR;EHr5Q;8ATHtsiY; zY5ld>f`*~BcY1i68d~GW)uO_DJW0%p?EJjqqM%Qk#mwi1LCP1n)fthOby&=luI1G1 zarop%wT_b#R@I0f#kY!JRf8&Nmp|0{2A7?p|1LZZ^Vv(@0v^QYAKO?y|DT*o8pLO$ zt4V9`&6+kfe5N-*2oJZqWIR?*cx@OJ=SIOJZ`I(Tj@ksjcrbaOueR!ziyJVeZ^@8N_!ufBJ>U$H>w6g}@Y zPH;Mu7fQ~-j<5l!6#i2JK>9JMhu|+Q!wZqZds&9><)N{Cg0hpZ4Pxg}>~gF7KW(4c zmAn-_w04NueLEfT?B*W&_O`Zc*GqNJYuwV-mF<-gD=%p)%+{Gd%O-8lNNv)t?i@}Nhf>?Q`rKaY8a_7^-RyRj z&tB37lEz!Fh{0I6JU5n8p}=&;a3;CEBlX)kIzQBSEne#2IG5jD(IOe!GjO2CV6ol( zFYq-gTfPK05ia-!kCN4#mPn@sjKXm`GQ;HN;@+|C9FtGgx(0=G(LE)Cf|pEd=SnfG znIQc*2$C3_dL3mQGq@q%6Fw|0J-9Qrws|d~@%(-tTkEHuAW^YhzXyL?ioZy#%^6#V zIF|9fum2!D{~dK(Gj$VIw{soz%k88pf2#dq-hM_v0R1|Zl&$iX ztt8M9Z-sfAsdWr*v&G*2L0Kpf@QO}We|gFIcF3-2zIOv z)TD1WacWeyBk?I(*MQPlbf*$1`r$1vI4RrJLK2fZ~yJ7>PS{bOwn+aq*UHN8~59u0bMKbRTCV zR5kX3M_k@CDPE-FRC<1};SL4vncr+zKe)0zHWMt5t;K$5JpJLwn8k5{puv&7WxZAP zw@AE2dU5^ThD%katz&Sh-5ZDN>Xr}dxVAiD-vb`k9pI=tIAY}pZH1{jPV1P9Y;UnQ7TdAYb0kMZM)VpOkty5m07uz#53rQ&C$^wr zDC@m$eSo5DkNje6luMMYmxCP?(r(4i$xK)y$Sp^6%!D<9K#T*?wN@#E@v#ojfN_*K`2p6xbf4=N zt!uy-F1kNP!0?h?2e{G;YbI1b4npNFxb*?`gKLU}sI|Jzfe~A4m2zNh4pd|@&K@Jq zBDt8bE%BEY%!x?Qy;R-07~AJiFm~vH!O~t^hr|vP!p_z{aFv`%M?7KY_Sss7$3{&D ze7ra}J;*%)9q=M!V|a=-!E9ZsRZOTSh_%}fbZq^v8&6%myvB5BPy;;WK*!cq2U@mH z5L?hNZ1p}*I?%DTVRtNtic0cJN`g_3t<4N3Ub!|2`?MG4x<^1(l&)=_oL{S)p9*M{ zQ`hPIRKN#1UdmZ@;Xhe?d?!dd+Bd>KYJG#xWYOOV&%-44l5c?vk$As@EQzPexuiiP ze&;}&+1{Hs4|F7cEE_e}#l2%bvX>#@2SEA^T#JRY6)_rD7u0eR1JUsymE(rIv&FfC z4szt}rF97e1=qClTnpex5Ar=f?-F&8#ED zzX!z=A`T44c#`#7rS4qu8)?Tpo`Ao^<3UK>z3_N1jqe$*@m)e8OXGXZLC=(qq{de} z#H3zMM?9&y3NJs%R^fT#>SG7FD!esfWwW-zy#7qxdr4k<$LV3P7B0*e$+^%dJ$`Gy z7(SN}{_34~q;>l^r4uRS;KTWATY5P7*-hefQhtrh1JOLV28^y}PhkjV>97o=|0}Ld z$Bil~#}{f{1Ht8@dwv80FPY!om19^l5&CfuAv5`YN<(JyLdE1-0?Q1D$4cPQ;Lsk} zgS*#=yGS%5a_k<*J8p%qIq2V#d5LRbWmB#Rx;>_x57;BqIJwv-5~Z3?!XlqkEJeL7;S^S7Di<{f8XBGc?h1R z4Zrnxv)F@%p|kh=8zcp_!Kl*BF-1A~d3ejw6S`hOK0cZ=arK-4Y{n*AQDN?s)y(DS zxu|Ef2wn4fM(T7Ou}S2+#KS2a9GB16x(1y)ME5@(ESJ4x9&n@jd@Zbno8odgcb-F( zpUa*i=!Q4C_a03OmR?qs5ui+CFMkINl_SRF@yV-)2cUG8!=&ao!+{zdIzu7xgpST2 z@t}D4SO-Vx3ax99xL0&vi6G%6D?2cyV~^DuqaSOMlTu5ZfK0e~*4nngGVr#xu)t?Y z0jbJGw2qmTC&b>&gB^QM-~rXz$}50WOK5F% zdgBJMf?&sWRlO1xAI#iU%1?{60#U~6j7sW#$AaYgs+^$pytNI3>e99J@<34!MPd3j zR6ZX5DE+l!cCc>V+LU19(QEMnMo0-6iXFB#4cM9yv^g7w>Qrf5QJ#_dn1;Y4@yp`$ zLkBxLzoK;wTrY_3%Lg-^Rd8PNB4LvetUPn^=?QPZVwln|$@wojfcjprHAVgvzR%@- zx*yX_-Sdj+Ya0bGX0J_2E^uH;KGU{rRprBjq2~gE+T{$ zjPofF_nkvaS%A=MlX7Hv)>}2)TJbiQhLi2YyMYJvgK~3sY;R9r?`0WYO_h6C{3B}n zUOF^kVn=r!7~fH@0~cu*xd1PqBl^C1Rvp8{zA~Q(DK& z+(t3Cykk&$71oWB@w@`Y;{tw8M_0hNb+iS1im{6j7ILahVa`e^|lCU5^TWZzspxyE+MT*J>x2xv$a@&D_|l0!H|4sjtPw)ty`!{~}`P zQ*CMUZCg*?)7*R`=6*sJ(i5GZ#s^iY=(ScmDQ``%0y_`TBiSuG+giR;Y_1UP@YV!A zfESPrHB>I_(F0$+#8Moe)ygZtz1<*pxhvtBc%Q(_5=j=UDtDEep1Kc9vX^enOzEu1 zXma*fajc-TBknM*Ym#=i=nm>^iR&c;v2!#nzsq1PT&sVUa|Z@hm|l~hu(HR|Z88dYX{=&IFzj3;yOl5$%wQ`46d9=tb$kYkeHyyw5zg!Eit~+H z*I@C7#B*%~3olvJ*%27eOHjn7I{UG5os_FHrvI_KJ&CRN92d&7pW-+c9M_B1SCy&> z64wiqd{Ua9MRHSVzRMlkTWPLqF+TA=Q2DFQj>?~R7AiOFq7sg&+<=Z~Dkn7PVvF#8 z;^w|x9F4n1taR2^xC-~tI%bOMi@n3TxVzn*BO`hZjJR|e>U0-J-w9oqzUtm$Lorpa zi><=m>3zB=>K5S*b$ppsy6D8Df|8;f{H{G_+w7o(+s0d%HbqzR8MfV!`9lq7=C07A9;_`j47QQW(F6WX4-Rj18REAZ?c~8y?c5TG^ z9Sd&U>1I$+dz$adc;JG@pT^@l92a`92n?oiM8r6}reiZWv=;wXcX2#^N9!6KT8Qo& z5gfc^YZrHK4A#tI!;fJ~R&B8*3VruI!v1JbyvWWK-NaG-h(`p~VhS>@n`P z6?c(tT#f(41(#_2IbBBf{>bKDR@nHB`Tc8ygzkqpJ|A+3@cAh15%YNj9npM_jR@wx z6>6^Ai>pKN1wXnqc3Q;9Y;A<;e6iLsp?45_3l4E*c{UHIlFlm(C4n^8M+Uj?qPf23 z5N5Pe?kv`h6yHIYA<(Q(xR)QIjotBnIGo`2LhGq zl*4HPnCjgf)i*vBP5={OyQk|CbC?6I>uT0|itC5d@KU||fdfSQL)@{wRqwsfzK^5* z8C@Oi=XMp^2ihy9{q=N2(>~$)uC|Q#6MvU<4NAA5myQ_upEkm@uhcqb=K71dS1~_Z zQKKW{c?FEez4X=CEQ}W6Uv{-s{0K1x4bw||pRYuE&;lHMZy59er}2bhet}zrqlqlW zw{3ZgFwmVI`V>(jiGtjp@KH=~ykXGyvD!`?MNfzA+pX?=9x3kC>*h$_O6wX_hKg?U zZZ@C2q**uDL+1o(KZJVd;c_arfcgP9kLuB%NPp>l*{53#wHpPeKH=k{#b>erg6G4A z1t*rTO*L|b3i#b9SXt}YjLJwIsbTpTad&99VD5WpsppoI&uG)jc$BDy8 zJFe!J;V)>NFc+!&4}0sG?_xpzTsOz$r@IN0-_=eqli#8vn#r-Z1e0)YJwaUDjzpj; z{zt^pui8@CXXvfFs~k5|G*Qeo=)jl!yLGpve6rYlU9`ic z+y}4`NujBYcP{YIpKGua@xm2e`OU#AR$w+>xiFI0_DykWM^9XyyE!9usE*p?@GSB0 z$nK8WWm?xDG+lJZcel*;lH-9LEzHk^wQ%X4A?F?+toqwG*+;s6o6_w)I=p+B-#$1_ zV?qTt4?_gk3Jx{~$1^-CW^iuM0UL165T}=PcV+w`t!u!UBf9rR!10p1yE}&CVGV-7 zblrZe!=047ZY0KvuR|1f)6W#=#NY@)ai17*2?w{yI;=AJEOB@v<)#$xb+|H9@qXGJ z+gtIjtM#7q9hm-CcgOVKy9?8^a}@cQ>22tUW_m&!e5o5RTB-i_TyZlCAEF?Zmqx7g z)>gP^AFXxFJe?=@Mxgr8W1+nxBYF*tnEM;bI`#viqJ4UfE!qpkR3;SfsjkiGbQEP` zcJGfdL;3k7^f2g8xNDYQSe%1z<#56NIxI^hSunRPR>6Hf37zF6xewzr)=PANCTXt} zuddExuij@HpVkesQ2VbOdT!4KiGyJ zr5y;CjP5M_v=Xf zUh+kbTYJNriO!FM==eT2=6b`QYg-5Jd>x;)8n1ai5Ba7R3CGhcS5d?Gc%AqN`&^0B z@RvCHJ6$OLbzgm>TVVIkb!6?ED`cIjJz}z+L`O7PV0U-lTO*=(mWy>p>g3-F*=csIFmNVIm2nuO1gHJgB-?!n3)y7~dh*#))#c7<=E3 z%Z*bOUu`ZZ3YPb(Y?WA8kdqs<9rVVWfcP30>`Mar6fW;z(DxHOpHOpBjf~%8->w5S zIeWjj_Bw7K)9taZwXOl>ZqfZ5j)t3PFZqNJkS6+XSPWO0_CR0!_5?(Vf;8f<1kQUG%p|HtW!Sr*S@7}~Nc*UaL1~+(65oLGm^hk+*Vc&0 z1zOjD@{s7_?R0Y?^OCN4j>xcPnrJ`HMh5~n(Z|sQa1(vEYoeLe(I9yD0_Js8#sMC0 zomSbqOq@QB29^pu8mUg~?(2^2tpe|*eSXrh`|>=;?o0B7-4AQ8nB5Q15zX#|2XI3v zT#BC-fA0m9t+tI#i5OX{jWE04(>i9(o)L3z!Mirw`eAPXGoDw#c-%fO&2yFb&pca+ zUl3E!FqPQ*dzxw5ma3rKlc~Z?o4+I_0}EJRske;ni|3X;2x?#P%WK zCqca<>G@QKGlTDc1y=E#5hOm8zd@3|I7#yUUFK#76$V45bDLp&HwQ&Wm9-pao4I=M}?%V=fkGSKv6@C8rX#sAt`TD ziA~eO3JRGIQ!DXqTCHc(Qx^~FcnvmRh|~AtH*zY=E3~e`<`dC<-eIHKIxl&qz%|A9 z#=};Z4?os%PRdO&lA=LDWzimj`%gh7ewGi%UIPw=_sJey{z_cNFih$X@s~(lg*W8) zLh8EO;gvlq%M+R+?dYlQ#)U%X!a_^LJUZfu$nR(5;rXa=4c;m4buV;uJ~m?IC~bv{ z@HDMsW@wk#JE_pM!$(C%^conE3Eid85&E)1OX%HV3mS&d-s_HqaY82+mK5T%7H3qp z2+Ai_CSf_5Q-BvVa%qdd?uS%jJIY$+X*X3j3+A-M<-2w{Z!L4Lj@abyU*hG`LdWgr zwXQ+uH_?3>euw*GFL@HEP=CAu*24YqA95~fP+`V+rZ9U??!a79VJ1>1Q&c4=ByNSx zknlc2MCjUt*!HklP(PP0bkQ>zjPG=S28^Ue?zxh$3LTm2^-xJ^z=(fy!enkJexA|8k@=R0 zl|WlzGC!hq%nUUWdk^$*WDX)DdJT+7WRA_jM4?$;*TZtTshFCBXS>4pw!G7`dem^a zWxd?IJnEC12P0b&mGO*;->3lPxm8$<_lt6Z9kZ8a2B^>U2&6ujg{7m`Wu|_m12t)z zCEk73!*Td;t!qHZ6y4w9Z@6Ffl3xe}>6iB}vOI1f=l=r8h{qVyB)9kGV@#v)7-8k* z6$P<|)F(SM=5AZVWw})nMeJm8C{U2Il6x2laA=-Vq!?*nI6z$MUgX$&q}DYsv=Q9_ zxaNj0WnNNRaG=s;j;&{Yo z_|!ePdyu$`EMp3vg1a`<+acl-&AL`&=!%dnu#>w)hg(h57%@i@N(JM`h_V=BorCe^LLHF@PEth(y3 zz*p?<#U_)Lv&G^p9%8$&dSp z_6k;A?iby7x{m&BQrCa`;vp+dKO`Rdzr4C%$`h2UO!5Lp z@)2We4Ta0~H3MsvahOl;!R=CU`w2=^xefL>?lFSyv76noz1;?@YvujN%*yiE4vHG@ zBGHFq-!B%nCzhyWWVXlXh-Q0247&n^3-%G>>R-qRYNij0SjpB_7M_DC5f4SM>pPPRxX3ED#2aA_f>+iu26?4Cda+vYn_n+~*lV^Or0(=#9 zSuZTXsct8L{O=E2GB=n$sS=-w)FM0(UH;Z{YbEdyqA=rG6sl8(v5KTiC5uEf>p*R`&Rf2`z&HS6UDoqDa9ODV?R26@y9IirARvdPx;#9 z0(8n94&};>-AOjxQH`&;4?5IRbs!xHQFY*#)2AWevwF+K`*O^{Y0Z53yA02A>J4enX4dO3`Ga2q3c>=RaOKmR6 z4in<w12{33P^+O?2UT^m#%()bws!DM@0u^0)z|4-zRCK+p$LgNk zeDN3w$7}8q{G~Pbfymjtthwtdz+IQ10MDQpr2wCNm=xe^v?E-Auc9L%R$q0PW%WXF z@$$nQs~?M4d01OvBCpgsW|A%xdoQ|4;xD&992wPXVN@pb#fJs4@@>8F*0$Nx;8HOM z1=BTq#}^(JCv##^UU6|ywtKC#&G{uga`4o4&2rnw>p>pmcBsf?Cf6q1*{LEk^)DT+ z$=^ld-*1PxLcD)ZmFtGcSBY-po|ed7lG-yUyJy=Kv7VO4SIenTU>;*Qlil8tpD~Y~ z$1bAm)JlBJ6-Wdl|Jpo^IUEuvJtgBuC-8BO{s#jM1QU5 zj*Ud`CCB!3Wf;~>aDE&F$7L9EepR`YVdFDTC$ZHW=U6V>gMT-Pf3Qtljh*i}#ygRm zjJ*7Zd@a2j1$Y_emF{jm+Eci?MLV)^P}T4hIuN4jrk<9ncZi4UdpfHApp7u$cWNt4 z)udh~AJrA}PO%pYmRI9?%2eGM8P#iHRHkZWPgi%__p)5QTkJu@aMgSM8s?r>%9~EF zY;@ygl_^QZ#dPax;zksn5f4`;C*>Cu;xzbwLFbyP6im#XVawJ}=bqyqsi|*|ViOMA}xW(lXKLc}lJY=QmheM)mMx91V-1!8k z{7`vi^SZ)o9{gF0R8M(@^;s3+r^IKB#6|cO{G}rNXwSWpdN22`pXD20vE3B2ROA2a zB@A!gTM>`R*^G{aDBi5MrT7ctYt!D2;>8gwh1v>Je6ZFr7u^@d-oV~&SzQQA3tyq+YH=HECQa?p@s5G5dC{YhZa*bZ_o$E3uc{ z2smg-y&TrUEpdgMOB%GK#(1V$c~2H%60fYxk#Lr5!LQ21>LiE7l4B}|1x2@`HgmK! z;y4!IbgSBg48>+0o`GVMxVXNzWAtZQ*FdpObU%tf;UypRc4ZmXOrU-o1j;Mw6dH$D z)OdHF?qEMq?x(tz@P4mD$l;~-QS>n`zb-DPU7G=5V&9Mi|q_`Hab|7asj<3(D>MEsW6yQ+_) z@qZ#CdJT-oG(NhIqw(W?EREk2ThK67+Iu~+PpC>azz5Sx3h;6Dhbr6DE5e<%IghTz z?z=bPSE$h8zS}o?{)YAEK87!^uh-$3eEm#Zszg|CqZ!t!28oYE^?mplZic<&9Uwr= z{i%;-?k93CX%KTUoJnZ!$ZME4FgKY4$I568T3bYpJNLYs2ug8l?EKfmNf;9j9)z{W zIrfacDw$2}--=UB`#P?6(Yh48y3T$nx(5fb-O&cvOR+)cZWLA+G|~B?5FOKXB;m|- z{iuent!j%4Otr^3u2FmN^?UJkWYFa2>LCfkfH@W2BIM&gTuGnz7CPSxC^)IL=k^tj z-lhFuj^0T}YB-Ahz!L84Ye~9WJiM*1BkAghm6x>@Ch1nKV`k?kvA4<14lk!)j*RNH zFe(%EroO?FFVXqpPk1-K-^3gg3{Sn|H}rKp?X{t@QSjj!ET{AF%xqqKIb9F?N(7@m z$D2-neOTF~Zk4&`ZOaJyZrqc~W~ih#Ev-9`>os=IJv1tH<@aE%Ye@XJgmz%5C9#*Z zgXCK@!Y~%DzA+gF3d~^)XR_Qol2RIMe!a3ou<@}PV2H8d@B@=WtVX~{ z-2Qk}!114;V=_E$AdZbGbv&M7k898`tI9LB_~@+q$A!6)3=4zG4$PE>@^EY)7QCfIF=afXn}v5 z4^wzejLZ~%uhiArl75!MnPL+fhQr?bw~+$W5re~62o~lP5qn!xX@?zfGcI>o`q&EU}jWq4~V@6gD8MAkePPv3@Bc*X;P;tg!P3o$I1u&T0g z(DrBW*daj*3JLHvEoihODrP*&b&Lj&gT>L?`Z>}*rF9J+2a4`;#zR$QFL=x)4o7=i zJX)pchZ{-KehHZS?|(z6`a1%j-`^6rKx{$7^t|3_ ze9r2?bveNZ;%Sc_IXQ()V7#(~?>J^}-@>IgDp}YYjd8b^+`Ol#6YJr`U~csrnW?ww z5KZ3p61Q&Z?|8gi>zZOyBD#HFnoZc?vMdO-MQKcE}y5;5l`KvyV2(ku*@AQ z-pv@`n7brm+se8B9G0_eadv^|S)V(G$qSwHPOx{%hv6anIGyo=}j~A!k8xZU`aQpm_s=;cssQw?K2zSC>@;xvjUN<=0@_MYCOB%#$ z3};f_JM#8`AUmt71JO4XUq=TxSY2XMF9C*cVm)3z9&uPoAHe(eXEeppGt(-{(^ESi zt}@?1Q6@fiz+O1?Rzx4IOIWDFI$m_~Gfgk7*UT@&UWy0$dZFyXpb6FwglUY}i69=ndhlh%0g;X>=D zwIfXHC+Uc%HCN;(54XIYE-o%R-0^yQ#L52?zz}2;Xe63$3gCs7a#tQ z`Me_^CHl>Qu0(GeC|v$sJHlN4g^q-{{L4Vgl$npi|)Bc zSQdN9IY5nS^7XJ5Zkn%^bI);javM2KunjlO-lNG!5S{bt0g_A-Qw(_M>(RcN9V(D#VBQ^`Yj=PO}+WKge#L7CA#u-O#-P<-u?meCK0J!qJw**lImKxd+9 zzO!Q$9^)@6#*e>r*DD!M4d?nze1>-l$?8EC%xPPd8LS%?5+u?|*w+|)_$<>gn#5f$ zK0R`zWAUq6*WmG}=&m9>^qns+SOEx##Bae^xM6-=P9+UmSYtR-pS&XvV(#cUt%-fA z@RA2(Kux2^fZuKUb5s>xfvAziG3eDdBv2Uqs^c;kJS)!a#y+T2f*TD|$!Ey>KhbS4 z$X?03WZyxq1jCvM(T{@=xn0gDpSWFqRNCbe`&Z%Jm`GqPg4=UL0u@-n9-Mt%oXrR7 z^yn6L7$T~16>f?2+zWy0YLx4bMHQYj$W`G9gM_k|Xh*nyUPwngWn;b8l*I;F#;z0( zFBs$)dvCcNUu9!F8u;m8d2UwrT1m^#(hxwi#@>x=zj|4dN<>Gl}dS`3|#I!&QnOn08iYI`RBQnj6cpVOwPLVk>wDtfn!%2(Uq!5ZuB|Xz|Ij*Sdfpd% zzaZ1-t)$N*BYF*t$ZTCXI9Pt}c06IZXx(&m>)<0X1hJv2cljk`Kn+z3>7&Vxszt?k zfTQttp{fxq{qYTDS^=k0GwCj?lVG z3hT3i_DAs<_L;iR<1bP7p27c^y1D1#?$tLG<&cCghX`{U4^>&m%uS^unz^ymV98C< z*7G;lpU_F7|p2bqz1Jm-nNpIq+Kbos{1zOd9HHZrM<- zxk~$Qv6&R)-nFh@_RV+gC)Zr>d;%OgbJ7j_>=WCE{tI?oSampWw=T7}AO{({VB71n zgFEJ;#A3I4EohgHO}0Lq5EaaYAoT(rtV!Sfnz+X}<_~p*zFzAZU=l@l@lacQz2s^@ zMhoQ!U@hG3Cd;{3JGi*polpPP>uvAM+1Ta(q^jH`iqi9x0VsX@^|XCEJI(E_V%wr;@-AbGE~P_u@$y8r*bM zRZ%kStRIe*1N!Sl_Q!-qNEo)NJ! zS6gA;UaECW(9Ol(h2&yxuxw09TEg7Os9p=Ba^)R7%yIUZ zZFEsp^JHv{Rg5aLa9tI?>6DX`>mPq6z9z+G_$V9p!Q^M3L0CLy=TCA1ei(L*j?(06 zd+}=JFh|(8w5~xUTXeTML`((tQc#LX`z#w!Oxt%d5PYNg;ImMAkpmOCXy_{ofS=0L&Cii;dLi~wjG5peuR>6i>@2Z>|D zF(wt;X&)6K9Le~W)al5~y>z*Iq3&=;-GmoLxPJH95klMdwM)#ncj$=bZR{O^Cj9M( zQR48MBOG`CidgzxTVn1u8L86RaQ7&&mm2JPU8*lO*mjeGk=3Ml%{QHtSI%2UFo|&| zFZ<1PdPk1YVs@)2hj--gL2O2TP#26s+yeIy@lmFni>q4W(~9{yD8oB)HqBxpCzV8G zX*c4o)lYMAb0;d}kJ%5`F`HDLAkGaQ>8N~?);0K?Ai5JAKBg9X>9~=O&hrQd+YgTy z6XSvlR376psYc4%X+{h*p#-2*U?#8lH|}Ty9&=}%|8pb zrqx*@V?+WSr9ot>xOg1~CUQTbbqykuME8L>A}UL~^j;_BZWvEI_+XW$9}~Ycl9amP zl+Bd8d{gU$VChv=-IHkI9RL!_@`N?%0a3lKFkjz;>nDrrn<*=0!<`Md5~DGWJ?oDB z(+xbXT!Z^s`;2lt|8u19{J>F)dCc>6bR@*{c0u-zXm@<7xY~M@<9YvxrM}t{^ZZz? zV=l?F#onk$*QPoK{UHr{|Wc3hamLifq@Vb9Z3TsKtVWr>=TMb4kSzD~z#viV%` zYtbmj?+3K5!R2hxy$7y_AJ6iVr9h0D;}>Bq+#LT$&Ry!z;^ue}{aZK3-kJYmBI)Mz z`kPUvD5fBHGS;9jWPIX$SaALd{1|-4M~fRIl~_4{2YkgNb;=o%cXgNsl8eOEH%B>w z@6x&kk_$xl+Xy6H^3^C;z2D?uRsQ&4{_7Co9py7tM*+ly>q{#gxM!+ zH<;N|=!j-^!jz-z%KIvDaMDqZ)t5)CT%xUj)hDND6%+4&#oUeLp|sAILe1vsgc#oy&8k5iuIr;C_-1kbmd?m#w?eb+u3u_mKPV@w6uOzyJn8L6$0sXK9>7Ux;JklcU0 z?wkK7r{Xiw`>*d8Ye9b^eY5u^s__hQcq2i<6FV6rQhj4HD0Z?z{*RUUJ4Ut_DwvN2&_3A1lL2xr0U$H2Fn{ z9Ctnx7g0GbQgJQagRd`(udvTlzTGj8d+5uMtpASBtEGqDc#K=&XO?xB4UpB@vGzE?FQF)yzNz5#PF z@)DoQ%MZ$LSUo#v`#%2H2v&Vqj(2$ys+$B0-m6Nr(y}{NXQWQjv6>{_B2JxntfTWh zt!r@ED7vRRTudqU(mBUEN?%3s+unJzn3yAQ(r?Kpx__JA**kW^vBd3+Am>M{Ll&(7 zw~K)QaXUSj_)Ar?gJ;#dSa5Ghu1?#7%7^8dLF3)9vhk5RtT0*+YXl5hZ;Si)AL}T; zQtKMDwu|nIakNzCc7)4~5KDVzSJ(B}A+u<- zWo`i-@yw;?MzDM7@=jC=!qgGm^(#i({`zyViO(zNuh%`LcfRvz;{M=zB}F}g>><@H>X+bUsKUI$ z{QO|SQ+S93{LiXQSat<=efQUZl-e{(FRjiga1I^Fk@;9R$>66B&BsHY}L3Cq5+DMcR zbBXlQzec-S{|yJO^2rZX?$F_WyED1QT>pl-9*uw_^hB>K!Y+I8`d9I~bFj46`XLDi zWA=#QY4pEsg1*5SId%OQy{8|lziU%n9y^YJkY;=I7%BDVYG1fOpF>A9%@fWUW0&oJ ziD&VRQ|Z;|GHrM`m#mA3oV zvBKX~+9T%g3OW+v?~1XOzpcdA7jSQYmgzepR^HcExJ3V;b<8BS7JJ{jxtQ}hex{BL z>Xk4k^Y@vtZgswYu>1t9PLod8{c5&Ygp#4K_x*okgC*^&2iMCh#%E%#t!|OxDm1ov z?N&hhXPz3&=|Dg3h*%0Z?RT5~1{SfecBsy(5hlBHgLW&{wMfl9PSMh2Zf9|;>v4|4 z1GO%Jq7tHm==M9#)@Cp1gG(~#8#|s5&@FdIIkiuaJq|5*SNaoaxxFu)k8`DYW@m|L zXMi=xf_c@6`xWLf9I}7rPo3!s2Rv#N!15YE26wU21pN5Vi2O%KX%NX3SI;`mae0x} zHHdT--K!#qc**6*xpI6~JYrRo{aBrylv{74!OXtZt%K>^Z1nNqGJ}`8Nh;KYUK89? zdvG{k9L6Bb>E(`s+<)JS{QGyr?%{}?@bPi3|NiheA$9WcDg&9+_2`Hub*x^n{0!-W zRnC=&!}}cXh}|J#=|F9XiCwI946zRtd$<8R+4tWE#z$6j<2Cnj(!N6rIwbsouh8NJ zDO?Ilr-%CQ-eUF-H<9$VdM!cxdK@#Ho~|!+^%-wB=HfYEdJJVY_#2V%GZ@6|h=d%r^7sgG>9pe=v#-*+29^GzdznMUEG@nC;^Q5=@1*E$_kFmSxLClX?)xsSpg!^P1Tj(7ats&x%6gGF~! z92b=#Ub@~%xzBzf9@}0QoR0^l2JPA zpKxWSb@zwv*gx&82Oo>hy5kA1vu^*)!n3He9&&Pv-FMnqV>ByC4{3DNX<}4j^$KsCt{!Js z+^371SB`VkT^6zOsJ4|$ z#TGQoQrkOy5p0}Vof~W~!UeXdAP3J&QMa6&S5Q)d2Tu5DvP+7qTPqnVbqQ+rdlebM zd$mc@9^884B2J$?wNPpxiWL`rkYYP4iWK zYo=cX%u&6MC3rMoj_Tq)czUIHN(n}Ldo93U5I5lzBk}s~0S}8*@NE zRb&5dHy`20L%rrklJ-le9`BfZ@QJqe-XJEcof)&N_5rK~4^FKflAKdql2`0XaB^N@ zZa&tKqn=zpD_B1ca~YQ<;PVUT|GuSpFlaU?U&~2LE?SbFdbp0%| z36)myx4&*lyJ3#J@#XFb;@17$p+b6#SUdVeN9R*vHT;ssZAydgePLYlAcps-_lb_m z8z+LwE@Y|34v)0*wL^mQPp@w6<0ff6+$?g4EGq-eYdMV(xkg865V==8yz)fH=DW47 z$&;m`dnW^-637c~a|y&(Ef_SR`k@dikvU~8B`Fu=TY?>DRp-nK$!hP-ML?NqF$kRHLw5NpG2=p>+);D@6B`I3y|+y>y3@E<5Md6y&Rk*$;=9xhx|GI^Bx0{Plpi3qSl_zMIn9Aem zh^I2|S1@j(U0zp-v&T(z#rcAWm2|H(4t*_6GjOaBmBCoHHMSnw^ z0WF_s*}PF~LBp`wdwmpaoLW6Bv7{)c*sZK{bBgou^w_SstGOQ2<773$L=pzs_iW4z z27}DevqsHZou0Z;M`sfEP4TFDqT})>TGt@4Rdhd`XxG(V@*cb=9{&PsVIFUnb4i1E zjPXoPdr#H^-#Cw5tdgz{3Em9|mAI`7mt=S_Qh>+^9Eoc=kFjW8rqZ0SP}KWCd`u6P zR--rWs#OgX?}%!rG7E*5bSQJZaeA2z)DMF|nY@_tVUO03H}1F&3e;^A4|iV<7fHb( z9lZxXcZi>qREm7Mi47=q&>e(NPCa=hDp1Wj)X|Nw9JzB zbMfsZGlCU$ig$IY z$Vg3}WO7$sqIZjvO(r=Wchb5BoL!>Zev(aIFF9b6<8d!o3*X@SLC!rO*tJdi<5&~- zZ__$@j~Y%QKIco=rI%EIY$=(JcuP#-EUiP+qu@;vdznGmH_{X*B%fqg?q2I-@~L0K z2a_C&4?BrjtjyIHb00Y8O+)ORe;0{g!(`mU!8&?VCGJJ$=3+1Vod05n5vH(}%zhc) zpkVe|N!bmrXQUpd!!#M&RQx*jBuCs+wXT7rk?5X6kmx(gUNG$>$J+~GEL?w^$f=}3 z^%ujL`s*Dz3K$b#T_l^=gRdO@uEp5t0DMK+C0Iy+rASU8%Fyx-_?3CcL-eCkjm(|I z;oqf0GU2xnzwS865%w9aYr=0Px=(WWYHqz?nM)OJe__xB=!ZgpRCiO~rNrj;w^7qz z?y&dLgBg$35(3XHv$odY-rIx2S>o`!lylMmzl98=2KW_s?4LHkBetReP6<~1>Koww zCJTeRO}4!2LPtFBmVAWwV6K4dHC7M0^6K*ikm87+c1amM&(>wy}cj z#;-DCl>oOtdKA!0leeS)y+cQ5a<;p;bjxH%*(bHGL86Q3K2AtP`d=@71R>D6xdIl$ zyzMIIlLqk?W16(~-UI;o!Ri7RDASe^xZtTxOxrd|Js6v~gdsqgZ5ux&1i|MzECWFg zaqDC3M@z3V|Dkma1bL$SOB@2lT`%43q|9AdH9`9E5G1deG3U>H?CPw{xrqyem8sU7(XSJLV3huqvtt=-E`1&1|tpNbhd#Z}#5Q-rgpYnQlI z&Y>fov)t*MI`-r`zQ{19?ab!fVff0GpJbj9z z?Wv#Yl`^fTv>H}Pr3%If`V7tdX@ zG$R=PT~v%aAou~bFen`jB7dv{Hd#DWocv&lBl0g=*MM`R=>9mxE}Fe$7Xl&@r%tsb z9xUgQ29X%!nf&&iyo;|y?W*p?0Vfh3K^lEVqsb4|*xj2jSw5%&pMd(X8jmIdvRYLb zmsu|&|HB4CupBZ~k$_-PlssD8?HJ5W-*9hgsa7?pj1bjcQ!Of9a_Cgo2X~xmWA?)! zX67^!;=SF~IeQ6g#7{Eedx~z_9$Y?FT&Db^rSwVoOH1it$l-rS@3BpTw1(KYW2$5K zwNr)N&uVX&-A~bx5WAn6YT12)`1!HR<>y?%s$+M9X_nm+#TGOSyS>*B!-lXM7wCL!YAx$%e0O5W_E(tKxIl*m*_B(E(YVJ| zVnjO%7H6b(oMw_%UAd==O9xGJT<)cH4HQ#Ew`7{lS}*A_&2f1Ytc4rkX>x9lU{#w9 z?g!%7LGItC0rnncPa{s}C2>r_!VjzI^+&+4;H=e5<<=1i;{XPy2TdxgQ|bWygkiP_Kj&m z**~=tOxfS)h^B1pH$f!a2A?f1{yfdmw)M#>XW3FqI^r!cZM$n7GehTyy)Gv^+O|B| zuHC)H&*V?Pgde6k){Z#Yw!r6!sUMuvIjYfr@8`+VUU)&f%%J!t~re*H{ORAoo4AMP0n5_u1!DLvG+o)YY@3mbk9H8 zve!%I11qY;H^N$YIeoF5OBz&(F`lW!-jk^(6KnG&5?(|K0NAf@2$kSAN~YrXyshu? z;gug)1E=Bbi>%xNf8?pv<>F)8Cr+tN(FwS zn41$U=?8{RaO0`sJ z;t+`wa|^-K(nTo1y_>GvU#8f~cgk4k+r*7>}4LA&fFP;ysP z4GX^SxQ>f%4QO#WgYswMx;9DnOorok9ioBbA@TF)>5kV;PEk2&czvJfrk-N2ZeCLV z6vt~=Gtv5S5G}8$kqUzj!KXzWk*(Vt&$pZDX}I5sUpT0S0dcvvFp7RI{#i$DGI^zV`ok%X*r_w>&g2(GcfT1n zlf5KqhGTZS8J5{A)w-{z}+z0#YKtigrx0zV-}C$D>_7R;!w%c|}x5MIiB#;WHe$d(N-{`(Y3;lN%{9t2dU}?e<%T zR~R{?b~z4C(vtn2iM7F&cgH3`gwyW(cv@ zX>XX=m2@OT?8+II*c-*q*Je0ke-p9trMAMv{!8naIoc%lenaZf_bI-NjOaBmA`^S{ z3`guXGcB>ViY;guVtcP&h7BP$_PWW<_cyPL^04a<-Twlg+gJhL;X!?Fom5zJN^%ZP zaW}o1rOZ^UGz@-ETq>UF7(7br8Ytcp-C;8=gS})hUTvk?JO$RmeeyeUF81J@=KExP zbCmvV`eg4>;mjH)w{{V8K2u!owigK8Mk0<&7zBY=3xbu(SNyf7ZBx>WeFa1Vrl*z`-c6tG~)NJrx|6G9?~ z&H;kTezGIMt=xmdpNYeiW<=r_@s~(^A4c5^iR)^Zha8QD`Ma5pyI;=~?xxLBDaYJx zL`Op0Z8Xbr_Zx99WtQV^Zp2DAZH2kpU+b9p`Bv=pndP|KEi$6lz=+JO zmgVj)u>}poUGH@wYzTMpE<~=sd7YetXL!1mxc$CBUpx(8Bl~~St~Lq6U^<7|)bn=Sg2cSjz7iu^6YiV2wCX~D49O{{WmYzBBBq(gK2t|#9<{VjEVUSh3Dh3(Ht4NTTaY*A3{Kc;MD_lp;@Q$}@ z&V2y7X82A{f7dl9cNIF{s+}P^--JhebiS#prE_(0vwc^l^AiCpJ+u{~^DwQ0VXNix zWU==wx+vdb>=78%X~C#O=^MH-rRR0Els;ALfrg>9^ZYunfs{_X1Da=?%c|L#sjziE zJgcZ)TsFS*Y!Tggjo+;sUEiCC1n&R#BbN}o7}D^ z{%-Edbbm+d8mwxIEh9bL7#jyI|;tbM6r1q(@yT*U+fNn`OfE|=+krq(sA zX(+l)a_tJ}B#m;J?qJPC?8bqJX}1lD@pexr(@WYH!51pSuKNI>*gm+tsBst{8`<@h zc-ut0#T3MD8a~;KyrgbA8B+Ne24WUXb3$Abv&r^o`HMK7Cy`=KJby!uLbk3F7;EctrC(^d3T>uf$#{-W}}5bUz_a zr861%OB*4&pQd%pTwNvhPR%2_!>hw_Ks6ao;UG^2y=UN!Zp`@9JYu}kzE;e=A=>^| zh&bo>0W*a4jjE)<&vUV+6WgmLr{`q5Phmh!PxOmnF@P^emJTebho$^9FZqt5c)x}- zKwp4puLCy;-9bFPA&zaMKgxTs+j2-qvF1z!dNb~kZHU6Almkh)0e+P-s~lpvU>!!i)uCa#Tx zfsxaTw61~RX3>2m0D+UdoW}(mteF7aI1nHeaG3t{CUOC<71eY4<^@o=lDPI;UsV#` zA-?XzB$S(5Wsq{XO<&E&jCTk?Cr>DSR(H$Brg+3h>84)NMjxd+ ziMxs2nbKDWjI`E9h|(Rkj+v^?V(+HzOzGA%pu)!~B%%NwgzQn{S2hkhbHc_* z37h8QE07X4@9TICHoe5(gWZ|tKWJTpO`hm}$JnU*qE7O4cP`xrBM~bE-B_bpN)Mqx zZnRqfbiZz*%Z+I9O_}I2!$>K<20aw9&}TJfZ}GW4jwy7n3;Bpe`yZ%K$62&bS_DP= znjXyXt9l5-AJvXfy?qFeXokl;)WdGl`-zMHgEvFtoBf6dtPIswh~iVUj+v(ZVsAnZ z-lPu=jOa9AMB1cx>cJ&@Z4bLie@1M9hS{V$ukQvMLT9giYCISgaJ|5 z2q^q!Jymv_@Lv$O5_>Xxv$d`Xf3)bP_q5?VNlH&H(qPRLX*bS32pfNraW}$D8}6a9 z;l6evtX{@_ii@ag1QgdjmH7IS_=?Ge+w42wFEaKjNYLYC>;)Tvu_JpjW1sISj9sjq zAjU4lBR}eT0N!**?lNnnYuu`P05MvK(9WynP#ol{8nXyHI5uFB%NQ|A+lNcKc zc}ZWF*cWk57jvLwNb4M*31(bHu9}&O4=jgw+3@H|I(%+!CA^gY3$hi*q-1y-50uxZ zdK^tyc(A;Fd}6PPlXjlCcX}`8Y`WGp$jlbq4f)DTkDEX_4>cmq=ji9v1%J4c5*>i)pXfQO83>#{kC>o3l z5IHe&c34KRJgh@CTwW~x{;wBvxu4cGuq+VWJ^@&qV0L*gW_C$0VfK&O z31aq9JffK$I*Q@z270A<_iZmGcAY0w8k3P)c*GeYVmH@1W}aRbdrhBUV%K_tmJ&4+ zPUBmi3F@G~?8W8yKTp{G_FA#`rD*&2+s^yXfD*v&@jHqdR)Yt(Q!;_h;T}3ABO|2+ z6lwgN;9RS42JPNG&Tj(uvE^1(9hVe}Ca-Q4`;NvZ@QLBKx95k{wPS{JZBsJRB#=Eqr zsF8yOHTasEgQdRLZFR*42$xrNtOl1N@pt|cO!LiJ*Wj{Kbk_%PagsGpaLER1CTceh zL`{7)B*p5(u+i?a017qDX)rYCY8JQ|4?shaeQv!~sazu7eul{@TkVe_6|u7};bZ@@ zvo7b(I-xgny>@TmdQNXk(@Z?#Xi6Wx$n=h$RI0hYU))XW&0N1dVB}V9gt-2g)-jWH zK%axyaNoV@No)hD3H$jBCjy6^s<-{y)Dz<7Hb!YvY+YB_X}XGFw=8V)6?M1 zevav}DLL>q_)gV)`#T$m5d2hbojC=f@vzc^J-@AFy*0=VSFmB0UmgN znqoX7plE>r5?cV*UxclUjO#5lt2$lHB+6vKr ziPkZb_Py9!_#~J3$$=4_28>91_nuF3c`tj?cH2LTEzmF_|A>oU!skoz1-(`JRGiO$i0(gu ze0GvQAsj60_4?Sd{+FDK8d%n0JkxMHPd@YVYr&eacn?%AjEQb|JBqrt8%la~DPMnB z4R{eC_GH2%OUG#Ns8)v`Yf0m5xmwcU7aF$YS9)Xwo0V8)ReK3@)Re}^KDujeQZ@6AVE@M!5{j9EcqV1E2k3cRJznw2sx_(o7tFvM)0_U+WrN5=D1Z02e12-j^#jR2vt!s-14E3s{=` z!}hp1%uFJ7{W^Rvn~Cj@Mg_~n_KSVNuB;@0vm^jaL8SIl_>0t@+UK~beW)Q&`;)#* z?GO73wNH9VWg=0#DjxAsyXsSx+UJXVF;6kI&k0yLOIsmoU#xY^d|e>+GM{25xQio$1+>F3og zYr=oJ<5l3e*JRf|xZV9V-tZ80I(&HRzIyRb>ex))=7>K%pJG0b(z*tR4AFi5Da&Uk zc@E;o%3J`}{0(=OoQoP*nPEIrtDGl!fG#%Njbe)7&K3mYg)S>@$idT(syn?851}2Z zQ+#qn8iC;Nm}0o&<<5#=ut~>dFt|c|TlW-m_YJLUFt}87_XaRW=}057wEt12lMryR)Q_|7simQ{xc3L9mu#zlg=E5Q^@n`yUv8_f z_EK6Fdokxd%~U=6X`yP{r!7^l$0M4mq3gX(9emyNwc_qIPcu`y1dKeYjSy1@XdN>< z*NMHSp5|^Eev<_QDtw&6H7Jm7`buxm&CpFxf7)`jtysHKl>Obb^Zg1K%W<`8Mp{O8 zju*-(hC-Z0Uu&W7LL*<5EEZ*6=$^d^MA?93Q@w(O_;or?ld-poXRDrO*6!8129y7a zZpqWcS_Oua>_GsefBqCK`updb<@`O2!jZG?gcnmGc&2-HKCO5<%wJfH5RSq&#dYE` z>9d-Q$)-_T+jwCbOZcc&J*>s(0GksdHk6bQs@6}XoI&Vr@j9j-bNY0xYY@6!bnErA z>zb3)>BpP~Yo?!Y_+%J8s$T!ugHXM5&H#TICo?X~lI2-pbI zIx{;v69@~mhE-TT97&vx2w?LR`LG}s;;IoDokSl?jOkx-%JvYS{_e-5uBUYk7P+EZ zyT46YC#l(=OY!;rZ7I%^b5R3JF^p%D+IjMa*ZB@u7+TgThWCpR1d5~(E`K#LLgc7A z@EOhe&Q|$` z4#4AO{h7yw{e{PGYA0wvy&sSGh`hhQCGs=kUU`2e@-G1^KWZyPuu^6XqAVGIZ!fOc8>1`GhN}`Q-54td>ZW>t7gMbW>baG z@RP#44e%w{1^+3oZKbiPY1wIB=jQMN&=1lp5+~iYJt6)Y9k5B_vEt#C1DM%&XLB|ufM-E_$&(XRDofk#7Ab^gOOdG(h z^Td2vQ2va8iikw{26)6r`33_m<)@2#2?Lq(mjTVhOaR*( zRj5G#9ne7=fR>5lv;H!yYioLy*c(zIgjy-_$uzbFCWAlzhsbb zytDR*IDQWv(Hsxm;}wp@YT$pL*;?`U&OyxcK>~E|H!Cn z6?R&8vXmZQ={Sh_z7&3251*}5+MC2?N744T;Vy!kVMO74Blvw(r)|Xzy^ZO`Rbx}L z)8N^&Wd+3f#zD~)tKmhX!1zWnDeAOpcv_2eFXgS#b>ho)#3rM6i+9C?nDU=$U4zbc z(fx3crM#1T08t?2e+O&+Hhia?`vIdsx3P=y-}>nU=gjUwVb){BNhQVgr2RxN@>g+9 zC%T`EVH*X41c;s}=gMNC5NY^~;($S1_OYSO+02+`wdH{)zjao-*(?wB9ZA_nSH5}+&? z@+~?HoLJ@CKJol!99kOk4ltES{Y&`R@iye;LyKpG24l=A-jVG+8^#QLMp!>rJCt%! zNxL{aph+Jy>ls_v-xg12Ji~)T~;{Lwa0}WH$o#zw51`<8-Hn;|!oSezq_}J7ODDCtP|I*vw60i}_Yu?*D z23O(IjD+4{pD@^@vzpt_#3T6i|7)dB#hoA*5g(~PhxvbZS1a{HnxDnjPX;roPlftoe`3a1U&vM!BrgaS*Cy4Ij2!}4WPVmUH z%<5;sn17=lBd4MUvKodnIqn>}834wOIzGBij@Y|r2)Em910y;O7?If9 zdaJwe`4petMv&q{@sI;C(&7Y~XuToDh;;C60S zs<&yze)zHsR%I(mD%hV8KSM`ovNcJ(nlgm>yIkuUG#ZI+;SgJvon#S2fZOg}V9ih9 zL^&5VkiamWNoMECM8G&qV2%d}+<+r32*Hc}iMv)p7!Yl(gfRF*$7L`$M|}Ha2s8F? zt!pqiQ*?h1VBjRb4B;{i)=Y$M9EgzU3iG{qjiamen&Kg*S_#E-=5vZ4#>ex-N6aTA zX%qO1Bt02&@)+f|B9eAl4 zT)@%`+7c1Dxq(hgo zg!oT%s3u!47q<>S$Bg}5>l#=t7Tur0$zOKrt&WrY0DvK5PaSF-f;jR%^AI9ON4SoP73ftft`PlKc!3AYNWN#=F z`K6&kv57W8^j(bG+*#I0)GH4jH8LXLL-8c{| z)nQ15dWYbmHnTYFc`!5}bCYo75mYF!MU^=FKXDcYqJsPi{KbO&($HfT!G^* zt*m#4F{9reCXD_^yF-lr6OTAX)BgF-VV2U5ile^`V@fAJuacLnoPkH26{2*C*1=g) z3)y30??SI2R3@(`JmYygs?&l|iPk?2V_J83-qJc(?16@%we$RY$OoY{{0Jj66MjsI ztd_aVqMsRdXtlEo5<5{TRA*j;g4g7qvU*;FWzYad&R61EMetUHTphGY<0r+*$DU_a zKdW^OKs`kl?o1&-<}p?$?e{!0djeSWGy4fSA2pEKFs4a%=gq^5^a0a( zP;px?aW3@{PC-SUT(&s@>D?qYe7cenF0boY4K4%3*JaN$y^FQ3!R0B@-4($_rInLz zM``OAFld5yLqX8QaL9@_-!sGET4zO}0lne*oM>W-?FZ|x+5!y{e_IZ8U8j@ zrsLdlSN{nvSSNYqr&C-{+gA;@tZaox94m?2t%h5c4HXwJAI{wVU%*OdZH2h~ zgw`=rG)(NlOJ`1X-0mD0)oH<~#O;fRGq=YNx7;2n_CUjM+j*WfTyZ-!B_}mYb2}66 zGi7g~lfvV~$0fs=+Pk!_!6#pI zw;?|IYL^pi21s!0{T>+ev-(9j6*Z96Fq}zn=g6zWBdm5YZHz6cBfJDmys_Ixx5b*B zsO1I{Bz09r1ka9036Z~alm?M0;_7e1nbfC^P`QbSD3VMN-BU-{EsT@Ijo_LM)=a=| z90-^g4Y@ENwuEXnyd;%!!S6XuH8MJS*brF#xJrDTCceTrNNBjzMMR{_){P-|kCW7w zomes>=D`tMtnVKognnK-LS^JGfDugQcScw;&lg*uVaV*fej1Vh3-$ajpxmTorR4Yubw+v?zNLS{ zt}fmkUqYddC`e|5f_L~{c-7Cqw<;1R-&T?k|C~@}fKLY8T5sTqcd5-683BducKglm`<9+)rKFjSC zEFACchVmRuN@%p!5gIgBiI0PNG9^P0V7{&BShpAMpc}vo5kLrkZ<^H zj;{hEIt>_+h`eJKOXTfh3p5Ooo!6Tn2f{?opzG0U#|^KyhF?*(`VB5!6Okhd zu0+90vRjqFH54LpRB?wk@H39fb-*TdOU22HM=_Ca(z+&f_lWL|qb!k~^H0NQKGol@*pf*?H z=v(3_WE!z|J^V%X&Kr45_8y~sen;BpBcqtd-;5F-*B-6tMLe#FM;wo7i(PZHCGz{? z=qaO_$Y}v9$=V7L`D(3$Go<>Q55!(8ukd=@V)wozE)*ElDZ!w`ePR zfd+C}4dfiJ<{iDcEZJ+h4Qgs;Ru=3Yk;<;dWTkt_y|?Bfk>Mh46lwdXw+fFVCrjpM zWTnIIoZezHSVwH~_iJ%+z-VUj1g&e(`CN2gVsuRJ?4m}qnXr)wXOl> zJJEeF0*abvCq0PL)-hnvMC^uwh-sT$ZM1j#C9utY^n1Ldk5e8kx((mEga}|m!JRlp zvB|7LKZ(OI5^c1rplk9%|8Jli9cOud`?8W5p$zYEN7p^4juC3#rkx>b--1Vc)V^hm zrS>1<=6}a9wVw=F>7}g@wTEjRGf#htJ-B7k(RI(g0;4)D7?rr)ZVYq#l`)pvCnWH5 z7@%S5wDY{p7_QUr{ZZVgN;Z5gYT(r+4IH)MvKM_vYxJMRiP41gd8PJAu-`6wx43#( z!_fdPtI3Dtcj}l;9#@BLf?^Jmj&-M$FQTS5HhdU4yXj7sWn!yz(7+| zd_H9?Q@pv>HH?WD-KJyh4#r6m$5P!6o#K_}LUNfOn7Xkbdg3@F#*J-(YrW)5L8Uj);COlao5?RLJM!B>E}sVISUiEZ6VeV};~XwIf9GNq9t) zJTytr@juC3U)=P@GSSxsEUng-i0GwS$IMm(vA1U|-CYlyt%ksJ)gPXRO=eZnu>1Ye4F4-a(X_K zKNGA0`4u#0%DJa|t)4AA!)x;A*5;w={O_7)6*N~@qnt<8@^KN!gtP`|uzpF;4bZfJ zdPhC?`m9LgsA7Nt`X@!sm-PdoC0K6Np&H&_DDM6@pLze7)-|x4E4mK_U~!WF(0{xUdw2^8m#*;Cvf|a^fNh0#>M8 zn4f_kj=m^n6i@^9^P%2+?09c&x4I8jf(`k+60FUamEc3|46Oto;1RbH6kfWsv!u%1 zyLEbGh@p&f?V`eW??A3gM*MWZ`qbhiu*1Igd;)e9*F>mGb zI*|T?T?Z}}n{Tmp@~AP_+{dQ&+^qmXao)9Mb-hM4 zpgLsPGi&XbQ78VtI&72RSBi`6USQroq;(BMEk*bK7cB3cq!WOLMgJ+V=I4DYIk%IS zHv&o?J+0D?|82^j^Qa9xBXn9xI(&984TukgAD&cUIH*5|s^0`Yduv3s?uIA67u7Cl z9OX2^VzQ3UU~#?p=)J&XU!rvl7XK05g#j#_Wc~|Gb}tg8N+dT{805-N0>Rsvt9i)w}X zIZp>~lDv~R`{IjC_=Q^60Ckt>&SRi9F4|p76=)}&0{|iEH-bg~PX8V`A2o2N4`Z60 zzVl`*OzoYp)5plFKxAIwK)2CHc)TkHmfYyw*|nr@g&Oc>qx#+eXb=1vyayJD37kVZ zU<1xW;_$mK@(S>i)-~YVFS~lB)2j^XxRZHb-wdr1ilshXMfaFG!jV zkGeH^6lNYeiRxATD$Ya)eCy%6I)0P?{lwX~UgE{!sMa-D^%31~z;*w#t4{JIpoj}Y z)p2$=@RXeUC4)k{fw%DA`W;rznFHS8nea63?k>>7tKiC4!%8@2P6Qx&_2KPZE6@tV zRL|>wmmj8pCBo^faf%`ar)S0gq;b4XTsP6I_ZbDYJ=Nz%sgWqh!P>x0TPH_idZ ziQc*dsdCPExEz4XfXs6^fN+or9<2hE!9_uKvW~04pA*OL#lfW&xC^E5US#B+En(4DwO$R3KY!#z&Sk|asyic*dM@; zmAe9g;epi*_(-L!0afrT1xYgtx_PhwBvhzzcxFL8Tm;}r?cnM83kvGRCylQ-sV9k> zjm9(iGqopa6GC*G#oDwA0Hgg93P-{ z4IEQN7hZ$u;80*WDZCIErMMReJs1gDX}U2RvXuA^xpCJ#=DRO9qQnZEcT?||Qm}Ju z04haiNdPby-NGw?zjzC8#JFP?{fc^ph6~^d|2_=4O-$K%;r7qkhrDNZwu{39n%bcs z1Q~y&pDzv`fn*r6^R_rozE09Ma-S)wb~7thd<|r*Rc=UFIx;X zB~J4QyLD*j&bZKcF80@Yw%9KcvtP5aDfTXgFUB+5S5J3r&q_~AkFY&9B@2ESdKkYk z^ce2>X+iL-Q~?!l(}D7O-nI%f*hrIc=py_M= zPSDfifch3NRkOF(ppG_Wx4Fd2_EvkIjuAh>bj96VB%o5ghu~5I$`4 z&ul+FVYLWAx6Xkbfr2osq7YiFqc#Yw7uOd+Baff@+^TgALaRl0BO#=+$O+bQzR`wf zK?DM&>4v+PrL+VvE-y3w)T@|Q1K^BEeCRj3O;}J(@x+;)8!4~}O;%UYN zF8Fr_tlXxpw3@K<;W({grf!Frdjvg{ivqU=26b96DAoLw3A_}HnqV&q>=ApQVT!(U zyu}2y4AguYTKb%foUCxohcA@CPc%AgKOn0>MH-tP+MU3wKt&p@w(d=cU!Y?*DZXEP zeR%>e0voli!KqAi*D_9~@;m7&zz4Vf`@y3Bn!sK;A2slr0E}sxV&~2532qTcWMovj z!-qdRq;GBK{XHAV9f>=v!Qc@z#QzFa2%8^uyatqnaEpxux6rm<3QB(#7+zJiQ4`$Z2MEIWo1)(L<^BfUwMcZRpR!0;x;5CHT>t} z)OL)i3pss^n|{aG;UD5_fiZVa@Awe9sktGsA^GmTJYX>^oef&Ju#7~zjvbD1$-_xpAc>T z?LQYm4@eT+^Ybp?m$4^R%T7+uhNtb^rXM~amzL_4)hKq`fC_a6)r6aayb-8Sr`4&Y z3GqiX5+>1)iq~IH2;$8_|V(w5IoWlD`2@TmTwOvRi@gXox#ZcC|y|})2+cA^~ryL!-!Rc4= zKVuRu2y^1Js!6UNMfLgsOipqQ+~l6JyHyMrGp)ZH<_m_2ZV>dq>7zB_8(b68V<}(4 zSa6h-47?491{f<*ls&EMD&v0_*L&db()@RWImLSfckr=)+5Z0}i^I%Gyf{psB#Xl~ z?G`N#oAHQV9AY+4vfF_Z>ha~$4U>3b_#|NELv4i?hF`RfnY)nK`(YCI{~rcMbQ&-s z?FH6M;{Ly$SAKH2?*FTbDNrz50q6AVkRY-a!2N;bWccNbTLmD&Q?ua(ZFKn$+5xyd z;FH6Are=GEb@tK<5M6pC9yS0OlNFy$PM<0src7q;U$1o$7?l|(i|&8Cf~w_#*5665 zoJ{kxd+rAB$6^>_ZXnC!Lyb-m;xWwG7|GfJuo0O7QE z2+{RF*bu-kWeB0Lf`SM(0~Lq~qy9Q>gHc^^yzgY*2)w9u4Mw#@7oL4`7%2pu6n=<+ zQo0_{H-dxGbYr$)DK!I-D;FH)X29i2v`AqEaLHiA6zMAKy{fVG#CsTtE(R=zzj!fV z`lMrS2rAnAfB6G!{y)Qb+r)f4S%`k}6qS)g^b_%jCVJ>ZFTWAyhyQ9oBk?eHikDvu zR|5iu&en#A>z8UBGhL0v9JJuIVKBNHaCT&1H6czjmZe8Z;cCDX-Ur+TzW870*i_7( zfXcdGcJBW*8EN0HYFb8WT1tfRDcNvCFvp`WDolS3Zgcy@RY2^u>bj$zci}deV*k0Z zc&^vE_LhYBzB*u&%jb({PfTIHkI}jYoU=t2er;6S7ljiHo5H1j78vt){pZT5@FPo{ z#6vHn#R;nZw%@taV+zsTJLMhd`#G>k?owofzJdFIQ=*6?sI1=w6pwl`!Lmh%YG6qf ze>Y5Fiod0G4J<80cR#_RQp5?$IhkmGvmp|;(saZ1U@5U1Qle9p(nN3Z>XODh?_mTY zAwK>=c;drSHS>R0;&!^Y{g>A{p`7pihki$1N`L<`9zU-BzHznE8KDcj{ENX9-St0r zs_^{Asg~zA;1SL9m>Z_rf_|}hdfikm=(zzakNd0~g8p8snEARy%)zVXFNQ^zZu&nS z7}ROOpj6YZp33Adm`dbUi)2f&2O6fRJI7m3Wp-!4wm!mcC`RxwZ_D3yl#?D65TR}#kBKIS`2XDZvJzy=x^u$ zBj=+Aw(~HiX>6T0uTNFv=C~rsOP~~tgZH&gdI#tmRZOT5yQ7K;mXoHbR5P&LD6Ym% zV|F*vx(JJ!-8Q1zV47`koFriy?cDJ>mu%m%=!SuKsgZAu=+mbCDzE%(xJwJvh7Y39 zv>N~@LLzrmF-3S~C0=(BuOaiOk#C8U+A-!_NZxk1uPY6OH{+RYaKIVw~4*Y)3}i@jEt(5T&D%U)Igu8 zksm&dIsWN1TfpxUoABFd()Ks9gh*Q*r6Kv_;^}qM zndJ9rU4zKOqI*vO5huBGI=AOw&BW`*`HNG7YBwap&a=68!z(=e(W~fy;IO5`T!|Lk zFzc|&-mc;>yiF^+T$=J{A>Xkn@5;yiWmBFfL|-wTiN18Y5dCfK77_goJfevn^Tu>r z!+VOu`=&F=e+yXoSz95J$IVdrjx(kJ=q2_}^a|U#BK~t=RHp@_QV}nm&W-u`-r<{k zjd>q22MVT!JI9OQ)cDf2RkO2`;R9dox51NFDLHVfu1SN6Flf2J}KUdFSI^Uyp4HW%F_YQ`_6mBQ&ID;q+Z}}T^o39NY zD5rOXm*GJhel`9HwBgR5)-$+t&#zV5s2V{5ze-qL(!hm0Xn9#1ujCsj+=zx>mhv53 zn;d(Z|3n6n@OVMTXz+MmoE!~!oU&_9WtlNVRA)utPzawSs%7V7}b3N%8zh7qXK-UWZL(_T9Lm=(LCPJ8vG zunqqM<7^Z2>kMIU;{wGgV(;mAM6)+^x>xXEuuSKRhxH4*O?7wO78fvdi8e$8Zm)Gr z*1jO-Ztyza1%pwieMw|sH4#p;K1-X_-xU`EAI9&xG^SgDE!5-1Y#mhAowjqo7Muz^ zu9gk2%!XGt9KE&l3|Nuj9ToJMQ6O@Y*s!1q2>3grf1Og=Sf4@?`qb!X9iz$G>Eg`r z0%q|nt!wa@EV{7V-sN-L38oZqO^^-~IJMc`Lq5ACk!0a@_}A-+@S?(RMv zm`TvJ;!NpG=IZBK*MRW4=zcuYZlImyFa(cn@}FSMzkyyY=b{E~pkX}ICOc1xW`;?M zzwLlwe>Q{$bZ)j@03mQkXg*tXJ!dk=V^C{t8?&(=4xmTA``fvy+@p#Ig9zaGhk_( zwnTOIpw=-nRV4P_n8n@jw#cYzy>wczNT5&D4NsfJ#QlAiEwW`|6B>5X_IJZBg2`~+ zEu~j`SLBq(djFhVdSaCf`0x(1I4jwG*ZV5C4ieO$$CzkUF21#51zMf!&#pM7-xf#f z%w|$wsC5lc2SoSW**2w}r1@+nbt|yuC-s|hE@~jDVLU@>=Si*EOzQWVmBM>t01wV% z#DmK2w9L|a1`nn-Jmp7t+;eBe3WP^z9iyT6A@TF>*-Y^#w64M9UD53xz{5#$XLC;s z)=ac+9Eg@UJ{c2~IDP;*4lkFH$RqRI?c%^ZhXbd$rdVH9`hF7N&or-6E!ciAOZkW4@eitMcdK@Mp7`<)_S1NlaEw#v{%O zu{=@h;AANPz7Tt-dxs~Nw~je^jvde`z<^YhKbpsuE>H4#{a{C;n zZ+ES05cpnnyCMSoepZE#lRoCvEGU0I<~cCvXYh}5`eSpL!7!xBY3IzXbHWU+>$QId z*0uqur6hKH{e~EuH=XghNfd*Ks z8YF%b)s<0^aMEQg#XWQk7&XDV;UHKd@FC1;BJlS};PWa9oFW7&H}wZj;T<+UU(+n| zBR5I(lVp&8Bm~Gbs@U(rU#!?WAoKoR#g3`Z*RN~LWgf@R6&|O~wG6xnk2nU>qo)_m zwX~{QpPx0kV6Io|9%zaKMsCzbh{pfZI%dtSCgwWL^$PCY)jAXy&ne(|mqMXAXD-wD z*}0a+CyOc2Ff?{Pp9SXtjjO^1$V~Wt2{yth>F{p#r0&~@$j}J;1?9`j>v<)&mcnl= ztfXX5Li|h}m`UH-;>|P&?6uOq@hi2i0ilNIE}d%&v6C!;=y7+w2dw#NTuaVH4J^bk zp2=+I$>h0FXk1ky8 z;^GmD!?v}<8r(#{;8YKT0nBYmV1!Q~Fp}pfDk2!l$t-d5 z0`KU~@;UKWYgL0qny9v#XR&aS%jYp`FPKNHjWWz3#)7V0!Hi$_GBX!`2Sbx<;vwor zB$4TT%(|(D$`Lmo#i3;1{18kM?wdRCv19F&@pcs+ z(Y%dWHP2Srmg44$dCb{&16JPFR;bK=t98umTp{+poW~cj-VTiDG+;!kv#-r##-2Lg z*4eAX7HF6{>%3kJIk2T9**mu{+zz4*V`;b2YOyd^$;4ims!Z?l#$&sA@AQQps3MI{ z&BxaBGMr0YcYviUZJo#f*AOy^s` zn!gOUk#kW4%P@>*N|W>Ctog|01n*G)U|^Er5ZK0h;dzj*1EBLY=m>c;Jwj)D1sV#S zUOHm4*xf8%=gsG`JY4GU^f}{7>r@_K zzj2kJMAN^d5~pt!r(r-U)C=J+7V7cyj#;QHqWMK@f#&beXPUn=UuYhBMdcvT{BLy2 zNAthuTbkb`?)@>JX`U3Y(io38D@5}&t%GxF_zvGq>a-x0_hO;j^GK21*A6p$p-$ z%{(2NN!3Tip)Rj5k)PAL28IVk_ZftNJ7cvZIO%{_n9P&FqMytU%lW8*WQH+KLOX9B zeI-n035h9;Ae5i8g(#fFAVdTN0x&lqAP`pTzzhg^;@FB;n6IT;*MQJPboWF+P?_SS zJ6TFiF<3QWy73@P;w{X1;hxe)Uh{FV<4UGUH(>!^gA$7CC+n-4k{;qK*e9AEg}+GC zccA$EyZ!VNa5esov0i8a^R>wW;p=}ESiW9~M;z0r`Mq+1rB5I6^9uO=>X4ls;~xxI zxnEl$zCNjS%$nL)?Dbs0W%>TVh)x4WB*I?0fXniP1(vb>#TIB7#yYQa7K9nwxN1sP zW){3yh4#|fDLL?P5`EDCNSml+@MJCAG9L8I7GkZIR6_}zmEU1Zo%j_xMw7Ec#jn>E zFmd;2U4zG9(cJ-_`roVKBwGOo+)#f2*8HR$BIlyUBDj*Uz$UYEWbuM9XI(&;#3yn< z^j5{k;Invu4(E0l0ibLX!3HHh1pd)c83aa)XMZeU*4A05a?c@Yl{c^iUn%>5N?gU5@rLl!c37X&QL)0T+4>$HxU zDNpRJTF8Acba-x5waz*%_~wZzFq5@^mtix zZwUb5B>#Pth#b0t!^KxYs>E?){m7|6Juyst&JifTqhar?ypM$SiC>_?8em;jL%k}l z_Q#>5Cw>aD8hhdg_}Fpx#NWea`PEmM#IL+6Brem=5Q&TNh>yg@f{OpgPfNws-LEo< zj|41zqb(7MV-{7MuFJ&U-;k8>Ig-#fkx>;uPHQ(xTgPmFmHFFrk>&5}Vs1N|F&DF( z^IIS#!u*BbN2H{|dye6|ej9!-tqM;H!xw4cmx0M;U6{v40UlUN&h~1KFG^rG8?if| z-gI|`j@;z(CUN!BMNH~jw64kJb)ws0ktMa0v|Gfaegv%f%kl;}7d3D%4da=zlz%kiteNU z4o>1N;^GX}Oq6aMh?2I_kOci=%7n`izg0v;=7_`>(N^oF%GTZDD;nv*^HR)7crf`TO@R@yI2v7=zJO;(R7YEZ87bom78VaW(_a@g1xuJX9SF- zY9qwtYqSo|jWSm*=C1UTS^!5=c|6r)IE5OEc_$qQe?NfMcd^|_9}r8RU^ddu<&zeB zM_<}~kr&!h+B7x|-dGsnZ)|F6I=sKA#v8fbii)HKKfamZowl`tb3;G9nGiojM~WG% zB7I-{8{~C9b8lmBiBEW$g>qUz#gWr|&Q3Dw~XtB+0 z=TUz^>}$AWwQ&dZwuB3l6d@UN^RBkujXO)5SplIjKZ<~WDA9o#AU+Ytb|VmT;y=== z27|+*`auK(g{YIh%Tj8FcL$<$!$Fk9V90_^b;=UGvOTbQHqla0XBW9Cj=(@cRbQeA zW7e3@#8a@2d+JbC^hv%s@*NbMf48sxlK0gi_}onzSUs}6XTzBECBox7v|GgEj(Eh! zdTT30{ei+?L^QY|?PZUMvXBUg}t&>1=2jZ5K8B$t0)np8EacHeS}wzY1Ke?|HDhNR@AQ94lN?f#+W-=w@Xf)}rs_0?58_XV zuU)9J-T)BOfS)R;0Y6>C7mb~xbqz!QmMG3Fw7U@}Nh;(j4AxA1ZXAe@TI99}G_}aT zaEm-CrYxKTCbGpx!qXp-P-N{Y@itZ>gCrw9U(d{=Pm82OvL1uai9?sbBO(R(GUVrG z!oP%!?y->*y*#hXi+Q?`OLCt=q4IR?5m9*x9`R9mN};9l$>Qt8LZzJ8}6MMyle0ghaU__?@BNC0r6*7&F7FrtD5L=*OXzaXx0rCN>GSe7dBMjfn3DdY* zYF2U@q;E>z?k-4VsM}HH^n(^=as?JzP0g?Dm|V>V}lHDI%7x5c00<{}@HK9iZ;phhz;I)o#8PUP zAtA2IfdV}xrmS(a06NF)t?MlTRtEv0*j}u}-z4!D#-K}IW8g1d`sxFTdkjifbYm&* zQrKK?dX1U9{xxCp$Jz;E@?kupnH)MSkobG$v&F^tUt>1ME>$^8mO^;MSt2$kXdN>} z=ZL-2mNJ_|OYN54X}pjAw2nFW8k0G5sqK?55K{-)anmO|$KQlp5JD$aO@>cu!#$Nq zS;qGTCXd`pWw}YUl&JFD4P&V;S8#ggaqw=Sn{~)0gEPd>_Dh+{k7!*3Pm1V1u+&o7 zN$vySurT)nYyQHVCg-9C7G@aF6fWmU+oee1OcyT~B81}T*u8DBE;kjVA`$`t%5qZh zBm!Wn4$1&)qDO310t!n_t7TrYw0GwpOQm)Hj&4lO1f$(T=4O2g=4O16xC(+cK zfS?+OXFVdKfZnoBs&(RWaq>;fJZX;i!xD?l@p?XXyv^~A?aF3^s(E?6-Nw4gGU4#K z%PjMn;}OR^y4loxnPt;e;%YPRa4%?(uL~IYk2XT|y;JMp^r*=c?U<64}!%?9R_040U*-4j6M+1^i!ebDUS$#r4UHw7vnTo#?~8 z)!xBA*-2jpbdbcGmst|Gm-A5rNjz?u&2s0_3(LG#8D&|53}&wjigwrc)+%cjOQ3OL zhvE3ESy|I4ClL}K>c|Wdw~J@*BNB7sf6=N2gj+=QhX@D?QYSsaQfidn4}|H4gD{EA zkPYQ`1DOxiDQglnt_?ZiEYM(3T#c41?wA$lPH`3npuKeibW3{WDv-9vD8$FuTf^(y zU~e62<8^r2G5Xr&!sxErE2^cB;SnFBA6sts*PX@RhnI6j9v!eULR%q9&(Jz%vhEXm zQ_w|el}7|dby_eg?Xmy2oXhgY<(AkFiapRU#CD!{Uap9p2A|vWmE=tLE=&1o`MFH% z=;B-98DgS!RB?x%@EFMZI%HFja>d1i%ef-|pmhyAkBRPg2#@ZRo#1Og1i5_T3d`j# zaw=*dmtimJr`;WyL8yQXEZO$%M|!n#BjIQo&_16yYrT~aWU>|U!z!htX=mpiZ#5U z94~|&Sjp_(yHeQwtM-rB{SzKh?CvZ$`J3m-;`{e2nc($bS1C+(>f#Y+hZugI)-m%o zMeH?yof%%&%U`%xzxCNEe9!I>!@ph0mHPVEZ38_+%zZ1`etJ9Szk(zQ(;Kezz)x<& z4Kz$|N@@#u<92u(UV*~VRhxz2Mgg)QCDp506P_M+@a@H#Ap*ZpqnHMU1gK3Mc$5_?(Be*)2kyX5!phL>*Qzf5g&K6QSbi#JEc zdryYNZN%YPHsPjaga{Szh)jV|r~@=$ED;A^eVwVkUF#Y!7K-j>219jfPO<^s9{_LA z4!s%)QbFd%>daE4di+Pgr;k`a7>F@*l#QnM6J$=g>cwfU=<&6~BZL1eS&t_NrRPjfoS8bAU!;BSC6{}r*VaxQA%1{}sS8*t~z zT)?@1*+n|mg0st@qvlu(u7RI3UU)6+R2e2M>yQe+PdT-VA1G8{90`n{b$|wpVsY~O zRm|qN)hZDU7`sIG#MKrICy9m6ujBjh!I}xxjRT=lLk+Y4Ssbp}gSfH2 z0tE1<%8(N+RxzpJ`B)nvCjX{&%)I;{_I`pi z#78>et==%8N-(FeiKm5j+UwSEFWtaP`6|#${~{LG$qD|=w)1~A zG!&KO6ff^Qc-H_iI;uGTBDgpNrCFARs5+a9pr_7St2k=X_=JZ1G)3B4=JO3&*TD6s z1b6LP%V#IKdM)?Voe&${Q~xceUhNfp1wC~d{t0ZgoiE92u}o*d4-?_GeCOq54H=G3 zW!sp@Re{z%2_bPx7sz)bpzsIkkWBa|O88H&WfqUqx+eT8qMIKG-$_QVMHaV?1gBET zjg-vN8B=%1#bIjF4*O5pVSfkLzN1G6Y=)PX`NO8@)>x0#nAOE&sH6Mb_If4cI&QBE z_}HhE-qrDlqj%oag3jLIpM2!5A&y44XDs@3e`}+7s^60Ucs+>FN?Wno$aFQh_x6|_7mIr z{tu)E61)ErU}ck0W!0;sq^5X>4nWPtQVn?wpQ`Hi5?uEFZdxT88nwDSIj4;M? zm5}h+reikvoGCtUTF1mcsC5lKO+@z%#z%G6PO@(um+wuHs1=HCtX?do?)o33Epfj= zL%u|Q!zzn~iid*j^s>%~Xc3>VUeOMtP+l~bDE`3(NP6u*VZFx1;8Q+!ti_yb3wG~of-mTACZ+Gh{Vhc3PZryo()q1r6&~80FGd&|SQrTgP zmYUiE4kVZ5dasUz<=!a3rZp9AjlH)+R)A_+SUz$Cv;1@T=n#C5N-gT`#1?26mOHPXhg6U<4_nSGc%P2ixu>V6@xx|N z;*+XoMibLxR#4xgpWGQAHLJF<;_U4x4#sR`UZ1XY4KO!}ZoQ2*d!3}tM&|WJV9j6G zZ;^BBc!g)|gCAKY?17@6OLFwL(9nZlggk$=p+XzGf41ypz^7fOQky zyEa*lJIU<;CDiT^d{;hwpYF@M%c-|}N7MJU4qbzP0)4sj<*H3wy{mtXJ5@j^77-$v z$Me2CJv$qJP))bKCk3@m6fK5m(Lq=rQ^O`?w+kltXXY>Ihz&YViQ8j0G1cd5U4u?< z(VY`O$4O>x@{&G*wmlrX$~8CARV+R73AF8)&9rszCR_Khd*CjAI1qo7-Hu2iL=+to$s|bn}r}YCp9(G3wQB&-xI&kL@z-JuLMR3TKyED2EGj? zyc8G}XNO*kGFF3NvOQni9=Vy@&$E>J`r0@iEe@mf;t-C;1{+x( z!YaXl>uga}#2}OtlO%}R=!7f~HGwU-K>Uu2*0F!WeT)SHJ}imX_*!q_1)}8^Ss)(J zUeN+^A0E*QM9h6#?9P9N_?)Vc_5RtdLg!bs6GZ2i@raMkFK@MUUMKF&-pX{|9k8-PTOm5Xt98uetQUK4ZDl&| z2#n}7U__$xjIB)PKet*sZx&miVd(6MeP1H&Hntu9gB~ z*af8g2oK0Wi4Q2ig#kD}rOlXx_=ejm&fGoXWWqM4@I_kJfU`q%&);S<*GbOV#uUC1 ztoaN3E;;ucFZ3X6l$P8B%{=|fly&D%?QLNq!>8a08fGMiP0z}}7C)Mdo|RdA5ca*v zN1%<0oU9%WNv&%jDG}YC0Z5!AZyVR}dn4hh^6AE^%~E>E6|$mT z8zwc}jSGZMGY*t?GtMhmc(SKe;_ZI%7Dga4PlCTl=4T;ykCV(b+X0!2wlSG^Z4)wo zr=1`&e~m{pnL}S=$hwg~DBgVmpTWUb7S`CV(w2@+WsxPi{L}Z2ITeV-{2Zsc5(_m zE(4FerNNg~==)fE8kZ+kO*4|b)ArZ%X8aBpX^enAqI9p0)MV`E;?*Yhpo%Mh`TLzFqdx* zSm~gx5SJg+I%dLt6?^yX;JVx)Frw3d5veYpw}UUqJ?EA8<4ba?!TM9ofs!fB&hfK% zgejaTn-%0NX_wDje(a26NjzjXcu^E@O0pC;GBY&;P+y)b%-W^tDeq} z!pzvgBwnR;4IClST@GIQH`7k?8o+>;+=?;$yH)5_GA0lHxzK-@*gpN%dNdExV_^m{QPuXUdSBlcPe1$Is)&YmjHLRL}XJrn+7 z;XM^xJkG*9p*s}bTX!;BZ`vtr?W3J2Xt=js93IeQ4L#u<9xG)~r9~a_u*Xg&>_lxS z<=L%%L&VnwTE)yxT`~9aPOiP5@7f;zB#Q^zPYdOK$@)naj%NGP?8s zad=I%lwP>|m7M`^kVW2BOHI#A#*1dZ?dXEcg|h5K@XqT@c+mWwG9hl{B$gBu?M{gQ zLdR;dwy8Mw$xbHj-&)t;(pYqV2RHr1b&_8IF|59)?XuOkiJS}X|G^2QYh$0_zx5`{ zIrHI8MP3dG$?I^)zj;?1rf)>1fB^b7V}zLTh!EkBx=S(A;Bc<^*J2m5_ZqEha5zhJ zuiRyEaFQ!_aT5&IaD7r)=H_^*G|$lcnu!WoQ_$u%NF1iasTyQ%;)z5R^HK8h|ov0j+wAjvG?^ZF2L^u zMsyl5A{F3eyO_x}ciYA|Q*42TslLwZLP!f_@wC>kSISPyhTB?PebbWRO-cB>?HVc3 zB=~#f#aH?yF;Ka0?75|We2d)`r*2E}=)B!b;VZSSLE;k8ZMoZ~u9I8}Z(l_UcLZzx z3t5-Rxu}7~7sfNi*LiaGZszaZ*T6QC5x}g*XcD_^xzS6$qa3bbMFg-(MraU#;YJij zptp|7koQ00S&!XJ-jQ0@AkbQLhXoLDk|Dd9ykO15=f;8fsP-0O&Qa~XL~8GnyUPrOgo4-<9@So9P2 z4mlq+kgzbONoeQI<9ot{O=2K0MXL!Ac?Y((5zaCaRH7nCFlQqocV36yo9o1{)d3nX z?iUAN-^08u*SZFbdquZ60*0DUCxx6?1!WZsnn>MH5Gh@J{&}~zU@jEiE^VN^()603 zh^`gH^o#XV?L{9DKVbl(><{o4Df=E&lH=ShcbN~AJ*$W*+q6h1du@@W?A3V0N7<{3 zEM*@P_gWV*WgiY$c|cns%J$VdW;uOa>^)J$rS*Zph)x4WB)(o=#C)ApWck`nY=MR; ztO8ap1e&~GhfTMEC z=slgil!L*(cbK?0w3x~Ksy0Ja{1t77$h<-8n7Mgg?5%-C7B4!#5*bykwN7g&OUv$t zDqYN+{-D@4zN5tCU{*GbuM1!xBm-`l|Cm}1zove;yn1X-I=t?iw#_Ly8QI>z1MmjI zCDSU9HmS2c!Hb_>fiw@K@qg*CP5O=(AAc)mKA%>iQr$rGg6N)FV$;`2;!2p$%}Xqw zUy^fC1Na>J4KdOEuXE(*Vy5%zndS8r98#eGj#dZZEri$2DsLE7N^snpUxAe1_>T_J zz%f0NUx z2%iER`;2eCBj8YggRIkP;OXM@K*V3V<9?9x*d0H_$NuH@=$YIOFD~Jly|4s%-Xs*K zog#jg;t|Jlx*T0vVoUZMakr?1S^j;%%6Hldu{^f4;uM}M_D(3}lKov^M5h5GQpw&~ z!t_3~)Ryd5#1?3nlI^_S2ALt$PO6%oo(cE$nbz59ncl$V@B)9JwU)%BWPA5Mzo$MD z+8%HD+@AXJt#xcBcbAGkmzOe?J8E5%yNgBlrcz5~Cut7|VQGF0tociGp`42vSejux zQ>&aOmz0LN3{{BY$5e%97}7G~Maiw=;aV0jxv7$c5daR`ly@Bi0+gC0!}iql-Uc`Onhz}h>v>VZJ2{Z-^CI7>WITp0deuCCy)pT1RkcKwpZfl zT5%MTiR$oX_=|OTVaajV;haNIhkq<(f*viELR_y*@rD>$2aos|TBpo1bhEfutBe_% z6|j=7tq?=6(>gdWYJu7!_OA9i$LyCE4yFf2by_egvGkNOX6YkkmZdwy9%vYrI?qoo zQ!LHM$%coEkfrcAewLT}QhqlksSzBVl3$Nm8WF&56V9cd5DwK5nk+37j|P`9Pp4>I zgGQ0)PGB_57Q#u#0Sd^~C1BCd)e<=$HISf4*HB|tAPy>LoD^OP9kai6 z3>Y*)x}hLQ+C0OQulWu(&roG`u#td(r*J1QT10W>iX~=Ed0V^$^GMauiRh2KEc7VU zkK^1n_xm2`np4hn%`6wX-lZKOy55dQe006N+|u;}aq-r2rt8xID}A&TqU&g_V?sV8 z_J)^pLG2S5(P_YlMAiS6GgTLrTdIC6wm`#B)p>nmIa9UelJcb3tPFVaSGT~hZ*BoU zf&8qrtJm)UZl9hhho2fat?JSS!{_K~7D1x7FRa)`t6Sm4zePH1le^!Dt2@h?!-uu5 zf#?g-eGi=Xx4}+w5THT+{sh+i{QXMK1&vTK+!BR9u#r@kT%04@0JE>*%G_VeTvXwH zuL@kP@lZu-6*(WAY$S&_8{sA}PLT9a8y&tQ3b zncqL`wf%7D41Q3;6K(%BT^GSifCz4yiQ_r&W;}03-||K{Q5ivYhvj&2I>W0~1QZ}* zhXw9LO5a-hDo)>%#k*7XF{PVpU4u?F(QUfVrmvGE?qf<{4A%UV{y%Bg9UoP-{M}8V zWD$ZPp+g7>9nuRn!n2@sdjrJY5U@WifE5c(g=>YNh+V;kSP%r2UQ+43BTc%r-^`pj zyL0DmlHZ5-{&>MVbLPx^&wS^Uy`?I*MGc&ip+CiG>q+&Z5T~Ospd4q=hvsM+p@3T{ zyAh>@Ou!K2vk<$$xJd@6xE#w)URPweJW%Q?Flw;w{T?u^P--l{#v?>a)GLVl!n&6zd+X2J}c%_L?F?>D*#HWjAJ9prNL0>-9>=3Z^sM z*PAyw(kb|Tc@)0r6<%OHw=kh<9vok1=E3LN2HjXX$a$&+7G9}AX^fR-!Fxo1g?_+sN` zr_$eg(z7_obWd<&XB0xzd4-Wx5GBF^?*SS4JxtdMPp|6WF3ajTgH{DG4QfOZ5=%@Oc)CQFf%DlOXs9w^J#SnRrVK|y5*3`(F3V|}4{^m~$tX6>Sri|5R|28(`x18CDKVvBs?=4WbzZ=*;a=1Iq#QsaRmWc@tpd#k@B}oBvTJ#EF+L?}4j;N)-V#c=02a0)wft zLr`sz;VY=RviloKOer`nbrn>Xv+m&#R3iJV^dFRV_Jcu%gY61%plZ+CDYC-u?HYpVxR7I>idk*mOG_4xc5tV|&0x{`E3vc%wyKePzt+@1-Ba>u>N%kk?HX_4k!& zS`T6ezXoIYBvpyWNTD=BwB9at)Bp`;dz;J5QoqpCqt$>OiPE2!8A?}Kp(*_++X4+m zY3ubTkOsKa2TH@u6d9?4(a~v;tuV3EePzIDI9zorM4|$`R(wIc1C-XyjWq3Z_-u9Z zit=;!8Fn#og<*6@sjHwF!n)ZjbnaS7#tK8}9$*b-axsBD#cknN`WIja+4SVx6knqG zcdg_}DdJehdenGDklGxZNNxiS-Dw8QPBPF1dzruU@vK3}8U%X=afewpcFE70zejmjvL4IF7=~mxS&W}C| zWKN7^Uk|M?B(J|xWHebyz$?}gk-V+c!SND!k79c*ooNm%FQ#4}6YEb{Nu?!>)*<6l zr*4@k{{1Tq*}JVIvJ36k+2($uojP)KxCr(DCR5?VW#eKBlOnR=DZtP|K0P%r+rI1M z%0OYVTO5gE^OloOJVJOgHMOO8cHAceS4sUYJ9*biL-(OlSApcP?vnh36|(IQLZ)^4 z9%KNm(;Zx=$2$+kabg645P|*`$7vB1x&qx>f%B8u`8}APUH!YDQse0z93H$-+}P>l zJd#@8D@XBpj`CzP9)d-BLzu(tBE8-!p3E;^r73y=Ua=IVUHb*A^lbhadzrV&5WSzr z$}Q3g5q+@KQA74Q+Z%u`@~-_BPp?)BdZigXYn37S*j0K)|C;TAhMLi>=jrhETqO8~ zsjw)6FY#sNgeV@Fo|BP>H>VAD3K~P*4kx9Xm3pNWCWUWIcPo7@BUTChBYXJyD#P%( zQdgn#9qZ!j*j!6=EBF-v!6o_%Fy|bKrAGXsmdG z;8q%Kq(pGAs=~JYLD)p_bo7k~{+%KCeO(KiMrWDK2p8+Xyx`a?F~ypp{TDTPHv11b zNQ?CjhM2TiuLrpdi}kh@9>e!|^tStYz2!e=Tow8bnA3lG<9w&q@kbg|GULxRGrq4s zLetgXcQqG*=cThWPY=f{vIzKwJIjB;6`^~^|BFL;X0<5s# z_;@uAEzbDxUiM(mVwkPwGe%0Y{*cwCAe64wv;HEsJH%+KS>HzS`08L$NQ%hJ60?3J zJj#^g6pZ_QpfjN{418Wr81d{41#ozm2DLwou>S=3)Yl;yx?(^HySRU~sR-59Co*@yD_E#?FQZ9&P7)1WAzY6x4h%+1D4Z_b6|EuW0VS&w)Ms6iA1=U=P2B89!gT zLX7_tuUN)!yn7LR*$;CAUri$L-NJ6pS!4LV(_?3wv_pJ9A$8PvZDo5$!9Tn=eOstk z0glyz7nz|?^ke*QYl!RcczoJCNO1QDJa@8Lc;_)SaQ_}}gZO1lknT;Rv(wUZ)65Td zbYLHuk)8=Ra^h70I^ca5LTES$M-2bqrS!)gJdq`ac)?U`Va;;{) zm0Z5ou>Lj#MZVQ^KR3PHnKZAsvoFi>&BeiWzb3`{lD^h11@Ps(>ABAAv5@-kLtT^s zB@JJ+0BlbRDv0fvJ6RXZ#?Ji!jb=UjfWKhV#B)W;?M zhvr&kKhT#~0%m>+G~d0Jw(`Cm(t(L4sPSen!7K4zU>-TNAuyIHEP zGbC^CvC>9bA(D5JIyg)sYCqe%z{%fexAAQ}y;?2kl~(tW>&#?+>pH!7>Jy)(h?)3RXkW#QQH0>N;+zXaql(**gLZiFf<(w_lK;o9ypmOUgGO{ujSs%=vd-?$+pXt``fBMGF}N3AaWS~p zdd=X*>~Qz>hQSYetPGM?h`}#N9W_=>*xqn-5nh!yYEg{O)2UU0PKm%*tTzPyXuT$I z5}N}JMPTdrW$S|kZWfu5nFCK}6Ms{4vf5|ir$UIo%|jwspu^AY%lg9Gg^9kI!A3?h z?Iw8F(Ht3~O5L{X({JkyeOE|b1xHKPEk-!xZ)R4o93VjE{td?5%x%q0Q3II^-Km_m zj{E|!-B_3xiIF&CW)#*pfi!6Z-~0mJCP%ohQ|QQA-GCwwY!KP4BF|u#s%|i(O_aJS z@(!%q$QgdvyY;rx`bLVRg?mN%N0&5o)UOA&PY9BT3*%j|&=5CK2SAY_akYRVyIgxK zR;yX;Em)_G_J0h+XrtW@;H~6Wu}XNG%e;LQqwVT{XaiIBE$IsHola z`RwoO8w_oK^jP{{S|ZvmkUDC#E?|3qn(?6B^!K5jMY*+_uNx`trblfs{N1%d@1{Gk z-BCtc?WS!MuWkr(7=9GX&B;x72G=M`h{>hzS-}$scSZq61N$ZjsBuI7b^5BB$}H|*r=dUp$R&ym{930BUOa&#jbYWXb69o z)K#c-W8K?4s8~tAjb@46oq`oPWxMeiM0(wPVN7*QR@zTr>h#_Zn+lkyZEl1MlBVnO zgM3XpE_%O;9e)*blsD8PkO#b>eh9Ch)rR_~4Y1Pw37*%%cdbm{$gE#0eIeGb!YeM; zuQEueJ@pOjY1u|tm@c{@#$)JTX^2Q)bCbw~9uz4s|KOu{vc&I_6uL z&o`R=bO&d4Y>D1a_hFkwMqk|^W&>CTm`p9~>I{3fuu4=;W;(oN6bWxKHzPAO)x0}+ z;%hibS*b~Ul-gGZpK{4XYkG5VcNw}$?7P^_D>fOr-zIexOt-Oa-%XnCR&w(uL-)rJ z5xJSZgPY#$q}49z?7PAlTLT!cHq+LZ%Qn$w+WB$}PGA^yDA5U%(T|Vm?p!psFgYak zVzT!`_=#EIs%#K4<7Ko8nE~wb>zkakpBH@;BUKeJ_p<889$>6w@+QOh*F%Ae+_GI= zW~B7~V91Ov`(b*&AC@sX3~#W5KE|){g_0;-u*-D>!h?Yv!7|KNz72jc)NWj|PdC@j zc9(tbLE!$GO=g#Ua(Y_T64+%o+bq~f)Ng`UB=!AGHtRL|qwHnF&1SOi?6GpOv=Tda z(LFIz1&2)p{TQ3;Z&o-8x=pGt#|x zbarlDcB-K|k7ZV7Zu=ZFw*%Q5I)lD1jFxK5X;5=w6PCcET@@>hpRzDM@Vbm$W%qOJ z>!{6!_a94Lh0{>h{m|f~w%%4+0Qlen{%5f0Uce9M_Najic<56t;H@{WZVocPfeQl6 zXBSd5-$My#YpWU)V*7yFkuu`PjKbnAQm7M}a>mR?Z-xC5`a3cwv(bOCss{q4WS z6o8jJR-TtuXySic>ZnnBgYAt&7hygsgGt@fsa1kbsQ~oZVhX^FExG_WYz{P30kDqW z1YZZAT6i@)Z~?C(!kNA*t=u!x)10B-!xJx-`|wRmtHJqi=K2*fXw zA*-Y=U>}RN7~=mebrn4CvF;9pM=r{(U@Jg^oIhu)=KKV1iW+}&A*T?5zRlvD=wOUx>eKsYj$?ZRzvee9xL;u6{7h% zsiTH!D%)GN)!g|y-_xVjfF6nCA8a)oKfP6R{5!S<8j9oA>xlru)WWOao{x+SXHboz zx;$}Zq~^lA6Ve*P3!JW)R+t!)a|VOl8Fr#5!8!d}VT18=3adthH8A!$cpSaqw(^ts zSN5ZN1Gb>o0ZkFDcQ#jQ`9gT04Wg+g*HJ z{I@I^)~7n#LS)AfBO%08N_H1Wu?6$G;sU>sTgMGlykn@2IES%8INd2@S7e{dj`!bY z$Ua2sDx7Aq?qeaG#Pn{Z4;v{R;`Jv8gp%#9j=>2R`7skQX=!sm!))$hwU5uT*no7v zrUHcIF3>380v&`nuKAOLfCQy8`S;*2Eb#p=LXua)|MGr9tKPb(zz6T3xwxdOf8jPJ z{Q>C%k$x{;k)-$SH7KZk{UY{o_cmwtaoE>y7gL}hXW^+xpJH1c9 zzCQ7KoaEhK4zW7BjYCaO!V&;_A3y&B|9`gYQ@rJDaJx}fn|ka0mTk_ollv=R4Honwl~-`vfzIrkVK?80fpz~hZk@SlyP^E4m4!(d zu#o2V3}yOZfP1AznYL0=9PEX3c)1U| z_(|t4fRA#NdR3SknP7%)ftn&CSJ{1(-TYvOA^gu$SD|!}b*CGY)KqV!-vK(XqW3LD zROA;&4s&xYsTQ@?nTb1sgl{0@7fV_Uj&6Vh;y2Pd3Zskmz&Rg*tPBu3`((rl zozv{{?j2@=kK8GeRiX1Q>z?CG8eAgpakGL`1~%HdgFzL$?FwS21wCZP-(6ur|Jy=1 zy%RZrA*lF(^v%nUueJ7BBuABbt<-z$-4wKe1C&KAL@fbf=;GyB;fVNh>t9e<^j;cvWG0pQ4Mo&ax(pV|<=Y ztrB!flpnm)Ozewy>Q#LVn*$BSckB3rI}P8nv$No#bHVp)_^mlVe+bz-4WgIH|(S>{I!tLl`P>a;e1oWdH?&n%ohHgUCj4c(k0^iuXx49 z_g{Buz9+G>KkYJn-{7&bR$3vx|08wOcr|Bxdv}>F{8~?sRs(t@vj4ElkiGV9P4<>- z3p5njt=HcI2zWExy3`_g4O*b6Dtw0(Zgm6JH-!6V;7J$yIPb+xir_pZSBdCjt?w&Q zG`6xI<4xTyD2q8P7LjS}TU)39I9SBZdSz~(z@<`O)xmbGpYP0m4eFrUkyza1t>%=aeanfEbxgn73G15#L zAxh^+9YyJUHka|Yv++NRJHw|$d#{-YDgUtMxxN^)daTXhSXY=-+Wno;87W;nwEO7 zbA$gjGxjS|S7CA`>%RE6o|dfSxxWpSCxA8g&urbeEovZ@p+7ZoSx+APJ4EHE91IAj z>-rW4y3ZB4EM!3#;N3jgkmU$rWU!@?5)w0IbP9=U*~6b;sJp>tT&gM{db8?M4-i(e z2!3kAuOoml6{hV5!ld~b#(u}MFh2ut;iE1#+F(TS4)M0!h>lm_=Jo6*bU}0SVZ%0< zldDw=epAfpfBj>P{Oe&J`roGLn|O+DvByl&&G#^!uiT^Qd^ui`boO2DB!0uEU!v;t zVgE1LW2Wi*JeKa3meQ_;ow!s{qt=(rJ+a3;n{s!kQ&C5()+H$I?C-S4(E7bS`nc^j zHrL6RQInhX{X&3)C+lVr>G1XK*mH~PIzvYm;jvt8SaTn~-OFv~ z8Bpj+v>zB}_X(W!=-WL(x;G#Uq7VaE&de){a|TT=ih>*5Q?uK{B#t+@1MwS$)iP)j zR4|(-N4jkoDWMdxSEQpt=^^(13_Kq9?Yzl>x>8r6^dRfT?bRq*N$g&8Aa^DdzsNJ& z*SAJW2XYtUsL*77cW^SVUsP8a?R_;d zZxt2zAJ}V3!M%IA6pWV6z|7tw1~0fO!E281M{gwHi`28&x z$S-OEzGQM)&BX(q(f1U=6WL*;!)w94vwO;u=AXMXK5#~cta5tHE z&$Di=eLAq_v>4Pk2IARU0^V*bi#@$y63dVqSvwP@w3<~ z(|af+JktAKbM0*D-S0D?_q2V6-e2uwdKXJ)XyLvbuSkCTm+#XHX@}ihvd?h)kjKga zX@$5QyUIz2M4r%4SV4tCM%6`3ae~(RphFZB>r~iVn20BN< zLmla<&a~HX3l9HtmNhOK>|A&qY{isdL);3(Vowua%cA(eB{DFTtsk*Bo%S0B-zar4 zTLlP{Soc~4!L#$W(yR6x77qZ6?&bQ2+#WS>xek4*b*%N~!u^8A28JMw4HjdQir{0S z1AygW#e@ivIINgp87V_muzbO;zP#U%_yeh{VEKe~Cxl=Tpjqj=MoK$yu&M&L{XyWg zfQJ;=Gs6&>M_a{D0TPeP4{)A#S}cRVVyB@a+I-K2zqtASYTy65W}n7K=|?bNK1x5h zpV?gRfZ!OhIUcXL*c^XAv-vxA_Phgz&3PUx+0qKJxvSJsW%qlwcliNxw3hAZ(P}`C zMCY0Z44v;kpy@n=ZGncOv-LV~z|c7>H#a?-=p3Dq1>Y2a?Kj>T1BAw>8?@}ejNjp{ zzA!Tj8B9>Hh`sfX`SF35Wq6ppBISN(mtJrVtg|O-6QsU^VTw*eee*Pk!l9l5& zut|tRjlodY!@)wsUE?3Y8|Cdn_7-{~Dp!NQNacet_55$!?7vkznSe+ z5W;HRfYQ$XYyL50p8AhoZkMvTYm6DS{kFdM1~_p0y?#Pb(`fi!QX1qk&eAZR>G=9) zddp*{k$9REltGfh$H3_Yj}yX4=oNoUWTa|FTFc=3d89`)%|AEJL7sa>zE38_1h}U9Epr97w*5}m#0rMF?vI1WKv775m z_*rahDZIo9*xW2SPm2=g!{7p&!-zI!j)@Q4AmdY6TaUfE=CEP&0I936sKdJVA{L(g zwUyp=*f4rHSadTwf!m`7G8+0+xoy4aeK^SIL>sT5G~zMrF}O<=D4kS}96+h-Y#0ih zV7yd&LS~YTRw2`ry?y_%;qwntS0U4ob-xKABXY<}zcy0ZVuMu`yX_BRCtgD~To?f_ zW&vI|<7`kN(73~-9UONhrx4d@x5ZT0jNOK=Xl1?v{^H8~_d}Jg%$rpBZpZG)&e#`= z9e?#BhSXJ#Fsa)e(R6H$S1cXr?$p+>Gk5>&+>-rlam0|iyT{6v(h8BfpVU$1w-wvF z`H0zHU+L-5YCw;~>ZBuPsvdeo)4Cno0u4oL>vdBA!O|KYF@c|UgGb=-Gf!?7JY`B7 z?eP=g$I$R{+FByRqw?Ge@EcDqycQ~JaeUx?88GIu$iQrN@@;2$%Tm6F+e$tMU~qx{=Ml~FOm2%B$nv+3=uEfXj6Wh-j)A#O!wod_;ECaRIT{2G%-wKa z?lvL7*(QTk;9STKZ$fZB3Y?It3YR=qJ?g>5N)8<{^Y$iB)V3Rln)nTAF}9B7xANTP z1?{|N!n7St<1XM4u_YcAoKg;7%nn0m#PCM&7a3j!IF|B99JBo%0~fRcjA=TMc`|%sWN#R;ZQuLx-{S(CWaMh*x|&^Gcht=3N2RVpsVD0m zJgS*)CHnzCWO~doy%q1xZQ(E+k)^HpI!4*O6}KL(K57_0VO3EB89hu~_)a&1hqmG! zR>M!;0zXs`@VpvEY}*q&ZH@^}D0psSw_6-D6MHAAtKhkgbuT!k;jxmuV`eYj!b$Av z+Kbz6RvScUFMcPE1ntFpI==LW;+(#V+-acVtg+rJcEx#@_Fbg*E$sW9=m4+SZ-c?a z6?->x?QB=G2@Hll*C^PU=rZ4NUNzJ|5fM z0ahowFH`KmW_6iDA0)$39DbZ#df>R>@C#B`h5j(>4)=s^CC?l;lQvjWf!Tf_Fq*Vs zc=I~Kq}^{(QL~6FSA-M_5VpBHLJH+`?ViZO|FV0ZVO}v!KZd+TnvONs&X%TUE&!UY zJZ@-OdYox`QaVF4J&so-P5sA@>oxdLcJs(_L(zu+io_%<_3(eEm#x?VK61EFtiKj8$dpNcQlae+^NGOI?M_ z%dGn};^Nt4Tj`L04Oz#5MK@Vr<@Tt7WQ9IePFrv8{5MF}W*qj|e#LRltSgG){xd)Y zo{gthJOFK*YXt)v;R5vah(ox1FJo1>yve>!``55|fz(yFjA7kBL%4`+veG$5N?UBO zsv@`jLFB|{$cvHPn9UUg2&A?H9|R~A;C}72*kF%mr=cTSe*X=Bars>ev&;Xs{DzZZ z++a68VaVO!1d}`egr?<1c*W9^HrN-P&|G_u{XGAKA$Na|mA=vnk^5n(qe|}kY;WKR zv%&7`>CtLHkHqer6K39h%FP+$j>^A#P zsjpy~!ur3T(37&2{08vg;(OHz&GS#VEovaozl3|v+&^qvZ$3MLJck=_;B(rc=!2PT zqMzjZtGhF_d2yq1H3*;edw}Z(Vr789`Bw(3z?sGl!w&Qz*k;!}DH2uT@+GUroYc5j zN!62P#y;YS+I9m`6UQMr_Vg`oJ}oQIpzyLP@cCQz8Tuotr@>#OdIL!4 z|BdQD7^>fX(op@@lT7s&r8hJKKZjRbRDbTIruq!_bJ$5k^(oRyT8AY)Vx$pb`j1jY z4b@LMPMG5x8NhUqI#YNpR*TcDwsZk_%wU=UvPeKlV7T&OoR1c>D4?&R~`o7r_8M>Oi{$h9kfrmNqtu8UA z%FpOItXt)j&S)!%JY|^PCtLHk3{p?r-kFIc+H3OX@0!Hn48D(?oHx zEU=O*oZ*v7p*OmA`7um{eT1hPtpuz6m_tFYP4E)P3x7VmFMU4_kd)*WZC5i4XXdHu9G zMjIB2Tp(!s$~02CmmD%==5vPY<)A>L4@56VOcDO3y>9gO2UX7*=cjLyox_K9d)R&G zlF0ru{6(^Vbn2|hKH^0n`<~N=?7L1g*=wBez@ zX@$t%S?Z|KI>h!aI%CM*&eNmSfF6nL(Px}V*TUZXjGoeuu_;hcM7K^yoH0ayCaoBr zh{(yyOqWx7dTJ(4>5az>a7J7L16hv3#(xXzINLArT7WZScsE3?DWl>8!(_xNmwipm zy&F$K95|Jale!9>QykLRGkPkwl2L#PF4{i@YwpeY8E%UjxM+v|)Ld>o`R^IS@o`;> z;mH_)#aZ617`~o>;q0F@s=L$Tieh*I$}Jf9!KiqrLylKK0L+&`DFCW60Dqh@WL_tA z6#$W}yUGKAm6V+^6E;{=;n{v5Je;s&BCsDi5Qn)P55zy~=8c!ait6qaP*{=YR6pmw zNzuU77e8>6tJT?6NHQYsIq(;V>w^~&On|etvprY)`z;`E`Z>;l31wIMJDf9p+O)DJ zzQDE85hCwZctw)eca^jJkJ8R{u*R6MYq5tt&#CS#Z!_k)z@r{34@oOT-j}3~3OSYy zJ_qm3Sy~FOHhVIvy6++CRuojL)e{A9%Jgu}>i(|hIBAQ^>NvgHk7?om7^2%#c8_RM zhYfe-ChqfZ8%LLOoc@28c5t3fgW<}A&k;EV1@P>rIcdZ9G8LpQA4psdEA^GaQ{CHu z>0zbQ(w4^u{*b||G;Yj3&OXN(KBH_%V3pKWK-Fj6(sP`|EoJg4cPl9(Kt}lY0v0jr zIy%FeJk?A9(vS@l89?agui56`IB|ORD$ky)H4$p#9fL~hW;M<9vl zt)!t-uoTX3(c-#N`TUpdYo>t&=j=ci91o&<{ie==o6e7OKJQix?^ne6^4OX#ZBY$aBz17qMDXp|;5-}~_!4pAB{4qHwOD>x%{N(0 zgIzGGyGwzKpq>Y>kL~5 zSW^{<#(&EyZ#|0eivqyNgx1~W@$DqIRTcQ3Y>-h>LI!8}@Qn$Yt7W*V0CZ+=dlEEU z0Pc|u6h0SmgF8IKST=fg`W zxKS1OdI|dq={IdQ%*?O&i0}SK;NvY{mvt|1-;LiLt>k7GcvZtPIBow0QUIs?8Ga`H zdg%?3ehprcq=#=YQexmsP6g+$WM5Z8M$o)}#$)QFG)0_`jSxw%2C6F?tPvsR{ga`- zMR~BQD~*&mUqV^VlYd%-=6p}K4r+??HjqNU;ryN<#mP}Q8M&|v4gSU!ot~MO4$qVI z{&w*IXUdc1E6}Z6(NB35BGH0*vaF{BL8bQ%>}J;p!~8p>t^({D*1a`CPiE8rMkC=5GR-B@w7C^%1Q?FdW^Og)*!PAeueUso}_J1iGD2#6A2A>*?1i7tb3Z+}V z@6Ax;BGYV#U5pgh01<_d@jVyAuWo||!!pK=f{n9(G~hmAJnZLE-3lVmq6+-(&wfKv zQYBdGH%&MdxDptZri#Qw^ve8JhQfk2(4KJ?C~0a2KGd z%7Bd~AySlq+`QC0DgzB8)6>&)%&+Xke=VUOl8N|AGX6<;m(!avYL(NEvP)wi5?u0s zDs>e?gIV{ZNIltG$p-|%2;Z+5y?oi~!`u`UXfWv)X6zFdy@Kl2n~^Z6A*y3cNcH;B z2!s7uop>G;8H5N2BDh;XFszlKDHxt&|5g$VOznSU1BJyC++eQ<3oF@8d6e%*lMtoI z9^2VSXbUrYAOZWKW&Pl$&ZL7S@YL+!;^q-HY7yFd<6-HN8YZ^7QG!Uy)o0jM$Sq=X zT%=jYpT??k_Ph9}HUXnAi!zMGTR3=MQ0nzEm1)_!z*!9 zGc%lt1;vdcf!3)`r@s~r#M#^Cy9Hun*Z`=7D2+Y4DQ$f!gi*DW=E$Z_E^c737#m;K-2pbG^jN=9w(HamdNsTs3^~TPmnq{7! z7i@=x04TEh76hMIJu1X%c+H|az~24fcn7BHqzLzQimy)v?!L?JLW&WqZ;Uc?^naqx zdXC<32pIh;j5aRPM?^EDzmiT6qd&(hlF`1;5fQm#o5bFI63tv*;<2(&S|KiPkUDB~ zK461uXbkvVZXtCm7ED&_6Ei|Y;>pp1#OGAe=WIVvp;pDmk} zQBpT13%_HU3Qsk|tVGX+BcX*twV;BNc7$my#IE+e@y7JVRmxB4ui4f5RSdl|q^`p2 zbJp!pMQ5{>w5?(`=9dE`c4;o?{UsX!HKO;hY71k0^lv#~TbB~52zGOT%X45R>**_r zinajdlyrBx55pgn2*IF2Bq|tykn37(+Y>-{%b*qKe_)?)CxDpqPss)frEj>w6CRYT zMi>3j~`1vNFD+Yq)@F;!sZL>R(McvlP70H$~*jA+kq;bm+W{{gdAMi}XsHE@UA z#PX#1y9?q2x680qaxY@{`c*aTe?saih~}~GBUOq0B89AEFg*2E#+&ok018_Hgz5q| zGT0g3v8=PNA7X4~J+Wf9Ufoia3qY^=Hhhua01mu3qyOIG?oQ*6ijxVupg1xWu>*AA zfz#=*>LKiul+gJ?My${&VrM@gbeQ_HWdjA#Qf~08fk;$7EBT4?E8q7?C~$#}?eG>O zrM>w!Nb&XYPyz-lhP`>XI4}psf6CbtF2?N@xLm?6LmJYQzqyK;@)uXBbjq)U_A3nS z>r^weuU(C4pIc2+H4Cp;s?zPSS=G!0p=iIFolURCw7so1xXn&v7Q3JMy4c=8v ztmdy3or@u~y6G$?`nRtZS_t@Fabi1`>HBIna2KGdDu9iqO|@VJNRGnq+NC?QGfEP8 z9?!|aV>-Hn4y%Ar;35GEPGZ@7QwG9|eUlf(2R@NFs7&9mW!)Lo z^eVtgejrdr_?9Cca>u@%n}R}Ud5?X%m-p72NifW`yhr}q$RbPXMWn*h0%_Nd?%@oZ zUfd$mAO_bX;W}fnE{uRsI3OcaDC}qV_7Dop_vq>(T@@66a|1X&Q@>YQ$r(zld_S6W zPxZF5NdO}*?c1PZw6x#KOM4`|h&mJm6x}2>!LyQ6qGm z4Srr-5d0m{xgfaJeVoNa@Q1612<~4Bp}M#0r`SHIDR$dX22~gAh8GIMlcyner)6Z| zDnIeN0(htTA8^JTlpAuR-0}5=JH=s+4=oIy%wZNV5~dLT>wG%1>xN z>z?)`w3VD7JVyBAV?y)0z%Y^xfLe&**t47A)~9VS&X(aeJRov3<1%~XT=?qy^x~8# z1`bIc!URa}l@K1;GDd|*4R$d-2Jv8)ca;rP4prj@m&a(9TgfFcw4nE;JA-fZZsKi+ z+W=H#`XC%EV!A)k9L)jK;obvE4OfIjbR9YcIJg3TYqGzPc|`O9)eX_FuYT4Ju6Y%bu9y^PhI0e&-qa$-u z;ThA!5A04pEi*FtHm2nwt8PGYay z2MpaWm%0kNCan9PfX-|y=@c*<`kMhAyPOwvPhzSHuUeAYyabhzJrs0dx_)U0y%;8U}J#mL6sUJEvX(v;uTjtfFE<7a@B)$ zcGp*f>p=^TmFCh4)q^~#qsA+P4QAB{P5JN|dF)o8WVPVFnx~*-Q$09E$0qc&aK@~s%WF_!M*k|mfz5p<>RY0g-#715)Sk}5@ zArw|bRo!!E9UBBgjk7+K0XWx07@YpY?YUkWywy|# zINfuHA|i!ykm80Rno*)SPgLOc73?--CandI2FzMuW8kdU0=c)B6!=;>X(P(`P0cCi zGXJ}sEBN0#P}(B~FG%|PuQ=CC6l!DNlij@RTrL6+NK;fw?v=Kv2s|ToaJU5Az1ZLo z^b>BkgF9~h_lmy7_*vDV<>cX-fOhpz3|d53F;@Z*n$uhKnp)U0hqugpo&2! z%kd2>?uIo0o-sfGLmH8&VE}?E(9+d9nz1E(qH2naRQTM%?)qwqeL#KLK$U=7xj}qQ zy;`!8^Jo(U*Df=wg4C7SkM;WM&1Izf&f1596m0Rl0{BKDHZV1~ z@4b6~y?nJM7l3IVQ(s9_Q~>5k9W_`3*x+w8B)lv5D%7{A6;}0CBPIU7R8#POb4|T9 z7|hmR;wJ8`feq&Qnx+P=FJXk~wp(~A3z#6z_N_<%!a&o`e?x5>8*P0NkmW7sbayVug)M*tEhr{P-YHj1 zpj;^fRm308eqL5f5Wk;nppbc*8{F(c#!7CeWr%;72_4rx0vOvNy#B)}OK&*t9Q!2O zRD47xZ4&%n0siZGz@*a)upT%SUy^K+!5wtd3sfQn#T4`lItJmxa~#9-=mYNxhSxN^ zg8R+2%60|iodQ-H0fz(MLQddjU}`O{1*Os%ss%-O#Z?Q67%q1$c$r;YR*P%F5ov1h z^YePdNJ~@-s>TWusNs8s?M23#4MEcv=Ea0M78qH@WkyPcU=ig!?+IGQ>OwGzZ7<>` zPzZ!U8_9gvomZ)*^_~rrK*DH4OYEAR&(D`#uwh@D$gO6mu}$SJv>xE~T(Eb2P%<}wMCknk8SgH(7-U>{#aJoqX2 z$x>f|@($}4ctEj|_bH?D{jZup#ahVrbuqNXGr#$mu{7bo!4p1k9G2_7Wlep72DJs{h~Rbc ziX^zdZtbwk{VD8fo!ZRs^F6k5r7fa(cd4U>>SH!|MeWd@-=8Zw7eixp>#&$;9$QwxUQBIkU(8 zMbmo|XV#UlKFA7+qq$}OdGq1|ugcKXZ1x?y_7a4H%lrbVt6-YSy6@H2G`Ets35OB> z?*M`@H2;PTfLe&=*t2_yZ+&_m#@9~rt_b_5z#+el5WlSkvwaJL4T=OdFwYA?unnS8 zEF)E@{LGFnBUE^Qzf(3)&`jqBTRqTN$tKFJd_S6WpYqwxo`<$b_H(fxBKy=3+2Nb+ zp%GR=0_QntT)<$EHO~_)Q$GL7K11%&=02vj+1wwFJ?mxt@-JXnf1%?mw43{m=ka`g zt8`@JwXnIz3of?zIWH{R=dhbMoyTk+CQVW0cv{*bw!bcQFm6%l=CZ+2=qGRPpB8-! zvRl=gSd3)%UFW1Oh9fO{sP>!lG}q^`_3O^lT(^N-eO{33@LWwAe$625Px!$;6K~v0 z&rQn~^EstGd{5OXRSPOP)8gQFJ($@mP}v_Sj1Mf6P^dg#&dx4^_>lcurLKZ)G3#zL zu;C_OfNG`d5S*9&#{rix1z;)LSjTwMJ@?qTy8u|X=EIP?3P6a%JDyi* z6{zG6p0(zj|JgXRv>zJBrQjp!5%Ko}ydrCX?*qigv(4YY{!WbJQt*ez)bG+1m4Y&< zqe|dLHVEJ74Lw@_d#G=b;8t}aOAB&hd~ssdKMG;GAFtoa#@{t9)Tx+_<*hhV4IacF zwW!9!NAKZCJ5&1dMh`XfO4l-Gq{E4H<#2}_lvQwmy3T?N}N)=jCS7Xnt2RL89MFRBx&0|Lyy*+7yr{HWdQ!y*{}tq%RITj$o{ zQZVQii@=zLC2_7858$EylHouafg@^ZoK9a^k`iTL_81|c`pV!{Q8>)L-$X$1+TdZ? zK%sSj8w~WIWhD>PF;(HF5Cj4&+aVl<9xdw}@fIZivLz5?-xuIVz)B+R_HYTDA6FFW z+uC!{^HKKvEzDrv6O4;9dxD|n+S%?2-d+xSg1;a;aMwS#4wr^q(itiZ+wqF4G;C*( z+`Il$?CKWClLPN8y*?&hq&iuuf>*31stgUKjvBPnY_D#7s51Dg#D`WW0w$}w#dtwZr7eB&x-|HknIoGG+`>JV+E~^)v-iTj-&O{Ag=;Dt9L_&zG!jH0ng6Ujt@SO)HE15>Am+wcD?j3{e>}qHWJBFCGND|sH zRB;Lpmc$23LsSLfLTN~efPC_TMd`3k`z{hbj(uN?>D$m5^U2awUma5x=9)`qTNX}j zhO!VyFlC`y0+)pj37X7p@rorg-SgWvA;e8_U|gSFZI!@FhMpc<-J~rl4E?2!8n*^) zuup<04BbTMVtr+GTd|lbLvn&xH4KMP-M0ibVf&z_&I)WO%@Tqu2KWU#2R?^Jiv>>S zyxa_P(?3)MxJ%|UI2H)2L%04zRj5dZZgHO|!BAP>lAV1Q0>rxTozzvpHD}$a3A!#= z$(Mx82>(0)B}`pNVFRERstee&yDnIt-hvUQ%>%3$Opx%qUk1EAGq`(51FYZ~fZ@Yo z_Yf2b81er9@m*o2MHIto5I{R*&aS74w{uhQds{f37`;Yd;|y-Vp3f}K;>~7dkkqwn}{Y(r^YL;_g71( zbpKG^F9Q9Kz$rp+XL*Aae2YMjx?Bhzk$%vuJ{YgqLNICO(*C}>Ve3E+d--5pt^;p+ zOpTSMs18h#IvBR7fw^q(1N4(m5ypzXMH#TF53-obzwBcK*40oc2{1X#b;!eCPg81N%( zkr5+j+Ak$_1Ol@cm3DXDp8{KoaMILoiV~b#XOz>H;AvM+Fhjx9jlFGE58+|*ca{wl zmAY_)i|XkTX(i{^GdqP=&a~Dmw{Q{Q z#f4(Krvg`du&a=T#QHl7UFqncN8L)P-?ZY7&Gl~POlvu2ynj5T0d5f9sK*6hhIEMv zzz=xE764oc_ZrlGmJM#FA>msDN<)2%T47bc zHB#dL*YyPdW9sW2!i{YGYi{DcMZgC0MLkgiGIR3s(qs+D%1XyKQyl+mfI~H)9EGu6 z=ERvQP>w?EUj=c2R`ttI^xN3kk-!!Xl*0?Fpz>g>R})vUfK15qZ((7r$2z%=%n`CX|Jl&gR+^_u}F2jy5Gm>!a$ zt9o!Rd;TE7#P#4M*+5}+CpUP`gO!yGt8ePTgCPI}RJOxrDD52a1*HD1b-5;#7X@Vl zlm+;~nDWU36ovVv_FD9MKYRTJrY@fvd|J&USmyszGUie>LO<7KIh{xhR~L z&QMV}fmd8b0X|oO*`n?n8qBU9gACcY8BPrvh$JUV4e*M!L^UB*>Zk#Gi0!p)U^WMX z?r9w3YYPv$6!|S6CE;mC|>^ACwTNBp=FN-Ungh zn&3I9tKfQ)b%!?4wZKZAYG7)C18CS-OBru@+kkcH?gpVcz_E+$ zW^C{bapDxXv)F)#3IZJZsyY;b76u$8C2*$8fE73|vcKOFI9vf1$p#9cXSu;V4?H#9Zi*5zGee4=lWzE<@@7E=+(YbX{5;~-M^`M?`& z9@Nyvz($hY&@2j;?!qI#oLqd#ey|3>hnBN);of0-W^mS@Q07AlRq@9~RB$%NEr(l4 z{&Go)1=QS$y?$wY;9H4-%JcWw$*&7Xd4oO^A%}uK_T^6oGfx z0H}pF1=zEDQ(%4i0tT8k1#j;Q;S(f)2{3W!((X>X{Uym3Ka?wYUR7d^&q*1x!skPF z`558Dbs)BpNMZy@Flr(9G;rYJ(gNR|7$zSL+}4Oo zzzFFGP2Dfx6_zFa{Gq80(4vzyO0;tKGI$J9sC6jgwqq>dV_FWBG@X0Yh# zfsaJr0wSyWEQ_fEJkv;2fK`oj1(?d_K}}Tv8_AQ6WCh5}$jnWp3Sd$+Jv}?!8TNhY zK!^ArR^0#Ph4H2Ugcaw%xG+9&OhTX%d^Zz>8Ko!YfxWQE(jI5+5yaEhg+It~_AWsHtUk4hQ zlYu88{?~ezHgfhXf$2XOzK#xfpAuoQ5kiXXsR~^Eon3__q?3Us3|r}B;I>AUGQX0O zfj{_U;4?@C+ys2wnEAh0x11GmNf5>VdF=3CjhX*@Jf?O@Q^fx>Qb!He zd^UK3h9t*H9efo$ERLy(J&VM(ihmg?k$(>5I^Qweq>0`HEN0ttxQY8*z=krbaj*a+ z!^;_S!VW1C1I^|C`|pnXm?M$>~QiYawmLsJOs|O$4)5 znwPS(c}+|exJv3O&J}(;^@xtd!t^5+I~ra9)%FD{$7bzt0jlTm#;f4HQBvxq;(B$V%R9 zLN&mTCfy4F+gUcW#h(UdL9XxbZ;AlCB_v$<6d+WA=0fa^aJF_>r1yGucoya=Zv%d9 zY_vg4VZBUYypy9w8T+D%0+QVpnyS7Z(F*KBIiLluFo>}#MY+&|EE z+4V6VQyru!ssWcs9ULqX`!=@M$%%an)+$rmFRSenJ&WnjY6e(LRiJ89vjiB_VOdLP zr}hB5*f?mZ6@U#Rs;MaeClX8H*`Y)5^Hq9g8hml)nbNw|GH{ijlLOzcZhA%8K&MwN zk4j8X1@1c<{K2R=XKE!%X}6Az3p^|FP}zQvU490l#07yPbrp8|SoaNs-K?(`#0tEu zbPPc>!v8tI6Q&#-U?ZRwDhJrRyBt`*o`i9yRlzA=X>t^TmFM)HSsLepf>s4LwkU-s zivZH{wCK}C`~BscA+Q!o02EmNvhRNpSX>%5$Oa0rBivw32r-e1R=Uzi2X$N$>qpb> z5@9=ivZ>i4L}7olN7!eM3!bS9^`fG{DN`ZsTw*x(Cr=ePaVkN*+Txgdho?ag8;9NiPe-r-Y- z)_r8R6d#XoM*g=duA%3l$3N z*yr~0pJk`eda15$?3Uu zMUpdSXS)J?RA1gSYXDtp~Gv!ASza;rReS6LxWYGcE_e zcudW3nfiI|-GL=iM!TiSPpCLLIgK2fgvv}E;En>h=_|gq;CiX(0?rPAS z&A;AER|6Z#=w_lCWMyXOm})?Io|T#g_ZkiQavrTAlB2?kJC!btH^m^Vc<@*7<)1)O z`5E4hU91YX3S%iql)4J7R;=47NvE@w)K4;7h^(ZrrJxNP0JTslz@FWu!1@%GDC#>TfQTvDs*vHk7 z8}w>nUvrV%Wb3rFMJs~yq>dV^3)x`J=3+%~T68W-fYn{iVp$Y`!>Kt9_C zHMJtJp%f=z(O+(f)E}|9sn;Oz{NmF z8fxl$YfeI-w+voo_Lb~h_vVKEcS&6Z)Mc!DTXW5RE9nQXal-F@4FM3sECjl+0Z@DQ z#IK1rvad~(t2@5O;26PU=|9pEvHu3Cqekl{ws%c(kp1v3Hruh-<5|U~M%t-cW{SUI zvYGvdJpqRZ5F%R=xn$VHhs8~4Xe^`Y-wF*-Q}f8VWq=gFNzP0ml&uNzndL>J=qk2&!w)y>vq=t zI9V3~E1687jPU;kfY>4+P`Q&0OlFi%&Q0;XZvI^>d6FDz>(*!(YS<9OJEOXm!e{Of zBFz2(?S~Me_8D1D|0^eTb!O&S3{kt)yqq6gXQ)dUe& zfkU!^!s$M4u-}7|mF%I6%lEAg1utN-9ga3q+62@CAgaxT&-Vmwb7g}k*l9)c)l?fmh{=4=r@3fggHkMhm|@Z*4$)P;wk(%|if zT~bV8xHN?e!~N1Dn#}LPE3z>7?@2M!hgujs#tz?^!V7~}J+?+jTT~j}mpW<)A7_Ja zrvytwb^i#_xnQ%^y_3bXFzBBmHV3~#sP4_dlWZT<)WX1q(l;eo8=5%FKAsd=B{M5E zH6uMuoEYS0WM|l$5TQ!IuMy!D=(e*?HqZfitiH&nsBLMB5+HzNL;2S)=g zNWFS^KjP4CmFf|2&07d6Dd1k^Semv#;JA3?$p#9&m$*Sz3yq$Yq_?2$1Dsq>yK!YB zXX@|QCJXRvhsA(CEF=7oM^7z-!vm-rHb25g3pJx$1q!oY1zwM2uc0?uM%p?Cq~H zNe;4&<--=LNJM95rNMj5XdS_)U9fM!*BRoC%1|TVWtA*86G9$tE7JPHXT+gCgcVL& zv>-mvv}O4zK8amz*wWO7EUBw7d!KdFTI%e!lJ+glKH>_1#4aI3dQW5nphmS}>f8=7 zKKi%3Dbc!Auca;xQ3Q~aKfW~Hg^#;12rUg$uqcGrA++w52&jVa2?uZ|p~VH^8QDNV zHklg?@jzxJkGG_P;7610J%#P89<;?`0Qs_ilPLx%{;V8=K?ewRAe@W>o2>m5IsO^@ z`5|U3{~%e=!YmqIG1t!a2g#XRp%fHCLSQLa+LBAbVd)H&f`9OeECv35I8D@gVJiE& z5AuT!66&-P`AxQJ;}vUb?3c^#iIFO5jHa=@q*h|NP`i~$QS4h}u+`niuF-N~H)TDa zBV67}FBiUN`=F+l3pSD+ElnlZ_cT=TjMUsL@ykM1YG!&K)Bt$X(Sy#X&)^|)P=U6J zsNjq(`aQv^I@HxXB(1gR_k_Tm5(1UiGug%d5H+q4hDcon*H5hbSSwuxtmI*Mi7lQc zi~=aaRDoaE0H}pl2-vfGgzE z@#RPfmak-}3YI_E)6WPNru!V(Kw&eR8~oNKF|@u zPv!_=&?CX&4HM;rx66@IlshYM`Y(1GvXG|#tu4*;zqDng(|;wqg$2A@NN8=?AJ>}M z-?6o3Yz|(rjHP45oYo-*ij}}(_BOLMv;QWKt?Q*NS_wQLb<~(GVT1Ry7WBVfbS~&` zbu(E^^iORaS`7GJbCzGTN`I=Tkh=g)RRL@??OF#b0KCN{Eu9KL!^pHWc&jOWd-RiM zN<9Ml-X@UVBcSh5ekNm9iM^T~ngVek-+z<33ZF98{kgT~yOsP%0F3YzVeDy6ts&2} z6_~B$_MjD_J9g}*yLIV97+2U3bd1U*7$DQ@`P0(I%`WNX^Z=S0aPX=DhcF<9hxCnv zKsYD^Qy^?&$Mz8j%l@wG9NIhu5{+jjOLpor{lhmH}u%LKc1 z4Di9x1ZU#gQ1rEgqHAA)vs>6%$Sh)Y>(++VajpMXR&Qrk-_pjg`o=cQ>Y>sdnunjl zD=t<))g~;fcd@tsZNsdd=&|*lv_-6*CUw+U?Ph~t(unZygYSvXMTT14|FW1^{b-vI ztNqI%RQDOcKDG~PiqbZehuR>e)0|D8O=|2+{kXIWq%Pb#1BZl-BGYoSv+y3H!QrIQ zDCOIWd{;XgKbzD|$ z&g)0m0H}qCjy=1HZhhJTLp}KYmT|tPoT*bLH5DPku^7Cu)PR6D7Qqwm6=>kSHJ~x= z<8o~fOt~_21=AV!JhLsr#Fe1CY@o911UIM%et4g(>1_KI=7>>y{`|#;hF2tT zZD)v&Cf&rhowb9uNPI|*S#5#%H8+P+BTRg?zOW;YLLJ?Y6*$|NorR8w^WU{KoS)G4 ztT{ib18{y@JHz?S?U?h`+Kcof&PU@F7w4nfo0L$S`R43nM0@6ZE03)dX=~CE*vv~6 zH9*O1FQ>g(&2Oj`8{-pQ3&va32o}?{e}?j#_wqNl*VBG0HVcE zuyO+E_X+^YW2a|=pTU{FOg2#Yl*J8-JTO_wGRm}kKbmwC-gfp7w8b_5N#rW6`P)0w zdc%uy4fDfBLXiUXZ6+unD9}?C_MV)dTF z|E=I9z5pLe6+BQ2gwP94l~j?F3Y_cM;RyIRP_Py>lnoR@S8;>7@S(IVW%(k9tfWq= znf%eDyB65arUSY-`9pSm(%Ve_Hao(E2L&KF`Y84W*tr6KZ(x6+FRB3-!S@9luei?N zvcvyc18(LTFeug3fB~so1KyDC&`MwoUUAicF$9ih_1~Ah9hu5C;9HNasnQnJfIp;; z8m@k9a5fDJul}cs&cy&)-H|M&wZO~pY;f=%;jIv=`v~B6whwA*Enq`=F*R5MQs6No zcy}=_{Y?c(PshiM?txo`Oa({}Cm;O6;&@#8LlT6QAIODo6i1|$pW_d(k7pn*EC6+- zuEOgc){TQlK-}qVC9&`lB|O+~3->XESrOdF20$%T0kCIx1+YGygno<|AvU{EHmkw zx{VnPuO7^AJZ6CN+ZkBeW#m`|Q49S z@O`ANLh1$9y)j)A-b${6+Y5m3zQG8CXU2bt+k;k!@7S@M@7AUKbmn`%1EsAgIF;|q zOW?tvb@62_85kudU@l51PfXB^mEkIA#<0612^!w)Pmv82KCf|u4?Or-$wbPrd_S6W zlihZf4{ed`kP%}Z1G3*=zYKojrEw1z-iE_G?n+3(EvmrR*V$L-hp0Xe?ixX=e*+)L z{<^Gtd345G{>qc}{V!1c-*iLuqv=fbMj3*7MD_Z3#YOe{873hV)!$+t6Ec|U7kX@U zl(wc_y!@URsiMZ`ZMN4n!!W&RaUjMgx)wyYstGKn`Te{MF~1MY(DVEIY#!9q{B8rO z1@8j*yY#xKtn@tm4L*3Rm!6rC1-n^#j{p$8Wn@s!R0g@TeCa6Sc?;28h+|*)BR()v zMz7L&3cL3*goIQ32U1rd^#SWn$k0r;l6MJ<5&jn6WHtb5A*y4~ZmL_KUW5^* zsU4`^lH(H@jp0un@duOLpoii(I@UDk<=*>9hll&TIj)*h@EkllL%a`ZYM@GG@Cv9e z+4n*Mig~|VHc)7N$_=)A(6W*(lyUifH0kEO?d(Npi@b*vsqwPqeOUh~4}kYJ4-`(6 z2eFxgbjsVW*<0v|m|r8qF#jk#je3^MU;QdD|6+JV1t<9nGMV|eNhgT;{qTy5`Ta7( zGXHz_@s>Ks6U$xfLe(9*t47Z)~AIq z#3AaN_(V!$_`OaqC+fG3K=721umQG*6%sNHvIH3vG7H$*1o(<^a6z9c8z^}GE^oaY#~64T!*9>{;uJAi*iFFriX=vg1fE)Ul*~j&<`>FDmWv; zIsSsovu1kF3BdH{;b;Y!K0J$={;_m|m_8Y=xR^ef;PC9?3)#m>SCsTJnQ)~?gBIw-EB1QfQ{_3-p-k} zWzmrtS*h|jJa{cuCfvtQuMQo3MOibY#Iy$`C+!G4@%MC&M}>C>#!hei98p4c`6<4E zy*)46kiV_eRp6~*-Im!pyR9S{zNds+`cCi}r7+}Q#|A)+$lvtj`7u8Fx4dK5x>PHh zx!>V@cxW;N7E;_5VuPI>cen&ZDl1ZflAK&|K{_)`H&@8DgMmnO7XXJhbqNRyyB`9J2`jMZeSmK zyA6_tZsQH)h@>Z5)$oe7MU|ql)KNpXpAFW};qAa1)na@(CU3ECQ7EkHHg>J)6R>_D zCh#wR7v<i-LyH>F@$6SPyJWT{ggh;sED( zAt9Uyrsg`e#=~|Wih@gI+tI5ZZjmvo{658A-SB_xop)dq#rMG3O=#gLfdEoM5_;z@ zxs;=a4k1A3P2kcff)IKqp$I4~w4sww1wlZB1F--qVudIr0q#Ok!9uf(3coiqZ*y}y zcbo6e@4w&gAAIA^o6o#5@9pgF+%DKjR|09Gtj<4wqU^Y6eKF8l#=z@PX)#y?)_W-i ze<1+GSTSJl5u+n}t^_ol`bE2|0o>u|hQq9e50rARuul&`74T>jyaL(p(WLcbUfC^L zs`H9}9lqHmn|TGZ{w=YC&NW4_!*R(qTFX&3sbW=%^vrr~uzt{&t^!~hj6Mykfc(Z+ zLj#u24z&uF3&ugV7ld4N3N!Aefv&|+R~Uz7`3-muL{|alqW;?~FIk5_*((E!GMeS3 zVlc}sG5XAGN{?un$+qjl^)8zfx-2)LwvA#i%M&D450S;PJV}(%g{m|HhsW?NXYUa0 zAq+00xhC5Po7sAxUW~9FSU}RsU)OKf4a6ZpQnwz^tf>u*sH^>pTC8RZyYR0LU)F`U zh@}mJcZWir*N1ORV*`9y*J5oNLDHJW z(lfoa!8So(n%)q4=a-n?WP9}0qTZ~gra^*hv8HAVw$-r->7-M&7OD!vuco@Dcy(+yC^2{z2>^%851$YMGD zswkr~x*-C0*@T>4BMdI&v?e9Ogf*ap*g@y0=GdWabG@UqmR8OA!k!{MYk)RbJ~)}y0GKTa-#`sG zG!<^!OFl1dc>m)oL~--F7-R1j>no~8MrR7azz#^1NTK4U5Gj(@H-X=ywuMX z1{cbJCVLE`Bkb&OMquwx4SzUOoIj;-rnipCZ z3c17|fs219%nrKvzt#dPM3I)l1Z5TCAF7~7h4=^OjBfFtgxWrVxxy~-LnT%)J)*H# zg$NgAbYV+IVAGbuLLs;%pRl@Xd`c%R>Z!8D!BENS_eT5i>d=S%B2+fqAThIyt zkNj-(jekOQu*F!-P2u{P-uZ{>08ev#NMv_i6-1W^l0;E>L5|f-(mwp6l4*kI1l?p$ zLnX(8-E?`dNR-t%Y#hpFwA5Dxtz~XYUKKWiGrUxV@dyAhcU7PxdsYQar_n9lRiPF+ zy&0Cr+z;;BfR4&Ib}^1XZGgvv%u$j6^Al7CQGlnC+f64$({*l|j+!51Zo-=Ih1fyo ztI62m6UkRv%SUY5#i|tPSrfFuMnhk^LV#&v3&>?Fgiu2_Fe{-V)YMDqP5s3{^O>kQ zjLNFQqZYg>Tx;>)R)slO6>7HPRUxDmR)vnO^i`o9J)&hYyCu*LzPRAJBCQ+JQQJ1H zuqvcTtVEH;s=_o;Mi;mY1WsxtRE0!gaADn`$+p2}Rux*ba<3Z{LUIO4w*(g95Fn{5 z44O4Dt@vKQL#waW^|#u>;flZD0>T_+vA`pOgrlF2BfU=WSi}0lL&y(=NZPU$l}YP8 zP#dB>TZH|tlRqDR0!S{yzRWp#dg8D-D4(iaD<<$dOuC5nssM7me7 z4EuwWyEf2)J!^xe((4d!cJ1(JA0#z5upsNN$^V$(N9lB+jV|ghq^yue!}Wdp|vonbGou##yTJseHMS4~TZLrtD z(X=|iTsc@BszcUhZLWAR@t@6fnLy`=kLv0pC0VvzX z_nh8~vZdPS=d{*Rq77Rez&jl?=EwzLANB_+cLAUSdlmpqrJo_vS^;Rlt)o+$Up6!M zv^@qp16cOE-J=s>?qTWgQ-t}by=b@2M{l6sZ9wmWn+F5M4!WuJI(FzQIZA6uXv34A zB0ZB|8|-H&95nf1l7uzm$*)ZkZze+e!*74s1kp7!^X3|8`zC4&BeCqC*_vm6a_fJc z{SPgW{Ri6c?BCZ0v;Tsq1k3)<=n;?X{|x7b?$Y2b)bZmsnEekW){i2KWxvwa_gp@O zz<*dEF#CTL1{bnlll>T*S@wU(raE34gtgUY|9i*>F{I>oeg*MNGOfx-l*USga6wKYJ2mvlnROWHEP zmk@K+6488}t1h7S3z@5M8L(CCp!3(K*kPmOFRf*LTV4q$(z6n1gT+8!dgI_Mo#5=o z!3TKbVEg8)b$mF5*$YLXU{>h-!AyPMK=T~b9HuF&3h%YyRbgM7LaRa{w+=4hMZ#m4 zA@tV4gSJ>7f?|byW%VJD9`UFTfw6qv=<35&)V544)(5M^vWP5JA3BLLy1?ZkuwATh zkzf%97wUs1TLzn1eF%sZRtKrE`ucDK`5>mN51J{(V+-m-C|UIlTpEX)qin*126!z9 z{8;#Ad?s5Wz^!9%&8u#mW6Oh@28dfAV_GOWLpSZeL1ojyK)OiSD9Y*_cME0L#p)}B z*0P#;W{G+boZ_WI+(7_{u?lgs?3bk!_P4l)NK;QM72L=KEl#)TkN27)IIFrk{qSATxWAH zR;5VK(x44C2l~=Q0?d_?efc86W3G6!5sHGxWYEblLrb(1GEt}Z1JoPFWQD;$mKTNx zZU5WC@E8k2R6AZ6BHCeL7$mC03PXQ-#G^3uZ|Aiz{DRu{X@`YjhRDjU`elz&B8t_8 zS40t=^}ix-aXXVhWQ2b)=4=-JL)7nIkCC0n|A@FxxdlDg8M8PmNTFAei< z&|il{nPY^i0J~mn^uwE$BOi?;2Oh$zP$vMJO5iJo<}R?OxXdHD*$r2{ncq?<@J{*mLW=0TQxY{U(_Xk> zs3&&Nxu__1sMTKYBCRE~JzpkJq-QPA20IJxrL_Pi$DCBC1rxq0m>ljDcU$-QHwCe$ z%{uGi4U{c~%ECab0Ca7~3qVA>|F!^>fj0`%*M-k&&kMlx_E-S6iR!Qdu$dn5C;*$8 zXQbPQfvD|<_E-Skl~|`l7OMakMHyYJ$|LYI77@I1I3)}&Q~*tO12(e?u(my~0Oq-? z>MLNW=WT;ZhzBWM_G^}8wimKL(qiTJ4q@|PbYwInKKmIFBz}FkhQKC2dN1Mei0sNV z^7}VAlt*)AH5_a;^tse~@zL zIvv!XH1XW6`>J;VfRHBcF4+2ZNfd6Ln)boX2J{{^~c9 z1YVTR;t@CmNb2%fv*t<%A&;Y?Vj|dCyn3++OOypZE6m>F%}(HQ8`~Yo&fanxdw+W$ z(Rke?Zi$-p1bgYZdz2`vb5sn_t2AWLG<3ve)mVPtZE_h?b!2 zd0(AQ?tBy8*c*pB*6f7I-bG?{6j?0U2a7Vg@N`FD|4u@(cN7K}PS~1kO>Ab#UZazH z$*#@>Q$5evy^s%Lx=hzhsn&^Sde6GKaH}sS+!7g1p3Tjrscs2}&w#SEdZ?OPuc*7t zpSF>}&n{FVE?X|##&I`k-D3O0)4dI%<+_bDemK ztDXLJiccVr;@vv)6z|*_Q+%AL1Ump#tiZHa0;F{=2Y(8DJBNcW3y!Sn@(=)%vAw8+HKEE|PMsybQ z+ZG)Oui@tT4KHGW&HU_1KFe>p?eWR8L73t0M*j%tNXnHvTgl`U?bc1_si;{V7(?^> zCs9`CqlqZ{ptC-|wU!^48PxlyxJ{Hqk)94CBR!DDd8K1}8 zCG5dHq&K|VkGV^1V=jRV7uy7n)a@e7ew|0=pq4eeP>*1Ow-7t%+%f|@M0e4R*d8 zx_G^Wz?&>8c=dfj7+lD8P4)mbvy=I&U4&%!@2XGsmyr)*x|6wP%I+=&$zG=@ym}vA z(?xR~-Xb4uB?)(P#uLc&y2WhzrnEVi*{K|U<)Q1811+YSU475$HKC{RqN``bofaRGmV|BnLjS> z{yd&Qn%C3(;cfzdR3=$f+^%vrF^9Y$8mUY3O{n8Y<`7Ktbg_fZE9+;{G z_;$R*b_rrnpS|UD#T@@#REOpGFZ75H18 z@dl!dE?7GeSf`t?U=QlXr=#xbT$6o_y0IL;&t^DYop&W^m2c>Ov$q$A07+e%Yu0?< zm8W^ggxt{e&2!;{oR)Art6QSY5wLfc?d*RPms``b*`GF(uwAflZ=R-aEQWm(=wAMj zq7QU4{4gq*1ZLAy`)pBG=dS}OJH4Ae<+YY6-B`*itEexe%ktN;KS;5R5B=6-=5jF%dU8E@Ec> zV4(F$)Eed?s{wbr@*0rS^}nqFZ(|Lp631&mr8uksE#vfgYokZByk!^dwm5eh3K#9~ zp|(+RSObPitU)4+)qod88C}p$BXCTdPy+@DgA3<*O*RUfSq%t}bD!tQ(9j#f>x)i` z7dm}_1Av^a0%*20iz}!Ab&6UetPvKzs1LVTBDJmikpA_&w6Sg4ko{sCT*q1>`F8yS zqT#yf{Wm=~6)mm$_(&h?)n0K{14vvWNi+4Eel z>9iZ7%U1P}`t{LlHmT7i8FZ6Akk*`6XjGhQ2PH~5rhd^4&T%lMDo8DH0n@ytL-crE7aeD99A*+Abb zs4vVomg|k|S755=1^g}KgP1PWHB%;c z7g9YkCK|rHOV{*%;c!p>^z9EO5SHhk$`G~m!l3RbAd7`;!oz4@FQM;&k>IqEko?-{xT)B@O;v{!y zEnVVyYEz_VYHNdi4`qR-_GB6&mfGKnsqHq}Z5zvLT>~?2ih-^_qpmQ!SX!rb=V?8p z`+u9(zhPSMjOS^c6;F;Ffj0)74xCqxJbFH}zVbGm4Ej~?Q&i|Ab5S+&Xzr>g^>{qh zssl04%`LA2C~R47=hBN0mnbqOyI7GTV_w=(f+WldZ%z&^%dJJsGjfX-jgGKInfXO; zcmzCXg%4DWCoASbY1g-~&k}sG+*e2TS%U9G59+2z@p^ol$v13z%rrd}Wpy*d4`rW7 zGec|nJ)U3qmha*9WLOjdAm+{#I4YB<(b<|53T zO+AFn0ZQSS6JraP{ZK+K&wbY#!e(R4c3!<{+} zx#2YK#ko)5UAIHC<4D!j+RWg#^O;fL8h7gGo0)4W^(>gFJBZFTjZoY2J%!Y1BzDmG zryh2w*HfQ5T1)MoJas72Gj+7Vz~=u~>cB_jwbZHac9AeQ+?nIm0SS70gv@Dz_WXY{ z$BdctLQkGKqk0ONvuec04HRhbOq>`TDuX!)6K8HuA#ng=kT_lWI)-R8oS@8phgq+WYrhId2l|GzUl9%p#ZUVMgk??nPz=5==L-jEv7~{Wo*XJ%?JRc7 zvlV1wFTR2VwP?-M4s7kcqateO9; z+^*d5YTQA$C@3379tBM{tDiBAadip9{VTPP!@M}SI&uB|xwX}*3FOGPxpq_K1ejae z`#^uk zx{`Sp6qDLpm>;*EYzZR^O6S!#1&D`Z^LE9nYHt!`%4_PS!+29(TT^v!9Rf<{b@$SN zjnLFvhhk;&mU!uKs!X2M)Ye;vZe{Z#JUhfT*&Hua(_`pr(J?%j;t|)whP)TQ^>$^;jGtKdkG;L|Fj_%E8A@s=3 za>ZBjK02XasVF3fAJ!-K;~C?WgMw!JJ;tLIWiM*>Ma8`Dlyh#)-uIBCnjJ#TpvSG| zx4KmHI)nZb#lEP|FHRoy<|m;0y&VZv@=7Y?pWwWDreb{r=P4z(C8&OV=oz5}$$FX{ zsNV0*>#OJ&!cGg~5jjp*aZqa?KB%P+fk8hZ?*`|!A?@qHz}=*QJBtHD2Ugg{Vg8eW zZ{onyao{O9aE}`Ii;8 z9^nsOOZV=ppQoBC38HMRC*=1N%x@7#?B}*tB$18s9+>KjUE%Z>uh#BM<~D|MQd?}f zb$?r&skwM0XZgAE ztD=T^_Ry86zrC4|F@9%7$AD&e8&p%Wh^1!|!ThJ*`m%GC=n&bz{td{jkS*iXjJ|wH zGMA3wQQBtprKQcOZekMESy>|RieDsJwc3Zv)-feVWn@NbITQ zht!Yy@zbYZpX)eB~&uTYmj4VEHj#2^^2qsk()XkQX$cP5ZWU1p3> z%k|@CmG0+&Re7MIG$58e(t^AOcCFiwFIiV!pWTGaXr1>w2~AEfO}e+vTd%;I|Mtks z^V+(equb=|g9qVE)XVC;kz1TCmTL9mtMk(RxVZuSgnVV@`dlPE=Qh{A#g!Cl9A--c zz644Cpo+g^b-TPLifOJm7F&Xpi!(Jey(AuH*#v?lVQT5>UV5x*YH4iRpzop1?MKRX z%B$(6154Qb-a06q^QwAw(B*4Xfx&{0{)3!r2{Zi2hH**`jS4O)zMvX-!XM zow3Eq#IAWKl<%25OTfDx;xqxj>c^G2eu5W|$R% zboy6=+i~#QICwr!VIV#znXi1H*#K5c6?o17Gq$|^g_=iN9BNHPcEQw}Igxwl$iLyu7Ey?hTeQSh0 zF*Olhms@jfkR!`F>lGy=JlURXw?(EVCz+G1(TOoJsfkfZk!E{JbQGK_;VseS76ds~ z{XRce2`xkc_=3Z4dGUpgZJ9sKy#9^6k|BxKq|_7}JatZipK>QBrN$&jrX)usM_Hqj ztZ=?|#6Fxl!9Un+u_q@-rly2j%vMX3%@&?ww?srG*^{lQHap4rY-&Zv&2H0PQ)*bu zQ6LioKazqMQ=4Ow?BGIASr0-aq~`J% z(qw90K!_zG+#YU=uqIhjY}Ob{M2y)Q37g)cVv>^Vkr8HcrrtFzHj$P{b7VA#B-s48OaXw7^21Ho8`dG@h4N+8iFyG{(lhFjsTV zoW`Lw6RpuO-QcH|QPCD_GUy)x*4bi`z?_)qq-eV%BX8P^{xzt-Q^I5H&<=~NI>?SM-kJC)<{iG2~V{pMkj;W)}+Mf#PAe|czA>@96nVQ;mD~vZGwM@ z#T=1nj(sba-!Xy z6lo2&Lk)?EjEVrKq*^0WQe)`kf6no!__RGrXdz=mWx6oUT8Gq?(iLN!BPxpm4Ac@-PJ| zPGm$1$!@hSh}MwGCaKQ*vT!-=H_N|OzX zdsGUs|2|EtE-Cg%sNj*-6f;!*$mGbxaC3CH9Xw;U*dk$vE{Ili^x8OWsWPvSuqAnB zUm=q<*;6{w*ozTb_JtN=8hk`f7wnC8j1tSyL@hNzjsmvc>>AGCC<4<~G>DLnOzM}?0zu7&g7 z_cgCI3^6B%N5a|zDnhc^nvxn}OHD~mfm1Ndyd+y<6nT7cS&(ByowbmB$>3tEH8CRE zVz*jSB4eUbQp3ZOlg-JtsFZLUfr7)54^GWcHKHLR=Ew+Jiq&dMjIpJrhTF^*SewxI zw*>ZBUeR&5%dGuMXd%PHmqBPHfeBzZblP{*%p?R(cBEwEYh@dmBZRE8SfV1Kd?(xB zylhQ^)exjWc(OUsY_+ApdCcBq9V;%d+$!Wo1Azc&Nmod$5+<1zncuE^PFEUw6 zx)5W_Qc3KPg>}fVCOe}^R>02EWZS3zTYdg-_4&Wmr_puN|5l&>TYdg-_4&Wm=l@op z|66?~!ga>~R-c|r_kXeaY*Bt)ks_Y^e9n?vAHxGIcq-LM*b}o{zPrlz#8k6hODW`0 zGdwMB;df_c$YHu)M%(&d@LWZE!dRcAJy{+^5+ko|s>Jp`Ns=UV^VV2D*rx5sIJ&T# zqHf$l4sY4|oqBfwSsruER_x1NC5kL-MwD|uTGZe7k!La2YWw962q3ZBw$@b_9wt3( z*Fx0?31oupT10Ubo)|8xkxG>E-`DUPb9Dgu)OM}jyt{CNdFdDmS~});*yyu#3;^KY zh48C|rDGnz=8L6cXwRk41OA;dW)D1kp0l?8m?!kkG&Aro`q$B&VAkLCugkz1^AG)t zJ&%7%{~CD^jy5aLNXamwsP=cbG6yBhevUbXnEi&B zJ@0bN6$$ed$9#>LuM9CiyvH%mB+TC&Q+hBD)Zc~}^BIn*KUf!Uwa#FcnQ9br>QD)v z0iSY~a}p#@59AC-P7g!QTkmtuOo=mXFiFd~mY^VJnjz-d2OP6g!epU3N05_c$mwv7 zb3T(eA0y`)ay~ZXEd7Xcew8>sagO3g&inxd@Fzpe7w0*q#t>b!lxif$;;cy8wpia% zY0Od8sF1gS*>7GCg3lGRQrcM}br4AXIH`j#606DsKP5+;*Up!cNaF<3TuvHiNZR@t zS8Ah#T3>)_#X;*0LAO8WptBO_y#i26AAtt3oy#KaBdncv)y^V^r4lPYnNkTV%M zNrs#jmpEso$O(IJt%rh`t%zA>h)KW9F(*U}TOu4o&N<{9Gvs`Dg>!C692asPBFAOO z3CQJ~famqmD*inDIu;5M{2x6L7N-I}qt!EyViPIA~ zBaqY6kTdNL=gg8g(~+|jInxa}Z-31>yChCFa^4t5&Xl^|J-`s7e9JMPOPEg(a~;+B z#E{eJF6aCvaen3;#h+yMaR!sNb*t4Ohkx5v%2=;g?r~noaDDiz4`*Rhnh3n~ofQH~ zRi~of;%8T#LCSZW*G1xWL|%VAucI#>ot{cXV*eT{f11R55qb0Uycdml>fj%_f}12D z8BTJZyPlxO5kuVe`yBVaggcG;<>-N@4S`=j;J_ax;CBdoq6dCw2yF0(11pZuN4We5 zo|v^p@B}YUCAB{bF$qsN=6MM-7%?xPI)e>4>;K}Mmn6;t zmR5+%Ogy{wQ@Zn~WYDZ2lLypyt zb7o7N8OV7VIWr77GyFMcx5U|joTJFuVaR#6DCc}3aXv-P4di_4lM@HEr#Q#_E@6H_ zOwlABtzUd%=*_e)CCHgBuw+Wo2R%56d$}oMf~kbhXe}?v)#)m6Iw5BOayl7uz6{`; zi4tc#a?+7A-jGw-#5tQK&IaV{L(T?6&d}1F^MS-UgPbpsbH*G}+na8VkG7ozND&aF;jRHBRjl^k*oOtB4G~`Su&pD$cP6~3SA}7U= zbF2dAWJ;VB$k~pZ6-FEdN_-=zVQ)zo2Vh1(?Lmseh@!Ts#I?C2VQ!)}kCAiJkh8Ed z=a^FT(JGn3qg6G9N2?^2@ENU-pW~cJi4%^T_Q(l039}F}>kzZh7ly5SHdH5RW1;p)n1hIU7cmD7F>r;zPB?iI=L&M}BIk-Br)CJ} zsHysBJwr~pR35EohMbY1oYP3+)KBG6w;`uKmGBw$1MoD2o=E#joCM?~rjnegu@?)es>3-KJUFwj_fQbyM9gP~ znA3GR<_`}HeU|hqa*B=Q!TQyRqZB1+J)vNPjnv1y#z-EkW{9alC49!JTLZ36H;L1E zB)PQ!3J+pB8)8;AJyL`j?o z&Iptb#&Ju~U2s!JKv&e{}^dn)Dpz<7%Fs~!#J;c0j zgi$xO;_6%zIq++;&VlRd;ARN^v*W9yN#7}seWVh!7DO`2QP384_*-} z;WK!(+j350iPHc%&5_fqkS@h@PDF+*o}WD~{!1gtxiQbm8rFc00Tx z74;d*-S8GHYG|wkY>hy8U!5ngwGj}0Y@V|oD&QE2H*zeA{Su4j5Xlk=QT)j0C zZWXGREdVEcbF)-{A#XCgl!BW3w!}M$yiWuk^WRBB;7RzkJq3Ov0dFJlXFc$?A@C{u zMxFx8jMGQB)Hq(GtB>PFx)hc08QAs%IVW1;SjUmHD{#(0jMWgcWDv)UkTB1qIxiyU zc|*?UgE?oZ#CZuh1UWAma>~PVbn2crB+en^oJP(eL(YKbIp?~>$wkh0$jSA^v3~<+ zjA0z(|Drxx%8NW&;lQ^4^a{xJ;4LNJZa?VE*=L6{f1S$_= zJ}|^U9v-;fhLo^z^9&_}D%1b)h_N78=KR#BCxl+TDIPT;I|5~~fe zdI_vHhOE75ob`gl8pT=U`+IOAFP9Khmt^_fC>3Bx`*9+tt(9n*s2OauEwD1vkY$-n z?8R=JFD0SgLe!@M>McXm)G1u8Zza|pWc?zr?ijL8P35ezY5G8#(ss{WCe{WeKwwF&hxG*cXOXlMAyr z=cvRvjGQybIc&%Yn!`CaBu*Z3zDG`;A!pEB&M7)kA1-ww4_AeWJX|W3@ENXc^Ejue z#A$?_mdI&j#DN#L+P{N^=>Q4ScOuCNzLB6HrLPf1tv{b@lP+QApf)RzGsloKZUN`) zlQ?^j<3P?HL(UruIp<4>a{)Owk#oV2^ZO#s`Ag#bft-?)c(nd7LX#UA?63fTrHdP-kzo{%-N)Wk~k&id< z{HT=AkPX?+S_VsQnUZFQQHesJ*^WY&A4~7iWDXu`VL(mcY7b$a-@(XZW}P&i5rn8uUt zPeaU~dpM@fH2rL-IgKZ81afLp312foX-&?UZ=5&vkT7wG8H$)VBaFIWA6I9Z#F-47 z6evlEnQVwTzn^2WB+OP+=XK<4HRO~&z&RgFoO8&zikx$XoZbgH=O>Bt5IL~^XS@3! z8gj_%oKtPOK3dOB=h13_oad;7uV|?^4slKgi4%*Q-pGkHq=;Kvp29H+=e3xPttcR$8*Kl=$66D~N<`N|uDP3mp*%R#(LpN5ucY<@0B+dxr zq#nEdQD0))J^aGpU!m2het}v7%0X?me!IS)w$V$wS_nVd6?PG2}ddnsWw8 zoc_oeiJbn1oE>L4XTHRlhn!W&nPE^%$Io$X>dw-~yw)rpEh}|LY^p=_zr#BjU@EmcMLfPFLBOy66agw{EnP&4LLtu=A80#JOkK6nZx53I)~4LvQ)rl{GzXN zObZ<*UX4LcSLDPPa%SgpPO`+YBWEIV?1r2(c_ilq)FKJ<@*Hw&F8p*8DK8sRie2a0 z9G5UhQJW8tbJUO%cY|~CCC&}x+(*t0L(VEE=aiW18LW7<=v)>pr4os4dJ``ci&80{ z5xeZ-EQ`cyimWyQtEn$m&T=S9H#ussgc^XTQ3a^#0lrAAE)BoMQ41tgI-)WQP}NGM z8?tuY=Bxt}Yag=S5?K2TS>N5^tjiMXOJv;nDfgEV zMxFF6SE=4S{bZ;;kEd?rJd&{vR!3C8=R7!Zmt%TKn0UktLv`W}Ise?_oEah~?Gjx5 zB4#mSrW#_}ea|sFL=1aMxg9x&k+a>9v-k(j`BdVZM@}Ac&Kq(*`;l{gkvNa%k+kbj z_S1Q=9vfl;A8<@?x;|J{(@EwIC`gE@N(FodtN%le=_Fy=r}LQiMNWG|&gMs)GhX71 zMa~@Lj5Xxke9So;B+feI>_N^tLr$HaIp>VTc^5eskn^rDPR0=^M89y%_Y&qVV*WtP zU0)bhg%177ITbSW(JGh0-5i#|qh5|m_zc%Czj01WiDN@fH{{q1IkrDICq?2UB4-kE z5)C z56~#5At(MH&M7%xAFN{Yd9W(a=fNsQC42^J^;6CXmpILk(-t|+3^`Yyan2BlGY~nW zku%VcQ(YlP?%w#wv{2$?K>ue@c@UFfh_S02b5O$UpHE`XLFGZrenZS2KaRN~VZK7E zzDCYhhMXV#Ip>+g`5QT<7w~BPZOAbflBgCA@`;y|bt+$8?r39T3wGF&%ti zSb-l{j@&AD=X@y%GY&Cx5i`yZvo(;bvr*!#N6y}bBs1tv_W(o8?eZLRR>Hi8n2V^+ zdqy0k9m6Lri*AjyWM>_*;sQ za}GJj3^^ZG$XSD&`G%YtH96;XiSrtA-bT)AzBueH zMYTBQs)V_Om~Rks$rpwt#jCYBr^sS`wEjU(nZ-O@{}^)a*WsK75~uEB94u!Q;S*hyvrFP+Bj=69{53^} z7^M-%d@f-=LCkej=MzItr^cM~o5cAUIsQv{xPCU|ywZeoLYC;mUVRAax#CZ`p^N{nRA!o3Kb2dpFvV^^aNI?uS#B2}e znD-^jX;dc%Ij0RdUq^7xj}qrQk(^U;sXkiem-1-UTFRqdo=SL&7IX89 zQJm9S;8iIb0)%)?cJO85+ysWs%2~T5)(&JH6<9kA zS?_k^tS=jN#mzXOiEchMteVa+a4U+Rf2Xx=m3Ov@(yk21zNi& zhfb8B;}M#U(DB}(on@$hiCzIk;FpdyYL%exh=;F#Pa=VhHZ^sWF6!J}LfyKIenEOL zDO1K7U>R#0H8DDQW=b<#bV^KOOhhz%+RJQyY#q!jqdRFXLyzBvblyO!oy{SNF_=^NaWW7?^;}AObAZ`3^-e{kVncvNeB>82X+e{w`MDlp4 zGrsZ%!VxV}6xb$p*62#!8_C!}XS(T@(2)e@=f?*_w<7F2-Eq(HU#`1E5zC(ZijHaJ zolO+eL-BZ~(-lT?Dmd4eeisjeaxKZjH%pZuZw5Kj)Q8Im`{uGo*T+L$;;2=L z`NPzH%ZdGVew=B5$ja`0 z)|NW-G}ZAYTdkS1r6e0hm^RVgI+QXyn|XH7WkP#zhJSvwA~F9xXN}r(1+BwF1kZQ$ zCO-r|*!!);*-KT2uOMl|U7bki$+DqBudZHt71Wi|Vi*I+!{}MA(j(!B zyCRX6ZJc9#wY}ZOxzQA`Qb-beTW42OdGQDfAIOlE%a;%E6xKy!F}Fk1gRYY*I_||f zzf#nOE9uM|B}}@dUOF(tMTB6=sSeJ`YS)$I$hWz6Qzxn=eD?4|;=`{hP zU!J_neJer;^R0NqJvIsM3BEm#zWq>i81wB}>f5H|hw^h>>Mg;wE>V)X_7imN*_9;W z8&~H_KE`9N_1>oW0k-ZPTs@pT`h0mEC6I(wz7tGN=S=EoDzi$^n`)<)T1B#>^Ex@c z9^~v?lpGF8FYOpmeQxif@KSB)#y_znoKUZF-!z0?7p_zz=?9mzQtPcERQ<{o06t~R zVF>M*Yd;h#!X<$Z#W3Dff{v^$k}MxO2L-dWD$YVp?~9u2NtoUF5?q(LRUam)J_LSo z)-tcNqgtK0Tm0y*ugZ6-uP-_&KB!>j5#Lzhz?q=04HlSP8_X^355IV0rj?sHx3M4_ zt&?>&nVaFKY%6d>sr7>=hYIrT-SP?ja^n>41vP0E&kxX!89q>FcssJ{_esyy@M3*@ z9VBM1G@Nfe)0|V3T){P$CD(ijuCeAdB?l)u?<$X(C`;!Dq9mJh*HB&P!P43Lyds6q zx%ffw0*hHej-)Bhbk+1+rVwtr9;x9D%CG`61sR%P#>owDE=_ym=2-G-)jKu#Y!0V` zh;>YDmPxWV<~Ma%W;!GMlpZ9k+MQr#c$_H843Ey_aiU#l9sBo&PbZHqx|W!x8yY7sD-EO3OD=YH ztt5I%&}`IVXFrn|Dt4{rD|kJYIG6f7zbtY7VJf;>n1by5q6$acP+4#<`)i*eif!OlciT+T7jR(zHhGMz34_K#~L|%$@2v z5M5gdUOw*4%aD6Pj^^u~*ZoYdiCDPeOfel5kFa_E+G=uZlQY6oRyWQGZ{x7CX6&(d zSv1!_n^;S^#$v>a+f}NBM>sF>a5}0FoZDGZU|XFQ&qtyti{}lDCv+(+o|U|7M}}lM ze+?Bc58Uc#v0e|`n1)VnO15Q#)9S2&!`ca+rBY4dh}`)yPbFia>wGqq+v&9Wn_3Dy zeJb5V=ZiR=O5zb&i@Q9Pvf@cCWe~||0t=?|oA-4{~^}sPYx_+ti z1U>M^8h#zuD`rQN_3dtzBW+)IRwLUFIX5fkXg>?lt$T{7e2t`aJagEYrd;8o@PSSJ zvZuIP{Ky$tKpt8{Vr%5~XUfrqo@fy(&LQFvw_7zEOA~vg$w6fK2N~g{bilmcCcm}N zq)jB<$*?>QE+YSvFh55E*X`;|#`oA&M+qev(b{@An2zNU=c;RY%?vv3yr9^aC<}9x zD9OTHb1e@u^e8OMl|+4o5m%mYu7DSJy7fsFM`7#pq_uo~UgIt2wvx&sD$5t;!b-Fu zdSyPy7OcwWt>vro7XT@(%7Mxjrz7Ziny=}q-0QluR)N>)vOI~j{eDs{<)onYaY^l? z;6}POH-F@;?WbI(vib=-1F2tv*044wKR%cgNz!Z0t4a>NGp`Z}jh|Q4asHySr9y^( z;jBbf-JV$5aq=_gc?CXH#Jr%J#|u4qjuID~CH<7&3OuHt$gAA)Y$9La4pUEIT)_n9 zqr*BM87$x@x*f#|zxS|%%UO1BW;5Th>XLJbVrsZfh=gv|XBA)t8FoeLeE?G8s&k{S zb&un!^N6XtI2tY1p@vCPEWKurdct34mWX}KB$l~%g{pj@I#4pySkCA^j)>p z=IeQEqv<#vv9-b*PH1fJ-g5>jY9A)YZ$|YJWtr_Q*YnsyA6A3C+s99}-rHbwmW+QA z`$HFjy9f#Wp};;mH@T`h6BKEg*M$UM$}Ub8mv9A=w)dS4NVWUU!Rq?;klmdVX3KkGNx?`J+6^K6EyS)cM)@ zE4i7wtGFZNXJ-k;^tHjXsElfeV19BIkH|v>lQh2_oyn@f8|tYF;nU)&7;2Ucf8n&4 z_M0#4)g_#vV}%=m%uwjO#Vcju{dxH?U+eX=OZQep(!4qg6B+gq_I;0RP))fLk= z1KZpAvfbDDBG}J0O+AIyo)Ar7)*j>5I_CJh!W8wAU~Y~m%glxM7_r;Y(5J8p;7gls z#a&s-Q}Wn;C!DPMYH}6zFBqRDetHSlLACM*eWnjWbAvXpOn00v>8hxx^+C={9uM~v zCPPcP)~GQ|R!rekw-{TD1a9D~YEb20r7ygBn9kd0rCp8vO(`3E&)c;BZ|tg7a2@ou zws2K&<@nrY5Vm=1TR*r9=*T#_u$w~vB1g7ty{9hSK-yMzb@E#Q4@z>vcGvWKmKi{X z-I!OyFJw&snRjDeU%yW40!Zw(t##Fm4W!3&uI3|`f<;TmKo9sA#Nl6%g?~X1{>`AR z?$6$Dq2{wI*{$?1_E2IQ{fpg4+D`vs*T7lyFTSFpe?ifrU$~!Fg5IiyO&suQBD#rV zR~6Ux66&!HbPG&_lIxb>kJ?Gjt6RfKR!vvQf4irn;paaFkiTlW%9MVC4$tZg{KYqR zcpSnL=7+SAZtU>Y$ToJ2tL++P$`^=yW5*5Q2#m(gz!bV@7%#3DxD5{HxsnLEQNFLW!t9t3dwsbVr_fUg2!B62~ONV}lo~E|mWZ9Muy)16& z=&s&VUFx*=;VMVP&aTpmX|@P;PmqP;VKzZ#ZzA7zalI&Y zs7(eR$Zup?@2x{XH4?9s+SJy<6QMU<#op31{Ke^YnwKd(|7gjV(ns3mL$I@a-nPvBjf<&PPMI)}ng+f{bnYd2Tb`^y5y>=e^0hH@4K@ENuF5 z_p*EIRj{!oMjBMPb-{U=nvijC$ei7-QO5)0f-$8$KGk-q(ncelfs(!`f_(kMJQI=g3t(#ZBtTRt15{zQP8K_NY^G)(JgQUS9)w+7NQDA+|uwDi`Wqsu|k9# z#6B~<3n`twsg_!E3wK2b#d^4+`WAjkd9hOZ1+@heKG zOC=v|v&XuYt1qB3qr?%|6<^90c9)yXYn5KqQT9dGnUd<_Ei6-o1;8hKF2K)jH{Yqw zww@>%^lw<@oZJ#nc^pus8{GhA*H4LbNX^k~`w3e#Ys+4A@B4fNbql}G%{+Jtl|CUU zeGEKE?{T-A<+@i=y$br$J3<9DBEC32k+}rM(ak6CEOLzxQ15|U!F8frxQb3Vy;b^$ zCDlKe@DKs2?PvigyVnEXZr41ZzJqZB#hB4==#0iY*Iq1-FM`8^=`6i`gz?%I*Az8; zE1y%%w(93p3ZszFZfbu}Yj>~jT?UcJ&wkTwbFtw_vXS155N zq&Fd7_Db*m|LbwN)wYW2rLFpTITT}^1D=O@xxP>OAb87}D}*e3%@s**9dI=wLk_yi zle9kRQRJunu4-gfzx3Mhy2fqKv8OPk%mLSb+M~Am4UF$)z9)GqL00rnZ%i_-W>h9k z2BeoHn+K*>CRGo+Dv_hFyXujs0qH^HrPp0eNblEO&yk4()5A#kAyMc0n`&-@BU;&E zchTJ$Kdm6;1R0uqmAw;Tt-fe_8!{nrdU?88Ky9;)r(sJvhDT|)!Aqy<-NKH?T>0ui zCRUx4JG{MnDN&S7_1JAZ3!zJ4Q{7i-zvysfsq?q-6YM+~n%+7qcGC4s-3$jkOX3Q& zdBZloCYv#BdlNG2lxsGbuyuQL`qvWm0QB-QVblETa4XETepqh zNCU-KO%#30?}Lj++@6HLSaI3KHuI2q@3{_`zSBoD#2w9jUZNR5&Qyk<2VXqxTHyEh zwg8fFynR(N;f$-TN!c#MoGopiZd;d-U&HiN9D*&L`=52SHdXK3c9p&B7CZ7QqnH)cVz9Y)A%-y%0XD;+9?ELA=e|ImsGELu$*6T{tB{cG` zD8p_v#7#(lVERKmtm}HkS69c}uUt`zsaTef0W22Pu0kxzh==K1YDfj)?(1f_U|HrD z+AI`nIKDzu#=LhKrevrdQ%1xrXh078Z#I(^S6m}}DH5(HsKv6#;j6CNUOKS7jve$J zlw#zu>rM>&QI#-pa=kgG;Ii5zRwKjn%l$mpcczizpt=a$^)^ExctH;PbyscGG)3$S zcQ<#N=7>k!H#QqiOHWa!WRd$WSGs2}7Pr>Z(+8SXi(Od_fDZ9DT~jv| z0%y0*=BGfm2}M1b#Z&1x9o{3Aj=~2HXeyPv<4RN1FPR)qr3<1gOQlm;ER~d_G+@Ex zuxnByUn#?`_QV(o<2LygPK1BM{Ykp7{!bVmPK1sI7tmki&0pw~XjAGsF#(H9)b=2b^E=4A8B zpE1t#-~E(KujXkxj5OJMx6()ZDcN4lYvks-&6_Ehr-E|c&-Ff6R<3`}R3|&0x*nP? zWb5nFyU(DYTon(q`F$aqofswgbzAbIOyB9n{Xh;L)}(j$96*;3(P)}D!3<9-W7K>S z;{65#n1QzpG6w}VA@P3s@0u#^5R9WYh$@vAjtEnErhonmKH40A`R9M^XKE~TWRHP_ z64yhUfT9dd>k#k5p{ntH`TmfbXTv1 z@>4>CoqA>J!V_G2S@dp|{MXcuOpKoq+KHk}nWj7Wtbs27R+(zm!QW#kS-bvohkdem zn9Y;1JIUqX{MS7@=mPYTw*avddYO>?$9^@|Df$%O!f)D5$*S~kyeU}>h|*0-fU@(`Ut%2C?ptrS<~9}ho!*tS^L#(kmF}^SF8Mr zerhHY7O%Y(+)FYJl%xC5#<(4!_TR-b3e;n^$5F+#%mCXB?oHltJK#Ty@9RC=2P(eDk+^?Q2EnXYA%{-@g;`KUI`< zR1|-p;FfKvlkL$rzpJ9`=CTF9P;kq4bj!0_Ky!EVTR@-|n|fk+`6ZTk#O+7N%LDQ& ztEMlhzqFaEn?t?5%^`My++=Y6o2HuvUHf|LYIM5I83Hl?hsBZqLgV-o752F8;(H{YVbEzG`gqH`5BNhJA8lpqkPz+JD0Wj@aRjDKEBM+O zJ>R~Vm_J$_Dkw8Z6lF88;~qW(p-W*iu#l2I*^mD8`6YE3sdX}9$wOeQuBKU zsITtPm-IOpnB7DP_!^%x?Vx{$lk~|`N>*M0M5&|$l+CRLbU1CY_$=vD3u4bp`h

!~+T<2*^@E8s|av2|lo{?KCTAE2>k9Y2k@U%@i^py|_@`4x*RCCTGTUrWjKrA~I_ z{QTHrN);~aC7Hf)%d?vPliL%j3!?`5G2_3|8E;V2Pr5x|Fy|csujKDhO!0dKr?O?t zqxW{jnEHu_*)k@6FPX4B|CDD3-7@Cyf{_I%OW7G`cI_vvR^`_rX8&@fNx!rFKf_Jq z#DR1b;Hfv9fk|X|X8vR2OSbs-By;T6rey2t{F$be;@Iq&{xac+JE`F>wxoeQi+f07 zh_O&PqSRX%l^hve)OkOz#-*Lw)fpi6gqL zB;z+g5xhocE56a-Dy4g@BrolCz;D2ps_+X*D#p%vk3=a}ac=D873b1kUU7Vk#~wd= zZ__+(B{`Whh#LGVKlxRCm7V;EX?y-6H3|-T=4x}aIO0|Q1mt5!eiL#&E58*9O-?UO z+MeM5*;VZfUA?TuVs-sDWap1m2QXQ2Dc033#?FD}SNS;*v}36%n#3Q2h)3Km)r{=L z16p=h{u`!+ufkES#DfV-j{UsM00*RFXT|iY9_Y90)c}&2 zx9heE{&1_HBM$IFB=j^aKc`LP9S|s7ebU(gcElKI?>PtY``-7Szn^69oZbJ<&d$!Z+1+Cs3;O922*0n(MhVnS1(CW0!td+0 zQG#zb7kp-rfUPM!HA)b-wcst+1R5c9HxdFHJ^y<>_kmIC-+cx0O`k`TnDu;C6uI81 z4_wE?@ZnH8wtTp);1`87Ve$AlqoEv^HMDB$c|*fAtZO&UpD(}|f3xf0P~Ol6t>;V( zSPy-775qXb<8RkCHd+*Z;(A9LyF(UZG=ui^jwWv7y#+(aCoHbqo+de?vG(-ddfuLp z3FG$k90RudJll&q7aKXgqdW$pv zd>lm!|9lK_|NLLq!>MlzYPvl`2QTWMPrN^Yh@%Bn-Djauor||}OkPyb&Mo`adghwn z^;aw!I_0A~)vRo9T;-XSP2%q za94afKgP`IlIYXx;pTmA*shr@38Z?NxPFK9--*#HNx7ql`R z{TEnY4tw~&!I}#S?wGD>;k=wO^@EjZmU>i}fyTlVp5@LIq8420k=^z9cmqEe@Ryt& zI~YI@L}N=~2Lqfy{=6hEKujS%G#88~ejCBtQqaugztPzoxIh0SOTm0ouuNvXrvFBM zY{Ml1)j_GMEAlLTAReVSddTdPyxJbdML#MR`z?M?Dym^tn8&WNjh$i`_^v-!%h0Q6^-I9 zd{mI+8kd#z&Li9gs&16PsH`=4S#SN9vR2;R{f`2?$mSItc*{+^hFi*CSSeqZDXf$< z?%xGXOfGR5=Q-ZPO2fLK!g$kgqf|+i3j4UGVmag(#cf!*u$60E^d^snD^CkzOpA>Y z^n8XLh6_sw9u4ZDo)Mmwg!^vEr6u{kW{`+=2QrMravyJXESb8QO|HChD5HGj zM>}S50(rt_KEc}Wqi$5l3Ko}5u)LOQI-w}RY7myD1qIB@C`CUeL7nQr~&S&4QeGfNKJx!fod1n8=%JPC|=O6qG}=qs17(S ztKd|J;apBvH}hH9t%_4#un1a(k%(|5rdB5PWx$2|X`RG;F^{l8iXG z({c-|JEa8H7LAUJ{Ew`gB-ZQ0mI$>HtgNcW!J*zN-t&XYUjKJ^kxCCk%d%8MoQ3_xv{co%9Pb>H z!>iLgU{M`41vWHNo5EY;=XZi0^XB`&+jZ1(`e@6wq`GQt$gZna*3;8WgqUd?oC^xT@6qm^$RbqH*3tTxut|E)d}wMok~}sL-R;v#O;<=BQe6k^fAZ`%BfB`o+-+{Hu2;xm zshv4{wRUd8mERuOuZ@Z~^PORldrI-jJL9p9lnr@&BL#W+-;8G31@aS?3Z#E%x8_e- zv08<9>!rN(5+BVNO%RgdL8iL4W@@d3TFG@1l9TG=D71F!2A+{Cw^%3M7@c@r^IX(4t+a5N_Z$<_Llg^k)*^PXtqE zwY-=EB|}7K^~?WJp|^BVdm9$|%-n@FNVorQ^N4W6JZfS=?Xy5hm8!ay7V_ekl?wPj ztm(!EHJy-<;L>e(%S0XfKg=`cIeE$lR~s^M$c-w|DG4@B@aL_84NR~#7&okn#Jb{AyRu9w2hewpFrN0`i&Sqd_cdk1Ny_-*XLJs7gVU(Nev~_bSl|cur_%cA6mA7 zGb?fuVfd?RESc;4f!-Y7jxmv?#x>nc1L6ts-PFL~xtMR!(1oTqt!2UT4%Rz_L1@2I#m)elr)yd{H z!PG4-8}RuSPs0ZGR(~MRjOAcIxouA{sE;~?cyFhzLskd-*=mf&3R@x-7CHQ16?PCW zY*Q#)W4E)7wo9Yt-`-G9lWxe0OBd2^geYPcnodj&J8=xAorpo%F_;?e9ysWrJD&zFmlMzdn8|4$-%%iE4W0eq1WRiS2lgyk^Y32y@?^$WYw5~`_ zMT_JdQnZ^Y5?rT3V4*^tg|ah;h5E0P zxpwdH^V1XG#K~OHS5i7!4hegnU_owj|6w-QZXwspTF`NeeSIzQD@iZeY_1KiTDa;Z zi0oR^bV4s%a16S*q9nqD!{}m0Psr(Yvms1+Q>~~Z!{kUcs9bXW+6k$(+u*#eeyvp4 zHUL*L)(oCs86P)N14W$jE^*pG_lasX63)}tbp3`?MAs9pZ_7e6QkgZPC}Z&PBf1VU zS5BbOmK7rIOj=aF5F%-d{p<9vXgiom)}Ywz{jQ{Ps|3h&Dx-Sf)Bl7Q52Z~@@RZts zow1Q$@iqXa@oJ!3c=GE^Zoay5!x#7M4A0L@v`bAEq5#FaF!5OFUB&pcHp5$LgHaO|4?03pVQgwUAD3|}-jQE=( z|5rNoM9x{$5bYNk{7)O=Ce{#1zz#mQ@Y|tjgh~PwZsY69lFEH0WLk5FxVj$K4oUSL zd`^HE&*>as*f_PKSFNO&o{bwft~zjRLkJ(L`g_$*s9mpJczC^pq`I(qoH|(-!z9IM z2Wdlb{dvS&s;@3ytQ=3*Bzx?TD$Yo?_KQ-zwu3jx5pn`5Z%G37XG4ZyVR7DU@MX{r z)*O|oRDi;v+i8^diM%kD({|I0T{|Q@OPzN}jj?R4q}Q1Un=tu#Yf5czkb#VHip88&RUwOnRbW?vYbzM0iLf*r5}l{mV9{Ug?BFy7p=I%up`> zxiRi>^l246gbs26x(KG*M76r>=YN;Wb(sTAqdY1~_&;rw$9bcCEE?q_ZKEWhY-Q73o5!vY7UZ0i=F1_@=8BD${lu9^NZFJUIn-wy<5+ zs+~}mu7P^OvnguB$XclhsV+;Rbu>$&|1-RJBRrQ?(>gn)I@U<|tdWG-vT5;D$KqVA z@ai-ZSTtR&3yr3!liBlj?YwMUR?DH!5f#XONH0R-u_=PFNW6^R(mQT{`Zg{dcR&)q8HHOerdTaJ`wS zn@ka73O7%ZxeMN1rGDs|!08Z{EvI5mLWm3_Vz$?CO~JBwUykgO#p*R`OgWh+@o3%B zst7b+PR1TvN2cCdtM+ou!pYPcIRW#`!vu>yQ6IS`px2S_{_0b;jAGg@r$Elc{pn>t zSNBs19Q#~tTiU~9=*>0esQ8w#V}Ej zVIsP9*>|J*zA0|Eq{vLLOin2>nF%&-H!RqshLw{O2t`>qfA zQSb~Sp)$wq@Ajx0$zQwej@xlwG77{0dp88`QT7kd zYXat^8)X!?(tb6@H7;dd>fV|Q<{v})HQ~DdNaDp&Qycizf*}V~JjDC5E~^%MAoP&> zs;Pzig_UFVAv7pGWil%VCTNhaHg`?H$}vnE*9}2o?UNBPu90a$q~TTzQIPaK^n%2U ziiU;Y-n&wRuoqv}5q7|EHyly-E2c#Owj%Vjbv&!Rm`>79@I_!Ey|{EY_j z;iseODT4$og98Q$FoVFd+?HZCko>r#KQQ!D29e>}F{}<3b~I|+>bYwB__#XB?KWn? zF1cLtz1qa|K$pecJrMtcy1;Z-{-UXqmqivgS)HU;ESBPGHS6OO>T8NAaIaS3E9`}~ zKcQbq1^J66pI1aa-h0{Qn1ROm=qlgNp0@G>Anug95r)tBsH~}>oULY_+15yc)G)rF zXY0g!HqvP?^RkxIv8xfHqgNwu=o0iaOh9|Iv1iqV>U%?qRVHxQ9e}m zfii?s$vk0R=9~_&diJUq^3z^E;QoP1LDvx-+sg;sKd5S}QV{#6h2H(r)>9jobwj66 zYP1`oY3N|vIB(VsJ(sU7&5u+8)uvia<@QO+kH)5hDL|$$J5z2SvoqSL5ulElSJ%rR zI&{6E)^ml{7=n$@6XgrW@wh)qA7Z`V5@PUq_O<`m`}a1K3!PY7@8e>{3Y!oL;M zV_7X&C&u68_*zmord*G?a%tmtF!>oog>62Cuef4s6f0WXry;Y-j;8Kj<6Ahev?*1G zn*24?jVi2RN|wK{Q9&!2!kERl?2wa7T;4@H4mou zV3dFza&k$4;Np2ahoI+=D5bySe&||{$y!z&jXpFmroP=a_7tZ z9^!rb`RHIbZVZ#L0fI3be4c9j&0dAA z`6I5crWWR#{*r~G8IJitrtf57pXpJPkQ z&8e&$;K$hd*DKttkR%qBmpon@ot3=O0bX+71H1!&PVVd&oAEb$$?+Z&w@>QA{nqbh z;flzps#bBZt}Ajxd+~>j3ilB*=783Na)6M;$OF9JZkkpY;YOxmJcGTGVVcOr%?ei& zvV=vJ{ju!VeIY38tcP)iSZ9q4vCdj94)3gGibJ-J&Uzwmow=T)+2ukmpC06G;>wi5Ph%B) zWh&098_QM~m)F?iZn;$Spei15VsRbU%Q?r%dz|rE(^$hooNUMjx9pqPBxFpbMRNKy;7KMswL;ly6r@X;?OaNVdzFnUjag|7CtehNimV^;&9hP@Ft`2ZcnD@ z@w4DetqI~0_g;s%@$W(N(dl~ELtNJf7Zg5H$XhHfxBg?a@tLysImDG6(=lZ?=7TG{ z@i*jx4SR-xZ{5`ZMQPUB{6*)L$O_f+rk29(A!P3%t=S(Vgt6-oSMh12D6c$O>XSQQ zjQ?)-gZn4{fGG_+g0Hm6!;2nOA(vTXxg+?^8INi^`RWjNbVBx+rpu+`oq$Yn$kd!!ZBFnP;lrtR+e;$2<&i$;6vm*Ltg^YC9Z zq$%|6Q@sL|&M2Dv0zL1>_555$(QH#g7f$H#w4OxKm%Rlm`|cafih^))S&FJv^j4x6 zG8`|4Owni14n|FyTNiSAEUQc2%;$>UkLIIO^sIb7zKd#IbQCsEDl$Q2>!Pz{5=+E2 z{(WsirtyRFxyB;^(|BWsxW*fQLw1QJw##P0?*HawK1? z^L>O|4&l3@bcy2CZbj$3$T^H>py6{hk+<|OTJK5BEV8WO`<(HZJ>Sn6V!qzU5YuwG zBuvW#Wr{<}C-yKTjxUNbNHA$UGSSQ+!S1B@ihLB;6q*)y zPe@PZn5(Kx(U;+OuBusy
  • _!(3GdQWkWo+W#El5jgLQyg-2*x_B!_p>Sfu$7pH zzCcs&aNF3<%{(Fe->2@WZonSy2rOlO%T(hr?h6(#_Vbwk zc$mKkG`?8R6WFDNIGhxh7Gj89T3BW{mJW^gqI#DDpq|DO*sow;J?oM4kzQ!Y*yn_Xoz{yOr;^V_%n@$ z*x-IT4Y3~g0~%tMaRv=B4fL2vgD7Bn9bz9CF?~g4xIgyt2Gd8BZdVW->9q!*(Mo9o zN8n7*m5$00dT~t~6VO=PCTxIFKIZn3C3DM+88L2jzX40K>7ZQPYu#fK9+hG%0(hEt zTk+MQWT_{tnR?zI4mQedZ~DeKv-~6UuAEGAM&y>S$*o; z4KTriU}WorAfK;FK|YSH08I{9%8-kK{FG+-q@5*zSOsNNG*WI?F;^rH1tlZI+?YHQ zKi;m5pO-|NaeN1T-?P?(%s8_<{8$sIy+ZM^jqPt)>vLLWb);PlH3#DBSLGPOnk`7V zAyNHmA@%*L=E}=GEIheQ|<*Hpd8L1N~#pfs-u4V2E-up}ZNr?Eo zk7mHCzlNY>QH5URU#AQdM->N?x`N!1mUCn*Hi+hek{^$hd$Hz7(os-)Rzpg7>*6rd zTTpIO^?7f6aVQxgD36*Vg;oZ6M^Ij+%5<-$xjLCHC_e=uRldYc`Odb>$b7SWOh-zfGcdyhh4IF__Wg1G|uPJGUdz|W@>umI--B_C+{ue=GO&EepNto2w}gq)!c~Z3!z+sxADNKR;I zZbX6v<;OUr{M69gmBa{2e=5MxF)PZ#!bYfswFJ34wYy~-n|qL^$Dm^dD&cpH(VVsw zp9eL-&&ShlG$P%Rl8T?po*3l?J~a0?MVzx#3Cm^AtHYTZBgn02a|=o{cZPR9wcFe- zw4vPFcO#I@!&rd`*E-$Yn|vgaY@iaKclt(4@};00rTSN8lQjm+NhU{r>u0yT}%G8!f2~GUGp@1wA^sGRnC-_`z&5Q9! zkk3$c{Gz3~HX+BkwA;nfh-VAZ1%NlBH-;mv%zl#wmcmic%e4Q`rJ>ho=p!2HM?<4& zXe15Ip`i&h^bQTprlF-Y1T-|1hCZXA)ikt?hUU@GK^odZLnmlx91UHhq3twe{bmvd zx6$B3O8kI^p3%@;8Zv#0p~Ey(iH0W9P*ocGf`)3-&?Xv6qoMgU)Q*PUqM;r%G@gbA z($G2@8cRbXXlODGy^o=LiiSR~O{SqP zG_-<--k_niG&F*SvT112`!u+Q24~UGA{xr2p{X?VDGg1ap*$KoL_-H?Xb27cKtt1L z=mHJRrXdRrEuf(XG<1-Lp3=}>8uB`Zq4#Jgh=z8RqH};48r)2YwP%vcM z%mYbHJQ4SUr6sig`bIQ9pfzeUu0`Ng*zTsPG&!5{L>&j;qn05!uIt#&{1v{O<%k4% zWm|X>{GPnToUVjRAJm>WGJW#3wH~Q<93oyfr}7c~7?E4IgH~V2>tL>+jC3ZFvK)4t zy11~!eLI;uz@khXsxLhb4+dgBi)oTpfEa!-vTU&z^y+ACfisG}JFOkOoNUi!$n^4X zGV3^`cftt;@`7+<$Ps~b$N(u6@?TXdLSAPxJ+7?5M87)}kQQ@P9ddvNP&Zb+(p&&ys3d=FZ?L--nw`3fX; zL%52t_J~W_E6`{g zoAJ!F1z3F#iM?sB?~Y{V_gt|C*SHz2OlK%s#hUUxRjg1ry#%L!yl&b<=H!xKvO)0o zB~8}~zOQ-H4_1F=_JZNP%?S$nc42WPby@qpLtWCVm2`mHjY?M*9oWwT>5PQ5<_|3H zkpB2oT-rmoQjkByBwWUAdEdBBC9Xga=rZ^L3_cccm93nB5d@7;upMolh z=+Q8LnVSd1eSpAEw7`!IfjibL?f}dCnQM>)0bCOzzPAe?tG~GwHc=$t-u)txNZ_$<{QZ8q&LkeN*6=SPKKCgJ}l`4S+h#Q$;=ae=kO)v01;^q#wyO=$3+Gmu{CBuAB zA`^)B39bkxn0x`N=k!PB0Is!}cA0?B2y+y^L5AODD^&)P&ssBxRBLAj**ZYW+>&I{ zNPyPYf_jfKx5u}xHBhy6P<9cNhn!_4mB?U$_ofyPMbKR7r^UN#a-8?s#Gc>TkDk*gRLb2@1vfEvm`tE-_jZ{G6q%bn^G z5Ah4ko}``*HuX8MU(Yf(AVUP~AQ|?4eQakdXPYy~03F&J&q2FA2Pe_X1lm#;w0Drn z({s(u$zmPag6E(`%*SctQGs?uMjN>jYvu3xIBGehL)-rxwB`$ORp;SPpk&xG6d88lHy1ic?OB?o~If+y{sjc9OND&px z#yZ#p*;uC*QzEH(w@Kv9+xNct6?pm^wmjCP^O8lAhV)0m97yWZ4bkNRPeiV{AIT9s zP7pjIgdg-6i!zJ@b1WIJ70T@|?*;8YGMmT+0r|5G$%YOM8{P7OkuA%6Ktfu1KR8v%;z`cvayV&_ z10A9rqHF4HSKx|oDSUDQD_w!fZnjpyN`EQ^hbE?#=2Y@j2lzw}==&M6+^5;Q{;+zL zwG3V{#Q+lw0D~a^vR?&QQyIIZn)JKQU{;2L+uU` zhkb6&Q1C)C0}8@%CgIlDGEwM{kqR_2vwqTh9uSC&$BmB-}!)&}hDnsV?) z5;!wfT$Pi3d?EbXdu3t4O<#A&*^OnWZeT!E+^W90_{Ch^^*k%7=!K3k@N0!a5OOv|y6{Mnc10 zr9$p{p8$9|r+ftnpO0<()Hdu`(Ivn@+6N4=ohIqtcGT5hc`kU-yrVu*S?Viy3?Xm6 z0P^k*v~uBRxKR(mztpHRlfg8w&#Lk!_-QBhv6XSY=h}4#B86IZY}L%NqZOr=os7lb zw~EsV+GhG2>i&)kx@13JtCIU7ZRSC99J!-QdsCmbu%oRG zta{5g815gyZG#H1HrytLxRZ`yXZFh>+)wg3s})zdv%E%-3sxgo5>_K9igdAB!??;i zjQb@STF{G!aY?AD4z!T~MGyvxb;3a3KxOG+X#%q+mDF*|#>Ixo-#QLmewnN1f#;3kEq>w(39!70m_RHO42{op8MeTcgP*I;7QSsgBewRh{y{inr%G z>{h;YP3a2>$FO*Zb;%DRBXlipD7YOr=aDOCx$+|UL1b};a@JLe-Z|hK26^A(mO-g= zd^HBS@&)f7ux6EW+WL6vz`p$hVh5k&*hm)GOrTf*CeRf^6m{cD?2A6B(oT7Ikzqi5 zNi=y)msjU=S}`m?i6fMEoT+>v@|3wQ8K+A+nk9ASS?;vCCRrvYTyz=-?@M(F7oX$$ zw&0vYzxv)PsRJ!detu%L=xZ6q@2okT?9svO)WfiP^gf5J{kjY=^&IZUUeN(u)B~V0 z)&cJ}et5Ur&sbZ^&%Cx!c)sxLXB-7S)uBAmqcAqkXZr<+(nQNJ@18eD;`V1@1~yGP zOO;lSLK&4!5+&I%w0ADxDpxBR=eG;y8cK6Rob>18Jh_NC*)mSfCBzwMh|~Z1IP3QM zMTyeQlhGC)vy_JNSIjkWMr%~W8HSLBSIq55o{Tf&Do(LC8$xU_hM>0Z${oL8SbYs^ z?wkzv^cs#iPCLQeaB&(;>9#buKUnc3C~MZDP@!3i8gb6idPl{fUd}B*YfOHTRKZKd z)z4>6K&kKf`)5br!<1>YZ-o%Zx``}B$_UwoD55Z!+{RXqag*8HR-aXTCA_s+HoE`B zR0!wkTgd4j6q)1E7Sr^S0yU+C45Gz&Vn(|^NKXE~#hj=N&?bMwIQfm{b{6Ky816P? z0f)%0EZ~^fh=p%DRfy!p*dk*rE=E2!YBAR7FbWf~>t9`hGu<z& za@K@QZ`o_&HyPv5P1OGfT8z6oj77K1Z;-(Ak`}bRZB8Nn=e6eB_dGXmQY|n|=zRy9 zUIQ86@*T98b#(wKP5`Ets8V*lWWUj7v)`HLcqe#tEw}u13QQ)73>tlA??vC^8AxjK z4jxppg~GxOWrH2#ocA7>L&!>JVn2BJ0Qvn$#~pC)lqJx&yDe1eKlksbP+pjXd>No2Io!o`c9ndGkF{oez@bJ254@dr80q5m^p$&NZ0$-j+C#>E$twJbYbObZ|!^nSd7o>kF zi=Q$IBKp|mO_kvclyStCXP5ttOEhZ*&?*Ti?N^%#YL>B7hEt{e1E6Oai?8xALzC)$ z8DpH98f7Uw=xbvmT{i98^%MujCk5^a3Aaywvk4|WGdIFDSjwA(cGL)s7JTV(O9FW! zz#dCr1z#YOs}xI1<&hTbp#zL8y}(T}mYu3P-ujQM3T0z!0INg%17V>X4$D(6a*-xO z;ZRftw&Ks^nmMw>1Wig=>d^~+hq{Qg=0%5*X0_C#v?Z4G7C=3<(Lhso*0T z_5+deU2Vp8VTXX)1B(?`4s*W6a+aD$iAL;^aFBLkH7T2V)n$JM{LmR3qaA)@TWfNgwY2T)`I__w@IHk3DhAdxQ>qD90w=m$>jz zDmvjat$g`Sf0K~=7LnaXIlDm>i$#0?>3)F6(jRYnl65>cNkcz}MdNJsshMZ(=3GTf z2)QWGev#4aHCP!&oborp!9a^2Ijdv-6lY%f(IH=_nJckjy1PLZ6DfU}w@CsK(_PG5 z=Fk2iaI6wSKhr_~&7sMULN1?QdX8L%1zReRCL)W5QWh)Ea)DF?wMsx~*j!S<1BM0S zwr@QeiLX*g>X>@jVFlPOM1v4il0gD@fP}m7fz^~7YN@Zh;lzjcYCfySOUpOk;w@u zlZBC%Ce&sdl>Ml)>|0s)6_LfHE+$ANo^ojK+@Rp%YSK z`5vWmG2C{F0o9`e{19V_CNWod^NYm4bh(JN^ex%gw|LdG1k*e!z{n9ckoT`RG=LSoYaAARr{HG03}i2Q1U&sBpqy0ntvc{c zPH?6Q$R{m386vt#9Ct8Tv}HXg-yK=g(bkkXbI_^vp^szzxYPSfSNRw!r;{z3{BuP+ zc>Rk>KrD+e?JA#);*7k?>n;rc(z?Ucz95=K04zKj;0Nta26({TL$f_em8;sSt8~>N zSJu*Q)k1A+D==S{G1(aANqtLoNE&&wG+eKZO}(WKuNhLPu+y%}!fp>wQ!G`YOy^(+<18Xe+FJtFIYIyAJnL!PEAw$Va*LcnRBct7W2S+SSicR`d^n(tKutEK$!~H{# z%T#t?V^rCAfm;LrI%?dG8xL7cuq4&4X)8J!DMl4Dt*IrB^bn9;WyriFUT_9k3KG-q zOY8pRRb37p^*Jza2=keW;pOGWsAh=VrpdWwHRichhc#&xJz(pJie8YPf!*|ET}Bi2 z8L_VJdNWHSvO|DxlflE*&|5w$#=*1ZsNP$2h#U2Y%oD6;OG_P6C=jp9i2t;-yg{z$ zfG+BRn8(tv)|MKi{B^DnUijBhaSOe%+)ZCb%jJQa^R9NaG*U#JG2?=bl^K_c&c=lr z+yO$`SRzR)f!oRL1GDC2d8QL3`*&k>b>9X*qA$&m> z=dyL+?{*e{^1*d(u!heNu8L&pb*x_e9Qot+mnT+dIA9rK#UPVW}HIcZ}y!y?+2(~Rm{?>v2sRw6s$0c2G?3&2I zl{k3tHIB}hL=Hw+V>#@zlE6xEd>gul#M1A&y}hcG%DZ_K468&GKdZzE$StkJS>IZn z&V(JiS=x}{1*{U$<7D#t=zWFLImBT7lr$b2RKVBNx53`-mOS)&aYW+&t@xewas#9f zY=bDVC*L4SA9Vv)iF#TpkzG8$+}AD9^kHa&%<@=fPBxkBdj$to5H)*I2C6a4GJ20Rkik@DpIIDKxkIGSPmxkA6c$^aKZeIQH1QnX6XZ~ zj{`$WP)7%cC-eQgB{Pfd>nU~crZzm_HkC3ccBZ`M6pQVi997${Cm<`bp9U*p?3rp8d(gvbMU#%?x-6X7&2R}_iMZFA9sAZmoA zE_qF0c9t;z7-1QwWNMMx86rjehDhT_Ve6YJka8rX4x=q^DHF6v^jdB`PpoFojOfYo)mOQo1^)S8fm4ZR5w96{C@iwq48vq9l-VCuXic8g4;^gqyUv~}l&Y&E^bF_> z$H!Z6eOREUNazdS!>vbL@G^kIwJrlVCSH#TI0)-6;QC5%ZD(^essV{_SOd_t#t0af z#hwS;Y7(wVEh>V(>(C7uV+rjTCVcVRJ1JY_jqiew9D!m&TZ7>9PC1_h2r70 zvSvQ+h>j?ZR?5Jcd$xL#ad$HtSf=a`uy?I#=Gssl&fG*vU~*rGpJB;TVqnxAmsQ9} zv#UKCHPcd?bP>sMInj|kZI)%I(t#zHdV#i-rwsD4+132)n{7!ZQv}K+31!9{RGRm- zDDUb}&^&xVwhDkv62PPx)|!y@Q|0KT-od`mbPHOX^;)`7t7D_#UOfn&QpAYtc%mvki!&wt8d_xC3vnSYg+1MwHswUq?B4`sB?Ilj*zDtRG zFNxWeu+MSHV1bp}m9SLY`(a0~@Oq?D#j%+)%ptEqW=oh5}_5nvZ3Ff^?lApf;0eAJ`-q7?)B zxlk#eLf=E@L9X_&cwm)kkdtIJ5f2-$wbFQw6>E)gh#f%Y(XsXod$2pHSj;Mw zRKUMf&7ypcxOkX)sy%XYo`?DkV2;vlG?CEo6Gyqcr+8> zX)<`55ELnvzN*uDkj6UP26|i^Idp`e1Bg3P;0}{<8PkXx2Z`5kl8~)~9H@t6cJsAE zXg601$d6>mgyHtuceNn|bl^*z;LM6(vt$+nXESI4_$(J2KcjuXY0QdzcS!Q>qF02F z5-vkqmTE0?3>Gwu3@_{#cM3pe^$kSqnj|_9JD1XcntF+R>qc>0z`Y37O(;e`m zjw5_;2_8Su!prdJcToq%HAGFIUYN=ZZ5}g!u%zHxfhLd1jy#5)z&ut-dEh5|9;^~j zR_u2HRw^9|Zk)zf6Ii*}eJptSh(m0d%f-P0+_2Q-d7kCzTv9+!?Lm060;bKtgNGPd zNFE_@xjYS*pcW4Ct`2Eoc-ajz+mBhKT-=J0O!uP_SJNGS2G_W&-{1{02LI9q$sqCc zXblJt!&Qc~6Cqxp-o-tR$Q#(H!&e zURrcK5ob^e)|qT9LN!<@(C2B<8$YG0K=t?T${2r8x1;0#Y%ThXe?>13_bfQeKOnNe zmoZ$0&$38+P^mij{9IWK_3)`K*J{8Ma|Q)qYv4h}s7^NpIvR6VbbHk{$PEb>!)S{Z z9FNUO;LHGF3uhMpp=6}cmN42mN^1)J5~U8ndGAvy9ByZ~DyNg}4qvryX}g2OTdo62 zz6p0dGzb=cfi|@(g~=eV-r~jtk^G=(4P0zqecRHSbi~B2I|l7@Wne@HJe+iegI<)G#0A9u>}ubFiF$_#v#R3XsoF{dW^z(L!kDNQJKZP|0nKZy{-f6ZVa~hnWX~c6^D64 z$P#q#SRi2M%CPonNEb3o2m65zmM!p%{s-q~`vuru84TNLKe9`Q^OX*Vl@-}bAU6b# zO~$b^RTma2;pLo-o|tvmst%hOM4Mu*M(=g#gPnKSa4@DV593Z>y@|8PG@i^9f(7eCOf(zIDEXo~IeS}AKg zrLh*ffe|(nOx-fps(7;pLmZ|>bTXe)J1mf|(Pe9~2R;|OuLlZdCCC0qi;X=dZ|+5M$=d_|sRySkzwCt`Wb{Z7PV*RvIcvvZgQcUib1{-dyy#{1S4t=^ zVu-b>YDqLbABQs6?lKkKaTqVQTwk@EHJNzc<-N5#K1)*E3NX1Zyb@xq1^1TRih|bV zamHGTell3SMJn&IpWbl{iBb6e?n~X6*BYcxHaCJ{=ff*AV@v9atWu<`*!FCqkM$K? z)OF+{jR6zxI(TOF+RN7(NBRn&-VzXQ7>7Vkmx$_+^+tr4!}oMTN~?$6D3vqb<*s8S z$jtfD3f3BAzCfQNq1!i+!XQ5(A{Z8iSWC054DzGog+O1fML!T>?S*&Z8I=7) z9o*V-m~##)X1 zeh&&Q)(mY1$Zrcsi;Z+=%L2-MBiK7SSk^&ItcG?l3MS7++Z7HSr@QEYXMOa$z%BbQ zuG0%rB4ukB!lG-GqcSDd<0n&4L)Zur+drSO-r>K|hOyBhZvNUW9N%hP^R;9Z*>#`8 zDQChe4%v@ZaR|egjLV?=u7gA7Cp!MMNZjV8gG0PEgcfa{R5Zl#1-m1+FQjdV#2fXz zZusG7ot9rSft_*RVZ7K}uy%qq7XADg>TWHnLtwdwA|u((tFprZDm9^Pl*pxoc8qhHRQwm!4bOGK(0(S@oy^O83@%j=Y+tlhtOv25}K-`?lQDR1f zrw$AxviP~Uy&Iyqj|<$R5-v05sC&^cvY}OMs2ni_KV$@M7fT#@B)}g^;3$kf(DI|= zTAJ30gG+tQv8mxtO|6kiB&2^@oBtNcHjcraKMJa}r4htF2#3wU8^~I&((#CwiRqD89aU_O z8t%}dge60#K6Dr&R{5!>=x{z`tpI($#17f#S3Z+Ve2Cs8Y^lKKkEm*VA+6l6+L@du zQs_dO`>&4S6BDvmJ8K-h!kHpAmJ!+N$?20(k=*~Ifex{*9+3@En|H7#E5kTqwv5P@ zo)NJMq=iIti$ezLVEgM~8KW~gT2qvdI4sDp-8xyb$r2sTB0bLJ&ZwWqIK;Oy1f2jt zQXLfVl~>Vw=CBUzpdO4_*T1@06O`XL;sY6x)dwqU=mgxJa*W-`T^;r49U~_5!_)7M(3gB6@Ae zX@om;t&M zsbq4qtU<~rM&PS;;7rBv^r{EM_qB$SUqlXgGTv3}=y}M*9s-$HqQ$W8lu;Hx>at+t zul}Dz`@-4KqDxYzo$zbC;v`EZqqCYQMY{|6_Eg<`FQ2M}Z>hGWP z0Un;1t^+&$R#qTWJQPKyN zZFri^?!uQU-8+9o%KKiLEn2~z){ZC{-u;iL;T5}4Or$3~VxqV)N0$IvU+4%x<+{4L z4X;rfZXJYoh#`T?P(r%GkQgfrXZ#3jDk=XvZ_!?me%g+Ko^f5BYmJHr{iLgr(vW-( z8#4Lb)qwvr%9=tN3eb8I=&I3Z?NSY)Y8gX?jY&)}^Ur_8)Z}Y=M+6=|{N)g0*NG@Z zT=p|T_)=sN-)=Dw;$9sx+qkcePY;lL0`#^7`p{kgc@lQ3FH4XuwUFqsIRaPY3?S2V zkW3$=r(o~(mIOIQ3yBNF!*EH?0CJcPl3D-kY1TyLQweg7781Ga3il^e6_eMMM&KXm zz!|^WKR^-S%?J*u{-gy*H-wRRyQ%@dc$K@5DzjzSG^y<%7azH{rm3@VMpO1NZ=&c& zXLhMHbUhr58)1~HsWkMWF=M4^;ZAqAm4V}PaJ8V0z^tvsWDDGxVKF%2xm2|>T$_ul zcS%NB#5=NJB|tO9tlwUz5#zJ!;8u=XW>VQ>7i8RHSlh~)tze&OcG)@~ffvf^JeI30 z#3>92c9%HW&CSHK2*nGnqm@Mt_9SCB|FL7d$||ezVl*a)1jYd&H2|{efVSmY=PALk_736)p;tO?gRnAP0qax} z@TYdf?1vOOVwPB81sk&5+5$&J45ozy)9xedERvyvY5E+P0WGRW!icfeLgCryYGuUJ zBjY&iXbJYm71o7hgbsG-b6^LrvNpm&594mN1cMUq3!1U$3LWZlJ?h#`){$^;jkO9o zpEJ}SCDe6mtvTd-9n5!n7$&+eKet9gTAS(tF!WO#{rt@V|C9h{e1U9Y3_qCpnbnW{ zu7m#d`OwWs>|ea$R)yrp#jRN7BH(mf@WS7^4mF%o`4C52$CcLM?YgfCw9Zbn$Lp-q z(B0e!t=;p{W^J%GCQ}7kjuWllM(ZSWIX6NZZ-|CsoczBB}4 zwb6YmvUN?M;rUd%$ZF>yTX;s(KxBBghk?jOZL>}%o==$Ui97zaw=5ht^o2ZIb-tKF zNRa*e)D#^%ppOB^>1JUD8{J(^HSb zT=Kr#gE)(xFrRVc*-^k{d#&Ti939L|Ck(UIXd9WWo32z5K<#LhSdCXO3%^N=UwjVBgD&+8l7XT0ouU-)M z45D}E@7~_96tBl8k97rl^u%G@*>3#YL)K8dRD4@dNd}3*V?T69nZe(MN_Qwh@yU4$_RUd{Fx)WRll!_&6`{D@gg&N=(ZzAw;zxz@m^e>=p))@-)bsu2SFzO#BOc#kwK(eb|_x!Bqb z@E%QXC?8lO0vc!A{K!#VIgSYF9CAp9O&@n1$K`wMXerhsfyHXDL9ZI&5SCTL12%t; zPK^(BfcJEOY(9PT2b?X&fNxky1}+Cigp{;`EHgg6y>I&{beBAVbN?_H62PV1#L zUTwy2>tVjgGh@sZaoB-uidu;L)*Owmeo;=e)5bafI4Xgex#H8-Ks;8*ikQcWh__xA zF2k44KK}7m5UkmC(;dQ})x;;!&R}sjYm2+V$?TW^$a|*k;r>_YUU2U$`e)!#C@R5g zcKFHXtgZ3rKb4#`M7p5iZ1d07U6J!(Z5LF8!z( zaw;^1*m`;Tk7KyR%FK}Ka^w^jo5;&Coa z;t(5aLnCIydBcgS=$rSQ7VjHlyvsMSBK{Q2;fuf$A~PBr|F8x_)`B=MICRVE37s10 z>iWJ87!P81hAX%6mBXsgu?4D66pU(C(hBRg<105RK!IY5hOAKurD4|{Z0-0WPBScq z=CO_tO68+fsixWe%D>!2#q7+HGwsMfeu_HDnB8^{*Fo_aZUfL)3_)2Fx^f>ub2#V( zJLtA#+_|_LkBT0@Dc&DGo{koCydm=2hR941#Sc*sn>jMRpQ;tafnTi^l`joJKQjbn z>{@?Ab}w_#3wBU@V-JR;g9%>n<0F*r&xXin43U|(-uxYr@p*<0SZ}4^Or}%AoX!5b zKhTmX^rPG`pBjQ9yItYe$GEGO!al;%+y@W!e?5*ealTW*p-hfP`yrYYmhl zEna~k9;^PUZni)YK%lTgNjloz!+o6f@305CrECG{JcHll>c`v0`#h(*s+G2dk_-Xb z)CCl4tQ&gHXt3}~aU(4H(o-FGTQC_Ru!g!|F%xJyc+&%_c%Xg8`^8;3#0$j@P+7(I zDrfVAl}eH)bSP^xkre`exeLBi2h#qED+AAN#koT{rM?HOo{D;gH;%hzhnI~TWXC+l z+j!X`$oC?X?_4rbthQJ<{V)!9fcd2E)8?qPA^? z^C5aa4L%ZK#OqZZG~1FmSJjqC{7Q2J?hSp%GYvSCj4IEDM~vf>)od{ezK=a#UrA-5 z?*xN+7BgF~4y_g7a*tC}kxwIgKFoTdruo49H*1vx(~oF}>l@}%$2cF9cUK6mX{$_z z3hcpl?87y&t9a88te-I$yXLQ2Jl-|AT!7`;!R$l3`e?k2#IVp9ky)zxiMC4QJAwF( z9nop2vWCZdLRgZ`58s3^!aiV(&HCRa$+n8*SAl)sj;$u!+Td#tMqoGp1&mF#8rQZ3 z;vjqSEVKwAu;>Hlv>Rt19hJ(Aq?v37Qlfs2)g%>7bUP09iVKu|Y*-7=8PY5?c+GWq zZ1B>oE)HJCbG)}*@a%(^Xz-aCUkWD8!nRPu8{5KIBluA|cqYq6^|9n%a`?|&;Mq{- zNqt)qzE)dJmZSj(AEj>x;B71p@U*`nDoY|LO9H3!>p$+SXe9d zV9i!E(KZ!T=!p^PV}^?77dxV-J-<5n0u5(iah)VwN1&vc&UGWcWp?L?v`BF6>zQ5igIsx64(dcm6BDFNW$4w*ip!#$+OMJ4M1 zk*)Er#zzA8p^V$%ydC#`;jN0WrhJM!XZoHF{I(t(pS|h;4PUYO6Ld>vY7z#%tLzJc zOwR1tufLOR<>B-{wLKxL=vEn6b`dRZ6&6#|1}jlw29bo0ZLkBRw8i@GAhJL=M%OHG zwY3sQ&o8=FmdOTp(NUIfH||X889>NfQWa%r%GI0yd$lxe}T0 z!BuWWy4@{i4uz0!%*P)4(~>Zp+t}KnUMFPQzQR{clRw8o%=BRJ*o))OMsTb>zN3aG z((sLyuH?J`PU~nEcQ~BW0-vV9&O6rG!0FeJ)Nn`&Pb~wdyV}Z-$3i0Ll;e;HBKiUP zD&avn&(r`o<(C=;%U;7aiY}3QiQJ>a407AURmo>p$D}Nan6kWHaUpt(yolNE)Hz+VmFMSLYRbp%;z4EwR?Qrz^J3PGv#qSCZk19|9A**;=5-D$P{` zh)dN5fXtZU-hM2ZBv^jm719sb38)`;Vgt=DOih4-Dfp0P62-qL0h!WX|; zM%RB$sVKIAHi_)kYqMi7`{D37L;1piFReU(TGnBzm{U%1FIydQzAT*iRx1p=Zjinb z{BcGjKL5ZJsAWLicKMBt1(-c48JEg*Wp$2t|=Z{p_3 zYxX7RyWOQ`(VtGvtjWzfxFtp3S^LK*v%icpV^Yd`!m=yfz;^T9>8NU{p;F zSEIxXnRn*dxuU-Cg^42lu0z)FIzVXW*?gCiT4H=WHDKn1-c96klg}(hZgfm{hI8g9*2}!eKy&Rg&X8Z0VZQ-P&7gvM!aOT+m!`F2O zRB=3iIgsAPE{eSiSP@aduBafESWv;vSwLfNVCUHl>ex#()~Kkl_k4}f*b|c&6C(+R z$2+V^>`{NSd;9kGy?y-n<1Kr4`|WE^UEX`0my=O@G}$-^os7M@;;qXS_p90h<59cuWS6Qf+#82*Tgg}Zx=h9So=^r? z2X23F^$Ju?U4O#!7N41$dO)qwW^%MAxo_9Bs*#JWlq&|GG^z<*fl?Sf9qlubq4%*z z$MgE}-S2e#Ng5v!02}Y)giF*ge5LglTdi8n#S{FJBJo7o`8XTdoRNsMCqbnYvMd6>K)3+IkS2~u;H#{5B&<>j zQB(#z+#VQZ6Aqh4N4mqsY7YZ&F_hHJj`w5LFas=}Kkc_naJ)B*3OBw#vK z5WEbh3Z66ICw9R2H41Ms#aR~8u0?plgS`>HaPBEKrUFM4@+At^_F5T&9uO~04n`^K zs}Gx~8}Pq{M@{~(srTw{&|{IcCZ&|G{m`knuRe4V`~Ve6&nz5C$3n6hO^_mY5Rt7S zX{NN55L?NJR!%*kUrwYCq^-gk%E z2{Ry%d=}7P{&SIl;bAgvH7yMT*PzSaED_is6ELc=WG&8Hd@m5VDH0$xSp7ppIe2>s zReJvo3jUgee?`Wp=DuM)&MMHvr$UTKXqQ1P~)S+g65cZ~-2ed4TW4#2Qaj8FTxhpTk2@jHZ zZ*72{{(^j|KdrMHyJ~!|PwFf*+f)i*W z5+Dj(?bNh5U5Zi~N<_kCB6Nq<_SsSX;OmMGr@t5C4;S!XB@0e-{MQvmz>nsnsDV zsA(D4SOV)vSENo!*vDmT!*^Ugj1kt;Lnxdl0u}tKx6yhG7x>|4T%+0-Y+d}ymq_8e zu=dKPv-U5(!dZJfxRtbbr4*i@$(!c+BYAz4;sN$n6Br-?QBhC7m=^@U-;Hvmi&aVo z2H94Gq+Th$Vha!QpqsvG)k>n!Ql>zMim@kfs5pV)juUb94>(N5o|l53AJE(#LP|Gx z0sml}z9kDoN~%O=luU+JWa_EB2FmA*%x00y@*aQT2Q)-7{;UrONr$lz2M^}o)G!f`>jAdB9;L!O^S>=N)iS3@L~VZi?|X0D8fNLuWJwh(eL z0^}i2S3t|Di30;p1Gm@^0HNbC>?S9nsVhXaM48j!M7$$XT?!|)Txx%I*ug_+1;}zWjIi@gfj5)Dy}I0?1;)8hg7H)(7r46V2eQTdWRz$&tm$> z1Ly85+34x%bzF^bp;zrHa2S`y;nFW5Vh2}Gf;0T) zq}%AnhcL`!drZS+M&C!5S;`d+c7P)i{Uj2UPhF(6Ow)BDy4RGjnmXSDRPXdQtvA87cKqyBfU?b8!_%qJu7ck6xdrTwJ zMc%8z=DRp9!n1*8x#O|xc51|EY?M+eNbf(2PZrUXz##kX#4pHk zcS1*VcYnp8uq^{`C4w7a7##r|`z^1y(ozDClELZb_j~vADkv3KgGT|h{;)IhOEai8`6NJrW{Ngl|EpR;j(kY%pPUf0qOq^?SggNI~UJ1yG z!X`oAr}crcF*X`|)&Mnj{tvAr41JES)05t})0i8%$ac&NYNNxIxqstur8xw&KvYU0 z(w+h~z|J_MMCjV#Hgt?jWwG{O9BHcp?r?itt2`<|>Yun%@0TD8nO|~1CfP9=H0NPX zAW&FoPk~x3us3 zYUK#CJDeyL+!14Xi!oag1M|5U_# zml6^UO22eB;~Y{cy)&sj+UK02seN{Vk`qV|d=o_;dT+w&Qkk9hrDOE_SJ$$@^9}#F?#(pZjOS1?yLlh+q0fuwhApNuk3qB5IOp|9xDmJnIhTnz`u zR0edJVP_fLtsqDsqhwIQmS8FxdMv3Dk0%Rq8-6aixvNl<3f8M6o5 z3m>Elseyc2bUx1~n03on@+3ZU%W%`De2%Yau7^vyF*8tCG`zvp_mft`M<9BHc6X^b&Meqr{K4$4M;p|#un13{;hmGGC%Hq7dKemAN%b3j>v>MCPQub zz(4KW;d)(j1t&a~hSvelp|K@McfmAE>wxlZ+qNY5w{44Oh7*DV9T7})OpwYeH`E;N zgs0VTTFdNd;U^Ki;B=Td)@iXLaFb(j8g>`2Z!V384;kQiR*h{%;s=?70EJc>Ue`AV zI-PJt;izK@l>L$o(M<3h8_qr+VPi|-WXEk#xk`3-luyIbZ;5m8tVz|lH5##p0 zaR9nua@CH#HWVEETetIqv00Y#&MNM6qm@3ZB=|zT%I!U2Nu=2ix6vB-lkD;F6PEZT z@6wO(9gh3$D!}H+xF9{=5xKF2l3NpHu7kVq3?kd@iQx2aZ`@Dopc0!Lq0+AUQVT@A zqoew_!u3Nt!QlCnjPZee+T*M1k8xumdF2~Dw*xx(+Bs^%PFQrA;6=2#rh?m_=~jRb z_EhK*&s03|BiomSk1^Oa;1K|_Ht=0^nE+}d4$8O2ez6`SP#eaAjecpsg`UwDLf*Ek z3c+pA%4^Vv?9`3lp#$`dF*dr6gXV1!y&psGT{ybGOZ&RIc6&NPPoU^ZOgVioQdK;R zfW#q{^jguw#9EIL4igLMfJe8k3)Ul#_zih1@&E!OMjk7JiNRaHX!9X29;W}@-nxnJ zG-LaO&i0n=c{PBZZqTxmxjBA1iHM3wL72rjO!179#FApo^^`n@lPlohwnLogOYTrF zaDtlcTBL~jxHA51A^+uYU|}$GpImIE+zaMzovywNN$XJAXWq(LD`%|K3*!vkZfj%3 zm7ZPrKjpiBS94!nID*!?u_iJY%=gu6n*rOm!)FKqVT3b+>q+|;G{R4llS^il^;SRREHjGcya zp%)xcI4e=0g3suU6#f+`JQpZzu8vV43cem}YTY3~2Y=!S9M7|Nq*W^TbH8@*vN4*9 z@W(MrMAjCICw`Ub!hWmGp!mDtIZWh&oz37#V!y4;(BA)MqPaSrw9mm}MKBg(kt3NL zAhzX*v>(HEMEkL9!``VkoHWo}(`kW0VXi>IFV$QPKIV5Q3p0~YtFs)DnW>WzV5!VE zB;&-%R}>bqlLNg3RP5nfl5d5`Lcq`A5h3VUY=V_;Og}KPV*nf&Y<6|}Lx)W2-%EtV zLq)ux{}3F%;O9aZuHZxN;&yq~2~*}K55*q9D?}d+yNBpuEBZ7V3gWTllRGw|+fJ3D z_+eh#Hx`u;efaya0(Tp9{(AFpb0sB$LE`RlI_XX!cpB zLV3Y}{uY7ooL1UyaT0v2IYxOZLE^ZMF0UhRRH9g8L8A0c6KrDLVd=K~%1S+Ku(;fg zvE0Ecys@(ORTeTfcPb5A#$pq|_zv&ewcV=ZqSb7TS6GHkz?q7E47fK3ZU9k-a99-o zuNDG5CL$&t`6FW{NSJhG`O`@leP%Muc^tC_;Ag+QAhz-&4CwN${r+r6!08;AN(H-X zA{8<-iv74g^c+21A9~V_$kV2p%PZej)cgIY8MqPoB0&(l{0kMiEzxC{AEsfbU|~$= z=}gisOIRE?A`ijsBREnCg80s{CEy|+#pHw^*p)?qUjZj#y{EqF3$Ty8Pt%S!gs2D>YfX#+Z-ryX(de4Hw~ z%~-pkv$lGhB@n0wqhrgAms&LlS%72ts}hfw8IRvkLNN-$)AqIlQ!?|AG?x$N8^P1s zxiy^pA>dCOIMtbl0j*DEd-gmlbE~3yAF|L~4u{WJL?1aRp_O&DWBCA}YA>ky2#;>> z(AgV$<9FtjI+g8}U9+;T>}vQO2jn%1le7g?4 z<5osulRXJKYuYUQkssVzZ?5RH-Vyp5$LLgzA2wibef4kaV&PSL{0)OK8qx7LVtcym z2>+Y^2mj3`b2;T56a`2IGW$&GV_+1W8B-PKa_3v*>ajdz-BDF+znm-e7(8&Pq=53mKMo$68o zLi@&f!JKo8$*0{N2xJGjC<}xJkTYlHdO+XZ<{;%aM(h`RVw(@6q3`{rt1pCwqA51m zgZ22y5uG0#)1ii*uoovS@vS{)jX7-BYPz$c8nqg_KWurY`GKi_et_a!&E8=bsYV^P zq|{ILnJYOp7O)$L*r-&T3J81T3h9^Qe0A(F3A?V0y_LM6Gw1*|yuku?l87CWZEmjg zm%#eUV03sj@*obcmJ47@Y``YsWM}+6RAu}jb2Vk51iL_nr993(j69wZU{Bh>;#uI} zr*#RUQ^3kG3HGZ(V3!<0SWSS%@gMD9^hTJCVoiG1r3}nGib2mq3HA>emUgeJk74&( z5|VwHB{&5^cp&~yI|2$#Utdl3fvN=G1s!xLo>S0DiE^0p}zB9}3IQV3)f|ps?Pa zg6^&BKPnC*&YDX&t#L$Qm17FjOctL*eO?tPT(+lx=3E+{)_+tCCZ5Me{*5CFUpuBi zrL^(_I{ViG1w5PER<%h(tiELV2Q3)(SMQ1^iUr}s2!1+2*7Q@yw5UTl^gnbc=&~wX z9ZIDdf^|}dLVZ?RaMx0lgi-+)Ms36Way2A}g7t`lW8dKHJ@yV9J5I#LC4(S1|7Dk= z_-bB!38M~5XNf>ZnE*A@OW&fIVpqWlOcx2DiQ*pD7x8%Rz-5fsrbw_8WmqczvsbW* zz6{ay%|S4zBK~JItJAZsd>?3tNIdH9eIb5`k?p0c^XYov?4 z;N9qvzc9x7LBhTzV^j0|;X0b9E8MPU^$X5$p{|Wzpys*f2I{5=y+!Ol0 zp}1A1bt?-WelUCEhujSI7utjKNOZMRK``9CgH3mVBT_h<=ZF*yVqX1du8iMzGpOJh z%(l{}YjM= zAL{ItRuYAl4k^Szx8HGiJAr|Z6Tz(^T{9(BLK{^G+OQl%`<$U|c7#?Iy8MCLyf#RX zYh_5Wr_@3@eEN;7bYo9|N3@`u?e@&wM=7&5l~ugNuJPrfZ?NSE4bDteab0X@(Pd zwmG00ui`OyVd3pn?|*Dlc% zP0jNCps!~BLYYnUweM=%H;8X3uCcC`_!MV<-ZH#b zA|5r1eFB3hTy`QDI-T3B_y zhZ{V0%MVl@NwAheV7)yMwn9B!x#j8!%C*AcH#>cMxWY5P9`2BF3||*1UC&<4CF*hI zP>VvfTP=#_(SgzY7t9T2*5YokF--Q(FRQ5abY~sc!s-Tx03PB)&IkLo6^>~9*Yv0Y1Dc}yo3C?Sw%TP+wk2RrJ+C4Y1|_T8aeu&! zl{Hp*<7w{r!6W+V@{D@i%;=)ak$_%xpn`wCw{n6JJSq~TYt)orNKmh8_@M^0;lq-c zvYD6!aB6Y21JUC07;dhJOC98Yfw=oKM?$+VqfxVK6O`XTDHf`0)IU_$C>6`I$+*s4 zp*R|`PpG{LJ#hmXdF@!>jiRNM$gi$MGqmO+8aga*h%TAmM2VEpniPUIw^V)|Wi&%m zMKrXw4$5!|XovwsEeUOaT2eBmq{Ci&hOc-CpR7>6MCfzYWslvV_Lj6Glv@&AVn13A zD|v&lb(OKT|Ewhd=sT>n{`#a6qKy|zI;V+Z+YTZ>u>%1i5qPC7LOWuA%Xwx06YulsLEBumRloC*K<`I-4M5|Gfm!O z3~rc@-(cO>y9V4pG}euN%|fXZX0P@NVY=D{&Z*iHDx*pEWZ(%RINgGUoHql%5*3(7 zh?8(T8@N<&C~>N{ZI}|hWw~j_9#p!cd1aXH0UiZtEL>X=X0NxUVO(!?r|?nAU@QD$ z7_B@O#n6Wtc~MyA)29(VPD{y__}j<$+Y`n$Mt#bjn&?waT>4Q;D%7NZ`g%j0 zYu|Eo@>RJnf!{O0Y2}e^TKPqolFCmluN&>yI{Ar8rEs`V)oQ90!tJYEF5Cz(@$@vU zZvJ5f2W{0JrTD2kBd%s3=B3Xe#`tjKP{ibfwZ2^RL2l%PV~lBh9MW zUbL8afM)mlf@asl=4PnbR0fXsD0n=kM6D4yF{SX1CVY+svjP^I4nO zB#~K<>!obti=o{AF*%%PazFsK#*1>mvng97hJb$?eEH*yB!`ns4#(l=%n(~Z6 zJ{BQECSrg{A^lSl@oYOa5f9%YxHv^+H!FuySUUEd*7Z?6NXkfLxML;UF@@kJcSP5`o#Ad3ajoo@ z0Kd${iu${~nA^o7DwHP_&`0JEftnI|LvDRE*GQn@bBzs;;y8QDXH!#_F2}+}0@W!8q*t z>NDI>5tnY|qqs=}2iAibf!L+iX=rZ_H5=;YAmGwC;K0gG-q3k)k~h5UmhYzwYzX0> z;nok401e&uC1B{@M}qAo!_xTfLwD5JV#cmXM6;T3TV=k4Hb+LI4Wd#nY!D|H+EEdW zzH&k~L7lND8H@~z} ztdVX6{*449pu=>^Z%$xAAav=6xIT^SmF0krK^tn~S(D`eVNu zDFHQ+fpF0^9(E5v^^9gfstA;`0|REt;PPGr-C=*$z{>F7Hx^H2xCB1L0H>`An*wcB z_b??MyvZvbs5XXMb8%+r%SL*GTJ;9wOu9d3cO&}-wWAT~Bdp&7yK0Vu56PcfXMS!l zmaj6F5hxIFxu~&nSz_;-M!aRxh2~>J@@pxt8Ndq>fR5=;CJe3u`|#Z|yBt#Z7cdrN+9RDNnde5UEsXY_HgIjdjHeK-3WLj6g$7XiU$l z#RXm(+EE<(ww7n}!DS%q;9FN{SPA*-EWvg(V5ugs>Qob7Q|ZPiC{vo>hAGj^>oUTe zAMI8*Hr6$>zJk@&twU~X2cyuK3)JXV&#~H{W?UmcAkamUx7kgq>K(`liQ%J+;lqu& zK&c$&q+$T|h(TIJNE~{3L1G&6jW3|s^`khmPMeE>MyCw@2K6fnJI7*MEZs!cQHdtH zY$=!h$04y|P3+P9n@DJM*=ED1sO)wOsI>^xcRbE|L`y);Wgr?QZkT{{KV?8^A`qR* zuT`R;25g*&iXJUNsxl;%+o?&&!4?L&QG~=u&l|3m9ad9^Tqi+-47p-T{$k}iL;KDK zjcg9RT=zu-I6oQZT)vgiE*fam647R;<*me&SYEL9kPd?Q2jUg)2;K6|yI7||JR_FxpY9I)DUH;F=5N`ZMDD$@8_ z7W*GX7_Z{3mpU}XevF8HQ&JSwCA8-<8qO>Cha?k*nAMx=@~eWMGa_SkCO-^>rftlx zuzK!T{J3WX8dAlk_TnqwRH`yn%cMmZ2lZgE-9%U#3U*nHV(KcP#mZ>(SnLf;uuiiW z+Ds7*r?+}4(RVHt?Fn+;~?0NA+>Rcv8sc_JDOOtJA)hUNF%eBtzz+yEt4 z0?#qPsT)RTM4hBc9Urz3mXF1hIL)7*3cEWEq$piI{qc))q>&>)AkfW9XAa~?DSe~t zmGViHu9O~8yziltA4?d}LJ{b{6Zv=&{GE{{g?Wz!669P1l3FJ+N~_xlQ`9qluFU#X zY`X#ZHCF5CopY-wSELGGGAc~Bd{#e_AFMoKd=@Z1v1|b396>4LDHC>q?tKud!F6($OS3iE$dm=pQz8Er2M znp3k`b=_*0bDP^Y>RHWsqo&PeH)C&y&K?#G1Uj43uXAc~z=>geM`#yvwoT$}3*&4f zr4gebGUaS0rldKKYs|LBkaxCamZ=qY$bODX7xT9Fhz_}%9#UNTqV>4w_B-n`t zEY&(POeeeF0Nk38QNzD z)BM2yC>p>$iOHWClXr}|8_mh5r7i$Z{2C@{P6Sqep9OJSDQ+$8CF#;qm!yDZZAs;o zNQTx#MEh6^SDYx9n_s8lA-}hf%Z3texPePWi9(>FJiRm%4nkN3h?wneix@@ z&^!kn+`(w@|1&=Uvu*##zanG@|CxVD$j;2Qxx3+^o~6c(xYW2;jKMe}H!m~RGy zhCDRB#u8%25V&;=Rov=~hiu9&I>uga&11M>t|-9Cm;*lJsxiA6#7hT)n+45gpj0|B zM%Q|u815md^_^@zt}H{DC!l<$;Z)gd2_;=dNiIOU+a(nBc$8m3`9doCxm=Vo@MLqi zE6kia&e}$=3Q*G@b>Osj;^+aMy z+Ql`=P9a{t$w`!MK3i%1ep6Tx|g96z@S0^N?iH0B~$Ps5vIz^{8%MZf|)17jD3Z3 zgk4_cCn)E5^CCtztaiC2bMTxq*Q!_?4O)!GZ9k4(lBrd+U=U*Y{_ zmUe(b#?aKo(p)(xQQ80hQTeebQZd_8Q69F2999B&bnK?l^}eQ*QbgHz6>7F#@=Xr+eo@Mq!#Ci^xE6g zQ`)qF8=jWNBsK5{cv)hU7zw|Hflo~xjg*>t5lo4x_qi+VO}O4H_Y=j0=QNSM$G7fT zL!tQ+>YO&*)VrOtj8S$8WxQ886>%y;{ubjK%mddfsRO`H0_NsVqi13e!+F+%U@pu4!64la3sUVdp*G^Yo>2|hq>)QE# z72WZ+6;aah_;RI{gwnDQlqHodNy-QjAgqza6*^b3Br8KDltG1|B+d-AcCI2;scM!e zB~yZ#X9Hv15Y2nX{UXGf>gW{rN)Ws71E|)+H^*XMaYHNofxhj>p%*cLYBgw{4 zu9l^&@>~R1UJGsVi3CvK5TFq(uZ@of;dyeTDWd8FpnqvgEhV76z5adM>$(&;ph0>Q zv202UOL?WCR5siwOU)f6K#dXYg67e-X#OoT&W67V@xi6$xy_YnjLPF2YkV+SqB5a9 zmn*f8iZFB}5>R^L)rIU|BZR?(U$Cnb<$jzK0h zMElGU%ZE3z3{&n)b^Mw`6ZCII@MDa&E6(qYs^j1*PN^)G zDPPkPqJ&6gf;+&4Z?Wnf#HurkYA2RYnP91;w3f<8J1Wl%Dn%?$ec~{w{9woB)hP6! zi^cMfqb#9{Nh&{IDv$Qq1*=0%nMzA-VF^~gluGXAC3WjVg^&*ruRtp$A0$RQqWN){ z5?8tUnJ}q*IT}^+4<2RxDxaO4@=U^i+<_Y+jho-hwbaLV-LOb+$ZmzE?T0VE*(%T* zugs@!#NpJ3F|p7mXRg&bHDUlg+E|(?^(BB%3BU+*Cbvbu+OMNsSmoTiqZhPXI(7@Dort>e|>**U4Xd zaM-g>0tNg^H1mhFbN;RP!Z60uX`^HSBzMAy^@LRXXh+>K9quR^awC`)ivimM5ukWy zjBA0uVK1VKl2qRT1W7oTZCWsgu18 zROsZmB3Gs??7(0;h%k$~S$ZmMC74!)z|1UI7!FSoFlrkqqIBtQX`zgeP=*$UQhQN< z#>`R?rbO77S zewNDIVVvBKwQc_m*Dk3KrK;w7EAK^=$Pt#d%3BHLm5hQxL}TcmfeMI3@s;GswvIHf@deef-n@`jpTq4M!GQ{1mr1J7S7U928$&NY82h>KIBF-z;q9V%#UODBI{A81(b{pkrPQEz zVibg;+STPNvHj$^&UT$;$o61+ww;skT&5Lsp|iE~<=od;ZW*ccm#Fu}!yXpvyMO{# zSXL@aIL}X3SSBh9r2-2WyK@=42=M=~i{A(dSZ^rtcybZsVwv5kNN+q8Wercw2c zF5_cskn6JX_NGxP9!jpY^j0usT!+{As~B8ei)L6n-kx$`yiU0geI~rsY1Lkjv|=S% z9pYipddpA+Q%0-l2Fp~Xtwg3(JXd7+M$2erLcG=Z%o}m=Jx(f+%J>>Z@5CqwAV@^A zyZZmZuFdG`cG|P(yd6&fD*bLvBn;ew&T%_ubnKMeVsK##u0(8=h;ND~{)e3qVF-Tl zd$_(8$Ax$7i72<@A?|YwN-OspH<*LNr>$cM`CDh#s#O(FW zU)3^PaKXrJ=$P^2QiguIQq|nti!Am|88dj)gdszRrHmriJlx%(X0T;w4NrIXBJ3*( z-;xg`d`^DuV+nN|{uk?_TkkiNAfDulDVaapfhl43=rm#RqC-sX0Ob{9He))jTl_2W z`8F*wW`MEtO*3?ajfzyKW9X-MKl?K||^3>*}*M)KrAId;wt^ zOE3*&7;2LbzqX835=DRm|HFBKJ`zAL8vy3YDTK>6sQz>th;J;PDAOf~DcyPXX~C;O z8*0OiZR=c>&0^`c-(u{rK`OnLF|gVY1VyPGzM%&^8;9-UYZ1lg3QkI&lTc0@DAWLv zC#q9HycG4;cQ{-0Tm&3(71w#6NPq=4a-q$LeiG-`0UNBFRf2j5YA$*mT}MCZ*ml1J zu-68F866#5Y{nz)lsh8C#~iHSZ3*IrQ3I-%Uw*=Mr+>wQJ$^=wJeLYSVYCbEm_M1h zu@h@}CGp65GG~es3}eaV_!QHsDLJgnl44pN<-Szr9;5g(y%VD#1{J5yJ>vj_)yAuQ zH;3zkI=@~-OTA(7Lu}ICz3dg_(aTnHGylRNRVXVHoQK1;I#QXMy>z8k>t!pmdc!wY zU{X(D2p7#5;KoS^oeczP2FQg_59&tfe2lhZa|lD6#Snk6;7r|232_=jL`hIYvJ*xZK_0XxIvGq5w$>Tk&P))TOhnY|MzG z5BJtrygN&eckHd3L%ZIbeX4$APsTU~kWmRuGgSf@RS3XgC#|otij^I%Xi3UvQrTsN zl)d-a1Du2;Ay5B1#5D{5KKAnW>BHqu1u1kf^^KAN@Sg{=7%CO7(?{1w z%|5pJz%2;jN>34Bj~DWnAOXbL07#w9WD(*+4x01?31XaG6%vnJsHAriYsAtge6>(z zl~npO%0RUDDrdGYO|rJcVBhz<2=G2YYoPop z0o*MFfcB(#=q`;;P@Ms=xR_Q~`5*zjGXSWmpn#~Upps}Fbx!l1m=e=5_Y;OZ_5AO5 z&{wm3&7Wjm-7c%&f!We5n!(uZq}+U0aUR8klbY#5rPKjog|3%iH3cIYAMQSvCQ@` zEmBdXGQ%0!A&Iv3aVlJEqbwHz`qbAtDN7`Pg@piQG|*}(heZIFhFX}CEdlH^0H{*2 z7F4N%B7+9}paT}={K zbsb6k)Nv&7Ru_>ZK%GnyH+2X#&OQJ3nui6rq;r;@~1-KAel)h|vbiIaLn&mAC1 zG4&WpT+|UHDWVP|Nl`V6Bu&)uBym%BlEg`!O%fk9lO%EKahG&VUDcKP&Fv&n)H5V; zQ%{k^T?LYqRM(KCsCt+rih7-DQAN#dsNA&I9ti6lkUStM~+H;}|h-AWRFRV9g{Zqbt!`n@?M zaaL!L#6>-)-y5mlo2%bjsNY+LNqVe@dX{8e)f0L$jU*oGQIfc;`$*!XZX}7Px?E3& zlEg(FOcFnJ6G;Nqy(B5Al4(pVFqR~q>K7z&Rp*h!L;Xz8eNGZ*bqGmHxvHm0>aKpO z-`qx$qN)j!BDK~{iFNj0soud^&17nM{a4mdr~5e-QBUH}P-=eU($`h-(%3`H%$(=Lf6f`}@}{i@Yni>TG{XQ;XYo;K4;mL|d`cNXu) zJ4?yWa{L*pE`thD+97413#|BlM%j2GDe_nWnYVpRex8z_=j7)f^7DfHydpnu$j>|S z^Pc>CBtK3#2dp}ipQ7Z)4Zj@QT&qmm^KvSpWr$50>vAe9BS&OKazy=9fXk`m$R*O6 zms1fMIT)coPFnMFb*)Wqy-jW-=F&+){n5=fH@Dj4o*mUeNxMh#Ho1RoaxZOiuWfQ~ zZF2vSTso51K_iceB%*9`qik}-A_&{WK#-Zr&NN3H2Fk)F_tGZ!+9o$A*agd_*Pza1 zxjK(#t+@p@Ig?Fpkxg!iO>UV@ZiP*b*eYS0*zR&_w3th0Sz@*1Ch;`Osrec?V#h`< z!ldVj_gSt++T@~aa>UX}Ib!+CsmU9;-0AwgbmE1UtADYqo-^CzNV6aXNi$ha+lP@O z4aLYk`c2OfOI@x$6>`+gpsu7#>FNvVn)+J4^iIC?LB8a4-(Y}|bdfK)3768@W1hk_ zcF9M+hKxp2G_v{<4TLi&PCKrh-kx~x%Glx8E0Hs^B=wPrE%rpAawLw zASz5SyPejc;!2vUHn0d@BP)De)m3=Kq^`za?9$fs2bcC*U0>E)UZB0@YG~PBtA=$Q z)?VxGG!9O-*V;HOf{*RB{qoY>SeX;)F1=vsS&4l+P*#Vt9X&v2(3r3Koun}`k6T#dGd6){# zV)2n(urL-crox?At-Cwxm5)GZXME%U%;~HRcRB_IowaiAB%VW*Vc^#V$z~l3@1m7; zavBd^x@xt3iGRkM577xHtFvK#SH#RbcB`wF<>Yi6hQw>tDw41cADMt|6Hkh#nHuUx z%&E7_lP>-Y?2XrIJDq}`KM3@fR)LHO5O4Kub^vpWPbsqb=OL^BMupP z3PT^9OaeekBpY+;ub<*iyQw6`AORsE-Y6X}xn<~K2Q60%J#w;o60Q^EJ@BTx7U?tz z8umZ}v!GWGEzDPsOVpC+tdr3mSN70)Hza`~!TV zr2aUal$--0J++c}f=xtEtz1(QMv|w^Tk&ZNE;kRQ?i(vI6FqjaN&-uA{{!aKt$Xoj z$XDc{g|GyRrxTZi&yqkB6B1}*LIO=pNT7)cX}6ec)DseDVvYown2YsSjOJ|mJp9XNFCgyiulsblmfNHfE>M}NtHDU*(uOmw(pqN61fZCWPUvP`sL znP|H*(SeeQj+0Dum}H{Cl8FwIOmvK7qC+H8IvpaJ)E$%zX-_6PJTj?dbY!A~BNH7P znbcHzg|s9S9T=I^1N8r6^p~_E6CD(p=$ObvheReiA~Mkdk%^9nOgJ1OPm)$+QqxI$ zG10M*i4KKKbR?8X2SO$~4$7p%AQK%0ndl(Mq>|=fqA`d`B_kjc9RQhBGX62q;g5;N zBuIc>A(n2UBOjAW20kV_?lGy8^xI_EW1<0vi4J;9bj)L-)@xEpbYW8G(BB#Km)NO^ znx=``q)8=X9TV-8Ow|5N)ci83^<`4y%cQnvqNbNghd7yNcq55kiQ#2ZyUV0zmr1S8 zM2#+!+FT|zxlC$tnbhD+bYPQ7hc%gWRFg?vK8Nq|1tb^(4(K$j1^o5tNUp!dFHo%T5F!EmZ){)nTd&749}cR z)VlCYV1KPM&kXIawd0vX{e{O|2Wav9PX7VIV|xZ@vHZ?|;+>8I1%QnMwNmV{ad3K| z)`(|b57b)lO!FkI0nbcI(xQ0gWRlj9XI>;}y?7=eS&QSDUCCNEYi9Kzt%LP{h#Mq; zeKtsI&g4xdQPhRs<4>iZtnxl~m&R9;qC-mhG;e6{6b$> zkCjY0i(uklF6c#YcCglp(O(2^LxfEH5Un}Cvr^359ip}2cPbCnngt4^x4lNvt=__{ z!CEbd{yD%?puBG=uk0fDZzwm5MbK&(*WDsmJB$l!5j-8nO=%H?4;M0@4%ezNHkQDa z;aqq7;oNY};C}EN!BxB;28`eqw;%S8(7H2#{otOWwdI)}DOy*a*`18zt0Z$|x<8 zQ$9J0oA-Wj8?CkHcY2QIV%-nxM{~p9506LlX0#uo#|V$jA0s?=cZ}AV*&SujyA3k9 z6@PR;(zz{Wb$w5OPN|%Y2>_{F&=a5_mDhO!v`gdo6JSjm*X{&(lE#|?J~md!Y#OWe zW|f)%@5gF=c&7h2?v*CMwQ<^Dey8!L+9y1-@>4C2)q_kXstx)gqFAX6Sd(a{bQmQ%&;y%(Mj4cW)v3))}4u1*s=(o%)@VB=ERh)3H}pH`|!sLCTU}N zX7FTfBG2SZ)+X`HfGOH!p1D6o8^<%frfQ$^%q=m~X__{g-#I%?8_6?a)3wnej}I0i zk3AQ`mO02{+K@8!nXqXEhAzUJzv7Q>H0H%r7^L%=2@x~2WQIBuw#?x4W3dmT`2M_T^qyi49(zjnF;qZv@wj|nM9`Fu0deswu{%3p)f~>r4)C1IdE5ar=W=Q9 zfY)<{$41Z7QaM2GJYL})kT_pUW!#gvP4(N4-0wL60~TuaVfl%NwcS}G+ySi?Xu~;3 z_5#lA4hYHARDNegCg*%9WM}f$wG{kJ+7R~GQkZJu4QeSoG;ujBh3*Tr6von0!cyi1 zWa-k^5RioejrS{$yL9yCuoS8<;;m*WELo%_arl213A6?-)`s#sSH(<|B?7?4C7kn# zaC(W>la-kWrIvD2ng|(7IUO7(F6HW+2tAf@F;9f=mTAeX8YKQzvwp>Dbb6rM#j`ht zWGBMb4VeLQ7=5FGc)07ZH6dPVjt#7PdONLTPw#wro+(^tR8m zM4oZY()zQ8L(4w5VA)vB+HfiqU{;svR4`?6MNfrSS=`r6g`O+9(x$?>m7KS!P-7L> z;8cKB!edUWxhAH;caDRPb4&4PezK>nrL#7o~{Wu&4s(#%rOF z(Xe7!Sk|zT2df=@q)kzLWE1}AZsD>kX7$?bf>&#JZ@de-t>yaP1;^HM7Is0ob)4;8 zuwb3=*yD9t5>xCh!cS@dqA$i}+zt3?*^Dy0t?z;(>$x0uL4^(6Y<9u?4ZL0Kg1Gl`BEWwMwpxPAYuZ#M^8tq;A$miDfrb!m^>26}Y(&3x_qX!rNRbwA*4!XLn`7 zQB?&3Ch3IALB>CoeXNZ%6)J4yt|AqdZRPDH75>|*C5dDMY9dtodJ1#{9SXlf^lKHX zMW@2$&$$RwA#|IT%mhX2TRRjB&%+;GQ297T&UAhRj&9?XJp$FY^N#EYY~Rj3{t*cI zLYv0;A**$2|7M6$&`g2U$;i*MVO8tGmW>s>c;s{hD(v9>;1SrkLz~Lvdj!hw6z*); z$vccA5VVVXi6gLZmo`=;`ENTU*|og_Pv==l-kkrJyH%P;VA^ipR~~`KyLqcS0*QOL z`#J#A_Gsf7F9+b|9xa1sX6)6{dB*umZ641o`%+uPGZpt~pYhDeeF8wter-0t^WA=J z0nhY4AY}3mX!BV!A!B>>-e9cR)uFKBpf&<-UaoEgpag#aHhi ziyt@Dc^C$lkMOb4Fg(JQ4*`ck=c8PUSupY_9~))CfumYeR{Jb?dXxiXL6c)VFwcT{ z$N1nX3vL|ak$o1FKF(wDEEsrPcx=~k0qxmwK6c51=o7+YrW3+rw@(PX6+g)bu36Cc zq!!H?-FlKsGYg*JV@yI>L_(7Hft>=QHZP791ipAo7s_ly8==ZsL(a%TlJ^(-G-X2A*Z zj@vmt7R!R(=eRAq89}t ziod8uv1Uyxw%r+*75aI=)<3igt6S9Zh0W9Iy7ShQ1;1UiRpTr#e15r)GgLf@D)-N< z>mocn{2M_bd%w|IigEyv%#0+3?q8PG>em zUg6VUvmxsW@8xI1zgM`1XG5p&xEG%dC%)rB$ZRNom4{ffVZl{_&XcRW8<-7A*La*U z8@{{7Jr>zIqL%4~Vhc}jX0GsEcg*T;C=(*Db3tUn;_G}UoeAdaeEuvG!fyzV&AGux z&zbP+4KBP)sCQHA%35qDp@wZHJVITJqq!mTtDQtt6MFcW^dC)6YCSMH%QVac!D<}=~nUxj*f`AsOZ^EW{^ zAAS?+(fvMm0-3PozSdbZ(DE0tQdKT71AVrxsjY!Fyo9$~Uxr(^wI)8}r=$(#b_SpQ zE~p{rcRnGN2@M|zEn>j~?$0ve>H|TKWpcPr&4i&jyywV-qdC0y%!Kzj0{fl*;M0Ja zu=)?)F=xVqKLidM{3$$^{-;3ayFaxUQK?V&ftfd;O71MB4l@Z$x zKbblI+aWZcyZAHEHJ?MCfj#;Bu`}Ro;Q}}VeJp%bcLt7IcnEQ3wWhUVT$~|XRA`E1 z-J82GpL`$xV_ckq5gKnZr{IRh8|W#hS->0GDKHiA?&K6`1zf(Tpu;21-znIN8AkaO zp?s$UlKNjqE9EtvIAws+kGUBFsE;{5z}3e*xB#g4gg0G)^-p*+1b884;+}Gz0QNoQ zjT*r7nNViPGtMo*nPPwfZN~P&;a`VEmYylzXdw3{|L~@ z|L`Fx!0mqo4r=|&8#ch?f3?9(ctC`Ade3bt`-j0ET|x7LWo*J_sUu^MU*7 z6lnEPfX?{HZ6gJ~`)F{m%BR4(n3=MwyYT*7dOzsOnT;UDiy2(M|={ z6~?u&*r~v}lDQUsaVoH`aju0rN`ZAza4k#|Gv6r%*5$gjP|R5w6Lb6I9Xut$M);etnjbv_}R zNa3&6D1}ek6=m(eLwn5X;`<81JqxU>QD4Cd&jRZL)K~D%v%osl{S^%ID(K5JLiQ}E zZ@VMLiBGJMOM7$31@NaAXKVpPdUKQou+_W3+Ki__jyJD!I(+mlur4sCL!wVX5+g?T zJE(1O_m6serj^)1vi(Qre>eQ;!$q*{yNzD>0xZVM9ZrrJVYkZh_@cbker z@=L7*ENqd8=auROPr^Ol0_zgwNvPph&@Et9P3tRS)@NqCE^81Ha>qN~ey|o2g2$SG$F|LqFP%?+ zWf#;V&-0H&Ml&q5dhN5aMriN-7>;s)ys0< zu@$D374CdjRsaYo$BjpYmgTrns<6bkvjx5^$365GcvY^THWLxq2BdzCyVe8|-JZck zGzU5a7g%?!%z-t*1=g5>>>N^E7T}ZWVylWJiv z>qacL6nDqzkw+G8kz*P<2Tm1ut2qZfDsbBv2}>*RiqD086}UH<3q?Z;Vp#(xd+XG} zxSdX&d(w*E=M={$8=TbNPP#(KW75EXO|8qUZ6SOc!iBsLf-4rprt3ySiXJHS!l#?=FGn_-MMG zp_?5Nt2qg%bgzScmu?}bgnJ(hnsf(&e)kYzsWI*-FzzM}6ka}(se}rE?tN_h%1c7 zUAhjZ-`z!O(gD}yjJtGcOTU|n!!q22glk>KZMvYN-#!9=7z`hPk4EMg1XtnQ(@FT9 zI74rMq^`wjSRI7UULIc~-n9hbNL0T&o-j}k^G4Y}lDVYGPG0r@=z0(Mo~}Rs-^a=j zVux4}d+)u1njar~uLy$NL_&tmN6gqEc-x~otg0PUt+rOH=+M&IO6%UpCn3JAqQBSs zeR7ZX|Ns3w9`Zit`F@{y&pr3tao(Tn_>T9Tc11;ZRnnB4j10ijeiM;%A}omQ4nN_)5^7yLC=Snt%bBvR^y ztSy8k(mU@#B*rwhhv=Uuuf@6zcN&O5Cva8#N00_R_8cOTcy zk%d7i#NVZrb%9DdS(;;E$?#4s*LbDILBg=bHUFLV`nzgvqSIA$b8xjqB)d5Vr_02* z*6-3C3cDF35dTOIlQ8cvm~o5LJqX?RI`TJ&1bDL`YoIiYnT&2Gi#XBA);%V3m~#;nkyj| z)-snt6sv7^$G(Trwapg(eAz+nFI4XM;jh|eX$q=iR?f8=n?9b`HV47dRR`7CKzr(# zqagh2nnNHW>zZRBzOQSJfoNXO909Shp1@r7O#`v$`U0=kH^UKY)Iefu8;Hr<24+j_ zx@ghRtmeaCf}#?|#?bhNW(&|=4b2`9e>F7UgJ|8zbU`d_WOjh~t`XA5QuD^hEtWPm zHb+9dZH$V>(!eHS`B4)zFqX2Km_4zhqhnLEkw0HDQAFJ_(u?@P$JSuNdTcNM;d1xz1?@^*t zYjdG`X!=0b*lYvjN1_wq`|@xPLweef#;t(iG6n?BUIOUyOYP z98_n0p+HJ%XEya`go?zfiqs`kB)HJ%u=p@^RIRZI5u@1$UliqRZ-x|zQnr(oEhXN` zUu5ltLSA%xe<5%B?LD&~IzNi$x5r_NqPy);zpd2$J+r^>R+Vthn0(|IU1nIw00k*_QXKiN5Q?!cnIo+p4dlkdzmp1(Y-Mc_R+20W&%XdKB7zQBf2Vm%}764 zCvL8d)z;?P^v__k63y;oHl+XcH47nuPd_PWbU#V=bw70ZKC0Ir^T0k@)?ccY)!!V4 z*zf^3E%B}L034%zRCAy?9%92lfqxGaIBt-@8-q~Y1Zq3j?C8VmP&CPBEF}-diIYGt z2BV@0WDGH9Ks*_OgOfl*hMJQhz8{L-OCZ-U5f_G;vk~h&+)RYHJlsr%7!qnOfp`*X zx*^7nkaTxPU}ii>J;Th_{=BqBfmO%KbP$>{F{~7A8Hrzx_EayFHxHKc#zFcg%#4M7 z>`08dgY)OibYhg*%7<6L$fVKOwWG~s@8&A6;VFsJs-~V9ZEkZo&QjPI zbFlweW!FI&ETyyK%%vFqXKBz_a}SL2j5Bvb>>p=-3Na$W+z(O6Fb_a{VTeggq`4Qd z(orHVMVTKVHetN^0YtHAiJgo#KlbCI4Eanod3o(UTanr_U@^k-cc8Kv4QQKKmAQlpu3Zerfc^_i+;(m;^TKTQeDv{hD!;(oo?ooxLsR^rwiD2P&s^A- znQZ#eu!Uv{3^Nv*>nL=JnTM7qnd{cZBT!?JxgMIY7MYt>7IXmx;t$RK*v{gYS?KEJ z^!H+O8nzWqT4Hwg=Nl)~_-i%%a3i_Wj72X`qIOHMDwsq+EX6r9iNcqeYaw1QGq*x) zS}wZUE6jC>U07kRf*71^u7U6*OKk2+b17m4S79hkqK&I0Ry74nj7fAf1t;z_YOvbu z>dUugDBr@NezVZ5y_U@8l)l=m2z}8tW)j5aHRfuF`fJhhX>@)qnmLU|kiaZLnbT;= zI&+<$+~j@x8jb$;_1bmj47!tG7J%}^dUFLt*9|Cp8vVRMV&gWVS<~pRjb;~YscgT= z?C8t4fv8EoartOM40`O^!V2E>W{a!@c9QRAb2%*6Z$>UV@qr^Mvy(pCBCzXL zZ8aA`jNXP0z_*>-1TNfeE=0`#ebKFdAKkH&D(*06IbvwX4zrs-e=vw*tB#Y&W=cxp zlzJ4h$LxfI5JOWxFbRf*K1A=w(9REWV#QF0k1%p$=+Q?gAco>U78AdnI2JMV;ZBV4 z7;3vqVz+joDls&EHyVr2EO$$6Iy0zJAqxHk z3#ubD?h~_*?-8Z%j;`4skFF7ey9dpIsN@j}-G|BO2o?GiQ_~ST_o;alV(NZ@H4c~u z5xaB1JOZ)$pu{>IGWX`^JdO9-;vN`(sL(h&+ct->Vmd-w4`VVrLfwv-pFq4ig7f(Z zZ9j_h`3QAL#r5h_I*@9P^XE_O(0wtg`?jYPTHJ=}oHR$GW}nhG$ILTS@I#y(E03F> zA&KjR`4vQw&&;nO?tW%|2XXMEc?KfxbMqWT<5T7Zh__0dKW&~zY}py}EJTm9=9d(* z3;C5eXMPTF>I?HYV%@$pKcnP5Q2Tvl9s~I5E3*x@F0=aMWqyRQf6|=_xexDi%>GbnhxI{wdVun!w%Hq>Mt>%`la@d`ws1 z%eCJi?`_|ixqU_^j2ROiyV^*hTi2zGj^9Zo_bUznwIANWDhYjZS4{TZg)W}_@0lU~{Imy0uY82e2mPu1^9I2*`<~et2C4T@ z+jy#WA2o@mb@#DCizn{~$T6PAJwRv2)7K9$bUr4(hh{5Zel&!v>PO^TbHFN1A;00S zAn73%kaOtdL$j|xf0G4$6IIkSs`uC&LRSknDu*FChc-PzFU+A5zhRj)ht~aud29{^ zJ;u~Mhc-XPygP>)Ji$t84xN62nP?96_#JcO9J>8G=AJn;=?_dgbI9u{x^xb?pQ2}y z=sCvG&godJuZ+Fegig{xHctGfQ3VsM2VI;(U0wo;^Xm5 ztN3`@p5N+2vpuFS4N1fOO%g?>;dmy|oir?Llc>)#^hpwZ@l0Ujbo5se?MyePs$ArI ztttuh?K5*2Ek-U1%XeCru-r@se&fOTP9m=ibG*_9O+nE?Q}EhL6`e0{!sxKosOzH) ztQnK2U#2+;;+sqyl_YBMTq?5vxl|e#y~d>|iR!+=B{_*ce~zUZiAy{5EP$dRmu~%xQ7EI_0wB zAU?|_Cbe^0qg2k#uOR2 zV<*5@YPvv)EMKb)V558@67pFIh?)7U?5=408**v;+uD3qJ^zNNCXdR&kHH2%rj=gS z0Lq)6`-e*8w`M}D&2RCsE>OT~4UY=00#*$le!z->pA|ug1*{Oza|Ns(5QY7%E)YZg ztsePs8?Ao+*f>U?_@g1ms8~U(sbe*DFK9LLS*^0jZP3z!R;c3xvI<(=efe=LGWId@ z(Y>-(iImgZi_(NbRy*hq6|zP+KBuCEt@nKRxh%{I8WdI-$L4dK>uBTW)S(ED4Zad8 zVoir=SkxK~vA(Dk4)IS>D=IfXvZZTVI~5~O<0oGD^)qwXy)9wY zpnJJH1s7N?yWWkc5Ihu)3ZabB7QQsT*s%!B4zQ|H!P^~6<1_k7iMAzi^oe$sw7UB8vtbn35X~%G-s(*ur7V6@Kok~;ltd2#ksVQZ zDQl^pJV*YyABz9EA1yDBGq-1Hs}!_RrLCzDk4xhy5sfZm&49RHM&OXL))d5kC~HlF z=ur;cPn25DGE{ac*wJpJjG}8L(3*SYtTwbb$SMMpEkPKDM1{*^z!J?ZFPXh5FS$$! zwpIXoSCFg|E1=_v(kobtAf{GCSFfWx6|K%b>r~^y4XRVg8U>nC38&aP@~(`LzK$j; zajUY`+i{3$Rk0fT98xJ_4T`E_4F~L=nNBcW>^Fs%op)%F1M8_H0TFr7pl&g*goT2sA(M4w{pawek46UnSbz|=x zHLSY6{3#1ET#N%zx3SffJS$x|o)I*$rqv%d7i(I*AOdTluJ{0?7P>Kleyn8;f~Zs5 z8Vs?xwiO0p)wcRVw5=oQ*442F`N?N8D=wj@S6rfk^{i(6olIWx|FcH{SUT%sI7iUl zy4FC5JoQ8juV?i`>~KA+C&T(yABaKqr4oDUi%ISV)=0py4Wyt`4Xh!E1vZofkqxb( zh+S+bxs+`r2_`FXt&wC_v9UD_CUY7~;wWi z-cd)ZJRO+XJJ7en_?Xf1xN!o_ZEn@`;g=LJdT7w+%`sg?)0^g2UH@oBe^*J{QK1%A zAo;hkDp1{)RvwfTO^Gegfzk9piS{jVP@-vbON_W^a4SVozd2*G`_Pnz-OvTS2vQbbVj$hsa_YWt&dyLMv*kV3nooB zWpuF?L(J%k?%zcxyJ9Txix`yHI+7et^ztqm>9jgKHqss^s>APLpzNTkgWr*KSrv); zSp})qq>=ES`(9{X#|d(Fvzq$wOBtAUjijaBP=gcX>4xq;L4#bFX5hWXh0E*-YSkT6 z$qCxiU1FtrSZ(3bW>^oawLibMLHZ%8s1X!ac4P%|_pvI|?6IK%7zVp3e@{$KyD6zB zdU!Xz>4|IlZi?@P^L{ry>xE)=)5zX9@Vn_^Z%nGY$=L^&v)%MXA6&R5Q|`W2EuYD% znAk{a-dE`KzBq#>)Ahc%s!gWy{cr+Krnr7qb9mR;*Uzfr!>@!;F?S^0>4)kjQc!=S zNTf;qt@aQn`db|#90PEYCepwGILi|0zyJ)8L@GMaYU$WSy#`v%{5Pp=R;l*2q5FfZ za&&B<73|nfzYMh6_-|JRqzpQ;K}R%uJH-yd2*(qsL708EQ~kkKs2|%JneFg`DYG4& z9csDgbX~Iuv~LGvHL;x{hM+g_f=Y>ALoqV9)6taL- zjaIo99fw?t;-;E&Efb1M#dfL}YW4KCUvbfapN%54Db%Xq&j?*}LRGm3ot-+S7|niZ z=a*ohS5!fLXyQn#1zr90_mVl`wP?ghjN7?%b|g-RnN)g| z)!b*MvcC~Yp`)w;psAxUv(2P(qcJpR(%jJ)ny1McZH4%sR;Kq=)+5LfZdFrfTXeWp z2Uc6cG2up1dbs8Ck5tCLE8|`iHrA@TwhK;&lmx0KYzY~+NLS1QEcU; zkn@8};Bd~Po?~&rokwTK;z%u~n&Yf?{)<(DmnuOh^>W6PBmW4iKJ5=O3&QH|I1J>) zG#~6i5+~OR8Xtw>yn?=rvg$#+j6%1a zqQT>>p+2Wnfn}rU^mv>Or^peF;dzQeqj9)S(XME#14MeXHOiY!jpmQ@l4oXYEm|0Z zGweA16k`qYKdv&VuWH?zuBXHnr+yQx>M)o+0n_Pmx;Ft+#Bu65(fYuf%?-cIywtO9 zd>85vYqeFV1Zrw_~}$E&Kl=GUFF?T<&EE4nq?KCt#PR9bh;mhX?Qvf zi?^0TSn-&Rr_;;?YZk=o1Zy?K%1PFGh#HfvwGihfTZbG+Y0?yHzW-5`@hFw?0G08I zu<0eJ^IXf1{P$VG-fUxhQ`n2{EnZfKHcZ7j@F+Q^S)W22m}Y$pF=)C)5E;|0`O17u zuongOomrMP&9FKt^m#=ua#T+#Nx5fY#{Yzx&9qwke4@&q8AY>aS_$5pxu_+Ly=eJ^ znLWuh%c|_d2m^0U6wR1rbx{^ERlKOz{T&r4W0uukp--xLQTcASgJ`JRnyS#1>OhNb z_ooK4F+e2is2W%_51mzm4$ronj?HTmF{N#$QHfYlZKnN+RzEK>E7+LYF0jf_wK-NT zC0Po#AfpMJvqN{ptQZ ztG7b`^zx#DZ)ex1@$;>^Fy1mBLoAtopN}P4GPPKMagt0M7htiIOz8`(ao+4a%vd$r zi;};XSD#icv?}>9LYJJwa9xNWu60ka@?g^(mYiZcr7xO&Z(a@hED5a(r?QK1`4~m> z7FkvOv2Ny+*HrCWkz<7wK;JUVwFP3>QmmavQQA_p zjPo$M#d*<;8cPOI<}zINN5TJrbp@jP3hQ$Szhvty#J9=T31$A9x5{X z4mDbDxm4OIcQ9UN{!x+kt+z`^x#vZ7-1ud^TpO&)DoKI+RCj|l-FpxB-zYfItuuUW z7ka$`mwHC%zb50U=0>Z#msm74DRHAURYfl0)ZJt)QIS>Yl(Na%t|E6csKsV$i;Db| zLH9OWAE`*=ELyh3`cg$|XVJi|))y*L{4WaLW}R1&0)J8ZHtU>8s9cuKaFaB zWX(~AkMKi?O9xZP==H_v>POZ$%JA2m-ZXL7AEPMmPAgHNA-TO%SM0RPI8DRs16t9V_3kjqlpIFm;I0D_=@pR`CtB<$n7UlC+GwHZ}Rxf3K&7aQfvyQ9CiGnoy zQ|r1iPA=h11*&cAMBDaTU6ejw0D1OX8&o8z1oqBbA1h=3lHOFl@1}+nf6!{K^w02X zxCgCp6=@nsXBY1$&>6%rEk`7z> zRf>!<-js3ukA`&pur=IEGPxQ=SC3hZDDnvAHzALaZLcj`s#4k!tAj#SfbK!4Q@u_f zHm0~^n5`v!)jC{>SxR55VRrd5k6R%MO5d;<+Erm| z3(EJI)kf*JwWMC3S;Lgx3-#;y#~)?rdq%6c%D*Lf({b~UwlwvmRnCVIs{8{Uik`GO zDvQG%(Y?{zs#3t`Ry!|AlmqWpKer~U$e%Om&ga%T6`3=iW}dQksL1Uks&X15j@>>Q z)mG7nvskoNKVwz)XM%EmS6$PE?w!G%%iJ?o6=nM-nGT$>;#H*lDyn(bs_Iv36})Oo zR(+B=tJU74Ip4wWqZ{A+QIo2kv&#E3LdIDtW3)YWM=9!f%_{E;x07t{wFbS)7u<8_ ztkx=rmFqCr_<~#Y3oBZo?>2kW*>?E3*k@l@J^dtMjcqtDYd0j%Pq%B+lrOCz%Ca|# zcfa_c6_xnP8sL4Bi+D7^cda*e!0!9Xs^G%}74nIuTVGiNmBG~yvXA_P^SFjcnisoJ z;Ghqy(Btz~XN7(p;H$>p@C&G^SS9X9!XszP(zy#(FF!$MFW($XYqh6B-ZyJew~JOg zW%*AZU)tq;GnkHDv|1|k1M-u>Q{s{p>J`T|U9gU3U9v{`a0HdC5KT`nVf7}uB`Z)o zchrE(xWov0z0y~8)QQX1M1@MH0P)IX(brhNh*kSFzWBM++g0iH*Op6_Gix37{Kks+ z-ob@>cKOoTAUM>^`o=2d!w5w;iKdcQ&`hy-y)nD!xmT<<3i-Y7ONnFeRH2M3R#ZN* zTJSMi-jgqomFU!$AJnAd-&$S$MD_bFsO)3a>Z%o@>3X{d&FSuUR%fLzevWE?k7b=0k3#yMxgXZ0yWd+y-52pmoWXy_HD0jV zxX!Wf>==K&XQ)s3p!=0${6{SBa*RLP6JM23Kd^zQA90L7*OO1dp?+cmQU77b+{T@J zIdVX6+QgXTFCa~Wq{0HyH8@mCK!yhF&JuY%XTYEO8T^4cz)KrQp?}&jV`w!|zY5Ri z&Q7qnnUL4o2 z@(|vgQFA{HUXKt^K!a5y1r*fat0@8sYcP14fT9dyxjU-i3wvZ5U<2unk{ol3{`5l8 zm$LOn)^Y)5G`PE3KsgOMZ4gjigOxi3RM6npodPOp5Vl`H6%CS)f1ot*3gcLH%+J;YjFIL*f&+cjT~P8CZxGG+5T8S zOAY2d5ztzLZJ7c>H1PkQfOZ-jR^UAi*taGs(ouunuK?Vujn0~wuf?RR2K+fC(sa{c zrNhCXy9Up43h1dpkK6)!Yp^u0fW8dm>q%#R0Rsf6r-8_Fkk$|L75z{R@VO-y8mhsd zd;&&lutHgcYj941aT>H&h4z3@wYcCddANrmFGXgla#N600eq>+G@HR=l(_|2D z13A=_IL6;$8sGYh{Zt!>db%Aml9YOu2Im3X$S;wJd=1&FqU12o29m=9J7(lBC+bBS zOfDi|sRo6M30R>46&J8d1OE~N)?@?BKPv-;tkWhVO9|Mh!5#&+Xu#ijqT<^%Xk1pn z2O8v2RsC3lE~;s}HCPnHN!-RKn&4Yd&UL>AN$^n&a7Y7u6UyMI20eoX9M{07f`F46 z;G46H8TR}Bs-a7Tko1@37uxP~Noph3Qx0v>4) zuE1jrKCI~$lixMTUrWGK4cg;lRn*+lfWKY^c&5Q^1w0zCS6WzPYEYz!fEOCvRN&

    zmZP_FyerAAoL{0Sg3KV&NYK6)VN$yk~l?j zN6ht+bmn;;PKN|OhbwMKYvUAob0nQxHej;NcVs+3k#syb*2dUd{szSG-0~k@j0^@_ z;i*PE7@$Zp80eHm1_SMDw#Gk52Lod}V;5Pu}d&9}js96VNQ}ktL zqlcpfcy+}!^*35g4gJ&0(5{Q|hLcisI8@3ul##H1*DIlo;=^a-uy+DMw54}K9Y+mS zY2Rv9W0% z|KLSQBcEW63@T)arc)?cqUl_FKis%YE)a!C(Qk+2#Z7w@Sa!QBYBs_+Pc9v$Uf{f9 zRrZdeH&>IIt`0;=(Z(O;8d2&+P63%NhHSFuM;c@0CQ(RwZW_p~ZwlGP$oi&46iUBl z?jwUaWL?9XP6t&!hil!CF~)RdR21acx{+!{P@I*->l1(Z@i}%Pr0^m!ycCMq2anE# z=Ehf)=S9)6FBzBP&^;2O=-B5!&UiuI3}Sff+rWzvuPun8T?54bt=BeAFs_i#Gedsi zOTd0~`YDPntZPm(ZZ0h6M3IFx*Wxu;J6OS#{FSvOimt3L08dz1{}e@iaT*t9Yu)^n zwV&1+v!cDR>C&1spYI6Td}T(co6lziSz4p=FV}k*ZYCIE;j=h-vIjcwivD|^B*R1K ztFB)e&DCTEE2O~)vff7bAI8^5C({#yQBt{`E{4R}#%2=QFvnODU5MM_Z8$c^cvg}- zjZjDGJV%VdeZH}1AJ*@Ox?%jaNfMW z0>)IGYXesrFDXB9dg>w7!0hJr>5$6jaHaXLGES4TSX7xX*`ZV39zo}Tji6BdUf;BM!KPadw2FgD;Dgm z1h0pQM7Ei^1uny(mQAB+Ex%u9jF+SVM3&6VeR)w*(bmy4RGUVBtfGE8RKAanz-m{uNkEU~F_rsqB zqQ@tUo@i1Zb8&QQyRkA#+73gx`$+YGRM3e|oi^3f9mZt2>`3)^q}avCc=Qx(!c!;M zM#dq&vUKX?bL>%MDEzq*Uh>~zq<--Fu%dXt2Rmk&FQ8*akEFx>a7=ax*`Xt8$j;nr z^p)fUki#AG6JCz^Z`4Q{uR}+EEM9fu$ESi-aAE;ZPUfn(t5p|Jd-q{I-o=>hM zf6r=qg0BGy)?>7$$a=^)RKCF~dX*O=6+O)=dhDYW_2+$HZ&yf>)klAbsPY{5MdY|`$DA93P1C-N&V8sB_| zyTRkMF~C{*`2(Je{ck;4{%7Mpz3JZcv+<(tkM`t?v#@oR{+ zJiP=Oc-|N!KN*6So`=oUDA=VrZ}gMr4o4Ty8+$wL8Nt3ln+@*&&DdllR$UzP1a{LG z$3($RH+)AHZgm#NfFS%o8(+15Q?|fp2srZdk%UuZzhA~Fvi0JGQ{)EM8K=lnryx%4 zgNgq)W0EUgsKPD$F?v*D*9GHNSGn|Pay|m>y=p8R@-NRuyuE5HrFi3#$g0nKG(8r< z=fE}6QL2w-$0GDDl4B7wuETGut$83`a`}XEIXsXYi_pGEk3|gT6zQ=Du!HS^vttnh zcoDpDXt;6H*iiBq%jL6U5iM^UmniXEK6fmlbf$5v6X?)m5xg=z7GW=!9gA=%7di_& z7Qxqs9*f{}xXQCyuwxO$Ovcwv9-BGan9Y8V5+^Dyiz~&7)D@yTK!UfOJ0S7rXnH{6GS4OlBz_;w9gwi&*Z~O# zoc(}A;63A1S$WLE@EWv)U7!8Ne}6PR7Lmh=+MARfi%5QmZ!%oRK)x-g?LQS4RAHx>0g92_0u5@-P!gI7d?I@Wt3mZ^CDjO)(Hec|Gftap$k7N@u4c zf@tYJ+I45AB7_!mXmN5Q#piHsM@~h=@Md5aa1jwkmv*Cg5wcGo@!WVvna*dE8j}+U zNqjb`F$luzzvMC+8su2SYPE(ueGDSUBE%xdv54(z1t(ktITj&m5Tm|PYv3a0zBbm^ zu!)>zIjdG6MI0RATG~-V)rVT^w3s2_t~_mI+GGwz%#b2G1;P!Gk{WHcgh`G;NOU zzM(^%OYR%$@uK9u!GA2hZzwgE+!E@PN%m@Vt|gZ< zrTA(43G5;V0}|1y{+@wou&-%^G6tJqn*)j0Mshh^O@hmV*L1EOC=YG0fNO)fe8or` zB#|}7eq7tO?^409Gl%>@%YZu2?c`z&wp5h;#?k$Sa^pBJ5Q|HXBiqS_ZXu>Sh2^H>=+1F| z2!|J9KV&o-M^9=juah*QG~{HLOwN@B*ypkz?uBu(taEM{fIDAk(|FadH}Kku^e#q>Q6? z=52bJ)=Tn!ki$DJdwDq$QR|q+DdR}@(k_)AsnWT&vae~1e3Kb+jW2+><}x$nK|fP< zNq)u*dBV%Zwlp`Dm>nSgvB>t*HpJF6eNaHhgobF?`%i|+e&gw8LAmkt=Y|)9Obt-$ zh$L@Rc8JLz^^ZuZh;9uwwLr5XlDeYTLrmq-=I%*zKQ0oAZq44Jz>Y_{$8EarU=NN# z%#-!UqvT6%;`B}SSWqSle7ny7tva!K^Xa8o(- zb?>AOD8(G-fyxXw_5be_dr2L!F?3hMZcLQj7<@(vrSwUvzG=Rp(0$guWxjEjnO}4U- zwvdo+zsqx?Ns`{r(v#NoMXCDC-l)<869L{d?MagwRFBo~{Y9{y4}jX2XQ z*?)q1;M;7MAg+7KTnE*=PxjnWj+KQ{W^Jv1vWC3I4X*L{{IkrkPxk-z-xjWj}unYk6R4+ZmJw zD03!^7^6G-dngVRm9=}BwW-uvA8l*hP{ipak$QpFJi!FVjJVm_UQNUC1k+tfxyjo~ z>hVXCsfm)sXOjlLIRTAMHq~}iz$TZsyV{`P>VGl`eusN$wZf@ZSt@}4px7bCHnRIf zx=L`JXt$cq0tF}1IWc>#si!1Y0y#V<2JmvEt9neNUA5rEe>*4UE-dN^ zf3hlf=4HsfK=`Djhsq#6TcvtgPt}mT*wjE$Vt8HRn)1uRHF114aZSubG-Ii$oJwJ- zslPH$E$e}ywn&_dq(;UNG~`lTNmOWwsX4me#8^Z{!B5nXV$;+p8H)YSa#JM@1#*z@ zb1emOkPkmS#6`_jt#-)20ap0%{oo|>c%>;vImef(YVbQ+;YrSNjaX%>Bzs)rblLV} zzo|*{6cd-vZ9mqUmJ}^tn}{B-H6s8Oj36qpGmaylvrl~}s zSyHbKhCbJl<~m96UYZbL4ll<{Fo6m_Vm|Ix(sL*2nO4ngM{sPSxu&EsPIAFm^%P#y zj^*Lo4FaHQqc-s4cmm=MEe=O~`yJE?-r(G~TJE48e zW)wU-1m~7e&mT-Dl?QxYj+l14prBt&)1*#F>TMfd+he-T zMdU`JO&lFwSDZ7!FX?b>5@gBnI*b=3e(DlO{nRGzV}8(8axAoZ4M@ZLi~P}&nAA)h(lNZFn#H$pz_cH zEf0|?+w+ns&j|&G^(m}8=Fu0YSSq1OFDunnUhvtZ#K&>yw`-;dm4f3Mc9B+zABu^h zH%!xHzj(Hz6|atm((x$lrYTl#1QNKr*5@Tiy9dP6FaSw1%j(1)*$dRUHsrP`MIOy; zh~`VcG2k>jo*gZHoM~F`itZ1-U57lz%FVp#tlG(7O#WtILOk6Ji~*vs88|$iPA)@n zaW;R$z)Cj*{j|2mHrU%11>9IO90k3fRayR)+5NTJZuzTtvfJ~`eN$~G`OkRuW?(ME zU5uy4NT)5`xx&!>v8jZUoE@*eC4Qz7-nw$b-mlvkF3Ced4hQQXUXBE7hsiWpLnr^sF)OvBd78XzG72bb9`4TL z$!N8JnK5MZ&V`b^gPHLuFGtK+!OQ^pf7@qnI-9r27beq{>93Q?$`t+JV%~{<*_q^l zPP>>7%6BKLW3C=+_w31Zh3e{RJ}1d9C#%D)nM!Veo4KPT6-EcA-)4^r+Sd$i?Xo1! z%wP=OMgyZrd^z|SziPst&#`+FQe-U=&W@7($HV+eQW{LrkD?x0QAF-u8y7PlQrdh# zwU?IahsMcUp5|#%ByIq<2{#1O9fEM+6dZ)`q+SVgEm@jLWXaq)jTa>W5H*Fy;lL^X zG7eE0AFyW^XU}%N5E6~)#GW8Dvy^!Zyc89iPR#j^mn7!wX6As#zm3P0Wy~qkW6quj zd?{oc&z-`?@qlvX2sc@oN*@uhN78KOl)_WFQQT!J9mSsjPZ-5>r_dO?gA4m-qxe+2 z=jkY(v3YW3Idm!=TAEK)d$q|_13aMenTtGVs=7CwWT^gA>0Qy4U~|br^7yIh-t@al zZf#Sumy=;(Q*)q`JR6?Xcl=Q&+b&J|Qynn%(Y_d8zI2FxmZ9eL#pjr>T$+v?y9lyEd z+|`|X4CC9Hi%7~v9<7=;-f00o)NRMMH|Kr$N7wMy=v0wq@C?_@oimlc__FbBmj7ce z#~vDxB4d@CGrXfPbGY9Jg^D@Tv$4UqcTSQNw`pA6Rn;r$On-0W3#HQ{pJO)zrF1dB zRsudi^#5;(pLB%@uEjLk8=7LW!x-0S8Xe=VcQX%?<-Qqc`~Bt z*pF9*e%jY;O56Nia6Gkv5oBuPEvK7%d=A%k@A{iBD0g{3+3!Ig^Vy^; z-GyomG}m`jP<5r=T8<^Rl)WGAtRpGPbSU07IuNSsbd)*RY*AeKD=KPV9jX^v`Mq;N zLyw{6@8EG09$>FWEj}BU=mdi3>C>IVH8jZCrxuzT9)Ir)(9j^KpSr6x~MwEHG zh5|YKHC#)fQM7rgqk^g#`fD`<8D@0+yJaNI#*0zpCfn*@0WQ~}=ggf>m#FVXnJ-Dw zr$m-a$6I+((s`D`XA1F14=Nw)Jl;A6C60yV;jhzapMfVx$TOA?ZMWH3Fcks``x$ekhALc346LqqvJ&LSlMNUx*H|h#Yi{G1bc8d z0=xdJZe-XMYwqo=)SbbFwrT`j^51&y{#5fmy`8uH)65%v$ekeTNOqsPA#x@inu484 zhZH`OF87^*Zp<{-l%vMdlj!lWDDV?=6_*DvMJx+PwYNO#CU=8RNWvlXK7FAgaQqy8 z;949L4?9tdW3bfXm~J@Ve*8QJ*Owd|8jDlpc+ohVBAbchaf+;{C*ag$SjgZ*=h$rc zrDOv=bpCjj+2C3twQd3W3)Sqkbe@?r1D`@4@ox{H4_;udrX=E0N&6(upa;K%gF(fyS*grz^ZJJuVK`(h0t^J8dZ50+fIB8GV&vt}UBqAWMq5u9C$Ug~PIh z9aDs2j5Fv@x3@S^dxgjeX!LZIInd)J7FZ6C0S{gqvk^UBWiE{huQGcmuQ^4scgvMg zl$P=QACysNjk&H|Y$h7D#@tXTJ`>8aIZ$PHG0H45^J8`ok*m%`r`DR=E7d=M^Q5@S zAH|hL)>QKYCG-QV;*`~lvV63glpU-V9O2+ka>qzs9XMzvJsCfQFPEH*A25@ij5k_3 zx|hRFz{|hRUepE$nmszudh-l<>P%F8gSoXbokvD)Fz;6q9dht|2{QBn1_xn0H*s$E zre#iMZ5Yc@RH0;u+GHLlDe0U9{cZ2fX6PBa`D`*>gCH&5K|@u%4=sK(Yj*A8g=S|) zJ2VuYPyP5DyZN^E^~JBD8LC|4O~n!FYjiPLKZ|RD=d{1&rhHpwvJ^}Xt2W^ zqo+_&OQFk7b5jk4Lp#mml=@l<3wG;;Z z$2`KVH&Pu&m8TfuJh4$oiNU@ zKv$0jCDFsf<_$_0zHHTyz@AZZ&?HYt446f>skkABJy7Hz3SUg{GSoX}PLt)BS@aPJ z`xsSEW4M8ZFMDC8!w`rr6in(UCkbV?q6l7=Yz*kGjg&%3^-*xKEpwDje67h($LqNq zuKz3Fo7XFQxNG!?|5tnt4e?p@h`)m@o+r3Q>Ol?Wi^4BeFNyj^?rJap0O_Jaf4G-Ba z=v!Wj+;-)_C)M$7mkBu6ZnXE-E}8!FtbNU96+DhyVOE-4V>T_m>TG)d)#;qsyHLF* zb?Y|?X@DM|GY><12d(fxf1ZPFLoR!q)Eb*fZqK-hpS=q-bT+*^d-$ulX}(tQdGk^J zAMxnq>39Wy$>mVcdk!NE=H*NF~p5)uiiCJjRxp}arL_1rlr6!Iq=?DmJ} z=FJ2DuTZ+8V>iu;v`@=R?9rAzv+)*oCwUiZ2dD{d2M>o@qe-Dn8yD=C1~+9WJ;xl1 zCe^SML>ZMVU8;SwmQ6z3{NWF3`iD8hp|a_h%%z>lrGuBvwa}z2a~ztPY2K<_n+?ru zTaLgufL}>g)QxlDR_ek_v(d%lSAEf>C+UNghrE*N<{*{I=g!7U<1h}yF5H1S!(kzK zc0a7s?Aiezt&-?Cs7qVwxB+s%{~H+UIay918-kq4h}H#6PX7E#m<(+Ia}r-C);Pb< zMyB&uybAUki=8HAnJ4`Zu7bGq%6C;Ir=Xx91GuY%q*O@wh^zKebIT`CS7jVtSsWR= zu9~VeATBeWgR*lof^8*=_8fw%%g2N&_Bkjn~p<&Nz3Lzbo%9U?4uZ*MEh}D z3;OKG!UQ@A%mce^V;LHDVntPXTLRg==BoHDEoO599XvK9&_NVbH3kp-YHd{hp}ARw zz`&ru&aG<4<6b{zf`4#ONc`IT-2?pMK=|tFGqVqR^a_4y>HN@KG{~H^MpU7LJi9kK z^MTelrqLP!e*-(}k=fIO&1C-78U!_{hms$e&0zlYUK}l3v0?7 zYNNQeW3Mf~0*#7)Pzreh_qaJ9kUvQ)0rIBLuJApbf&NH90lh4XirA*{=%>HUUBvu)sMmAzWHJ9E zzNxM@iu29S)Tqkvd?WVF;}`Jje8UgOpUan5`G$c463Gz8H9fl^HvN@X=ElXv4uZm- znXBRs5%3S%J3?(LSMcu|?Jd1AR}kB;9vbn+JXFm8NV`U<3+LMPPg?j;)~@&7nwKcC zACSMCFRzMR26AY=f3W(#M%THk66p}PB9W|fzrJs2CCPihD0pukXRVQzzAKSTGlrA0 zWw#_BO;k_CxsGCwoh|SZwR4H;>EKzu7+G*`hqCd46Kv34aQg9;Bk_(_IDYZ2@G!JA4~_ihRCzHCA~&SgP@Q`b%N^F391v^xR!r? z_#3k7)C&n}T!;O$VNgij;GhQRR&h&zg_lRce?pH~Q#QGTf4~1vg&p#?l#skodhty9 z3sC-zYIs3*a^EwFuH5#Jl^eQs-du#;5Re+TMR$r=hW|I!KILH<;#lo%m&|3*eIE-v z3J4DxO8*~93Xm$}I@6Q*_Bwkw*12?l@c92jUwc(`n40_jzb+1aTgu`A-}%Eerw*wH^B;MQh7iIp{vQrZ{C?LvWi1ONSkH(-SBY8iNfH?s z(tIt?rIlKqs^KVz63Sb~!gK0cH4CwelA29tH3Mt@Rm~dEnmzVBA1Sel{R-yhujkw= zST0C+wQAR#S(2SZ*K}rP38)K}7`j!mWJ!uwGB>^F->7-n{nnK+izRb+YSnoyyeQxl z+A)R7$zKls2t8b2EGs+_w-yxMW1lF)D zla#@{Ra$lF&%pgzUF^3qalERkLJ>@Bf>0sbm9ex!$T`T;8$A!SOpq5O)8D1-mFmSP zSQb|bY`~Q&ZNQ+RkGAXM>EYuQKMi>H|294gR8_9 zHINy@Pg5Vh$5>GzeXIO^GVNz4pbq)rIILnuH7S{%jj>lInw4-hnTFz}WZK<96^Ej@ zH_-&G>K6D%aItN>^R1-Sji<2cb|G!MU5VxuRLvU8WFv)UwOtu92jw+~4hb|> zhqRSbfaiatL&n%UWK~sw={E1aPL^tI|DmwhTuXWDRQ=rcE&!pQe|Ui!K9ieVcg&%k z{!<7pd#A^H3diTDdwmjX?W1#Oum5%q?e(CG58tSIJ>FE1x}w-l7BBR;o26=ndX1n* z^Lq<*ReKAZaG;j3!>)qm0}V5e8S2n5WLx2McZ+RXp`m{@TnI`UY-x!0_qDhnzX;1j zc2nhW@%IQzu$bRN%xZ*c_P2N_FV&`TbK3%D+B0Zfas#`6Weug!TyDHkh4>=70>0DI zK;_Yq13o+*(Lh*}E@A2*gw?rO!e)s>BVn7QaQIpdtfuewwp9MO)8HUd9}r&H$5Q#@ zP76_2l(T1ruG9MW6`WS2pQQ;JUOJ@?x>{+aXPGe?H&o2MAURFtDadMse(7hi?GD+T z{iL6zozh-yBG=+6%*57nsq>0;Th&hK{Q-s5b_JF5Y^auV$%MeQgYAmwm(KZ}sTA7Q z$D(}PIcklMduXD%Hk@VabUpN9ki|pQ$fR3!9Bio}=Ii&IWOeCW<8NT4&lXzDcEzE^ zKECG=z7>yy9mzMdr0ux#!1EY?t#0Rzjd1wUZwnNOAIJD{m}QWY^c@i;2QH8BqU4vq zopb3ge_Q5~$1!-5I4U`;tbGln$a(Pn^vfZK1GcR5=6|c@C|gHbHYktyCWHAj-0wb@ zW0$sZzows@IWx-g$Vqw2i6Zj()n$!0S5OMh18LRoJMhVww{y{uah5fXTJYn4U&V)4 zz(4Fd0U4cYcBqDZWAmS!3SP3E<11?`+{ z2^3@l(xzByC=0aY=TEVOI?BUQkDkgpE!o7WYCFiWWBUT#_5u<<7RW7tKc6E;$8ibe zp*5}K!}G{d1+Me|z`7r=Pj2*3%bz#YmVXu$e$rA1nPFL_T;r>R508*WG4Z*$5reRt z?L3H!|Hv`pqWvA$={(2{CH=Btgz^_pA@OkyEW=;T!snQLZReQ6&uLjlUMh6bd2@(V z2uTBAmji#|lxu_YT1xmRf?@3}%S#D9EDl=qBd46!MJ+8_RK_PEQdP~Ou4^jcb8fr? zLg?Ac$5tF>svQtw2<|N3AnB*t(k<)TZFXah;g;ZzW zau`uu7pU7B6#Q0L+Gr?{nv_v1H~|@@zn)mxQA1Ugr>rUuX;pl*t3r=iah=1~0(|t~ z#g&&~R*L1Aq_p6zA+`E)t)+_6j?c#aaRNc|_6<=XDisv^sTJfF3(!|`_JZ-ye?X+i8{rdHn(!(Qq`pg|bB`X5#`> ze4S;bvXQ@{a?J}?41(8p;*W{1A)0Tj!aOq7Sai7^1}adg6d6Q@p9~t zC0jYddxQ)+iP_!;lu>`eMtx91{Glr-~O*36(n4m9#1 z#mSQU8trQ!MS2>%x)FbdsKp|>6luB$|ESZ!aPqh%%oTr>aklVNVmxbvUZ8^C7`65% z%YIi0UJX85*zH)Q68$B^QrT64XTv~L{gc%JyDa%(Cju=YyDaAF zZ&M&=(;XD-C6v-qAZODZ6zpfyYiKEuv*`{BwD;n(>CMy%9$3)UBio^X17sz(P)XJTzC?rtC}K1OT5pubk$QBrls)m9xOc6cJ@``v}6}NuncgNRn5DXn9Hv( zqSN~o&RJaFjKqt`6Avx2tgI8tS-Y6}e=UE-?wvh+Hg=~67PPfpFBG-|9xL0t$6Ohe ze+0i(wY&)psDnDDM#)gN`(KvvjtZ(eUS)MmSxoBaqg_W~ZDDH~hrav|mIJquRCR?H zQf3^Q`Qhh^!oQ}UZS62^^GM|>Up2fH@LoLECCr=>OSjisK3*7-LO&OurVUEW%1YABGA zAXH1C;yX){qk?KwvNHGa?LoF9{P-NMh1g{A!2ab@3BHn*Zo8!&fvs?u%OaPMTiVpT ztQq)cb&w=?w6l3ZGLwygmnh<+`H@S=fk#JXzY}AQrX3~ifT#v z=3mxbre9~nFT#^fb9Fz(SBV^qI8N(s=;)HQPm*rgYk!>=CAI&N)gDyHJg!~Ee^UJ- zD4^>CBo|sr=W*wybRNIzmUUQ`{gJc)l@G;5wj4(#A$iX?|DRsZf; zPNnjzXVz9(4qK}J?Y**Hj!fibz!W@@gGpo}=j%u&a(_O@9!NIF2GW<77(VgN>M1J| zmO?%^lLw&JrLrn1Q~7M%Kb=63Oy{D)nbKJ`ltpRjS?D_%?egFXese^cMl?*L~mF2UlI4Y=y zfjZ1neEa{CVW1K13iwN+^7Ezimfib~%aNE?meZJa z1_}JYnReN9T-Uw^C6j5b96B{*C6dFJQv*6Jr$JrrtE_{*^2p`tpsv8G9|iJwTpyN^ zb)X0x*Q;b^9V;SFTdt1p;VP9e53`tGTIWxgKt293|L zx1_CR7L@+eN-s3QBYV4Y2)Cd^Ah#@%T|+s>XOln%K^m718mhRw`!8eQA@cNX37@Da znw|WSg-{_H!QU3kUZULPjl>b`m(Asf^?pj~ZTQVIyATn1%q}K5YN)!>7S@8i#WV)_9I*~NkjZ-{`EA4VL9z0j# zKnyfY?vmY0mV-eK2Vx*EhXYY6of=^*FM~7*L+z63V5)r$$|e3gh$5yhL-K%?wD`Vo z7#VMN(G^1cN_99ISmh^yJPt=#A#AK(BGpCpuAO-+)$!S`5RGG-A}kr;+lp&fs^jyr zU5>=(crXaZCm2TJldlbpPd>-qnzs7E_qrwT5@<|!jA0Sx>fGZquw#h`=J zC9tIZ6;na*&lqxGr8Z8HLoUHMMfPAqaEdJ7>fjWauOkdbim(? z!_b5?o64YJtyymn)+{~VB5paAtKJO`H7A@i)ez#k896)$=#f}@XD(YschEPaHI zPoZ|m{7G3a;M17-ySM_<)CE*d{a67l!BHseT=|MJygDmAJG+{61pShoeHcA)u~tM) z%UR1v=V=KUF4hX@`QOuwimeNNAjM371I2V-WDSyvaJloJLGG0`)=F?<(Jp(# z6OppM zX|6pZ^+%BU`YEioQtX+?S{QN@9%h%5HgmaM9)ksMA7=Z&V@vsMk%rA`IpvOzWUyzV zhd6iQ&y^)yVWDy9IK|g`8k#Ybm)n%Za-WIr&A&ek^2kts6~aGvhqTf9rp^dw?5AHyOWwG*&NAeBOTp?(53rdzvw9R^ z>x1TMfm%;Mpv$q`67bOnl`)^ofL(brw;cR>r@FMx2`*trN+Z;lLi4gKp`@&w5>l-C z(tL=q)S=d@@Qjy=_Y3YV+gz;0rKRdiv!25x>_=&x`jQEU(4f^yD_j=#mGrCnlJS8JcujrjDULndbtJ3$QeqBV`obA3{7ZeQFb?Ee z1+BhP0Th|!5Cz+@Pe_$L)R&x!g7N1LkM%;^3d6uwMtyw|9v?`(tEw+;_qNr$p5vt& zw5%}4+(PKLM_@*ulzSE6u)oT}_qf}VVg{-&#o|$!H1BBjrMftvHh&vg7$p{lD43$Y zexNv9zvU9wgas=+!Qj|1BZ`2)!;NuGP)1RxJuIdjug4UE>)qU~&7@8COKHWeHPAzM zYhU;_h)O;g`@r`Z=^K?$YBONg@URY$eo$ROy>J8F@vt_RGSrtA z<4%73r~5tS9xSI89)miczu!O}%5u)&qRL#oA104uIn!{2mbKpRD$hto zo+Yi3Xy0{XAX{E9U_!}wx)|(ZZ7;7OIn9y9$67pbwll2S&f`VW9Gtq2Q}H-;2d83j z>M2eo;gqxrQe$wc2u`iRsj@h=1gEOu)IOZ5k5e%?)e5J!<5V}CT8dMHaOzW>8nX&N z6~7uMr{c^7I5iii5^*X8r;g*)W}I4qQ+seK4yOz_H65o;LI)wF9Si;nY_+H5aE&;MBJ`^(#&-!>MaH zwGOAOIF*W1f8o?}oJuUP7Lv1Y(gUZWaH>fzMqI2DFddvU5OPEE$C zfjG4mr$*z{5uBQWQ}c0Z4o*em)JmK>fm54sYKJqvXW5ODU*gPfaB2ol{eV+DaVi6+ zw&Bz*oEm{sxj3~Er=H`~e{jk<6;h*c$`hv!;Z%8?I*d~_aViC;8sXF`oN5cHjxp14 zvIoxm1gD1L)IyvZhf`Z{Y6ean!>I*0wE?HrKx)b|=gAYJ;^7rw)neeqRyFT5L=Vea zN6GtBQTi%tJM?(|Jx`Rh^uCvriXV(=sO-V&+u+qRF}qUn`*O>p?x}aerP(OX*ZLp% z4CEcY6DGs8yuo+FN{%NouFxtVj}+jG z;G|4htSoiN>4v`Yw^ou%r=ft#)-c&S4IOL&Rsy7WnpdtnN(ivFl}o@jT|aAA&eURQ z_?SW~DGeo8vX;+hU914Cc8t|pgH;}#>;-GOoE)pC94b(o3)J*V)&x180Vi=l)co2V z_cbxlS^)Gw!)iS6LM~N+I$og0Xi>YON>!~*vW*1qyj0_Su-C*mx40sKUq{g63(Z}xq=v+@0_tRNaq z@9*6AgbzPkOUQ+hI-Fb(4kx0RJUq7>I&ig+7xI^Py2wF@db=i~-Udo>baJlM9jy$q z2FcZs+TE22${skU`a$5_Z&t7jo6q_&U~e8cG}zi)?jf+cA#%b+?t&a+XHN*k&U^-% z!-H=1fIz&_#0oEgtTL)7^0=DoCMOEqSt1vrrz<*K*IHBligEYz+yh;JyR4qInY>q^ z?G|at*>}66EA_1bawenQkWgL5JD_{0)7$%RPR4Dt6Kf}_t|mBG8yq(EP6WCz?w$wgS}dnClKS~R1 z&<5L@OhFr3SxZX~IC`#{4z1M&HmtPh@BvaSvsc~D>5lfs+^Z>9$ru1Zf~1RiP@{e zt^Tr!8GD;E78stWYgcPM>4v7ASE-$s*5?n3Vco3L&hzy&@vs+ z=DskOe$PNBc+iRG(1N7S!7dN0qvQQx;c!gg9u~QItzitk)!*7!enhyf;5)=*!9*NW z%f*;Ae* zaL0>W7(QT+dN^=DW87^#x0oB$J2c7~EN>QQ8|*aFouLon?hBh0xO1Y6&Q>@_u!MHu zkaG7Lph>BBo$Y(~vUwxz(G!>6uOw$~RIiwBZp>dXk)});X)P%`!>`A9X$*TQ#M7Yb ziDtHe;0_;UtuDV4jC@Tf_Qg_2oV72C8Vzf-Acm^Rqey+rkAeDDgWnJxm)Vs!Q6E>> zls_yG!w$@{7DgV&inybRF;+z$$hiG@?xZ@o3hF$?S_%b)7J)@Wj@3=>EtJqhEP*WU zPT(IR#*c%2@I?$hpNDTVKqv){hrpa8AQMGozyxco{51o8r3EU5PF^ow0u^g&b%%yl zHN#$!_<#61@4%>vCysjyB&3iYN-@Rs&bVQL{UKD_kHvB?)Kh3{71~YyU)y<*`1y36x1e+L{PiFh<9m% zx+7EFHZ99D>L>g0oKc8rzbM!XDi*#P#zGhCjV5xkA?`ekyza%OTEk25oH5o&By0MY ze3KVH?Wst?BOdU}-;V80j5Le3Q4kUs>z(r5{^k zSO`wZ)5dA=>j)k>9lgDvrN&>ET&laM1P<6Zjbz0=4l}bwc#`N5r^%RkGtjH9rC@3- z^;M$9C)Vz)i~PeopI9rg&dLuv2>ET7dYT0q2fEQaJb};t#OlY!%9K&FtSM}iLU~=K zB+fybx#Z38Se?RU%Kh1>kMk7DTrY)uhL<8A!8TLG&=BbsJwCiFuRZe}KXyo_KA4MM z{{e+sAgG`a75*Zs73E3ue7mJ~tm$yuU7KrXkC*aOOYOthBL()ifc?2t|8e&(T;5{i zJ0s7k<>~HESm3H?smxC;(xSM<;x8rs$$1{P#T2jVQQ|@_8l$$}pNI1-jwJxCOc|NP z5JP>_dBxAI`8cOQla~7#h7t0gt>JIU(_guHo^K%=w4X zt<*wDgSFh!M&1qeWB3kP7~;s{cuVbX94Rlp7sAK8B)fT5DzHmJi|m^)*+o+Y&Y7ER z=MrQ+|9F2M&RZ_EHn2P}W!(2NXz-FsRjoV>?v!7q`wR+%^G$iyI+k+0%Vyy?sV7@n zJk`cUBA59V&sM<^k;1CYW!$r0VsHkVc};NX<~Rx^F|{J11nvb17x+m?@`yLa4j=l` zXrA^JW=aQ|lKYvH>5W4=L{t#usS=qdd}Xa>!MSB7icT`eLD6jXwai$s(wc-hWHZK> z<_uEli&fTSc2ovMe~m`-uqo)^e}KxbwkC(&UKaSwm=^}kFCi8M^8L@dT5$61=c|Er znPTn#fnB-=d3yMlQXxtF1_dwVOJiIQ`cjYU#==o+E%M;HGGOUig#9!HP)h|+NL{oJ z?MP1aGB~cmY%kQRt~w-ZKP&&sk(5FW8DmKTW14=cA!{U!hL^(i5?~RcA?f zBnHnl#7Y_Q-bU1@a~F%fGUfL@C>FaE%62b>$}38myS&oh2>jHFobk3I)=_#ZV%9%rD|F}e zAB#v%(;80{k^d|=Da<|AMV1j!G11G2;DO&EG*wt(EC8`9^a43|lCeW-ByRL@PdwKli;gpY_EvEmy^7WC=+GwG5{Z0`-9mZ*vI2VTuBu z=nF6R1K+Bom)i zM4u+nG=d>AoNHq+hB*A6$kM_(k6<`$P~`6wdankw2%hnVHInC@h>YNcr!bea^C)`V zf37h0Z+`c}DHzdk(8gm}2vceP{_CQ*l=PLvr7_;g$E_JG{wpJ`{8xPLHuV0#@`NSo z-5o!HmaMCnmnHLP-Y4jaHAd4D-Mo|5(yXIGZl{oG0_9qvwWei~m;A0wo|B5?%}q{W zZ!6F@Jy5D1um$)?#nc{aoeza z3a!XXBWvQVjn*W3wHv7Mbyn#`B6XEiB&J(2-9#1RU+p_7SPkww(phbluOX=#{9#3x zs-NKXmU(bYOV&f7bX%pDsq9rABU0pgV#l2M#{x7>22sq)J`)wk+pTj(u=f?@WG|B5 z9g3R1`z#j*c)t@O_Q@jleTia=cQ4JamX9vM*V!XW^5Hiz0J2*Vw!>frvTD&T8-_4% zS}yrXzlztm>a`5Phup!0Rk^QqmzDlna#`3# zdk{}8!uU_**G6xJeXZLWG%^bGHX0?|A1%h?yVf$StDtAe^yUw&m3ipvu*ap}p>Rh< zM7ytj3xs75cxUdRIe%C1-j;bZpSko8Ycuwyf*K>V9r?AVRM5&7*PjS@s|9VPOv4}3I4Rnn4=jS;mMaqSyb{PBP~OxYGyaA>u79l$Sjz%oj;8Dvg?quw z2!kHN2*Im$mj$erT;?`HET8jfv>z{+5gnwL2fx)u4;EXkd+?dnzBU>64{VYy;Pqv= z*Cq*{Mwj7>lA=rM=6F_t*Y?869C!`4Ip}ZX7xZ@_vIlK6=k#E!cRkh?&Tcd<6 zgpb71bw2BYEs*`C!2eL;6!ns;g}L*!>T9UD;4IETo3#Ugw526v4tJ3evTBvIm9|tA zU-F&ONaR!IUe9FG8&LZ+GRWr7`v<_>J=gH?-L_1lgxb}R6O|9NWm>wJayvhjTY-Hb z)W)p~zG}bzH)5)*`fXgjSfWfY9~f+l#cF!}OTKEqqu{CTe^km=k!=+C^-ssonf!Yc zKRPBPK%d6=##9F4iorBga=r?+rLfCF#?Ok3Fk27Hc~jm`3J)tfviPs3N+*QK*NX;y zqX&VK-{?VrJi0K#){~X^hAO-?_{De;7VOFH!}RlX)=(ho$p|cfE1%o8bP7+1wpCzt z6jrLj!m_t4-m$c;K6^<3UyyCmbKMjp9;=wnKNeq%2G}_TYL72 z0{hqlqZos_OfhDGx5lBoX7OgRwj_2`zz@rCcR`Kg&7;ah@ktjD??(os#vN2-eW%L; zTa(3;N21>{d6cU%dk6Jci)dLtNR!ZU6>L!~aIGH9)*W%L*z;d&3}(gGdV-lgPGiwR zS^F}fqSuwOR`++cwYtB-ia<_To=-j#R+$e>fUcF-8Y6x3T0PPyto1~CYMb9mM4jy| zh&_zNk=4U1@RyQo5v-d+%vOoi!$cNACMBv*;9|EK(7HCsL_xlZr;<1-TA5CXDm*u2f#z8ba| z)@YqBVOvd`XxSR9GZu!rpo!(1;U!QG2E>+)5apoXI=vk9UZV0y70>x`c7Mg;Fd z1gc!W*Mc#p3BdbaKm>O;JK?$Q%VMhLm9ki5^cq$HXe$lbWQ9HfclzS6RW^Q|r(BVM z=rmhBwiyC6Z^`^Qg|;LqQGLA|~9R4g-Sv)yni;T)4~=2`}0IQ>^EmgiExyHF1LK#IU>{c z7IypUPkl9hYz`)k@3pkmL&5Zd(~My9>f}A;>hZ!6_HaurQxP?^r>bj7#Aj`7u{@-m zJ=QWvk~6?4=g9;cO8Dh+^?B;Ra{jz|Ni6v2YbvbQe+#Q`nI*}==~BLiA~|!~+1gk> zGNt2)^{2c_7QfNnmTK80(YG7v`5kP-En7{&o1O~p%&T>>rQn)5uN!U{!NdFLWwScZ z`ok7&xo#@rin$0H3LKhctI4AC^;jH{ug7AF1kkxVzcMh!pHIGT3umGE#?Ty`uLn=5 z(voMt>0(P|nF85dMrKcjGe-`NNz3hp9!3*|nC>M~D~E`qH9}Z}qSXPKRi=4fgf(iM z9*b}}bFtJoX&bfK%zV9Z8n^^0^7MRTyYykcZ(N+w0}aXsq4HXxGJYG*^L~KJMN?xc z^4q&%h1H7AD+y(Yil6qfJG(``U(K+bKOL@(tMksw{F)LVuX+S;49;v2J}}tIl(d<7KlZ z+LA0ay;Lb)SJ$43N-b$g3O`mF@D4MwHiVhY`84y6XAd&k)7d}K;_ zTvgQ+OXF;U{F_8Rk_~GV9gD5TuTD*h;QMMIs9iG^blF@G85`QyXHlE3$oxP&aUQ%fYT-kiw2+$S^+UGJ23J&2@ ztDu79V;6vwzsl)Ik|FX|(MX_MM{BJ}-#k6k-6yqvePN+PoRU3;q28 zYQC1vo$DZt4QXdau*l66pK=GfM}@*R8)H7_SWz0KrlUZ&2k&(h!rejLG( zkXFy_6PbcTkGN^6x@@4%WBoRBOIK?z{#I91{(|W8wfV^mdj#vP zpn7c9i%Pf6p3p?*yFMPl?h`@#SkO=-v3jk?ts0bLutm33ST|H) z*s2o0(ij!YlbWznTZ|3}++uFEvLE0*Gl12mAe#y<0`N%INMSTk8Kl~))1caGf-%fT zx7Ov;c-S^{eTOKt!77c+w*4bCF$)BZ3)J0-CFWXxGj^(=qn(g8+Rm zK*5&*$}1OFndgMX73U+TA_Lg3Aor?B(yjhXRM9^K@~*5KkSThGa$BLfOlevCt=XU@ zZq*yp3VeSbv}fA3BC1hY&D_2XJsVq6%T&;NqpxV;L~01jYEK*TqM?>RhB`r!0M(6Z zel=7(EfSy-)8B!c^+<5-Lp>7EH2TOQ9ELJ{s}>1*(lj>CvC)uH$a)z^SC_R@^>q&o zYnx@8&qKa4gMQhI7tFKOMAmBfAtkpN zLtu$*+S_~HVb((1W|o9!nq~2sW?9R7x}d9h!z*LMp68vgDxADS+bKdm)BDd}tLKp5 z*8H9M?nN5?73qCQI*oc@QF<1S?-A!-UiaQMz1~jRrnkDlV1HhitvsLeYG_rS5sxL~ z6p-KDW{d}K6V)4#F@&DQGnd&av9$uaT83iBZFQayUpAI!9E}UoL-R@nx*W#P#xe4? zc|tRd5Ldb$S2nk=Etp*p?6Wc(Bbw!TL8}VYc+R4@K%USNVgIzkE>zi6C6|9?tIqts z)eTYXTgea@dacg0Lo47QoRzi&_RP0N8~pne&I4jJ%fwcO!ib+WAa%(UZk|SjFmt|l#HmRMU2d6%Y+C5by?K5e%7H>II zAg9Ynj2X7#8S89i*@p`41C>S!zO){LyE_H#TbXvbz+DzjjJB0yTNLC*71<&mse?_> zev@hLl2tjkquAiUt|`RJCPZyx!^17MQq+5AQQP$}8qSx^7GYGYRmf_$;@wYdwpGBn zV)T(AdnF;hoOJh@BLxp#38`6f?1qx^O`RWJX^v4AyW~$-D zM4=i5byQgj;%|!3gTO$4_e5pV(z{t5J;QVL`RvMrg6Tjnwqv{A2kqYp<8z2Nvwb4_ z=Ix&Jj@*tJ@_6>MQ1-l}EPfu&2R_7xvW11V`n>i}74+C*`N^xh)METdTyK0K`0ED- z`*Ft}TO~^gzJDp)q>UCawnMM9Bmo`WmOST;_+Va`fhO;X7cMn_Wy@L9}vUvON(B2G`VEtqmx(XQYJ78$v*)#?FzKW%(tgPA&KYsa;t+Hi@#NH;eVbmP9 zSs~`DM6zS4BeuHy)}~)8=-X|6l~L%`)X2?$ewTG&p>|Fa9>e|#^PPj(?~EVa|J`R6nNZ6(_cJEeF z8)rVcd%CQVf^MLq-MZJbye6TC$!KUihz(I-gH;$U&wG3dW8VuT7?)xF?_x9H@gHqj zY@R}#s}gA?$I|e~59T}Gdm-R1E)MM4A@ zO1e&JaiAg1X)pvbdWI1+3;O@Fr0JPy`gF7E@Qg)@-9!Z zOH+q51<>pgdL^@j&NGD0phR%=C|+V8DLPLTI=_eCh@_TY{Lvt%>ZAU>uMc!*8Jo6)227D#NW&D!V5@MKTD=JjZMA!%I@9`<8-q zsz^$AV(!|iVt>-062FO{9JfbuI3|btv6wwZ50}}ac$m`tcK2)*G0WzKwU=Q7?qV?< zLR`F7gwVwNgfQPmVLzv`>D^m85~FxVwIqxrK5GxgM4MO2Te1|W{G9$hnl>1#2pFXb zp!mG>FU03n5_W}*MYe_^Q>}>3uA4-?a<)uCFY%%&T%p=hqJ~gFeuF*Sqa?n_Fdbd5DsX!Z8$Wu(qt zPjt}=-2AEbs_a$4dqv{GZ#DSUk;ySUqk_E*dr1MlpaMz5&CH(4J{QFK5)pL*iB*15 zG~ZXup2R*?h_jzUyj|R$!VU`JcM_2bLD=8gOKYKIpF-TN5-C;NQOX|9=d4Z&<|B{V zLfP+veMe$zoh#V0wDz?qnrCD;6~05|lMQ+V*sHMkeY)q%@AG;-KNM@c(EiuslVg&_ zh|vC>H+!gX{_=7thM<;G z3@M4)s*OV-6wu!eL@O<(j2@sLS4LZdvVXr3#X1z|sZZw*Q3z?bO4|ZsKxtLr2`DtA zFnmt3J6U;6=sK)`?;mIH#j!RHXKZawt_Hhc6*dhs4Jj}dslf#Fb_2=#^@1y6quV%) z2XO(NC!px8SLb1WC0Ef$nC2?HSp|9#ol)QkCsguN;!sz=7qtC?MnelluivVorzm?B z+Aftw$=*xx_B3`^&~6JF4agRrNG{Ja;wp;l#HAqZDv}iZI?-O2RoJilJ9fWr!?%;L z$-3-*qtT-GD=$f<@Oq<)WqCkFdob%DKy3wx#*Av$hgturh=|lmL1wB*QY)r1qUJb3 zdqdE4FI2Iov(XA@gefSC_pA!gR|52<0EIMwJIQ2|?QAfKh_N_I@49WkY4@pCCq@QI-PqbL~mAXy|$4;18mQ)Fizm1?ifQohrDTJ1aC zrxd}ocb*?s5qk{+F_>BTJEMn_zf(L+QQ>i=NPpfr&0c}^7T6vFi*^w?_vl-Rde5z! zg3MNtl+O(QvLa4)wpP>=CN@oQ-#4h6$S2;nMY72XcY+C58+uz_4=wm+(6qH_0+!X& z?e7FvMLj!OrvTS@ffUIQA}DeVLa5Lp8DbFqomrqqvYPXySxY)j{_%Gd$#QeCzW&j7 z#u)bZcUlb7N9%d;LTf00p^^P77Ii?!<72}A`JIkm7w1{DA&r_@TJw#+-4Lg|1tqwb z7PdTKl$HUk@5~70)5l6yN)o%yUg7(#HyVDH=Llpk9pH(TZM`@`$t&!I1IAJ@(980! znP1r4UeEHWmoZx~Mz*o{^bVAP~yxdq8 z`MuFVVc(m-(&@h{rRd{It-0l{Fm_A98rKp+?_Mz-Uh53PCN(`#gOMkChf;;-!li5xI`c{DSnWp$kNbWCGj^U5{ zp$*=ma5s9nq$@%P>Du&w9*Ne>L)5xj4{Ms;hp~9?#CUL!LLMdx_Qzw((*1+RICSrz zCvzh|H_L&aWBD~^)k9C&L)04p;IAC}`z-p9(Kiu?Jb{dY4;{}p@CAE1j$P3xJp00! zAd81m@kRS=)?A@9Ii!0y{g5Z9#isua%d62Fl_Id0J1(~ZNse*no)ZPlWGk8EpJfQx=>JK(;HIiLDp-v^us@4c$b{SO!9DoE{t?@%KsG%E zGHV)=9=i^?;ekM>>Fl}!x$+c<^&@+I7JWo-qau#D9rg9c_8Bbnh|y8OM?5yB=!|$s z(K!@xQAyIM)UA>(F{MFB4t#>hM33F9=tvU4s5SS|?mS()wLL5~CZ z_g9PI8$Q(*aVXqEFPDsr7a*g)i5Jm~3>(qkJ%QFnF&b92$s15YzIE2uj|p?1coK!x z!Ql<9B2mBit+S$~I!|kg2Zoczs{GHld82`dy}9-jT=E4#rlq6yGqD8)oN!#KWewvY zWvVCg0gW6HmUi0bS<)nQYavHF0;}c!Ja(c^*SXK_RV?r7;J1xnIuNl@|LO@mKBsy~ ze&P!(yM5D0A7f4@58qf|ua28%NbQwIIvpFibJHkom76WlvfK#HGY8Z7@qVcd@-HuBI`V;gx zHCFRlNA+r60|a?mu4r?MARe|H*N+VrY}^~>VSjAJx`(~XkwXqph0yTd|5@(dmqoodoL2mFJvUW_pH$TwsQtg<=`2kJrKJ$B$v~x z-`S2=&lbE+MxOWeM|_wP%7gphwEgx*d>eB-mHpp$!nYFye!LNnD1t?yvr~fj#kC;6 zWh9R^Cu19MH-2xoJ(8^v2rd7#z_8m z3|4on--o>Glo5Ku97=nVsxf3TOqIiLnr-}?_$ ziyeVYw+k}XCi~cwR882GQk-XPN%7;ij@TnCn~d}g=5*Yc(v1iFQ!9eEe}oBu8$!f& zg9z@e$`BOF6ZRnV)cyw<#ucNWU(5wjs7O4HP!Vxb59FaIr9ht18fC5NWrPZPk%aKn zK>pL82*AN7jUheYq!Q8zo^}%O<^ta2Kj58@qy+HOJCI4HEAaX%oXTFSQz(1G1$?Ls zr}`KBqrEhHS)skC(kNCmJB?WJg`nliG>Q`iZ>JXL<lKU0u%R3!PZ`A-<#KO~R` zWTfP}v-U(*pdj~{Ahp|wvd$r3-V?|o8R-p{HD}!_$-kY1zG;Ma=r~^Iyd`to1+@_ytH4I7Fj`4B>xw-YYd=V-6*4UQJQ_%3ZHavRReO21 zOd&2&i4?k4Tth~EMkk(jd-5ZI4yv0NUrJ6*WX1je9u(GBt-;SyT(n7b#E0SHW@_dOQPuw zPEJaTiW39Q2p11AKvg@blG%KTo1rfLk#VsL(7ezG-)8FD3QwbN$ zCCn(oXh`UfdTSrd2Yu?}Wh~?Di~ASoslm5?+EX9jqQLayr+>FcvnGOjhC&0jQ?k)z0fJG1y7 z_u%Wn3|wdPJnrH)(|M*DuQTs9yiRGKql69!c7c(N&{l?JS?E`im2Z1AQ{!BZJ;^Do-uxYK$>i8(FB zdMyv++4F9N@)HZ{1oIJjXhO=IHir4A(@L19_}AkJ@}c&E+eYFd0Jdb$DV!E62ZLpU z*;@iJRzh&PHYbibQrRd4^tuY7&PtzRxRrZ_pe>VW)Ky#h4x({Jadg#|D9D8>64~Ss zc1qAr$TW8nS%)1}K!;60{*IT~V*z?3gD7nY`>1AdKIvoVc47^h*}oO!pDL34+CRWi zhSfNu`?cyB$*)LYny^Y|jE+n?qdHPMu(nSS?k?{oK+nsdU%H}JRtR>~XI&LqmP(`k z%nPL)<=9j~drzj37xJgnEWulbIHK7k1^KQQN#jfyexV^l4Cv6`7&M~4gOBP%h{qdC zqfT@aeBl{{S^F^l-g;}gv}5IeIQT@&IH zMP<0DsOS(XTF-b!Z^#)TQI0B>c)oEHswMSgiZ;4?GP8Tywd1FPcvdF|cFI3_Hi>t( z)Gf(hUDY)ZNATa>sMh4t+S5!X385S&rL-d%gP9&77`UWgQ;V*N;W($RtR@0iEDop} z&FjS>7PU4N(NYzmU31#9tfQjkZArwNMiC=dxctkWhbWOF z0v5sdegSvq1lEh@CnM^`^BuVH79-m9B}4NwMthpcMxOQ53>xy8QMF!_m@i!|30i3o zB-N10^^*BcT+fREZZkP~iX19Y=c_p4F~IG8mD5HE+C{xft2$btD421ND_r-|0QYS* z#m?y|)-ycqC_GE{p#`G1rlMvST&q`$UwN-sN!~u#5y)RTgaBYL(L;|2_W(6DTvzVZ zjTUE?)fOUZN+RgQy@i=g5IiQ-ugJT<%fc}evj4a>OA2vSaN?63;%NS_WG#g5J_6ZO zLSj`z5GQ0o=LS`IUUCB*beRg1cPFki71Blfl|Gth>C8tJ>i76i;lb{-6!xK@e<0DZ zpiR(gr#YUpOffPinlj0YQ|dU<*cQRuC^4}y#j9}xe)ULw96R`&GY|*$XqJ#P{^sfQ z-F1;rTod%m5}itUUOh)^%g;vKc~cxMq4=Y|Bb|ku*IVGA^Lh(Rr2@-OyxLaeMF9JfcwW>5E#T{loL7auBYE~=RCk0GicvVV)DxqAETeCF zpv~}kf8hv%&Dd_LT^BW}hI_|D{&|`blKh5~mM-DONGy<{-hb5$M*{mv==r126ThcM zt}@TtbvuH`wSbBz6%~&OQye+(2}M-6DpYj&@k;3p%km}}j$noxh^d$TM26Gxex+JE z+OU5V?gKB^U4Mx?FS22{sK2R#nQ}od4WuyL%#1Xu6ra-;!dth3*3~W;3qs`!zBL$D z=*?TVc9dql1+<3@MN?m!=bymv3{5n3Q+U}I^mMP&1&Hjn3wBX~ol{|?-r~;4^h#aSy&ZT_@(kT^fZ35!yl65!b8=k65`0z`-rfJA z(LKd4D&{2kx@^3ABLQz9!|CPMS7{W$zv=>y*Hw^dDw3SOp=qN)e!eS;=n%mjEOW{8 zg&#Ha=i9qM)ji4T@O%&t z&1r=H^n||q1$?g;9>K{D39}pGjLe?Ucb5X+uEJr55$v|0xnvsNz8$kGj2kKgr#tuN zwfaJ2ERGc(V$bAV{&MFwsjZ!H+E{lfp0KoGvOXact$%K4vm>;pnM|rh==~07ZGYBt zfmRZfDtq23M`a#1z>#1P@(jG@3Xgo#bRfdr8v;7o2&K>*`vS;UziC*C-@K2DqDSao zGT?_Rc+{uS>`OsjY9xof;OLA?LCG=()E5d0Z{C}~`Jy9|ofN!dMjpL>&dVqj3CnL4 z=Y0nwsW@VaKcwKP=J&nYs1y%8h>^vAgp3CU8SW5JiNC)5mY5s5Zz|%RBElUHg7}gl zjwn{`7d3yXOfF0>$0xsn5S;vrF&-rRqQnEzfBjHIt{#HhP2!T;BZfIzuxtg^ zNrh4Jx%X8^RrbDsP4>d5#&nR2qB|hqsEt5|vV-u@(yftg&v4(*>c#NYo zP9nwUa^h#v9*Bu&xw?*VyviC}(yMD-3F?gj6#UD*fi7v95n9U}>h?|`-?gc6D6jpX zaR49irUOe%grGr^AZRZ_Z0JgKW^13t9Pt37puXmU!p9*H&K1yEzEC7UZ#&vqW*AW) znWLy6Y@LV;jqW5h3FNcJBVg|pWNZ-kHMYB0RLZraN7D?D1xIrD8hop{99kw-eIfcl zOWt+FF_#cwH;Bj;{jpMf+*)1${T7f53iKPOHXyAVnH>% z(ju<}?(V&IvV396%r$3H>0dI>5y>x~Z{o+d4|RlMl{L|^%1?MBj=w(NQA_)VKkxJr zngOi3H1Pyh%0JZ;uYL@*AL!uw9&m)VK{1G!cte@(~Niw zD-6KF)g;sat)V^jNh{r9vkDs|cmoVPZ^VRCagxR&6#KrW^j<1m+t`P6B9M>R*i5W6 znI+`R@RcLls(;sFGII6_bTep?$w#JwrYeFGmpaC>U4p#bmmI;7Zlc#ZAw8JCo`;dd zt)@_%eQK}`1c6jb!wW+T-e6Gjh5)8Qs|+ z{^Kg7uOkF>xDhJ#YZs(f;ssx0z1vVz884HJfKC?zpLyejVQ-h>SywP!h(Q=i&91LT zuD?h~`NAlLa{cV32rU`Q&=zX*SC(8;DW8!PpH7t4IV<`GowFkXe@Ma`QnQn5k(wPa zB^M}UTFw6ZI`qo#3-UdQOtGD=B-*{+kzpw^h2B!2#H`K3tl7oeB#} zxGr@b;LbEYd&8}g{7F7K{c+cg{e~EnN^PSY+6S6Qz_1UE(_yg6XHdzzYPp|~(_5A^ z#|~ZkZ+6sXJroh$uyjlw3#RftdJD?;G=X|wM!}8Md3-)njDcIB@??cKL8v?)DVh7S za&1xMd)rVtHUp^*`$)w3VQ6;&PpMz^${xt?4s<7wkH?@lg!PuC zbp40#aztT25I$Ej$l`qNSa(}58HVOSXYEF$Y9#OtBs{`MWj=CwMsfc79!Ct;xSNsF z%*nL8alu|FK17fQOJrR27sMwXg*}#RMB$sT5Ako1DSp6H@D_M9uK)#Lp1{wQ@I}R8 zm&xB~<0bbpqWJjzu*)n{{0wtEjp;7>4uc%~1sXPVm`%6zP=l+1P z_2}P>RX*Z3y~<0)gi7JA!hHQjF8?MsGRo07e)t7>{RHk774#V%OQM>mZ!g~Kj3i1mTNfrD23G@a} z3gj^vNfBtow;6%_os+m;@`!>w^c1AE5XgT7@__-_n%!4G_f(MA71eI&uBd#&>s&s4 z71oI+-!S?#0SO4*>*I}yUN7_zpl&kg{h#3NYz5Rw1<{EhU!QeUWbX^mWEn*BfmA~J zp2`U4uk{*Il4reyVcQ7`e7p)rnwiZHo_ADc`2xO9f_qcUybHJ(d5uC`r4qg6<&q#? zl!$!!&v@^13h0aqqSa8xenD0n$h&-ioXX!SIl>zwvM05O;@Q6x^XLCw!IGKcR-e7(v3$qUK*!dVv2-Zko-2;_EKT9mQaMywqOM`J$6y^cNQSvbO>i00ErhVpZ3xBp zuOOxlP}qIFY{~=BXuIVmqutgpov- zb>CN5WiWZh%_zKji#ulo%2ZMAU|o${#H1Ds+>Xot`V$;O|N=YZMw%vmyy%a=nPv?9EX}| zmupqB8U37O)BP-IMZKsCE{sq163FLes)Jg_@{>1Fe!42$EEBG_L)~`E z(Tq(M-1lT|&O@YQ$8S5@vPlZI!cgJRS5zn-}miUY$?1GA#gz;ZXr_e2ls_(~3{((g!!Mw`? zBtB2px+i4=?8Zr1Kb|%p$NA0ace9*U?r0@vzds$7wCk7_pzzTtzcuW-(*TM<0Ey!H z7oV%a`{U|#R@H9wStT^Q2%MHAK5_>NpCA6zig__GG*v%&AYC(;@wcNqPG==8r$4+| zkquK69HJ>$fzMeJKox@yNXUKQsA-ukDfo#{(D~?Q1c$4-v5ytKrs;aI_c2Z>l3c3m z1&O5R*K}MXzgr0Gn^B51o5q!JMp}j$aYH;fs!T&f`57$Ak8QTT4vW@D74vr{@{(U8 zd8cu`f;l)Qd#(0+c@@@bhi`nOyo}Qu>+^7aC}0Jm~N(PkUL{5WctYuOPl5&>6xW3mK0j8L7>kF}asor}Bcf z0RL?S|7i~15$sH1HJrMqtMc$o?zVySrj_P1OF27QD(N2?Mlq7Kr#{-!8XsE-puGh2 zc_S2O5BIioHRWOJwSh;qDLUL)olOc>d&%)``5j9|qSanc}el+kmI$ zsClHbBHJYJ8;tlTkj5 zc+sG?wfJY{(GwV~KnJ1!r6tJ&Tyh=A;)6%FP4?;Hb3vac(I-}L_F;1s<}8&-i?OWn z&UE&@;Ov(;G&tS3xf6ZMx7ya^p@~p+uY%pBVrfviR+6(SyDPA_B`lq|`Z&qinz>VZO%%RxGz1789N1CO0{Scdq1&!88{>mghO6wFhGEO0q2K zYc_wYGD2_%o!i#P)vg65LtJg!Hj-aC)HaaMY0|bNUwaM%cdd+KGR?(MHU8kowh5)= z*{gB7$TtikF}^ND&Z*|Cg;RnIuQI}1hTHN`vbr0ukmM^XC49DFG_(U0MVtmvu?x7|l zcTbwLj0G1{Xxw^UuDeaHi%S#Ckg2{%_sAnHo!<8>khq{iL%tv(-_S;w>N*?X>I4r` z>Sy%3<%vcVLCA><>N%?-6(iOsUKVn&C|-M9yLz-L((`o4^9`{MxT*UCZD024i>Wh39X#Lsv1neV~4TLb=<<*j)Oy9!4W? zdyGJ}aA-4>sg63jorFfA>dIOxn3gIA=Wfl!nr~9>O^JY`IH}&I@b$&pW5f~*ZP^$F zI8q1V#)oAOP(HOwpBQZ5w(As;MpK^K+~TT&9nmCdgI5w&w(P&#<9M|V?W4WRdf8e< z+G?S`R0FWWD~o^B%2^&;po#p8m(0U1BKGuu&l$iAue6EhV_Rcn>4HK%t5WGyvw3aM zWeUEdXHx;Z%N&0wu8TZ z(#e+cqjUvdk} zZBrinBU^)<1ygIz(iZdKGwrM!zO|R$oA#c+{A`ilUr*^Pk~K?hZee!0mr=7wb6Ndj z!{BDhtef>fX8nATUckEY{g2Tx!|x+F0vS$qwZo_dS36YT89mXgW%2!g`{V!}HGU>G z0BK^V=HaxYyV3Z6?Xoy*51{9?V`N%gX?P**pBq)#JfUt5Zg=2?_aV-p>?~5&yH|uJ zkf!x<#ln)4hDj`!jL3^dBt?Qv1Dxeq*j?SE=*0%u+i+dO7HGPlVMSj1 z;q4Iq^+2c@$ghRi<+RFQ`+;6nEe2f=Y`AMh@<@^`#ivzvE4v5X2^ z%&X1>t>YVpS4rZ_qTFoklnmzITM>tb> zUX-j_$7mDP=uOLva;9m0T#d9^BIRGkR!)?t7T9%%_g5OK<)+HfTzc~{$av7X)sSZ; zB+jO34iB5r3QcKP#evJW-f$)}zk7P`wAei{+^abnCt5`3Hp`0P4c|l;?U{R&21yS7 z*Az-`-Qz7MuJsep+A<1g-cP4XZEAHaAk+G)lCP;ME$w0r z;P1TcjAA*0-(TkMdmqO~kl%Mq$qMD&$3yi#3cRNZC%s3%gEo7n;7*sh-jX@Ku#*_{ z`%vM2pmND&<0d$9!=K=OD|6wr7@j>5P5Tywwo#>#mhVjh%_eBS$uw+*ZpN-DpvzAI z&6tAGpQt}{--rJp`5s4lMDy&6SwXqQv!i*|rB43(IA_Qo#$-6?55-TUG2L08eW!r-sUT`OH_t%J`KJK=E`#=d ziSn{^M0N;wIIxW4j)J_YB55M@#Heh4zGJ2{k|q7AJ3RhR$>9_)-}@snw9_4 z=;v~On)`X}Y&a!LAUn!P6vh}HR_snB=W|dC+bPJ_PeE>-i&X4gfqYv=(%}nzi`}Wg z*H`K6k9-%?MQVSOuYhuNlFp z+v%3ernsLK9ND<|3M6Uaf9V-^2v5Y}?o#Q%v8p0dD}2<+k6-ECxitTK1yl~wziIGe zN$shRA1Og7yAlaPGa;j~QHGWz@Y;TNFlzZ>mk92+3Z`yoim&IvQ%4R-Cw1hGQ<_K} zxnh^3Oa`l(_>@QDVOT%j& z*J5<~n7|(~;tLxAUw$33v_q!Q0}7PF%fx&q_ExV)58{C!-#3!4KG4Q>h2nUR4M?w% zA85tF;AC|0G$%`nyJb|wvFE3Hqg*EQw7%|gL}u~Q!vgLk^06D?;{^Rn26~+K)Q3*R zbnlYle*E)I2xQ%K5!pr&SkH!;#!X#4S0(q_Hy87`6n<1x@shswT95Vl+Eg0LI ztc#dn6hYP>z7^IVZ_0ej!=&#@Cd%#?xzQs?x zDGqwrtzjBUY4Q%@VklI5u1_(2=BJNX(1F&@ce|Dn2QoM%;>c3&u?rjhQYz}d{jC*s zvD9D}AH37KnLYD>mKtcWWx9LR;hH3}Ng2=CEcJP(-6+^~c$eXB_49C*k$zEC>I37f zRtm_z*RGIH7tZfmPN>~oBW1EK4|rk{&TOHjusM63wOQu}#w?=+AZCofrainrD%g`M zmbBe@5J_i=hkBC6@ULc6tnv%uZY~Bj4k2%Sq9FfKkyJ4*{eZYsM<7!Ll9nN^JB*^3 z^3dp~Y7Z4lxjDnk>#a!W;gvx34JCs{ zVcWux;#}x_^xUAeM6Rukz7aXB zSN9OU=MaKHOH+J?Ii42vlsM??s7zbBYe@{)gI^zn*NHFl8o8Epr3X7k)C8!s3wvO3nl`{tiHo!_D4z) z>%wi9pmx|lx|K`uyYt;46*T>rsoj?`$b&WQ+9!tQ(qDTj_NNv9$5YT~!eeWAj})G9 z)fvp13VI_0ozqguUEz1qdChBRDzUKLL`Ge685C(cTu0FxCh$XycnZ96zd9RZsMCy$ ztu>aLQ9p+`#Y~1`~g~k1^G`rh+io`BXtI2lb5Q zYppQT_d?o!qcnSO{y{pNjv=j;`okLB`aSk9)NR9Kn3I_8xiG?iH!q zh_YiQ1FNEB8B{V+o+!h>;#`zA%78C7)(fZS&IMNcU%hbVWVj1wP2OUO&s0Wr48+OX zOK5)Y+)ZZ{UV5>82FEWW_`+Mxp4__Fp3Ts6Is+B6DXd+kPrm8K$=8%0pdH1-~vxC=tWS)&NrSc|u4%qRVUaCh1i zTu5Nn`d@us5OyX1RM8%b%x%ig`s58Q_$|w?t##X~f=et7#s25CRd{N+6eHrXuamS@ zww6X3AQKfAzi7jOpdHg$XguY?)ywi%`eD1y`Cm=K1Q+<_cV6*Kv3Peo%}{E5dCv_A2rVy-mS zR6rYPUldTcE4pc3Hi6dlh3bJp*x`oP4uhNNi_)}m$KHLS$AqFxhp;&=J|We78>}~< zXk|{H$14fnAW3Jul2%vH z?Lv~Y^1&)S!w2nlw&vsGu@XKBhhq7}%J^q^cs*S?Z((So9UzA}<>z?ze)tW)gjv^P zCW>rx^@Vqh9S3Y6xjlOkOyY?**Ak)T*biJ7E|@Z#iA|0MBhQLYHfLL>BZ1&W}V%?q2f z^5;hm_7CShEv`^@Lg0@|c$%mpoeQtriqDN3D9(91Y!q=&5kaAUNEufZ_DF#LmcVqx zup3;8XHV`|MmO`HM)L0pnIiuClY@ujS1hgDjr%MQ^_)4$Evl)^(gFbi_}!D|E1K`BD5GEZMJ}i4g^Q_02LCXDZXHm*Xe<53IniB)B42zJgt+VyQMfNrbl8 zs;61>s*Fu-fsw=$Nv@Xck^;M^!syj;x?6P?#`LOHiZA;KRf}HTU0_=w&f=*_oW)ZS zXQdaXTF|mGYC%&0Z6rYlKGf@LMLu!NzzE){3TiX0K-Lehl+9csAhBI`9n&N4@mo}Z++>a*{Kp8F-} zfSRuUNOR42yZ(cBxR$F1yDNCNy*!-i9?Tb}x>_TxHDlU+nN)>P1+*%}M<1ow9m2zY z(_^%EeNOFSdW_D$twmZ4>uQT-uKEP(>c#loRyV~JWc1FvrmiR_7C(0_rk5&A_+Qt` z&pK-~2P=Z_dDc}QEAa4CK8v$mG2cpgt}fp8UBP(U$e^vYYwEe`;apV>Bn{<_(X_;o zs>M9Dk;Z{;)kiE?EqIvD_tgnU=QhI8sRk4d&o!XvCI4)Q0(e%SFqiL(qTNz~O<#=R zv)jB_f_MKNscfN8oCgT zw5OS@L2-|j$uujPyV5YOK-AZKsDm^X{6WZ!2gr=`U?uby>v{dSy!FQyxm58VL6PVqdP# z_qIlsQbGUFVBJ{lsp6^J_O52Ei=cM)p-xE#^{tGT>*~}Frqs3`DivUqE-I{LwRaGO zwPt%M!K91I=akSx%94)mVe^?9Mqctay@VE0M1uJ_uhZGJ8C@9dOM0!q=OpMu{TbDY zp`Ter45AG4o8ri2&kIp4=UFRSelkk=k)((p(ad}PdH*P$z*hRPhr%eBHFBGpgF+YT zq1pamMg?5zIwQjJhyJ-{Z7El|Tf$S#XwT@)CM9A-K&*&;fm#Ne$h(wuh=537YGeRT zuksi;(NFnVvmCXij}fv zQ0ytr=I82J6WK%oea8r;Q|?oHA(D?XLfngBh9F z!eCJMOLH=1TVM2b)nw-d^d}>fvd!1~xmsZVf&qHc97<hEWr~a9GQ&y>)9*0 z44bZcSe_VB|NJ)!gYq9gj^;5rm_MnbLsJdVRP8IJ`I6^``179!Al<}uLWXR(8h)Z> z!%`tYK<~m&4tL=U+OWF;Jfn#<6#ETG>wdC;Ij^~}KPK#MAdhc~bt%0Sb`O>9c3Uc1 z1|ohe6Wz{==c(@x#lT1}=uO+|rz!0BRW^mrAul6z?$FuWWHzOs8ADvH*k%Qmufp6$ z2<8hit>v(#o3#B^CgS~T@SM;R#rc3uL;d;Hm!NGy8=NqGRS|GW6+nB1)(&&kz}o#$ zF^)`Z0$mn|DoHCns8mpYbkeJ?3=2|e?IS}dMk*bLl4Rn!N@#RC^bJnY8(2<|IKBCRB+__;{){xv#{yGrSb&CY%HiGsZDe9nI<8w2_fHPNfRqH6!V?nPtHbuyiZ~84)C;R9@ntn#9LnzZ;jt#U_-k!^YSED6Lwj7 z^`G@u$2{z*hB#K*y_}uKV8Stwr!|Wqd{hHR8&0h9(_NTJKJ#iBo;R#tNqxj2h>vRI z(;}ASE$X9yU~aduLoDaVmUGRdJH*?*QKXv`otpM6J5cxRz`HjqV#NY}D;Gg*Byx{A z(F)eKQ(bXvv`}q?t{Q%ctD?2lVx^{`=P}%<&`?r{y^K}zVjRHop=%UdDkzI23Kimo z<6Nb3&kRr2^UW`exLgHC)w}Uh48;!r*cHW&2{0~;)+|Tr!E%{cxneNY0S}7mGG3Ny zK^wAy-nCf$&^u_(f`W8gjSN9?roLZEe(F~rgOv#KtqC=QbT?M#gW4gxnNtFHJJD*6 zz8yzI^TK`8t6QpQAIUjQMS|+PFA}x?Z$e|tXmRguglEwk|JBi)&-+x@47<~Nvf)Cr zJnkM<9%|I=WzvkQLqEQJuInpYZ{}sctg~O#*)771Lz7#CfUs~3O>Q)@*9UouiMKkO z6|auVGqhKyo^C-Ddb)J73En@3XB_HNmKU_3uAspP$4Q26g#YoYZH)D!Sg>x`XZYMs zK6HJxfkxjqb7Z7GQ2DRX#F*iR-`sSVRn!zLebY?*jc$fMktM zoS*98^wsd0tXHsa zm6VZ;q z!7EdBNhe$A)g`?YPL^>Wph4Y^#oGr3;8X)^751+%;GS@VMXEjU0<0(vQv9V$_#>FN zXmOJQA~BY9UKPQYEO+@~^J7|XccTeT1b@8TRl!o8kLu&&jdGeO`XmsJcAf0o!dgLeH&nHPvpG_0?;G!kK&2RiAI&F)Gz(n>H>p z@zwFewXWvqQyOqTDmXIQ@^!8l%OfMA%z9S>4yiC8{`4SxN=1d*^KfF-AXHsSHOX<) zHlX}%8-##hn8Pd^!o$ls7v*B17vH_WaK9I z;=Awp-B)}H@qVZ*=6lFw>r0KU!uM@=`7x{a#}Pb!2TIqk^kbvtgqDfv1KOh$+L5j=6XE1p%;5wzRs*6R+j z+sP>Z_R=&zK5_hL_Z=tL=HgXl-X2#n!#+Jj9@p+Es#KpiI!(97Xqi%JpQ|Ywp-_f< zDdZ?vm!cQeRlw|e^co+gCr0F~I}1nSRE<#Nnrj4pUxe@#TczMvgnFE{F%qtx_#K9) zj(C3ITG1KcI@#F(SebyLwwvjffNlK_z$h zu!$*p40_&|6UBczf}sR#S@l&V%flgG!MIeZmWAqlg8eh}bRB_dlm%mDp11qt6U6Q5 zM3V-eJ`D5thSX_ae_U-o@b{a3*xcsx+ip)&LE8!qA(gS;KJN_>8NL_V0)@uGXA@ht9Z~ z;e-efzv>k4nhH;oN!=GgbK4i+tl}bR!NLk>7ccR9aEoD6)J& zuG1q+^E{~+dppS5la-3lBVYCkcLNZ}=YHnEP^RzF0{;k4;Z2;2>KH#`W*sWLEX7NR z;Em?oY;LLMB~Tnb`l&k(Cr9`e-MBgLG!ZRPmW*k7&D9o@P##6364OpR)mGXVaW7nV zb!4MuP|05rHAa|%aKbdbrx~chZ>~mcz6?708^(=3H3iM~1-X+0N>`jW5N)^1ph;Hv zZmSn01&B>v8&iPj)O~{cp1$)k;x8Kt$xmK{WSt)+T}~Q|{o0G4#ZmZUk7U{;hpQTr z9Wz`1=}V(x1tlp6!uIqx3I-K393BjF(kiFuBl;i{9sg8e^P-Y`c&9so{2!Mqm^F{o z%UjMx_hP3ed`g~L-qItbnTGYe(k)j$uG-eV>0Qi%?~v&F?&l%A*FVy%M)gwGKI}sw zu>QYTHuHh0tSLA|PR?+0EH`VhmEPZBa>0JH9ws0?ib@vG6Hm2bv^dgGyno01{Sg_I z_dAAD51E1v{0C_LJy#C9DT9W)ZVtiudS)8oJWDdDK_kis*8YinAT&z%!Ts93Nd_O7V0V?hP=P?};z!Ol}uRA4Mvum&4wVok6lCdRI5nixxp z{oS3WnZ)+{?B2b72l)N*#~bFeJF~O1v+Zv04lXH2!GAw%he^2HA-xR@Rl~(4j_QhR zfn9hmH8(SAyZiE4Fy>>S%@ExUD;DYEg3owoLtt?pk;)@}K5t^)*{K9=s?nv>S$iGFJg9p8DB`q=_TAoh-ZVkelycT>?JTfZlD2t3rl?pe<^*^jl z%^i)3M*eASWeRz(qPG8!qV=V$W6cwciUyXpM&SVF`z#t=SdlGOBg$Cg&C85B8ah}z zv2nmwD?@}XsPvu)-D4E)@GmxoJMF@TXvi@bu%(Dg>=Am=sBL*yYfaPn_i8)$|7f#E zs%+H8$ML7{)%NKB(bi|z!di6D)mnxQow04Fc=MNavo@hW8OD|ZhMMA9>}9OkidNDP z^36RBVYH&G)d$bXLdLjCYb2Ctfn7-pbOaOU5uGg1DfaG@GUR#aNkbm%UNgjkyCpsK zz?OEVUef$owu?E_c}a#=jrT0vs#OMCo0+rha^-2)U~6mBx}p}QYZk8b6yc2#R5G71 zN+wpcw#6Z`B6a(ym?U4+Zm5KganFtikjdAusFjy+5FdlGt64jm$Lo@1O_%5{yaS`#@eYhLIS5g$1A96f#Q<%8LsIUQh@bdx-}G^SQ1(c9eS9-%)wO(_v*wAD_c{CzaEsqx37z6 z9NF616;GVLPvhMGN8`L;Yh%o%MU<6lV{Ji~p6as>d(_6~*^}O8gE_b=mWWxih+JM< z3^eE7YsA_A$B2L0tm>~f=+mMq7qqvAoABiDdm8k&!YXa64L<&T5@Ky=cB`t*fM_$^ z6YpScZg#F(v|~F|6^+IPXZKiJK@ZPHM)3`y)*9vp#l-7!q@&572E2OWTdE#=4I9_P z7uI1$4Qyd;#+zM=T+!@RRoo=xQFE^o=8rg|U|eT(kEz83C9P=lL?~eQ%6n0{KXALM zm?idg&sL*WwlX(o7t^}IZVs=*Od)=@x`?Q$g3EiBdx;Y#EhdK5QuwvB8 zmiT5oIaS0vkBgXdv8OfAT(+8_T?h5Ty4HmTyw!U=-(kG_SKndKNB=#sKY4+Vv%KF& zN^iV}zP(ZH*gn=8I8!3j8v1#wYNExsiyAy!S5FU_QAQOf`(nR3!mh&5$%pDF#v&7* zI*0A{4K>vBF^M;%{l3@0{&-J)no<9?{?-6mXnJbAl(*ENxQGJ7(lF1c2D_o^?=>>F zkS;h*zc1>*oybN5K89l0y0KhflRP!HtVSNW<@BiFhlEI^LwZff{ zuMW$5Ypo19yiKsYwGFLtcxqhwxN?Bsw>3L?7al234zad0w=inxITT9*ytKBkjwbKd z!Ip~VMvp0en6;jHq_?(O9Omsp$^T`wqvu&zEe`Y6R*T%crNgbgab={4@_~hw+Xg7E z{O_ksc@_G8gw@@=LMy?X>P;<2T6;6fuQPJpKaR8xGA-e%3@%&fT{sBuhr{9{#tP3F zW$l4GdPQu?v)hC#-Yijj%i}@{^LpBe`LU3ho$=~fW@g_pF!Pb_h~MCd^mEk5HjNvt z9X{4N5^scIiVfD@En@BZ2Q-|{MBu7>If|(Kv^(*dRv(9*C2qx3e5zgfG;|nraE`JL zgY!xFUvwC}Y39AAZ^X+cndu%AtnN6)jbb#d+O_OZABvlRl`g2=)zu=cBe2941{iA4 z#;35qgU_rVti(}Lm+=wV8F~>UHbla}MU^YHF$UV!<{;r7G&~7u^ zb_fh+H>E~N)^;V`s%r-`N=tp-I+UQ;mCqWRE8?WbrNSf`d8D5`Sf9c(+~UD1oKe$&~DQieK~A>|z=ktlh21U=>>qqfycFc0OwSKEQY+W4}d4;B?{NQ2)vk6vZ#v$oP$u$C%ocEn?+ zi^;28>o$cxT>V0Kr&65;rdkJ>LG5mNooXGpd`jzU=)3_#@fMrvY6+7sD&3B5) z|0v{bgBq8worxGI>8CXiDqfzhXIh8iRf0cvE40*jW3M-tyPbuhyOvQdim+oq#UN)G zv3wZN$z0V>)R>FUS#KR-#y4a5$rN5};|pXa&_Yus?D;< z>S|6js26L=&%1f*z9x&lnC#AKYf`X8uE0`R@EP{Y2k$uF^2A z$bKRuxic;)+4|*-^3-u4hF^Xi2MWs5{_WN-X7`#!d!Q>vuuiHeT8STQySf8aXi-$j zlsv47n-x>i#IB@Jgq?nCZDtx)REgVe?8gTeQ!)@AHnMfEbR3EMZ@1MC&-oOoM&cff z=ZVFH6Lbq=?bXnN?L%C2-c(eHe=Y|0^~hTAxS}}|PgIojYhdtdrd=5iJy^z@3O>@t zK0HjNjeRUYv};@$?+nfN$v!N??iorAEp0p7^iwg@f3Vk^pNyI}dQY&v4t`r$MR|Jt z3UTqOn2LXNga5MEUNoZFuNED0!WCTBc6h?eFQWLYTun#W01q9-+R)rZ*TI_3)X}cP z;Ixohh1X<_f3?;zPtfHK{%UQAJ6!K8d$hf5T)$&E?8`CekKfY}K(%*gQz36SyK&+Fxs?XD6(U%w}9^z%w8QlinHh z!5usf5jkAn_cgU?t;HNe3?^21*xTIRUmIr2%*DC3Hkwj{Yg+jW*Kk8Z3b4ctx672H z3kB9-^YCJVLpahAFKt|~>8bG|9Zu^8nv;zhCZEP#grs5`X8RWom#PTaDsR z&se*fvx|vu&oD`BVrswA z)N1wOYWO;O>N#uOk}v#i>*!FL-C~`sWnO3HGkiXWdXcXS6LH=5+c4?}$DnBlG`aE{nZE9<+>d_2W&Rfx; zM7>8FS~du;(ANi3K1VgXfH`WoU9KFRx_|+Gh+WtaYlC!@4F_Sh#k{~nBs+VT?b2M5 zQC;{YYY^?2QRvdyjKX?&%)&6vA zpuLvdIDWJL8@sT6v;VqX*ig$W2J0>ssihA);qtdp(W&d!K)g6r_}ZZ8`TwKHb;Rxu zsQTB4k}7qyMnj$O<&dwj;_;-M#l^>Be4>Y=%=rehaK}HG&U}NJvz<}V+m~2U2ESKP z%l9kdj{3%BPe<(*?HHrB^50wgn!?|!ZFpgAye;8=-j@5g19)5h`Ilj3UG)}L3#1ot z`fpsU%&_Y=G~=2&B3Q)?sE-9l?b7Aw)hpZ#`N*!q&<6Pi^A6N09I`mMQHng`_te$8 z>kmeixo?h*Vp_ughZa7$FEJ`O@GGXRg~b#k+ZFJTfiL*r28VJUP0vGU755wupYSELPCxbwv!>hXOnerk#Ipj~kin+>iM|F~MJS3-8&T%oVU9 z0Cz!5>(NEE!}v@I9|rIY;O0U*oze{GWG75uDblU4UyPzTqCWlYnH>cOGS(qvU|89%v8$3{%LMNZuA#s^RJnMpJhjt1ME1aW=b{;H@^ zUuZ^sR!{T?u7VxS!rR}9sNl!5o)uN``28wk|FVuYm#eRZ3%8)|-_{A{vh|DhNf(ZE zG#hNN56wYF1#Db~jJaHOB_&=S$6# zHO+=GFp3W4YFDp{j-o5<()u1EwU}K?bh{STFXmk1=y}knYVRBN{B$u@AKFzFA2n|n z74WU#RZW4RCYMA__~NB)?r)7~%S((|FATz&U&w9DO0mM9>4iToQja$t4?^@wr6L{| zWn(X#S)S&YAI$$=)kNa{W6nif{aTmKTQ z#a7Z>)a#AEeqcM(ffudVt?g4r4mFK`ullhD^-#yvN9pRv*Js_fJ>7JWy^`nQI$Lj( zw2+Z9(lkcgrFceMr4&ZWNs}3Ikk&C`l9n@4QaZqhrz9~_3SVXisUodlq^z`^k6cmtwR$`5Ks~fm0YUNryFV5+fC) zEJjL6hZrd#O=YCC6vap@=?EhZ(q=|XQX(U65;4+WT3sp`w2U-gOWeSSS+X$VAVo9c zC>1c`B^_g=v~-3Mvvigb2Pv148q!gX+sBAW`a~nKjJQjCwX_9{l$Pc&Qc~K=h)J4J zszfqlQyFWP;xu#*BM#CcMx3SNjFgtr7;%)=Gh&i58S#)-GGdmJG%{XG%VDIXw1bgS z(uZ2wel2afmX@KVodikl?IbN>Y#Aw1Bc~a0l6EoTC>>04aCjo^_tDx;p1tjHYCa@4L{ri4@%KatXS@^F>Csxa5Gl(bx=tYSau_=%KGQmCtZcq(%sOZKhp zP(t!!KmP2eE`B1pvshv%yH?$a{d8eJ-PlhL_S1{~^kF~!*iRVy8OVMD8Af`XaNVg$z2D#qtq)SUUYvYy`;w*)@6@|E! zg}Bv)xHW}17O%`~7Qg8{aKR<(Y)C?Bp2!B9bSbnD*QpTK+M?xT15mourV!Vz5XZuw z709|nI`0Q|?$;zOEtw5O>Cyw8)woB6IM!E~AnQBnywlh@)_d%n^(T$ff>hNxHptlG zwiuKw{Z$N;{wWT#~1{jJgRUC3KK*_pg&IU|}+=@dU#i0ttAjt=#s3%RFhj5xk z)hh}lL@rrEA{uT-uK&f6b#`R^YmQv8BZtOe^v@)RNMbFR)9mcs68_LHgr zu}D?%i&@P(fNFcmjmpl0GO%a)gt?H$ddYQA*JWPvAnfXHd&yn!-J2SfN+FLcte7ryd3 z6JFr3q=sC_kFD$=pNL^ILSpMXHr>7hC*AO6)4YW)*N_A7%!{ zpX^tWt@T*;cr0tB&S@kB(P5DDS6p>d`4yeS|eJDd)L`VZMCPzrIq}D`b z_EP6s$iDz5=3)LET2o8*>c$3S=_?hrA%alO}A)d?zA>?IiO%S%$1Yv7U5VqC?(UwYltqG2; zH9^=~6NIfbK{jcGtu?{1F&TudH9^=~6NIfbLD*UoWTr;uHr6OxYXW6!O%S%$1lh<* zVq%(En#TK|Zvf4#Bl{)$qHoR1NOPMMF>Op_d}74($+0n74%W>qeA8s%d!|&rWwP)c zlZ9`XEWB%3c+ax%j%DHf%EI?b7QR)o@ST!{FP1EPpJd_NBn#gqS(5oK$s#52!dQQ@ zNNk5>;Tt3i-yd0|e2%c)k%cc`EPQWdktT73?TjpZV`Sm`A`9OZS@^EV!Z$@0z9+Kq zEs+H~B9@=^8koZRi-m88EPOX);hUjUz8A9atxzi830e3?$inwQ7KwES3-1jUiEV-` zd=F%i*cQmbcR&`t0kZJex9~`}@Zh#cdw8Bj{P#E;T`YX(W8n)93*Yxx__oKwqt_y_ z)rCc3dmanl@>uwe$HGI?!ei1RvF(n9&xsZue-<8osXY2pdGMw3*t77^OXZQ5iolC5 zQ6iNGUMi2fRKCSY3qz3XN!8~gqPpG5IF#UPe@iVlRP5&eOr|X|ai2-t3U2qy53y?bq=1qXySuouj z$~^@`4dsr4xz|wcE12euxvej)Yhl!N=jSbl@HI{pe6rU!B6sd_p z!Ko&4Wj$Lw-Dx7X5KNUoIYcm{1Lfv|Ssy636U^;EIY=;`P30kinbuV9FPIBWkXSE#dGK@@y`*te`bc3d`&I1AbB*O>{O$ zu1{x{mo4Lzp|?&7QFGzx6uQ@3?xdHWLiK_SOni{sUZfl`GXDn2T|`Qk7NV_FXlVZ>h8)l$f(rHFzQ8sAbhRSKPKDSVSc99 z)!N7(2xdkbxodgN?K_#<-5SB#7ELH6SZ+f1M^tpCG5sq#i|k%)4T>hUH7NSLtsHDr z)U^q#c57PDMs7&4*DAV-=G#gA+Zigiv7OvT=)c`gg!WFV*Iw=}Qf9Ol-rq@|win%D zCzTBmoogpWgc!2z2{B~**O;wO2jS}#6x~4-x`K{(5WZePuA!oaD`;Y<(6)k3go-9# zLGB$zcR)5HbGoBEOs~QU^6exK7tH)lVq{uDawmDbNEzB$9x9k4o#p;|7sBGJgw%Wl z+5*}Y<^7f= zK7rSU$W19M_)!a6e>g?1J>+=Zv{SUWhde_trk?Ul!6f&TX9?zQPdPy_GkeL?1oOhk zME91bij;f3>Ip-&JKcoaTBUG(<{o2k6eMo+xXGuq(^C@qN`|l zUpYe8x{A*B73Hm>7X9QYBIUz=!r)cp*I!N)DVzHnWXgrfF(PGYm~hN0dW#g@;8o0_ z=QqHJahu3v1PmT~rK&&O^{VBlk3l>~!Y1VSaGQzl#mRy6{BkwCtF^pOX`#OVKoN|q z=+r=YvPfw>NOY70>N`jtr>7*)(Lut#1Pb^-Se`&zKM;+OKvf1CvaK2{#|j0dh6q0- z(7YjXtX?O!%9Gp=!s5MolsrOiMu9`+hC*!oPM>IE zuf=q5q&!w=s}ycfof0lbiWIAn88*tG;M6GL^K7~^N*=7sWK-~H5n^DA9B=6g5!{nlW@~qNq*`HJ&7o)?L9%__36^gcMZT zO!vEB3QY;}t46DXYC7pP=2^OwMwTu3(E{_UGGI0T=Tqg$@*rIu+t5fp4oEyvMOSxy zTTL(O@I_5G-Q;|_HCY&zPwgdPaz1@1iI~c#veEKb-49%CY&ob+!z+lU%6QLj)mn~1 z;rG$PvH27_MZ{P>?U^F_Og@#FDvuB{6Q{}}8|gJ*Mz^Q}?fdYfRWQA(s36;(Nj0mQ zDeOntlcrFuwzeqAqaHDGq+WHN?NSYhwf8fVUpO1JV&r;yfq7ItR+a>l9xG2V%4OGt zT$5U6dOiYjfi3-O*vpt0Cn7qJzKIi^CXYhnMeoj|{CGo(Pl9kl9xYA~{?4N(#+0yW za)jQ>-28whFk=aRG$%a9m36(957W(Q!v4e5W4f5=4$~LY#e{H}Iws0<^_m@KjvLh$ zI`EDuO7Fou5>>kqZQESkMJ%ljQ|JsaPadXIGvqnCmkv{hnTC{tnPNUUOf6=K;o>mu zn>Sbe4%56jVjP=9*>mLSx-FB) zYp$Fkm@RYVWWo3+$x8&2pCqpkOs9GBTEX0&XHYP1zPwPRJew~s6U^*n1LKe)FBK^n zDe?lrcrTC_3uey(LrRl{@?4Q}XrVk?FijU3Qa)NFC+SVkt~N*w;^4H!_|cmFZh~m~ zEE>F6tWdLP(_*po%%aDOO{FJG#ExbvHC-w;g;QzjQqe$Bl(tlCmZIqTQaM6$xoTv*R~ihBSZS!ju9XG_f2}mswEZfB zwiT~#dVq}^2{=X)|f02_D5)bmaypv zUCI(Ws3Uk*N$#!N#Ewo#6RN?cI^Ohdt6ZHt-ZjTZ4_t#P3B!)i7bLEI93jW`!pbAm zZ@nC#cc;yivR)LQNL$y7xh0XxY!JmK(#Q?s3Rfb1yg?qJ+rkcRNSo`!mXdf`^vBGW zc`a+}+7l^yqZok`>Bo&?vPz^5o5Uh1kv`mHDAzq(4B?5iAY07;iS#U6#91P>+bj$x z8o62QhKUYr7W-r($1QSa-Bx0@1`LC(4X)6D9Jv+UzZvYL+e)-^i`X|4z1|`Mim3lq zxu4#xxsGPB(6J2P5j(U}_NC`3tt->DS*=S8=M(+8)gaz|o58pZ+vGt;d+H`a*NH^d zj;*N1>eh}1E!}bqg6nfcUnF{%Bcht9#dhHqqNUqKk0ZLX-H@%}4$+=O3wDT}Ky<^H zQfH^=i$p0q4L-SLWCC{?R44B;*mh-?K|$T!hAPb7ZP0dOw}>dB273%C3-=h>@6H~% zpV40%H^5)RH__=0h_xDhgZ(JXKe%iKeJ#VAXYwXwd74d4cfzG%ej!eD_e0sXq$H9* z6hjJ8-&{GoTxMhmT=B)9O$&~;iPb8R*Ip5WaNJ(879&#j8mii3pBQ$CcI^`pP2{>? z9%!tCL8iBYHS6nmD0x6qA@il{d zgL~)Y8=~=Qz8oq#SfxXT8jL$6E)NnNJR}B0qL+sZcJ@AO$VP|7GJ`kt-CM9^_zxw? zvQv(gcRO_Ps^ogdNpBZkPW zepHM}t10BDShcLC`A5ZMu$n$QD!01=(7b_^ zWAZ?KX~ymaN!NXGC-ipBQu+eV*&nR7|FKZiaiP*epB)!ETJyX``v*C!&i*Q_d%1Zx&7FPlfNIY3!%MoM<`$ zMz2&ftJJqWP>aud+A6iam#9<$H7yV^RzM32g#H5hwLmNp3aHyDajma_sk}89I&Kc3 zYo8&m@Av3Yfx;U1aInQp0lA$P-MN4!o)(rC&=;rWA$kwtnjVjUrdcC}rYd68E}*0{ zqPO$BZ$~2Ugm8LsQm#QB&wA9?8?}G}&k8>m(5$m!1yVqtpB1fEK-E7J!B;@jJ~LGP z+-C-ZeLoj1P(ZUk7yHKodh)sOa{+ZaC&q*Vyw5})uRERFdVC&ieTrKi+E(E-ZVu{^ zbd0KeA%>Y_H2Dh=Jjdwt7h-X9jGVrdJL@WsF{jT?g^tR&T&$^-@t>~p3?+Oi_to>V zyZTZm+|8HfthVLtkDJDN-m~=JOHtxkYI|PP=qzQN7h~pGdUjs;=Pb4RN(`W9Y0X#i z0KKrYtgugT9#-mzo7|dVp18BE7nVzo7er&^(x3~X@8%L+kX!2wm`mSZ5M4Z%JTHpE zaw+&r9NFPcE&vWGLs_C4&Ob%VPPKOW~JA1Lo3RW6Ex5wW#T-Xwjpz^M;swj?#-8V)i>qUA~rk=w=;dHa}A#cJ?{- z{~DvjrLScV-K?YZ%h#gbM=9VNgO2&%$hCD#*m)DF!%OI}-z@%zvD%0nOBcQou8bwO zZ$&i3Qn-=X_pJz;So-5zF@eQW*YCvChS!T5nLFPJ17oSq_hQ(Hr8!3C>i5DIu~hA* z9Hv)4mYZGyCtKVr(bb!B%gi$$*!McI^!ZJ>mwsW5XWizBtUg|)^&a#B|LL{d%QT(v z!Ur?E;KEwiExD=g#J!YyON^^~>ESI={k_!U2QiiIrIkO3O75i}eh}9pxaJ3)QPQ+- zwt{e%ocen%dw3$pV_Qdb;7l5Whm*>s4VLDB?M>AyR|ld076 zuG~Z~K8}*_iaC1^ZMiFgVh{a(SBxZkDD<9;S1M`h_R#iwVldl7FYk#^-$T9b8&bC3 z7rGbGsrzDtUPKjt78O}U@jr_ZdJ%o~vlzP4+3qFY4selaNc<`)tFi>TVKV(Ykw zQht>O>26_1QlzhcgCD}5+T60?nQ+T-`uA5cyd9_3zlrW~oEH2h#>eAy?l(C^S9zSN zy!H+{zA9NpkL+QkaBfO-O&ZmEAOzDW`hf`3G&=S`oMcF&7Z2o?dK;usFHz9sF~E^iRhu3wAskKdLk@`wx0+bhL^{T1jKAA~09dL3>IPU9pPsKZz>Ka)91y?7)%q8P3NU z+;wA~a90jZmc?wALnmahM# zLu?h!;b{wsbvTTtx7LSLQx#q4LrPRdob0DORaAUBT~);pIGyS|mwW5gW2g9}@i@3A zEk0?}Kl~G+KZEGGSoUPlUG?%`y6B4IH zcExLbW@oI!$tNrWwG&U1T25-IRfivVI@gRJcw(um9ZHn2r}E=UTIw{Gnup^{_SA_f zfV9;3Qf={neE{}ke)L95=BI7$-!!I%H-wp5szjrI$HP$?!%v8W*D)Cs_34WHX<8~j zpHLILy%>HxK}%(iLP;%gT*01t-(HM3dtguHM-MdFrSvC^sI4*lHvBsrHLz#pcj2|v zRTTJ#?B$>_3DggaZah0MD4oZ{4t6>DnlPTPvtivHAVcc-67nfw5Rf$c3LXG zq1FR8@$9Mmj+d62*Nzp8TV94_elJK%=J$2x;NFm3_-YugNo%Q-sK%e7I$0C~Mz0RP z>c0oK1nhFL8-yIcwtalPG4)ABY~3}j{BmYv@OIhACZfqVGkb5~D6u_twZD)}#6GNq z6bZnd{A!R$=2rn6VVo3dTMIL#(NkA$4J(D0n_K{!7%4Z?oU}7_;(Swx-C! z6g979Ouf@y6vKD3W5L^v;G0=Zwt&f2!{*kW%6DB_>M`D2ov+B{PmE&gnu>~x1*}~uU%zTf`NHoS*0c6hzV6dfZR8qEt#*S%3+~pPqo_3+Dgyu)tNzMUyABrgNcyFV#qG{+AbHz zQoV3E+n!oyIc9gQOm?zW$}N<-_k>90%ZqB@?XrAzp~)WS)v;pXVNd2O1uYqSSseJl z%E6vG7{jMt@OrwB8t6j<=4pF%*pYDQcbo^e%N=J&!8NT(EVVv(d+HjyRxu6QQ~4~Y z$@01G1I&u{R6f;dsXKUeKEo_%Pv&!&mi!?r_#tLDd+L6B!Tag@KcYI*NwG5-}~GToM!$jN4ocK?otBJS4dZw`T@=9*}rlP&yfHpwUmmc`TYk) zW1Ca=|Kw4od9>?4xxLdo$RXG}uQ)9ODkPK#*|k2 zf*dHVbOrgNH00xHWEp6Sr%%f$<3OrAD8oT!JMf(69h83HJROxVJa976QEB1MCR`Np zu~xkh@^eu_P`?ziIx54EsjHI`?#5^3*ALJ__`w+l1)tvh+6|vyc2a87tZrpp%~DF1 zvoZ?#M>}(|V;b>rQN{p_b5VwXoOe;eLHu2n@gS+L$_S8OU6p8%{%-IL4zIfLoaM@L zGO4UG!8Dn!lvN_!Cu@fOU^BFwhtiZ{+!c3ZnD4Gkc4Qf(i>@Z}Sn<%8+&q*XNEzax zL~ALlk)p1A=uHnil-@{bS`O_qnbwz6YJq%OPH7JEyqw~%Wgp_AXK!6z>F>CX={{K2 zMBAP`s7krzmDcVIg5&Wo|p}(sjs18uKs!9ULiK@yBkicrn3@snt@J464RPd&ssw%C>NS;EkkvI2NIU6OO(hW|z7|irRg0(f@K>T;`GRqCW2~|^H>Mf^2wjhQc-2#A9i!U_1Xj}uOn-g2JqSh;e=uiW6 zkrh-a0CibGD*}`xigi&+lWRj%X9XoSRAz$w*$_TnK{1UudE7`z(Q-{~tjq)ctg({L zGB;6HfH(#!$snnLOf;*h5{HMz;+rZV&TK7=QuhbBP{U@*xYF1HNZYAKGepC7TGtE# zxShP3D+@t3Hb+aXrQ6Mw_D*b(46zeIEo`ZbaA!+q2wuXzB^_Y>Dsl`}!kkuV zr9Td$h)`uYP;01?1G1{4vW>P4hL4+fQnmy5zLSy*lG0hpab-eM zIx8cnaXY0fvV74+*##2amCKdwreuTL*G<_7(yhCat%)zsf%x(qdNJH4er3Gkge(hs zz`6t~)f3hwXx2Hjpiw>1Y6sbp8C;qE$|hH)O)A08ot8Ml$_>mK=Iun+dnrRoVOUC_&@g2S^4<$m2H_=+%?Bu9 zF6?n8G>(4@mlBj*1yLU6RN0%(3{Ywy$Ik=MwP(?Yfy#XT9HBJpn2G#0KB`3}2O;9{ zWvfBTFlV;4fr@4=@M4}(3VPZI-n5Hp(g*MbOO<+@hD|+AQ@Q?1AcYP_w^&R$gOzO{ zorb{QJX7jfWJ*0tev{xZC>iW9IVLKWJ-Rq&C|)G9n92`R)`RRD28ZL+>u^+jF+Buv zpuooWYgm@%36@QW0g#hauJ-{8KIp&hwDH}i*Oyr>FBorD$`zI;uUHRtl>T6W}>TBk@B)U8qQ5r+HCo8K#q9v3b zL;p&gvqYm}F;sPm(i2aAPMD%}b7uQT*s>b7tmyz-t}m4=XFSmr5%oY~eHnZ8D*8(pAG z&om5ibeK}+W8^wa&5|*W9j0HCm7^dVQ#jaXfpQq!y9LS-kRuB@H)#<@wZl|tF^0jz zbY?NBd9+&j65PRbk;^75zN4u7CYXX3IBmkB6oI26rKg5b5ihOgGxgZ;J zm3c0iC2a?0qNvJVF0*7W7HCoQ=Uz+^Q8aZQFYDGmCEATwNSyb@{Rag3&k z^w)8WRf)9f1O}-@s(un~Pb4}C{}8=BiS;47oQ0BZwWPkEaP;F(Fp&{8`4mk`wBb`! zlE|e1f<%i7(4<6v7htJO6nzR+Cc1r!gZ)nPoM%pB;Yifx36gk>SFUH51$uT_=>8Sx2|urtgPxf4+`jwg zx#X~~5NJ5M_7&%PUQp&}k|u&A61W8oFLDclFDfa3PG00i2VFwD5Pf_JD_f%0mz5IwaV{10_FJ0+Q)+8veJnPu3>UTmTO#~+jZ=n zhzhRrsy4fUE=IKV26u1yua#I$OVF3lf*-pJ9j4EYi-Zg5#n;^VW4=+QLGqh#xMa6) z(T$1re#@Oy=|_ zrw|SJfrAAhet){E@VCQOTd0%Ob*FnYJM@O5lNv5`<1NYH$H;~)UNYr=IqQQ2pTFOB`GTLs$oP^m|OLEU}K z$Qbzu0U1qC9wAtxNqUT;ajZ%s0{#C|Mevdw`@a$O%`BzzB zI!kB%#mI4%LjQyDXX)gB@Yz{v{R&<`ODA3_eb@^~UMqplxtg-Ft?~V)GHPpjzNT+w zvy@9~U*oD)E@BW6tAjx1m{n%OWi!uGyQDe}Txv;`*>|s`IufL9DK3y!N(~41q!icEp)?m*uaOs} zxw5Wh)KSQ?qm0UIe_IAwj?z#EwVgY=(*U;)XwAFZz;&i=zI4VxZHe@k4r(;Wct>?2 z$R&+5cTyw3WjgURld~FZ+DC1j)t2u2G)?0)O@4G}-oUEPwWh{Sh@67G>?gF-S#9dX zZe5_biLL3bv)aKFOTI2@pgX%|0d$Hc+KJYyQ`zYO>kEy zfn0HiZ(}LYgOhb0YCpVw<`)mOtvkC}0=rgfb`7QhH$JFBHOi|vCAj_r3<-N_aXB>} zx&JN)*}XKpJiM}(z9_Gb0jXUn9*3`eEIv41rifTGY zcqMfu$kR&dGLQsMH39FudElvbb!WF+AhAy~L83K#hWS(e{oxMOtD5RY>E+eZwAyWW zW3x1ec6+I5kZWEURo+UgDyu`C*l`w!f83gs%J9w%8dyc`=)}&d06o!~va6_xK+9KE zmxFAsiZ)55J5>=F?4Awse5MsVj9%;;S(C0;RZCI7YHAR2EvlyWFvZd3YOs>s!a?Q> zTIQZKU~za23iVb4OnYdGx7yl?-NiwMtF7sPH|*F$<$U1#Jv7Hhod%-#sIefUebuQT zmwh?cuDaS0@9CLeT@7((_jw?HPb*;Tx*J<+(Y9J@9ZH!v#tS3BB5GViorB!DHQ?<< zXPL`mQzgyEt ze~xDRqfZ^D-~HA8Af0NXOCG0;+G-oTG3Z)twXPGpg#?L`!St>+tWBeibs&*OR7dR$ za=VV&4WwpWblWtVT^Ic>jlQmnU`eAE_0)Ez^^{Og4R&W|Nub6vnD@dCbar-BHTtfe zS_hv`d0kKK;GU^vsHSD;re!!?UkyOrGihCYggm|qRv&#clLj?V$G9>9>Gw{!EA@LP zdeKGyBuoCaMp)1|nWoQpZ5GttpA-1tJ{S zJu>9$8ce4G;gcltY6^dkr(sRi_D<{;84~*h)0U=cPg4#(ZmI^kvs+_82WYAXQMsGZ zxa`#w@fcQBbs{xTb<6rO+6Vr?$JU!+T*#qcnxP}?p!UtxHcmS<@e#q4(p()1^j32W zYda`32;sPcb_O9FKP0ynYN$KAkA{*WwUWltfZnmy4P9<^3$+Qdo^FA`cRzWwRQtN` z*CeKB5(Ah7F0QsjzUg$PB{~y39Rii{T88l=gKj)jR?2!VS4Z~vR%#r`FRjo_8PvBm z8wfSwIhyboDi^E{py!9;+|5!(RxpA%gJuPzIWx!_3@@IfMs3vgbx&$iOEjrUO(w@o zh@90pVcPUs@rjeiM^Bp`kuW_2FWX$x27~=c`l^lE&ymSUv%fDx10v$&#p?ZI@vz1q={vC`U~%g}tc zgj&=mL~V|YDIsXkC3G=F?F!=2K^?EYBdO< z8|xB0X-25p02y*ZF~mlasUt>;NQ&>M?sR0?CD-4}P*~vfo)pyyHgKrQTh!;}vwC#1 zlRDawy*W!7gUjA;E6!?0v7OZ>?hJzA7qxN*(u;0t1G?E+ZJ=fTt^__T+HzJyYS9G) z-f5cOMO_8r))gc7Y1-0Noe$#EP0au~+)dp8(xU?>}oz5xvwn4eI6P zKsBDv?L^gjV=mi8b9$?!rF?<1ZctJ)>fJ}}gOv4s)G3lbXESS8v~-~KU*?5TOh2`b6N6xFnKrb!pW0K)5nC5uxc2zjpUU@F zJ8RH^`VMra?ED%uufIB5gRV5dhw7eMhtLOM2rjOAN`M2c44)rB--W5Y*@puMU@V+X ziwD5e*>q!oI#|o+0Tc3GJ*z_92daTcnKcl-bvNA~sE%^qtr=9O4IeB+sN=(AADTQ! zt%VFL2Vv^mo%I3Yfn}4DJ3G*tXDLI-JXjs5LGK1QQ2)0n&1ltNsNPMd2O}nTlhY7& zAV~NS1lDf)bO_c>yUAlHhJ|f3d#F0vX`5DTw>ETtD6HK^jfSa7AbW?Q>932$a{pk0A$Mubu&o2k?MAkdn45?AoIi3)gWa@ z!F;Ae>N5@ZX989XrwXI7K$w7cIH*@ZV#lZjAdSYVXF=4l>Pe8j5$XX=Dk{l=76e)Y zY4teFNfYSCI5o*}6Vs>sy7K%Fe?orWR&@5Q)r;=` zyT*aOic;%2@HFQu^fF2f)|fUosMSPuxTdJt4F|gFzOD(KpQr|C=@-7i`(9K}a-XC& z*D{^`#)0mJtn;CXlhkHfrrkGLJP+5HEjP0!tNpeA!+xY8lhwYOV2>XisA*rTKV6$_ z(={G$24TQsJjOr{uhx5lh^ zP6uPubFN%w(Q~+Pz!38LW&u_!5WunZ~UDi++e#FKNuI zm$WZI-LElmFKP5Nb(O}vGtnQ@)C*c6FJ7UL$f5LN`-Vz%XS%9rRe18sf!@s8Fo*ii zP#3yzbAs{t%Cr&GVdn-j^)o% zeN0;RmnM9Ka6QF4ZmdYw+3H_frV;pJ?z@H7KGb5a8l^!hAfLt?JJEx=7__(n`DPlH zq)v61$Qou+NxGb*)^lPEn#A0e-Xy8B96n}gnUyGMo;t^gF-UW0OYi2XgB*F<-7=2! zcD&k*(&nrEwCuHA=;!(B35{`grJQ8-h6~U9paQJzOoy!23Y4Cr&e5`r#mg@is2eqX zcPcp2mALFMD!EV{qNPu$NMjeOu^Q945`Di=jnp!)tmH^jk7YNYsf*OfjwhI{o&6li z=vB_ z=L&U{BYP*M zTCh@`si~*25_OYN>f6Bj#D(;Tdpobkpl2c9dn z9_8g=IkS+|wpyk?mpf9wyZAimucQvpAgbw1^WJ{ml%}pnxN^CD{?7E%{@XR_hxKYZ z4N9r!%!4U-10rV&GxF&~+PXm<@5C6Gx2G++Y(&KHGQebF>J$xnI>VXzo%s0!`f-ceOH^VQUU2bO4D&;v!kxbYw`Yo}T}xixMbz%^0Bgr_AVUCO%;G?n07lH=z6iQ0Db_HJ(d9As14wCJ8t9nJ3^6sQUE7@ z)QzA>wLk^q~z~V<7_)GxXe&@hB0l2^9z?TB}SOdNiz>a@-j*9{q z_#c4e4C%5!p1tN-t_q;)I}ThIz#5Z@nfkQ=6f+0D6##pcC~|x+fV46kxW$0UEEsyb zao{!wl7VoK-4W@doO$|v0pRo|Q~9d^hP!a!p#X4-ljV3KfX_6*DuB*fq5VNLE6zJ| zk>pX(r6KdRa@Rpr18~@rY5j{SS;s6tSe66-*Z^+$e~e?NIHjxj$_etnu>m|8?_klB zQ?+C>PPl3LzXXsBfzk}&r!xoma}AC*fNOBJagtkgp6n)onH4zTA%OCgI8Z?V$$upr!zDij>u~wg6iCa-g07N^7PD2mt3wnMh*+ zSZXjJS!yZ}nIlq=4amgRzY^?EO2s>vA>7KAB3U({jR3-G@*M32fCH#ZBvb%XHK4Nq zZZH7x-%TJLH5+>}fE`Pf+Tf-7P}0W+@b>6u|`3* zlSu$Z*nniNGTg>W>+19L(E=FOfCFO%a99Jz3E+1Pm>_@=0bC?X04@zVFi8NB8XyI+ z`G?!JOGBoJEN*zoE)0zkKxZ701rR3yc4ihpf&lJlz;pqy_v<3Z3;|TYFy8{q4NA5(O#RLr zSuV1;cHux81K1H;2Qy4o5yo}CxCPFIdD?|=nV#@jw9VwZH%#F@PUko}H%6KTmB4 zuf5gAN$pm00Yw1q*K**w07|ao!0!V1M+5#8K(|bu<8J}5^U|>5A05E>vywRSpUCp{ zdJeo60DE~bWZnvZy(<_%2^>|_s&afA2h0Ls=cgjN~{3w7{HIZG0R8<%P>nc zQw7jj0?IN<#+21ZD7h|B&XL9t0yO^cH{npsP*!>80)aRL+wo%2>J~JHOF$PpQpS|NS19>i z24im!7{j1MfN>1gl#qsD0+TRsdJJVuWPo0f0q7Zw|C2xhgQ&X%rZAXyk3bTGi2DSl zF+eZKkZH0F!1!zSH<1~vvQmIl2I&15&Phi=za&R9V*r^FP;+Fx8!{wsWbo37^i>8%X98OQ z7(|v|xDeUKDpjrob}&F^$dK#D47N8Wu!}*@CIogf=;%e@QwF!a3G8KX(8oYz9~1P7 z48phINP|Bit!n85c8Y6Un#fW{v>LxyvXu}bey z0>>Hb6W}C+ku6B$G=sw}3H-=lYAXUiF>ntfaE`$k_?bVxf1PK7Kl}%9kpcQg22g|m zfA6n!0xNg`mnER)xQa3Q={*|BL-I8VDEYdKDT6yw@*fPs4c&>9F!@4&TMW>jGGuv& z!7BmoGWek02-wdP;->am=ZeNj-G!jnT!}uIlN+UO@JB(%O{Y=YX+h3 z5zxR-_C=xB1gOhk`9#vF&mde+paB4bIL9@fh$E}qNFdONLCF*X&J1oQ5pZSj-82I3 z43ef3@L=Gk5NN_+bh;RS-b_xXlS)$t=%yK(&<_EcK`7V2*)o6t38+njWK0>8Madxy zF3u*NWVP;*R=#98QfS;pc4Z6 zr9b+4fIOlkpdz|P;rl10XKtnR?lN7ezl}f-2G4d7=*3{mHw0oBBz#MtFM}Hb^k-oB zjx+``cwjh8B$mk$BY`0dzCA){+NMZ2)6#{7t{C*>l!C>um0+|eI{~(ZUU^1tK$SekNw+PH;@aPVK zxeUI)OJF{OLH7wPWRUb1fkg~bpAc9gfk8=lPGp%Rildpp3I+p83FI<(R!(3wgNh0Q zdH;ec0v|HC{)#|812lbsdu3S9B=j|r0tRk%>Y~af251BWU^9amjs&(cSlo!fb_P40 z34FxB>Ox?r4Z!%D<3{8YR&i}iU=M=BIOU)l7ASYG1T=W}$(T~=Mac&kjPxb&B?ELz z4H+C{5amzc5cPj5!=V|GZ&~HT5CVr0pyiEH5B#}6CPyToS{%bz4kn|!7f3!K0VSW3 zF=b3ENa%2nL+pv z0#^mV{r?U_iTuhcr8)w?G4LHu;CBQnUMzaAftr;_Ko@&U#+1YFQt}-JFGdr%%K#l- zLk9P0{85%(sYD*Iif0;uhYa!rc+3DjUPC5N7^oQpo-&w`N#HqysaXVGNMKOV)iq>d zmPENAfR(}BS)@_MAZRv$3I>jI2vjlna4vyr256uJrPMM&n>1oxOu&JG(^3Kr8ALB9;KX2mE&&%CfboY`O;8gzRtaB2pfQ6>YYBKV z=(~=97lT6^2>39F*hs*a0a`#oDgF%5Wj5}=2QWbo*`N}{plUmT5C%Rw2{dOA^eKUs z3_SM{XwBgG7X-o?R2(D_AprLOo!<~?$0`TDCD7qtaF{?x2Iwmrs@j>sH%ACWF}Qw| zKvxE5j}hq3V9ZGXxc|T;;3rb)#Q<%xpqLm2BhM4)%V6&X0{t086cQN7;Kw2Yu?*0U zHe@=406l-9?`$ALS*6c40&xtk2r!I+{x{MX!Qi<7qZll>P8y>bIQ>pwEQ4(T@cm~z zlLT;`4d6Wn=t~>GBnHVh2*fie5@0fe_9di|$Y9?c0#g|by-Q#^0t3xG&+idYSj7p9 z%Anj7254mlAdNwvzX)V782^w!CIkOR1hN?%e@S2#gJl(U>HT9i60|@gzh6+yJPBxC zT_9sheBF9j3j>4x^$09x(7HZ>r3^mvB(R);n-77N2o~1E{=cIck=26O9>4Q2wgu~i z4#uF+wGvRB*2x&T`G({T2v(s!x*P+rNdnT}EMv-*mXy3z04#r27?JI)@~{noj~G<6 zBe0Xf&W;2=VG!7jz#ar-)`qUlpcZ>2pjzycF(oC2k`GW*(g|n>2Pb^VDqZ^#ILP4L z0R#>)NEt}rTLv=*5je~M-GxJ@Mg%9YanPq4fMXJf?{CLtRQX;<=_eT+8%f|agA1bw z{Kx@AmRdOc~xWoV*hJ(fx220)} z@LvWy;t5=1fVOvV%5?@l(+K>*Krz63I;fN|=?))00o-EX1%^@p?l9O7+vfo8GSI>E z7l8W=hQXdQfCmi9;YVQr9x_0W;s72;hZwz{~1M&~5AfW#8OvaRHODWmJ;1+B` zgZ@hf{Z|mMFhCdMpizq8G!}s_@c>jvfJGRTDj6j|xsZy?!|K^FX=6o40lc(Atv;KSe>`28jTUjPPC2AYoo@n@A>_&x?8fPphKA%GwT zu0Ik8VG#Zkf#wXHe<9G4!P*N1S~KWg4C^1{8qTD$m_P)BBbNxYWAOfE0v#C4x(k{BWH>*RDAJsF9ETPNX}lJiS4n2ZPSH2=rpm=r(~E2KNQ%%K-hH z!`1a?fWFNE3}kT1aF0kVlbiPm3}I0IKLSG;cswK!#{eCiL$1RRz^#VwGk+5pDFOAE zcV$d5Jf-9@2n=*W?sFpJSOvYELzWX5Tzx@cB7>b~0(u5BtppMf9Kc$9UPd5M0;hr>T!s&So&oj=(Giw*{EZ zAgg|TTL0%V8QFl&na|*w1A&DM(j5sbVz9`Sz!C=jZUmMw*eAdW2EDN$(VA^kCHbqux~?PBZIIm1XKp6y90pd-z`kM zVn}5h1N5j4h3-HA^K%^qy>tTDDFM~u6B$!JkEP^24A8SW=zqrG;cx<|A7ch_;7J`czL$V9ID)ZRn0!zq|3Cnr zzbX9$rg(4dq+Edm4Ou)m5( z9Wag)S)!+RIL8h_9+rU~TLILUfXZkfW6CTCN_J$>!IeNG2HU&|I5U{#i@>0`GHDS= zD((z+1QYOJplwc|2?BVufMpRR#Oj3m@RePv7;nnB6^5zNOE zBEgqDT>T&kNPn=5DUmsptVICN-gOj<(2tXV^oL<=7bcHdAj%&p38lX)W6CcJDZeoc z>VZpoD1RJ+-IxP9<^}Mc1eC!f8B+#+NXhXGv>ORbmcT&%=^=+iB%foJ=*<_vGzlon zWEoQ)g9Cd=o`K*C)Zf03K$--kpMkM#Os)~hSrSlkj*JSmAnB&*i2(0Xe&wofL%T=6y;5Mb_ zF}VI4fwc_4U>WPQo`K^H0vj3BD?wiM4F2moB^0oqy9?b)WU#Kr933Q}6#&lZOAx>|3K^E8#&QX$IabP;QY!k^Y6jseD8~;NfTcN&|9mFjfbBVC zxq$)Ln@>64E%t0Bp`NkM9_O#W?~agF6BoL+~xO;1N561FD>mgqrY_j45Doj>$hV z0DE%;KQnmrgur19CE$JDl@DEerGU6fD#6qOG)E4 zgW2T-?lQ;_;C~EWgF!fy@{j=?i>xHO{cvKREsz@8)7pd$#AV7dXVKHJEsGO#I~(2hZKe*%#V!0H@x=*$3Y&Jjd2=p;0{Bgn@> z!Rj0}dP+d8)my}H{RNwIOz$hxl?CAh1~34tbJU1s05<0cv<$%H96=m|RhK@tP7GDk3-!Rx66 zW*~SU8pi;J=0wsYp+YlcOaa?+%pr?GfzW@`u$(kzqXz8rlW{qoGEV}^ae<5}U`~$7 ziwMy82WxU9OIc;WYyvA7fIT^CtYQGxI@GNynbIVKk{05fs~ z29-&!$YCo3Fd|2l9Sp#P9KlWoU_g#wHv=#qNAMW}*w{zwaRU1!plThEF~wwx;Sd9`9!KyU1F#)OU}SJ#lyMBfaV&Jy9MU);0Tp^m#uP9h#|(Z%V4xGgejLfq ztOC~K2+lJYDzYp@uocSy`*GB`BmtFiMaC2`9>?Tg8T_+~z;y(jdUCD+q9l3Ig1TfdKbcAi!-C2ylA@0^H+(0QV&z!0iSIa9aTa z+#7%ZU*8Q7;`=fL_y!BXDG}f+8^rJx2?Bf-f&kwuAi$?|2=M6>0(_!`0GDG3a1n+8 zS4IeM>4E?k69{msh5%B*&iW4R zGSa3MKqfujOlsPg`G4Nx>N^ijj*flaWZ~dt398dny>euOy}Iu&QzHfsP3}VW-Z1Q- z16H;7n`e4$II-WcF;LhCq-tRk=I4c|e?Bt#spB4*8aWP>DQfB?@OU`j&1kT?_R1Ez ztk}14P54&ALu~k{>iQTO@u;eMY>IN!*=W9+_t+HSID(^R9-F#o@>K{z)TVz!;p5*- z3Q^xdHu^2**;OAY8*n72%zOel{D9i9(MT7TuM&Itx5)!aK-sg)zh}ap=D%9aRs9oa zV%Yfnm$h|#=gnwywGdU_Wd>CaR%@TYZHEn1+iA$~26vM6gI&-!lGID_JE@T-+VDEn z@QCQ)4$EWz;ouQ zXP$y*pA=itO7-PaQRG(MCDCKwUG(N zgH7pj^-XFr*c!Ig81iF+Xg8$O?M$(2}ryb!nBL~NP%NSTcC*xrc9){o{2@ebK zuoe%#c<6|SJUo1ahh2CG!$S}rmg2!155w^A9v-^jp${JPc$kX^PdwDegF%PK8F<)+ zhedeUh=&z;aK}R(F}eLSS$VLBch@Guh(>+!G( z4}0-2Iwl;Bn^A0!hip7F!$Vg%ZUhoWS$^)pa9G{tjXu&kImBr=_C2p66Ou<)o?tfrw2ap742H~e;t z+OpKtsr{dDp>a910)Y}<00g)KL4Yd|1h@i;Q{cbsxWnY>so2iKtKgKGkD#Z*(i)??uW2^`T5|@M@XN58y_JRgZ~~OT?j zkwW=4)#xVJsl9S*{jj`T*Oy_WsheY`+hDg+HLa=d?Ibie+UdRrqS-h-v@Q^}zT3-) zhLp#}y1H9+)#0mZ12B&XZZE0s8{J-Z!FZ9|%eI5Eu(s`cz=5PbaZ-vOCZ*%x@kgZY z9wVjw;NwTIw&2P~$yyoX{?ZuZZrdaO%&ttW1yv zX5|%P?ug-#5OXsOlS9nCG297Ist376fU{7Ch)Y=24R9VL+zh#{l~N_R3lb~=`~(T< z05}K|QWs@NR9F6Ytw^Ea{vT|_pg({xeU=9r@t#caPdDL=}d5HhBMQIN;y2qH-SRLNU%~K4A zCmLOS=={4TyEUVmrz68Y1_0Spqb)|H%o|Hlxpk&P5Xg*29EVfYe$5n;q7_3QQp}8}L znj$j|?SLY)k00HFPqe$?>Kfsd!wpQDX}f>Ji_A^&gp?w)KZdJqC+;mW2V(quk-4=4 zWpG;ivw8`%98!|A#9;9+Hix55Y_T~kfOM*Kb+HYdhvGjAgkn;X(ro3dEf!65pjhNv zR4mGSVv9GrWDdf-+Fmj@$8h8&b0~(hFNp#8#U(MuuU|6LJmYp*#JgWMw;8ktn|d6$ zh!KuooWReEkmj|Q(vMxG^axz5h}5(`HYrDO4A<1jR)eFTc^Xe&HXrDPMW?!0=<>F> zSYk2$KNrgg45M8waTu<2we-R8qN|0P>K|7N4Q&@U5k|UM!Z7_kH%l7~SGieQVfc+L z{->LzJI4LoEnUQ1GFPLUhwbO5uIu-V=9>lXmgs5JKbLECn<0&sf|1~tML0Q8-;vT? zaH1kuk5N+c7%io-W296xR!WP$r3KQmR_5pp6O(1E@Elgnd-An7XN1NX=g%XIAkVG zgC3WZX`2VKwML*#)x`y7zlPN7j%m-r>=F65w|^ML&uMSl8fwC1xG>!GP*#Ae79kaa zj~4j1kNKS~QFa#wi;Gnc{MYQM>V18Z_Ih-+*sDIhEY0gKXxI>3N?V$!b9-0`5)U#)hypCOQ7GJeUXX&n zYoC8)iNsDE{IR9Ks7HZz&q}rZji%u=Wp4Y}(l?Ci_pSD{?XEO@AMU_OyeoGWNvX>c zl#KQ}E#J|gJAP5*Yr1Hm!Pvgg(qF6%A88LlrCO@)UHxd)-&bhqi#2#wXz48a!vpP0 z=nuh8e*Ws9B1^k)D&DH|lEWtxoWKYlE4%PNUE+?H@{fv=@#7-PMQ6-yMu~+M{*Oy6 zokXsqwG(lTD)VcmR+d;AH_61)+8%(@NO~XKpeUKfpqrKgYLM@ptUWLztCN*x1#f3- zxX5U$b{Ayi7VP6kEtKqRrALi?2*nj1))vAQdZ<^uLz`e0e>hv)ge}A3hWreLkn}Zp z{18$lc={01;fp94BV4SrTdQA2iE^(*S$jEc{0Y_#aytguxkp=Rij9u8hKT|fX-`0b z&DDgGKzb-Ch_=$|QW$Nen^7KZ?SvJH=xU7&+>R9)ehZ2sX(u@F5K;kn?ohTH=XbT9 zY^vssu>PXXIAZltCycO0s)0!sNA=7BORRC*Nb8`^qF66&4=C18J<~MULv815ZBSo4 zQ#j{ZsqOpZT4@4J$raVuoNJ}N@JFt-Emo(&Dr-*+2d)zOb5~huSw3J3Z>_R+z;u_@ z){cR=XQ>+Io|w@gDoF)UT%Q7rCkXt!+flo~d22Qq6A= z8cg@iwBH&kZfL%?7;fm9*ia9({Q+y^z^}2WrEc(l;7B?QZZ3q>$pa;0`~hn;JvVH* zVQnLtVuE%nG(|_%{ZOcNoK#|tG#7YbN_!28E_}fdY^zLx6 zM07WYo7QN&<~}#AQ5ep-Y3i*;rdjOI@6%v_&r(Mt|ruau^xF^Mh~^akPh&G~lK|uovJ-K}eP0LP7b) zct}$^o^F?OZ}^=fWfrep2gRzvM_Pq|Bksq}jcgO!2JP1?)k}k0M>{K|_l@=(=yg(u z&uHC6RQSC1PaqxDT_3jYEFSgm>FjZ`>J9(Ipfp4+_O&`t6N>rGL8J4<)VAu(3$5CU zhx98krCMyEW_?NrQl`3b8r=fWQr*649qO;of`5^dJv}oiYkGQ0qNte8pwZ=_MxUBi zq3YE>r5-(TpIhlQ39gW&TyVo6q<6vnf{+3yOKEzdlon4#$r#+X^g6BcmHJW|dBO3e z^xW1fzLYwnKE9M5gOWv!K%M1>s`G`R8P5EAh_JTBFOrc5#`Wl#r4=U7wYcnwo(B78#ozp0{;oOm)}e zzY9vsN!2IKPDst5O$|~g)##k;Y?J!Kg-{FJ;8)_nm4cAMz=wj6EZ{tWq#R}IBCMlv z-Ko+~UAxfj4bTQcDNg<3;^2`nIW0L`JTt4i`L829=X=gwy3`_6qV-VdcO`8R|*U!#O zNKUi$y!W+#0CK>8^p^u~hBkUjTV}gTS8w>waQNXuNdtp$AsN6DTu8&g1YAfVVEQej z&%x%Kq#UIfPR=gK3!kF4NQ!Bqo(_m^V!UZCZM6pLTW?_*-RZD}Wi{#t#;j z(WG{AVHr(&&lZ-^18^%t8BK2E3_?HOP)6&{Swk7EHxCVE5%f^5yKJZX2kugylYVkS z_LS-RDbtgt%)l#CJ1i>moPZx*l)+#HE^N+A!TeiDo51c{NN$6rG!`tq1^W;zyoIzg zPD-7@rkhxf(l7$9RlT?3S<_AB(Jsbwi^_V@ykvi*tcMuFgSA7UQk_({BW2;<(7}?k zlT!J{$7x4GBK-GhNc7;h2-YDYstD@nlpLYHMX0j`@Gn)IX1wHEBjY9VU=C917GGGcuDBlc$Jx zAopWsG*CMpD+`@~AFq^#W1ta8N*F7pbzq1tSO!?i3TY!)nF^_br3qkYDwxxsQrZco zrHX3&`dC@7eR#1irj*m7?4MXp>(s!+a_aC(VtGq3+vVBm4&V)Mu4Z&EZ!TuLbBX0W zMRzE&)77sFsZRRrbbVTeJ|QzRfkwOm($ z`Y9<1S+>`Dowlwn_5UZQ=h(JV3X()UPbZaoHd%`;bJ`RCnHx&sJ}4RgPAcE(Ee5Br zb{Nj9xBL5g(oGquT~0$zc@hAsTZ}&}DBs*obevFa7pRh-dT7%CKXGvjjpeq5Y@~Jx zqy?*y51xn86sKLTJqe`Yl=Re$9N6l~uuX2-GdkF?ha38D!fY|xb)FjCU`V1jttTy^ zbo}h7`#DAKKI zukG;vl3^=G?gyH(U=OFwra*yv=DbV8y9X{{jJ*k9ZkglXl$qP0_1-l3HuaJDvZ=nzy&zI7# z@G}7AgmLGDiZ-rT@nWTd_G$i6M8#caRCsBrDPy%`pluqarzK5K&+cg3(1aOtyf)d^ znU^euyo`7`W$+Fmq)98Jv>_KIW5$e%22NrO`rzuD1^e6+;Ul+l+PLQZia6@WH@8;! zi9%yA^E~H_%=9TqSy?cn%t(?;X^M6O-r7{?L&@+ZS1h@kw1)sTN=?d~24gWZeX`i1 z>$6R~O-|fa5ip8+djpLwRQC4y>!Eo3u&+!jkWvbKa2IR^d}I*PDA=7B(sg*}Cn-lc z0VhKrAMP})sqyi)iaj&26+d*Y^cT+_eYJ^Lp(!cJ8G2mw#hxKF+cfQJNN^&ipMtZR zsOq22m9!4KxKvU%ZSPV^8&|_!Dyiqqb*ZGDrMgtonq+jTq#jyg)2nu=Y%Rt-JWS@| zm>=GFm={(m)>Y)BxK=jnMvbsXqq~G1zF}6*WL%oY>gA)^RgLa9OmViQq~L~|sNiYW zO4`x8Y0Iw0wUXA0FgH=5!ETjw6Vu!(eX!VEw@R96zH+Oi#k1H=RKsKo-QC3nwR5ke zN6>fOD?`Lkd1R-nltZP{H_+nvs|)1=_;@3vx$yG~Ar--w93eG_;UuKpumd2ZR;Q&D z_M?>g|0JbWzes7{1t}TcEtaC^B`N*N(z?r%wI-b!l=7ax^YiRrT3-e{y<9Y9!kkblJQvM$|~DCWHaq_=nA_|!y_a< znca?}Ub88>GB}V%cfR%%+-_HKpK;~>ciE1Ku52-glTAqm|3zlR+NliL{|=MCti1BwPRPRSBH*lqPk73bi%F@Ftw6q)!3<`PtTZINzbU8 zr;4s|$`(GHS~&>y+fNf?Ws)uYU|OZvf71T0eF~qMMvrPuSNmvMWw>~YtJO8YZXKWw zw~q8tGh9a5ixoa*dS#RWW>5H$7FfIr1Jh4gT3A=I2zx1=0<%}47Y637wli3I02Z!- z%>+wUAq{btQUw^Z3bv++luEtop}4YgdZn>)devVEc!75>R?%CwPhnMSu|^HB(>=mx zuTVAN#xt>>qkCefTMLg#>bkLG#7Cg*g;g{p&lgtF>hshVx)oK?v;UwXk*%SqisqWH zimGV8;7(B$Jw$sKi}U*xSJ68_PH`0t;cdlLbbo#>u4+G+W{{)?x=jsiec~?I(+b1e zATXpAQok-zDgo13!8(A+tdL%Vt*o-&*z;1APj9h^hv1g1I_&zG7IfoQI=`X<4>`Z0 zj&R5MRZE&z;bmMm8tx=LMEwXRw8GZ59BgNWRA+>gJV&8q?B??7HZ9FQBVI)WQFs1A z*IQ;WdK@U>Z?u$AU>d8;H71UD^>It_JlIMb2@T#<4NiI0RP>gJIj@?F`u5l6LVd3c zp3ovlEI@0tKiXi14=H9an*=2p`i(YD-b>QNVStEuNbhmbaQbdg+t_*cWQ;H76KCa1wG zuzc2s`uD;5JJDu9`mChPl!Od=i;P=UO)K2YRn=ZmbQPmCuv0?1_@(a+UD#AuqS57J znu9(mXNo>CSu9#7R*8DwUR6yk;<&n+c25VbuBNTPd8`xhi~3HFe1`YeWuf)>PB_{N0*r8Z!^qRMT?ioF{lxUbSt^IMmZ6 z!8cp#x`|+?Ouze6(!oGkNG~=@DH2SQ1p;mN%{uyRRNK^rR8zQ6n}`b#`{T zSh#jIVZA6%2H#oXU+AQVpOMV=Rv*v)ZlNYG*Pc4OmV=b zxU`~%y4uSXHKF2T$wQr=dU9orPm}-uTCZ!S(FLl8l{GEYw3Rh<_Ux54^pap)S<^<$ z*1a^k_pvjEtHCR4ywwJ|HMHR#kXtiQOk=k+x)^!Q&7VRYkKh~>TqdQTUP;MN2mVL! z5#yHJn&2d?>hWjdZa#We(>4NciT0ov6s}X@OA4&u8Tx;}QHyc09jnq9wliw z{Df0T%lk>`Gx!;$U<2T1ghJ{CKaUiW7yR5%NIk*8TG?n^yt?)%O?o}{*3z<>vbVO4 zc%xaZJw_c^nFc>~Q$8>r*jww@TqHHaH&J}q(dIzXd}B#r?P}Wx8-MMGwt1HtWkp$S zYw=KaQEQdsVIiD^Kk!uoz?@mxWh^eMt%w#~G(fvs-MRlYJ(NFg_nN9^-~M$_8@iX! z1!us0r%@FTrp>|zI%%Vn`tLx=IK2I92TxJcKy8kwY2DqB^tmy$-|J@7QS!20)8zj} z)@ypgznb;hqfs_iYTz1~O9D_i%!rsd&>{jbFanXaowH$_%s9#|g>Gv&5m Xb}Xb$mu*sxQhLH3-l%eNCb#=P1Cg2z diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index bf72187c9c1120542ebfa5b762bb1484599f1f01..d7f780a715c5e14221756d1800b34d80c4e3bd25 100644 GIT binary patch delta 64 zcmX?jhUwrLrVTBOhB=lQMdm40srr`YsTN5V#^%Y!sRowjCW*\n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2596,10 +2620,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.266967Z", - "iopub.status.busy": "2024-02-08T04:29:28.266794Z", - "iopub.status.idle": "2024-02-08T04:29:28.272101Z", - "shell.execute_reply": "2024-02-08T04:29:28.271528Z" + "iopub.execute_input": "2024-02-08T05:16:18.254337Z", + "iopub.status.busy": "2024-02-08T05:16:18.254007Z", + "iopub.status.idle": "2024-02-08T05:16:18.259914Z", + "shell.execute_reply": "2024-02-08T05:16:18.259362Z" }, "nbsphinx": "hidden" }, @@ -2636,10 +2660,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.274106Z", - "iopub.status.busy": "2024-02-08T04:29:28.273933Z", - "iopub.status.idle": "2024-02-08T04:29:28.448369Z", - "shell.execute_reply": "2024-02-08T04:29:28.447945Z" + "iopub.execute_input": "2024-02-08T05:16:18.262797Z", + "iopub.status.busy": "2024-02-08T05:16:18.261859Z", + "iopub.status.idle": "2024-02-08T05:16:18.467078Z", + "shell.execute_reply": "2024-02-08T05:16:18.466624Z" } }, "outputs": [ @@ -2681,10 +2705,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.450416Z", - "iopub.status.busy": "2024-02-08T04:29:28.450253Z", - "iopub.status.idle": "2024-02-08T04:29:28.457374Z", - "shell.execute_reply": "2024-02-08T04:29:28.456949Z" + "iopub.execute_input": "2024-02-08T05:16:18.469453Z", + "iopub.status.busy": "2024-02-08T05:16:18.469266Z", + "iopub.status.idle": "2024-02-08T05:16:18.477401Z", + "shell.execute_reply": "2024-02-08T05:16:18.476936Z" } }, "outputs": [ @@ -2709,47 +2733,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2770,10 +2794,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.459371Z", - "iopub.status.busy": "2024-02-08T04:29:28.459080Z", - "iopub.status.idle": "2024-02-08T04:29:28.664721Z", - "shell.execute_reply": "2024-02-08T04:29:28.664223Z" + "iopub.execute_input": "2024-02-08T05:16:18.479350Z", + "iopub.status.busy": "2024-02-08T05:16:18.479171Z", + "iopub.status.idle": "2024-02-08T05:16:18.652231Z", + "shell.execute_reply": "2024-02-08T05:16:18.651687Z" } }, "outputs": [ @@ -2813,10 +2837,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.666766Z", - "iopub.status.busy": "2024-02-08T04:29:28.666522Z", - "iopub.status.idle": "2024-02-08T04:29:28.670873Z", - "shell.execute_reply": "2024-02-08T04:29:28.670415Z" + "iopub.execute_input": "2024-02-08T05:16:18.654334Z", + "iopub.status.busy": "2024-02-08T05:16:18.654151Z", + "iopub.status.idle": "2024-02-08T05:16:18.658449Z", + "shell.execute_reply": "2024-02-08T05:16:18.658019Z" }, "nbsphinx": "hidden" }, @@ -2853,7 +2877,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "022361df31e04c07a94380f640f14be5": { + "1644edf88a214176b72d5e2999de8b8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1ec724c611f14ab38760c5b566b9582f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7a0422ab0104b88942f6e13074466fd", + "placeholder": "​", + "style": "IPY_MODEL_effe32e5f0a941f080bbc9527408df9b", + "tabbable": null, + "tooltip": null, + "value": " 10000/0 [00:00<00:00, 604906.98 examples/s]" + } + }, + "1f8b5c4b58024e64be421bef7eadc5d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2906,23 +2969,7 @@ "width": null } }, - "02a75c6b9edc4a8da0feb9bfb6765cbb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "030281198fd34a91972408f1da63fd2c": { + "285fd65ebfa84b7db898a122b01e9cf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2975,56 +3022,25 @@ "width": null } }, - "0b506b5e968a47e5bdac76006be1a8f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6777fbed25941949ac8a3d865aed819", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_db40575858474d3a843331bc41775ad3", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "0c77dd68f643447aa8f7a15a8f8d7c0d": { + "2aa613cbd16f441d9edaca57135cb071": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_62d335a76c35470a9d62b78583ff85f6", - "placeholder": "​", - "style": "IPY_MODEL_8944dd98d72349a5be7063852a21d1c5", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0dc71852ac254921bbed195ab4251c4f": { + "2b931418c3fd4234a23894c55017dfcf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3040,77 +3056,102 @@ "description_width": "" } }, - "105f329ad92c48cf972b910d94794f45": { - "model_module": "@jupyter-widgets/controls", + "2c0f9fff6e4c405fa1bfc4e835f67e87": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f905fd537338456d835ebeb8895ccb67", - "IPY_MODEL_6b4dbe42cec946a9860f4bf17694a897", - "IPY_MODEL_3c2c501bb364468ba6431695ddd1cb05" - ], - "layout": "IPY_MODEL_9cc620828b64434cb0d8bdaf6831e7ae", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "163f6d444ced4bd3a8aeef3fb3508584": { + "2cd5b2a3ff3c4ff2aed85ff949da477d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ec070a2ba34490b84dfd843b416f425", - "placeholder": "​", - "style": "IPY_MODEL_743d085136164ef5a0f8e5e72f4e15d8", + "layout": "IPY_MODEL_35a9338c6d8a4eaf862bc864ff5dd08b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e3ab4c006214c16ab971289caed8b54", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 2.0 } }, - "17b24e6d097243b8b8083d44d73119bc": { + "2e3ab4c006214c16ab971289caed8b54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb252788ddb9420a88bb9797d7813181", - "placeholder": "​", - "style": "IPY_MODEL_90005ad1662a4399b7be6a444a22baf4", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1a890e8102094b07bd098955bc285fc9": { + "35a9338c6d8a4eaf862bc864ff5dd08b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3163,7 +3204,25 @@ "width": null } }, - "1ec070a2ba34490b84dfd843b416f425": { + "363e5cd53b2a4843aff9e84163dbe4de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "36cdebc200c1419587f484aba7f952db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3216,116 +3275,16 @@ "width": null } }, - "1eec2d01466b406faa6fd5ecda631e5d": { + "37f8ad1027ad4b2182598247456a700e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_95e05aba0365417aab068330e8b9a12b", - "IPY_MODEL_0b506b5e968a47e5bdac76006be1a8f7", - "IPY_MODEL_23266deca5c24b548a53cd17dfc0c1ae" - ], - "layout": "IPY_MODEL_d4b0778e22ed4eadb1732422377e864c", - "tabbable": null, - "tooltip": null - } - }, - "200fde7945ec4df980b83907c2e129ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_022361df31e04c07a94380f640f14be5", - "placeholder": "​", - "style": "IPY_MODEL_c6726edea8694a65a03ad0e2fb31c97b", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: " - } - }, - "2191c71bc38844fda92806b5e0000cfa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "22793e0bfd4445869a5eb18544b4933c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, @@ -3334,46 +3293,7 @@ "text_color": null } }, - "23266deca5c24b548a53cd17dfc0c1ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b67fbc431ea48d79379601ba00ea8d4", - "placeholder": "​", - "style": "IPY_MODEL_af7256daba3e4d6fb5beb6e6efbedb1f", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 51.6MB/s]" - } - }, - "37fac0c2d47b4f4cbf18f1bb7348240e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3bbd7ddc822a40bb99e2eb7d57b32a62": { + "3de862f5c9be4a6dbdda8611c5e6dca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3426,7 +3346,7 @@ "width": null } }, - "3c2c501bb364468ba6431695ddd1cb05": { + "3f55ac718f964cec989f7482f3183b89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3441,15 +3361,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f0347dfa685c498e90e22335f0838175", + "layout": "IPY_MODEL_96e7054a006f4727bf45e5a42d11b2c2", "placeholder": "​", - "style": "IPY_MODEL_fa36e53aaef54fd689bfb9d08854a360", + "style": "IPY_MODEL_e0ebc204c13641a2b55191d60baf356f", "tabbable": null, "tooltip": null, - "value": " 10000/0 [00:00<00:00, 649162.53 examples/s]" + "value": "Map (num_proc=4): 100%" } }, - "48334b3517aa4ba7832a21e78f093fdd": { + "3fdf1f2465c1440b8c718c42a818ad75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3465,17 +3385,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9588000ebdf345bebf297a2c279caa6d", + "layout": "IPY_MODEL_e2c737cdcd6f4555b7e61b60589713ca", "max": 1.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0dc71852ac254921bbed195ab4251c4f", + "style": "IPY_MODEL_2b931418c3fd4234a23894c55017dfcf", "tabbable": null, "tooltip": null, "value": 1.0 } }, - "4b418860b14e47f58fd4b00a13032e44": { + "42a019e901584661bcd2c6b48c3bfd0d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4418d7b6a1184fb2a4103b6e70f569aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3528,7 +3466,7 @@ "width": null } }, - "4bba15efd9dc46a2a0ebd1291f8896dc": { + "471b6653307d4909b42ade69cf37da25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3581,7 +3519,65 @@ "width": null } }, - "53c815aed4304e5e9afdf1da25822e92": { + "493ed9042d5e4326adfc3d2585299355": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5174d8704fca4455bda38a72dfce3e9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5c4b4cfac6fb41f2bb0be9cbeb8c1702": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b07001a214c4c268b08c628a7ff9e8c", + "IPY_MODEL_c3de9a57ab064122bf5347d7f435c3e4", + "IPY_MODEL_677296d2bf664f35ad740d29f938fd5d" + ], + "layout": "IPY_MODEL_36cdebc200c1419587f484aba7f952db", + "tabbable": null, + "tooltip": null + } + }, + "5d70744021bd418c95053a103abb48af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3599,7 +3595,7 @@ "text_color": null } }, - "564801b11acd4cf59ad85465e6a2a44d": { + "6397b7759d21423b9c41a28075a672ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3652,7 +3648,30 @@ "width": null } }, - "60f912b3115d49cd827a4200e203f2c9": { + "677296d2bf664f35ad740d29f938fd5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e53626a1bc4048ddb632f06afadeb258", + "placeholder": "​", + "style": "IPY_MODEL_d6a1a3af52b34e20a14fd4ff35251275", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:01<00:00, 25.2MB/s]" + } + }, + "67d8a420ec26495abdcdb3b12e679851": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3668,60 +3687,65 @@ "description_width": "" } }, - "62d335a76c35470a9d62b78583ff85f6": { - "model_module": "@jupyter-widgets/base", + "68d54c5150274e5f8dcc0ad415e06a5a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6d967799b3234367929d5561fa93aa2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6698cd7395124e1a8376a76adf2c4453": { + "74d40d29ce84473bb02ef23b29a16b31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99867176270e42be92113eb850116874", + "IPY_MODEL_2cd5b2a3ff3c4ff2aed85ff949da477d", + "IPY_MODEL_9f33cb0947d349b78bad2c1cd8a403e5" + ], + "layout": "IPY_MODEL_b89c0aea8ebd4903ae202e5ffdb99c81", + "tabbable": null, + "tooltip": null + } + }, + "7562623f07f54b5cbff436c2d9c3b869": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3774,7 +3798,7 @@ "width": null } }, - "6a9836c5b18f438b8377e541518ee897": { + "77816eaf3dc34ead865eac35c87b2e04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3827,33 +3851,7 @@ "width": null } }, - "6b4dbe42cec946a9860f4bf17694a897": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f62babe0a6794ddfb0512fdd7ec0d2e6", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d16e6000e234533bcde9ed155252467", - "tabbable": null, - "tooltip": null, - "value": 1.0 - } - }, - "6b67fbc431ea48d79379601ba00ea8d4": { + "7930a46787484e95a506fe2ffde1ac01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3906,25 +3904,7 @@ "width": null } }, - "6caa5a8063894f4995c98e645d6ff9fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "743d085136164ef5a0f8e5e72f4e15d8": { + "79c541cc0f894a56a2797fbef2534db4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3942,73 +3922,7 @@ "text_color": null } }, - "76145457ff634734ab36f88825eb03f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "77468d8237894488926b994607e32290": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8be3516c6484667a59994d658e9fa5b", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60f912b3115d49cd827a4200e203f2c9", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "77d4a0e4587c4fd6954b30bf64d2759c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_17b24e6d097243b8b8083d44d73119bc", - "IPY_MODEL_bb5b1299d4bf4b4a8c5edb9c01e08f4a", - "IPY_MODEL_c63ff68274c34fac9f7ad054164174d4" - ], - "layout": "IPY_MODEL_edfeed6b7cf649fda36e013a4fdaa7ff", - "tabbable": null, - "tooltip": null - } - }, - "7f55f4f4deb242e49f6586cf22c09f47": { + "7a3e0d588f0248b28b5c9d27a4b7737c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4061,78 +3975,48 @@ "width": null } }, - "8039157c6cfa420f945b501e5a83bbe0": { + "7e37a4f7322147979cf7891faa98ee14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc77e2b0e4414a47ae304a5cf6344637", + "placeholder": "​", + "style": "IPY_MODEL_363e5cd53b2a4843aff9e84163dbe4de", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: " } }, - "8504f14162fd453a920ab503c6015fac": { - "model_module": "@jupyter-widgets/base", + "810dd6ae071b4bc39252b1d0c0529379": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "85da4e0901624e5d8bff898ceea6d901": { + "834eb2f7d0d74cb785e58552bdaab3c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4179,90 +4063,52 @@ "order": null, "overflow": null, "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "884ffee63a00480ea5edbb59b662c16f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a9836c5b18f438b8377e541518ee897", - "placeholder": "​", - "style": "IPY_MODEL_6caa5a8063894f4995c98e645d6ff9fe", - "tabbable": null, - "tooltip": null, - "value": " 60000/0 [00:00<00:00, 972945.69 examples/s]" - } - }, - "8944dd98d72349a5be7063852a21d1c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "90005ad1662a4399b7be6a444a22baf4": { + "8b07001a214c4c268b08c628a7ff9e8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_834eb2f7d0d74cb785e58552bdaab3c2", + "placeholder": "​", + "style": "IPY_MODEL_ae5b4be114cf49a3a236e2414ea9ec74", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "91107edd04e24ddfa18822baf8d28255": { + "8eac27d48e0d4eda8f3f1a29c903074b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "9588000ebdf345bebf297a2c279caa6d": { + "8f2272d60a3248e29fe79642f0ff3265": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4312,10 +4158,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "95e05aba0365417aab068330e8b9a12b": { + "903186124d324e7fb525fa3ff2403018": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4330,15 +4176,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4bba15efd9dc46a2a0ebd1291f8896dc", + "layout": "IPY_MODEL_285fd65ebfa84b7db898a122b01e9cf6", "placeholder": "​", - "style": "IPY_MODEL_d5749ba00c354619848ffd0fe274e6fd", + "style": "IPY_MODEL_5174d8704fca4455bda38a72dfce3e9e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 5.18M/5.18M [00:00<00:00, 15.5MB/s]" + } + }, + "923abd22bde14711966b7c5552bf4c5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6397b7759d21423b9c41a28075a672ed", + "placeholder": "​", + "style": "IPY_MODEL_79c541cc0f894a56a2797fbef2534db4", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: " } }, - "9cc620828b64434cb0d8bdaf6831e7ae": { + "96e7054a006f4727bf45e5a42d11b2c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4391,23 +4260,30 @@ "width": null } }, - "9d16e6000e234533bcde9ed155252467": { + "99867176270e42be92113eb850116874": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b207a5d2a3bf4b9285d84b1c2d7408c7", + "placeholder": "​", + "style": "IPY_MODEL_5d70744021bd418c95053a103abb48af", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "a2342367645f4628a390dd1f293fe17a": { + "9f33cb0947d349b78bad2c1cd8a403e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4422,57 +4298,94 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3bbd7ddc822a40bb99e2eb7d57b32a62", + "layout": "IPY_MODEL_7a3e0d588f0248b28b5c9d27a4b7737c", "placeholder": "​", - "style": "IPY_MODEL_f30bada11cdc4aa5a3be563b379969f3", + "style": "IPY_MODEL_e753e814b85c48f89b1839b325827653", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 62.3MB/s]" + "value": " 2/2 [00:00<00:00, 553.67it/s]" } }, - "a6e7d1c0d21c4730876e3dc529f3db41": { + "a5440438a96642aa822f3db19dd9d2b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_163f6d444ced4bd3a8aeef3fb3508584", - "IPY_MODEL_77468d8237894488926b994607e32290", - "IPY_MODEL_d63672f8f5a54edb893686a037241111" - ], - "layout": "IPY_MODEL_1a890e8102094b07bd098955bc285fc9", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee8b1d7e105c4d54aeff1bbda21c46cf", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67d8a420ec26495abdcdb3b12e679851", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "a76fc2e470334b3fbdbd3f0089500faa": { - "model_module": "@jupyter-widgets/controls", + "a8a5a7c2120f4f4e9594f6cc1ca2c60a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "af7256daba3e4d6fb5beb6e6efbedb1f": { + "ae5b4be114cf49a3a236e2414ea9ec74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4490,7 +4403,60 @@ "text_color": null } }, - "b3c252ad82284cfebb7d60516a02a5c8": { + "b207a5d2a3bf4b9285d84b1c2d7408c7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b3a233d32141401f8db7bc191a381641": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4505,15 +4471,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_030281198fd34a91972408f1da63fd2c", + "layout": "IPY_MODEL_fbc31c35b38e4af899f96c14b9989fb1", "placeholder": "​", - "style": "IPY_MODEL_8039157c6cfa420f945b501e5a83bbe0", + "style": "IPY_MODEL_37f8ad1027ad4b2182598247456a700e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 60000/0 [00:00<00:00, 909801.02 examples/s]" } }, - "bb252788ddb9420a88bb9797d7813181": { + "b89c0aea8ebd4903ae202e5ffdb99c81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4566,33 +4532,31 @@ "width": null } }, - "bb5b1299d4bf4b4a8c5edb9c01e08f4a": { + "bbfffb031cc24eb4ae644fb9173c9de0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6698cd7395124e1a8376a76adf2c4453", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_37fac0c2d47b4f4cbf18f1bb7348240e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_923abd22bde14711966b7c5552bf4c5e", + "IPY_MODEL_3fdf1f2465c1440b8c718c42a818ad75", + "IPY_MODEL_b3a233d32141401f8db7bc191a381641" + ], + "layout": "IPY_MODEL_ffd7dcc7b14a4ef798b2746aa3b3c7f0", "tabbable": null, - "tooltip": null, - "value": 2.0 + "tooltip": null } }, - "bf209122024e46c5ab88db5cb5138baf": { + "be05548dfdec494981be4be62e6a5d4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4607,15 +4571,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2191c71bc38844fda92806b5e0000cfa", + "layout": "IPY_MODEL_1f8b5c4b58024e64be421bef7eadc5d0", "placeholder": "​", - "style": "IPY_MODEL_a76fc2e470334b3fbdbd3f0089500faa", + "style": "IPY_MODEL_42a019e901584661bcd2c6b48c3bfd0d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7058.48 examples/s]" + "value": " 60000/60000 [00:38<00:00, 1621.13it/s]" } }, - "c0e317ca2efa410b9b4b1b686da287f3": { + "c1e31f34f2ff4836aeaad3e21d2121f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4631,40 +4595,90 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8504f14162fd453a920ab503c6015fac", + "layout": "IPY_MODEL_471b6653307d4909b42ade69cf37da25", "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_02a75c6b9edc4a8da0feb9bfb6765cbb", + "style": "IPY_MODEL_8eac27d48e0d4eda8f3f1a29c903074b", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "c3de9a57ab064122bf5347d7f435c3e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3de862f5c9be4a6dbdda8611c5e6dca5", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_493ed9042d5e4326adfc3d2585299355", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "c74f77bc004047b7b8662e029b1fcb07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7930a46787484e95a506fe2ffde1ac01", + "placeholder": "​", + "style": "IPY_MODEL_6d967799b3234367929d5561fa93aa2a", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "100%" } }, - "c63ff68274c34fac9f7ad054164174d4": { + "c7e1f8c4d56340c8bb108cd4fe09524c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85da4e0901624e5d8bff898ceea6d901", - "placeholder": "​", - "style": "IPY_MODEL_91107edd04e24ddfa18822baf8d28255", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c74f77bc004047b7b8662e029b1fcb07", + "IPY_MODEL_a5440438a96642aa822f3db19dd9d2b2", + "IPY_MODEL_be05548dfdec494981be4be62e6a5d4a" + ], + "layout": "IPY_MODEL_fddb77a232504422a0b397d40d2ebc1e", "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 521.03it/s]" + "tooltip": null } }, - "c6726edea8694a65a03ad0e2fb31c97b": { + "d6a1a3af52b34e20a14fd4ff35251275": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4682,7 +4696,7 @@ "text_color": null } }, - "c8be3516c6484667a59994d658e9fa5b": { + "d70aa7ea4b3b44ea9784c79850fb7af4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4732,10 +4746,62 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "dc7818977fcb49399992e292f7bab51d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a8a5a7c2120f4f4e9594f6cc1ca2c60a", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68d54c5150274e5f8dcc0ad415e06a5a", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "dfd15be73a8148cdb1ab8b91c3f276a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d70aa7ea4b3b44ea9784c79850fb7af4", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1644edf88a214176b72d5e2999de8b8e", + "tabbable": null, + "tooltip": null, + "value": 1.0 } }, - "ce69eb6fd8f34a5bad0f15df3a6b52b0": { + "e05b0e6e74fa464d816d0358a6dc76b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4750,16 +4816,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0c77dd68f643447aa8f7a15a8f8d7c0d", - "IPY_MODEL_e28a4e53150a428d98c3c546e1b45e03", - "IPY_MODEL_bf209122024e46c5ab88db5cb5138baf" + "IPY_MODEL_3f55ac718f964cec989f7482f3183b89", + "IPY_MODEL_dc7818977fcb49399992e292f7bab51d", + "IPY_MODEL_f98496a8928c4621ac3e712295d0f550" ], - "layout": "IPY_MODEL_7f55f4f4deb242e49f6586cf22c09f47", + "layout": "IPY_MODEL_8f2272d60a3248e29fe79642f0ff3265", "tabbable": null, "tooltip": null } }, - "cf33f9566dfc4d708dcbfd58fe688462": { + "e0ebc204c13641a2b55191d60baf356f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e2c737cdcd6f4555b7e61b60589713ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4809,10 +4893,10 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "d4b0778e22ed4eadb1732422377e864c": { + "e53626a1bc4048ddb632f06afadeb258": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4865,90 +4949,49 @@ "width": null } }, - "d5749ba00c354619848ffd0fe274e6fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d63672f8f5a54edb893686a037241111": { + "e5ff19704e974b418104ac00b0017738": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b418860b14e47f58fd4b00a13032e44", - "placeholder": "​", - "style": "IPY_MODEL_53c815aed4304e5e9afdf1da25822e92", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f69d38dc83a4401bb43f2a3672cfcb79", + "IPY_MODEL_c1e31f34f2ff4836aeaad3e21d2121f5", + "IPY_MODEL_903186124d324e7fb525fa3ff2403018" + ], + "layout": "IPY_MODEL_77816eaf3dc34ead865eac35c87b2e04", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1692.62it/s]" + "tooltip": null } }, - "db40575858474d3a843331bc41775ad3": { + "e753e814b85c48f89b1839b325827653": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e28a4e53150a428d98c3c546e1b45e03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ef735a55d4af44f0ae295a9724d55bf7", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_76145457ff634734ab36f88825eb03f4", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e589d0c9f4074d929f567d526d1382cd": { + "e7800f2f49ce4746b2842751e0616d59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4963,16 +5006,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b3c252ad82284cfebb7d60516a02a5c8", - "IPY_MODEL_c0e317ca2efa410b9b4b1b686da287f3", - "IPY_MODEL_a2342367645f4628a390dd1f293fe17a" + "IPY_MODEL_7e37a4f7322147979cf7891faa98ee14", + "IPY_MODEL_dfd15be73a8148cdb1ab8b91c3f276a7", + "IPY_MODEL_1ec724c611f14ab38760c5b566b9582f" ], - "layout": "IPY_MODEL_cf33f9566dfc4d708dcbfd58fe688462", + "layout": "IPY_MODEL_4418d7b6a1184fb2a4103b6e70f569aa", "tabbable": null, "tooltip": null } }, - "e6777fbed25941949ac8a3d865aed819": { + "ee8b1d7e105c4d54aeff1bbda21c46cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5025,31 +5068,48 @@ "width": null } }, - "ea33752ef0e44cc7a07b481740f0d64f": { + "effe32e5f0a941f080bbc9527408df9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f69d38dc83a4401bb43f2a3672cfcb79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_200fde7945ec4df980b83907c2e129ef", - "IPY_MODEL_48334b3517aa4ba7832a21e78f093fdd", - "IPY_MODEL_884ffee63a00480ea5edbb59b662c16f" - ], - "layout": "IPY_MODEL_ffae2d4faf394024b9fa81123e38597b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c0f9fff6e4c405fa1bfc4e835f67e87", + "placeholder": "​", + "style": "IPY_MODEL_2aa613cbd16f441d9edaca57135cb071", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "edfeed6b7cf649fda36e013a4fdaa7ff": { + "f7a0422ab0104b88942f6e13074466fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5102,7 +5162,30 @@ "width": null } }, - "ef735a55d4af44f0ae295a9724d55bf7": { + "f98496a8928c4621ac3e712295d0f550": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7562623f07f54b5cbff436c2d9c3b869", + "placeholder": "​", + "style": "IPY_MODEL_810dd6ae071b4bc39252b1d0c0529379", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6473.19 examples/s]" + } + }, + "fbc31c35b38e4af899f96c14b9989fb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5155,7 +5238,7 @@ "width": null } }, - "f0347dfa685c498e90e22335f0838175": { + "fc77e2b0e4414a47ae304a5cf6344637": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5208,25 +5291,7 @@ "width": null } }, - "f30bada11cdc4aa5a3be563b379969f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f62babe0a6794ddfb0512fdd7ec0d2e6": { + "fddb77a232504422a0b397d40d2ebc1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5276,51 +5341,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" - } - }, - "f905fd537338456d835ebeb8895ccb67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_564801b11acd4cf59ad85465e6a2a44d", - "placeholder": "​", - "style": "IPY_MODEL_22793e0bfd4445869a5eb18544b4933c", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: " - } - }, - "fa36e53aaef54fd689bfb9d08854a360": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "width": null } }, - "ffae2d4faf394024b9fa81123e38597b": { + "ffd7dcc7b14a4ef798b2746aa3b3c7f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 87da21dc3..0df9de925 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:32.645032Z", - "iopub.status.busy": "2024-02-08T04:29:32.644695Z", - "iopub.status.idle": "2024-02-08T04:29:33.720265Z", - "shell.execute_reply": "2024-02-08T04:29:33.719714Z" + "iopub.execute_input": "2024-02-08T05:16:23.904483Z", + "iopub.status.busy": "2024-02-08T05:16:23.904288Z", + "iopub.status.idle": "2024-02-08T05:16:25.064878Z", + "shell.execute_reply": "2024-02-08T05:16:25.064318Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.722754Z", - "iopub.status.busy": "2024-02-08T04:29:33.722495Z", - "iopub.status.idle": "2024-02-08T04:29:33.896878Z", - "shell.execute_reply": "2024-02-08T04:29:33.896375Z" + "iopub.execute_input": "2024-02-08T05:16:25.067486Z", + "iopub.status.busy": "2024-02-08T05:16:25.067046Z", + "iopub.status.idle": "2024-02-08T05:16:25.249068Z", + "shell.execute_reply": "2024-02-08T05:16:25.248446Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.899042Z", - "iopub.status.busy": "2024-02-08T04:29:33.898858Z", - "iopub.status.idle": "2024-02-08T04:29:33.910302Z", - "shell.execute_reply": "2024-02-08T04:29:33.909891Z" + "iopub.execute_input": "2024-02-08T05:16:25.251515Z", + "iopub.status.busy": "2024-02-08T05:16:25.251316Z", + "iopub.status.idle": "2024-02-08T05:16:25.263540Z", + "shell.execute_reply": "2024-02-08T05:16:25.263084Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.912102Z", - "iopub.status.busy": "2024-02-08T04:29:33.911929Z", - "iopub.status.idle": "2024-02-08T04:29:34.143692Z", - "shell.execute_reply": "2024-02-08T04:29:34.143115Z" + "iopub.execute_input": "2024-02-08T05:16:25.265557Z", + "iopub.status.busy": "2024-02-08T05:16:25.265345Z", + "iopub.status.idle": "2024-02-08T05:16:25.502662Z", + "shell.execute_reply": "2024-02-08T05:16:25.502081Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:34.146119Z", - "iopub.status.busy": "2024-02-08T04:29:34.145722Z", - "iopub.status.idle": "2024-02-08T04:29:34.171831Z", - "shell.execute_reply": "2024-02-08T04:29:34.171416Z" + "iopub.execute_input": "2024-02-08T05:16:25.504829Z", + "iopub.status.busy": "2024-02-08T05:16:25.504610Z", + "iopub.status.idle": "2024-02-08T05:16:25.531768Z", + "shell.execute_reply": "2024-02-08T05:16:25.531124Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:34.173843Z", - "iopub.status.busy": "2024-02-08T04:29:34.173536Z", - "iopub.status.idle": "2024-02-08T04:29:35.807810Z", - "shell.execute_reply": "2024-02-08T04:29:35.807175Z" + "iopub.execute_input": "2024-02-08T05:16:25.534300Z", + "iopub.status.busy": "2024-02-08T05:16:25.534072Z", + "iopub.status.idle": "2024-02-08T05:16:27.324472Z", + "shell.execute_reply": "2024-02-08T05:16:27.323774Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:35.810545Z", - "iopub.status.busy": "2024-02-08T04:29:35.809961Z", - "iopub.status.idle": "2024-02-08T04:29:35.825604Z", - "shell.execute_reply": "2024-02-08T04:29:35.825067Z" + "iopub.execute_input": "2024-02-08T05:16:27.327517Z", + "iopub.status.busy": "2024-02-08T05:16:27.326712Z", + "iopub.status.idle": "2024-02-08T05:16:27.344016Z", + "shell.execute_reply": "2024-02-08T05:16:27.343410Z" }, "scrolled": true }, @@ -603,10 +603,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:35.827648Z", - "iopub.status.busy": "2024-02-08T04:29:35.827315Z", - "iopub.status.idle": "2024-02-08T04:29:37.188484Z", - "shell.execute_reply": "2024-02-08T04:29:37.187888Z" + "iopub.execute_input": "2024-02-08T05:16:27.346267Z", + "iopub.status.busy": "2024-02-08T05:16:27.345912Z", + "iopub.status.idle": "2024-02-08T05:16:28.805475Z", + "shell.execute_reply": "2024-02-08T05:16:28.804859Z" }, "id": "AaHC5MRKjruT" }, @@ -725,10 +725,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.191219Z", - "iopub.status.busy": "2024-02-08T04:29:37.190509Z", - "iopub.status.idle": "2024-02-08T04:29:37.203596Z", - "shell.execute_reply": "2024-02-08T04:29:37.203132Z" + "iopub.execute_input": "2024-02-08T05:16:28.808277Z", + "iopub.status.busy": "2024-02-08T05:16:28.807550Z", + "iopub.status.idle": "2024-02-08T05:16:28.822035Z", + "shell.execute_reply": "2024-02-08T05:16:28.821504Z" }, "id": "Wy27rvyhjruU" }, @@ -777,10 +777,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.205575Z", - "iopub.status.busy": "2024-02-08T04:29:37.205257Z", - "iopub.status.idle": "2024-02-08T04:29:37.276055Z", - "shell.execute_reply": "2024-02-08T04:29:37.275466Z" + "iopub.execute_input": "2024-02-08T05:16:28.824303Z", + "iopub.status.busy": "2024-02-08T05:16:28.823967Z", + "iopub.status.idle": "2024-02-08T05:16:28.906213Z", + "shell.execute_reply": "2024-02-08T05:16:28.905616Z" }, "id": "Db8YHnyVjruU" }, @@ -887,10 +887,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.278425Z", - "iopub.status.busy": "2024-02-08T04:29:37.277958Z", - "iopub.status.idle": "2024-02-08T04:29:37.484301Z", - "shell.execute_reply": "2024-02-08T04:29:37.483767Z" + "iopub.execute_input": "2024-02-08T05:16:28.908687Z", + "iopub.status.busy": "2024-02-08T05:16:28.908315Z", + "iopub.status.idle": "2024-02-08T05:16:29.122035Z", + "shell.execute_reply": "2024-02-08T05:16:29.121452Z" }, "id": "iJqAHuS2jruV" }, @@ -927,10 +927,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.486294Z", - "iopub.status.busy": "2024-02-08T04:29:37.486111Z", - "iopub.status.idle": "2024-02-08T04:29:37.502750Z", - "shell.execute_reply": "2024-02-08T04:29:37.502299Z" + "iopub.execute_input": "2024-02-08T05:16:29.124454Z", + "iopub.status.busy": "2024-02-08T05:16:29.124090Z", + "iopub.status.idle": "2024-02-08T05:16:29.141232Z", + "shell.execute_reply": "2024-02-08T05:16:29.140709Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1396,10 +1396,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.504575Z", - "iopub.status.busy": "2024-02-08T04:29:37.504403Z", - "iopub.status.idle": "2024-02-08T04:29:37.514117Z", - "shell.execute_reply": "2024-02-08T04:29:37.513675Z" + "iopub.execute_input": "2024-02-08T05:16:29.143296Z", + "iopub.status.busy": "2024-02-08T05:16:29.143026Z", + "iopub.status.idle": "2024-02-08T05:16:29.153368Z", + "shell.execute_reply": "2024-02-08T05:16:29.152882Z" }, "id": "0lonvOYvjruV" }, @@ -1546,10 +1546,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.516079Z", - "iopub.status.busy": "2024-02-08T04:29:37.515743Z", - "iopub.status.idle": "2024-02-08T04:29:37.601813Z", - "shell.execute_reply": "2024-02-08T04:29:37.601272Z" + "iopub.execute_input": "2024-02-08T05:16:29.155357Z", + "iopub.status.busy": "2024-02-08T05:16:29.155177Z", + "iopub.status.idle": "2024-02-08T05:16:29.246946Z", + "shell.execute_reply": "2024-02-08T05:16:29.246397Z" }, "id": "MfqTCa3kjruV" }, @@ -1630,10 +1630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.604001Z", - "iopub.status.busy": "2024-02-08T04:29:37.603757Z", - "iopub.status.idle": "2024-02-08T04:29:37.719348Z", - "shell.execute_reply": "2024-02-08T04:29:37.718745Z" + "iopub.execute_input": "2024-02-08T05:16:29.249443Z", + "iopub.status.busy": "2024-02-08T05:16:29.249083Z", + "iopub.status.idle": "2024-02-08T05:16:29.393372Z", + "shell.execute_reply": "2024-02-08T05:16:29.392737Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1693,10 +1693,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.721930Z", - "iopub.status.busy": "2024-02-08T04:29:37.721478Z", - "iopub.status.idle": "2024-02-08T04:29:37.725255Z", - "shell.execute_reply": "2024-02-08T04:29:37.724725Z" + "iopub.execute_input": "2024-02-08T05:16:29.395694Z", + "iopub.status.busy": "2024-02-08T05:16:29.395428Z", + "iopub.status.idle": "2024-02-08T05:16:29.399352Z", + "shell.execute_reply": "2024-02-08T05:16:29.398811Z" }, "id": "0rXP3ZPWjruW" }, @@ -1734,10 +1734,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.727192Z", - "iopub.status.busy": "2024-02-08T04:29:37.726886Z", - "iopub.status.idle": "2024-02-08T04:29:37.730475Z", - "shell.execute_reply": "2024-02-08T04:29:37.729957Z" + "iopub.execute_input": "2024-02-08T05:16:29.401424Z", + "iopub.status.busy": "2024-02-08T05:16:29.401231Z", + "iopub.status.idle": "2024-02-08T05:16:29.404974Z", + "shell.execute_reply": "2024-02-08T05:16:29.404417Z" }, "id": "-iRPe8KXjruW" }, @@ -1792,10 +1792,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.732457Z", - "iopub.status.busy": "2024-02-08T04:29:37.732160Z", - "iopub.status.idle": "2024-02-08T04:29:37.769591Z", - "shell.execute_reply": "2024-02-08T04:29:37.769152Z" + "iopub.execute_input": "2024-02-08T05:16:29.406936Z", + "iopub.status.busy": "2024-02-08T05:16:29.406750Z", + "iopub.status.idle": "2024-02-08T05:16:29.445136Z", + "shell.execute_reply": "2024-02-08T05:16:29.444538Z" }, "id": "ZpipUliyjruW" }, @@ -1846,10 +1846,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.771657Z", - "iopub.status.busy": "2024-02-08T04:29:37.771341Z", - "iopub.status.idle": "2024-02-08T04:29:37.814037Z", - "shell.execute_reply": "2024-02-08T04:29:37.813596Z" + "iopub.execute_input": "2024-02-08T05:16:29.447272Z", + "iopub.status.busy": "2024-02-08T05:16:29.447037Z", + "iopub.status.idle": "2024-02-08T05:16:29.493067Z", + "shell.execute_reply": "2024-02-08T05:16:29.492437Z" }, "id": "SLq-3q4xjruX" }, @@ -1918,10 +1918,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.815990Z", - "iopub.status.busy": "2024-02-08T04:29:37.815690Z", - "iopub.status.idle": "2024-02-08T04:29:37.905459Z", - "shell.execute_reply": "2024-02-08T04:29:37.904784Z" + "iopub.execute_input": "2024-02-08T05:16:29.495258Z", + "iopub.status.busy": "2024-02-08T05:16:29.495057Z", + "iopub.status.idle": "2024-02-08T05:16:29.598321Z", + "shell.execute_reply": "2024-02-08T05:16:29.597712Z" }, "id": "g5LHhhuqFbXK" }, @@ -1953,10 +1953,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.907986Z", - "iopub.status.busy": "2024-02-08T04:29:37.907545Z", - "iopub.status.idle": "2024-02-08T04:29:37.987051Z", - "shell.execute_reply": "2024-02-08T04:29:37.986492Z" + "iopub.execute_input": "2024-02-08T05:16:29.601066Z", + "iopub.status.busy": "2024-02-08T05:16:29.600752Z", + "iopub.status.idle": "2024-02-08T05:16:29.709010Z", + "shell.execute_reply": "2024-02-08T05:16:29.708373Z" }, "id": "p7w8F8ezBcet" }, @@ -2013,10 +2013,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.989407Z", - "iopub.status.busy": "2024-02-08T04:29:37.989045Z", - "iopub.status.idle": "2024-02-08T04:29:38.193150Z", - "shell.execute_reply": "2024-02-08T04:29:38.192637Z" + "iopub.execute_input": "2024-02-08T05:16:29.711482Z", + "iopub.status.busy": "2024-02-08T05:16:29.711110Z", + "iopub.status.idle": "2024-02-08T05:16:29.921984Z", + "shell.execute_reply": "2024-02-08T05:16:29.921374Z" }, "id": "WETRL74tE_sU" }, @@ -2051,10 +2051,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.195237Z", - "iopub.status.busy": "2024-02-08T04:29:38.194911Z", - "iopub.status.idle": "2024-02-08T04:29:38.360571Z", - "shell.execute_reply": "2024-02-08T04:29:38.359936Z" + "iopub.execute_input": "2024-02-08T05:16:29.924291Z", + "iopub.status.busy": "2024-02-08T05:16:29.923945Z", + "iopub.status.idle": "2024-02-08T05:16:30.137676Z", + "shell.execute_reply": "2024-02-08T05:16:30.137058Z" }, "id": "kCfdx2gOLmXS" }, @@ -2216,10 +2216,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.363019Z", - "iopub.status.busy": "2024-02-08T04:29:38.362538Z", - "iopub.status.idle": "2024-02-08T04:29:38.368605Z", - "shell.execute_reply": "2024-02-08T04:29:38.368062Z" + "iopub.execute_input": "2024-02-08T05:16:30.140295Z", + "iopub.status.busy": "2024-02-08T05:16:30.139915Z", + "iopub.status.idle": "2024-02-08T05:16:30.146272Z", + "shell.execute_reply": "2024-02-08T05:16:30.145735Z" }, "id": "-uogYRWFYnuu" }, @@ -2273,10 +2273,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.370392Z", - "iopub.status.busy": "2024-02-08T04:29:38.370219Z", - "iopub.status.idle": "2024-02-08T04:29:38.582389Z", - "shell.execute_reply": "2024-02-08T04:29:38.581969Z" + "iopub.execute_input": "2024-02-08T05:16:30.148427Z", + "iopub.status.busy": "2024-02-08T05:16:30.148086Z", + "iopub.status.idle": "2024-02-08T05:16:30.366341Z", + "shell.execute_reply": "2024-02-08T05:16:30.365773Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2323,10 +2323,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.584400Z", - "iopub.status.busy": "2024-02-08T04:29:38.584220Z", - "iopub.status.idle": "2024-02-08T04:29:39.639347Z", - "shell.execute_reply": "2024-02-08T04:29:39.638773Z" + "iopub.execute_input": "2024-02-08T05:16:30.369080Z", + "iopub.status.busy": "2024-02-08T05:16:30.368616Z", + "iopub.status.idle": "2024-02-08T05:16:31.451674Z", + "shell.execute_reply": "2024-02-08T05:16:31.451027Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index dfa012bd1..3c2d16d5f 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:42.889519Z", - "iopub.status.busy": "2024-02-08T04:29:42.889351Z", - "iopub.status.idle": "2024-02-08T04:29:43.915960Z", - "shell.execute_reply": "2024-02-08T04:29:43.915405Z" + "iopub.execute_input": "2024-02-08T05:16:34.936998Z", + "iopub.status.busy": "2024-02-08T05:16:34.936817Z", + "iopub.status.idle": "2024-02-08T05:16:36.033944Z", + "shell.execute_reply": "2024-02-08T05:16:36.033316Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.918566Z", - "iopub.status.busy": "2024-02-08T04:29:43.918062Z", - "iopub.status.idle": "2024-02-08T04:29:43.921217Z", - "shell.execute_reply": "2024-02-08T04:29:43.920677Z" + "iopub.execute_input": "2024-02-08T05:16:36.036779Z", + "iopub.status.busy": "2024-02-08T05:16:36.036213Z", + "iopub.status.idle": "2024-02-08T05:16:36.039446Z", + "shell.execute_reply": "2024-02-08T05:16:36.038895Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.923276Z", - "iopub.status.busy": "2024-02-08T04:29:43.922951Z", - "iopub.status.idle": "2024-02-08T04:29:43.930415Z", - "shell.execute_reply": "2024-02-08T04:29:43.929991Z" + "iopub.execute_input": "2024-02-08T05:16:36.041728Z", + "iopub.status.busy": "2024-02-08T05:16:36.041326Z", + "iopub.status.idle": "2024-02-08T05:16:36.049301Z", + "shell.execute_reply": "2024-02-08T05:16:36.048798Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.932385Z", - "iopub.status.busy": "2024-02-08T04:29:43.932070Z", - "iopub.status.idle": "2024-02-08T04:29:43.978343Z", - "shell.execute_reply": "2024-02-08T04:29:43.977921Z" + "iopub.execute_input": "2024-02-08T05:16:36.051266Z", + "iopub.status.busy": "2024-02-08T05:16:36.051078Z", + "iopub.status.idle": "2024-02-08T05:16:36.098632Z", + "shell.execute_reply": "2024-02-08T05:16:36.098136Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.980378Z", - "iopub.status.busy": "2024-02-08T04:29:43.980064Z", - "iopub.status.idle": "2024-02-08T04:29:43.996196Z", - "shell.execute_reply": "2024-02-08T04:29:43.995736Z" + "iopub.execute_input": "2024-02-08T05:16:36.101112Z", + "iopub.status.busy": "2024-02-08T05:16:36.100774Z", + "iopub.status.idle": "2024-02-08T05:16:36.118463Z", + "shell.execute_reply": "2024-02-08T05:16:36.117914Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.998249Z", - "iopub.status.busy": "2024-02-08T04:29:43.997939Z", - "iopub.status.idle": "2024-02-08T04:29:44.001493Z", - "shell.execute_reply": "2024-02-08T04:29:44.001025Z" + "iopub.execute_input": "2024-02-08T05:16:36.120776Z", + "iopub.status.busy": "2024-02-08T05:16:36.120434Z", + "iopub.status.idle": "2024-02-08T05:16:36.124402Z", + "shell.execute_reply": "2024-02-08T05:16:36.123935Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.003462Z", - "iopub.status.busy": "2024-02-08T04:29:44.003206Z", - "iopub.status.idle": "2024-02-08T04:29:44.032086Z", - "shell.execute_reply": "2024-02-08T04:29:44.031667Z" + "iopub.execute_input": "2024-02-08T05:16:36.126729Z", + "iopub.status.busy": "2024-02-08T05:16:36.126390Z", + "iopub.status.idle": "2024-02-08T05:16:36.154633Z", + "shell.execute_reply": "2024-02-08T05:16:36.154141Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.033896Z", - "iopub.status.busy": "2024-02-08T04:29:44.033722Z", - "iopub.status.idle": "2024-02-08T04:29:44.059752Z", - "shell.execute_reply": "2024-02-08T04:29:44.059305Z" + "iopub.execute_input": "2024-02-08T05:16:36.157128Z", + "iopub.status.busy": "2024-02-08T05:16:36.156770Z", + "iopub.status.idle": "2024-02-08T05:16:36.183420Z", + "shell.execute_reply": "2024-02-08T05:16:36.182914Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.061575Z", - "iopub.status.busy": "2024-02-08T04:29:44.061407Z", - "iopub.status.idle": "2024-02-08T04:29:45.734046Z", - "shell.execute_reply": "2024-02-08T04:29:45.733523Z" + "iopub.execute_input": "2024-02-08T05:16:36.185904Z", + "iopub.status.busy": "2024-02-08T05:16:36.185669Z", + "iopub.status.idle": "2024-02-08T05:16:38.003463Z", + "shell.execute_reply": "2024-02-08T05:16:38.002793Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.736683Z", - "iopub.status.busy": "2024-02-08T04:29:45.736217Z", - "iopub.status.idle": "2024-02-08T04:29:45.742703Z", - "shell.execute_reply": "2024-02-08T04:29:45.742248Z" + "iopub.execute_input": "2024-02-08T05:16:38.006228Z", + "iopub.status.busy": "2024-02-08T05:16:38.005857Z", + "iopub.status.idle": "2024-02-08T05:16:38.012858Z", + "shell.execute_reply": "2024-02-08T05:16:38.012286Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.744717Z", - "iopub.status.busy": "2024-02-08T04:29:45.744395Z", - "iopub.status.idle": "2024-02-08T04:29:45.756449Z", - "shell.execute_reply": "2024-02-08T04:29:45.756029Z" + "iopub.execute_input": "2024-02-08T05:16:38.015175Z", + "iopub.status.busy": "2024-02-08T05:16:38.014963Z", + "iopub.status.idle": "2024-02-08T05:16:38.028000Z", + "shell.execute_reply": "2024-02-08T05:16:38.027502Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.758369Z", - "iopub.status.busy": "2024-02-08T04:29:45.757999Z", - "iopub.status.idle": "2024-02-08T04:29:45.764109Z", - "shell.execute_reply": "2024-02-08T04:29:45.763637Z" + "iopub.execute_input": "2024-02-08T05:16:38.030095Z", + "iopub.status.busy": "2024-02-08T05:16:38.029746Z", + "iopub.status.idle": "2024-02-08T05:16:38.036269Z", + "shell.execute_reply": "2024-02-08T05:16:38.035718Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.766108Z", - "iopub.status.busy": "2024-02-08T04:29:45.765938Z", - "iopub.status.idle": "2024-02-08T04:29:45.768411Z", - "shell.execute_reply": "2024-02-08T04:29:45.767997Z" + "iopub.execute_input": "2024-02-08T05:16:38.038467Z", + "iopub.status.busy": "2024-02-08T05:16:38.038157Z", + "iopub.status.idle": "2024-02-08T05:16:38.040886Z", + "shell.execute_reply": "2024-02-08T05:16:38.040428Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.770202Z", - "iopub.status.busy": "2024-02-08T04:29:45.770034Z", - "iopub.status.idle": "2024-02-08T04:29:45.773298Z", - "shell.execute_reply": "2024-02-08T04:29:45.772779Z" + "iopub.execute_input": "2024-02-08T05:16:38.042877Z", + "iopub.status.busy": "2024-02-08T05:16:38.042548Z", + "iopub.status.idle": "2024-02-08T05:16:38.046125Z", + "shell.execute_reply": "2024-02-08T05:16:38.045579Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.775318Z", - "iopub.status.busy": "2024-02-08T04:29:45.775018Z", - "iopub.status.idle": "2024-02-08T04:29:45.777581Z", - "shell.execute_reply": "2024-02-08T04:29:45.777139Z" + "iopub.execute_input": "2024-02-08T05:16:38.048464Z", + "iopub.status.busy": "2024-02-08T05:16:38.048004Z", + "iopub.status.idle": "2024-02-08T05:16:38.050984Z", + "shell.execute_reply": "2024-02-08T05:16:38.050453Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.779440Z", - "iopub.status.busy": "2024-02-08T04:29:45.779263Z", - "iopub.status.idle": "2024-02-08T04:29:45.783182Z", - "shell.execute_reply": "2024-02-08T04:29:45.782669Z" + "iopub.execute_input": "2024-02-08T05:16:38.052798Z", + "iopub.status.busy": "2024-02-08T05:16:38.052624Z", + "iopub.status.idle": "2024-02-08T05:16:38.056584Z", + "shell.execute_reply": "2024-02-08T05:16:38.056047Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.785161Z", - "iopub.status.busy": "2024-02-08T04:29:45.784866Z", - "iopub.status.idle": "2024-02-08T04:29:45.813727Z", - "shell.execute_reply": "2024-02-08T04:29:45.813180Z" + "iopub.execute_input": "2024-02-08T05:16:38.058708Z", + "iopub.status.busy": "2024-02-08T05:16:38.058392Z", + "iopub.status.idle": "2024-02-08T05:16:38.088017Z", + "shell.execute_reply": "2024-02-08T05:16:38.087505Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.816053Z", - "iopub.status.busy": "2024-02-08T04:29:45.815717Z", - "iopub.status.idle": "2024-02-08T04:29:45.820279Z", - "shell.execute_reply": "2024-02-08T04:29:45.819724Z" + "iopub.execute_input": "2024-02-08T05:16:38.090547Z", + "iopub.status.busy": "2024-02-08T05:16:38.090159Z", + "iopub.status.idle": "2024-02-08T05:16:38.095177Z", + "shell.execute_reply": "2024-02-08T05:16:38.094708Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index b4eaced1c..321e2cd0f 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:48.353289Z", - "iopub.status.busy": "2024-02-08T04:29:48.353111Z", - "iopub.status.idle": "2024-02-08T04:29:49.444617Z", - "shell.execute_reply": "2024-02-08T04:29:49.444025Z" + "iopub.execute_input": "2024-02-08T05:16:40.856017Z", + "iopub.status.busy": "2024-02-08T05:16:40.855833Z", + "iopub.status.idle": "2024-02-08T05:16:42.014133Z", + "shell.execute_reply": "2024-02-08T05:16:42.013543Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.447013Z", - "iopub.status.busy": "2024-02-08T04:29:49.446776Z", - "iopub.status.idle": "2024-02-08T04:29:49.635510Z", - "shell.execute_reply": "2024-02-08T04:29:49.635070Z" + "iopub.execute_input": "2024-02-08T05:16:42.016876Z", + "iopub.status.busy": "2024-02-08T05:16:42.016360Z", + "iopub.status.idle": "2024-02-08T05:16:42.218815Z", + "shell.execute_reply": "2024-02-08T05:16:42.218247Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.638063Z", - "iopub.status.busy": "2024-02-08T04:29:49.637575Z", - "iopub.status.idle": "2024-02-08T04:29:49.650235Z", - "shell.execute_reply": "2024-02-08T04:29:49.649787Z" + "iopub.execute_input": "2024-02-08T05:16:42.221496Z", + "iopub.status.busy": "2024-02-08T05:16:42.221090Z", + "iopub.status.idle": "2024-02-08T05:16:42.234145Z", + "shell.execute_reply": "2024-02-08T05:16:42.233583Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.652052Z", - "iopub.status.busy": "2024-02-08T04:29:49.651879Z", - "iopub.status.idle": "2024-02-08T04:29:52.291472Z", - "shell.execute_reply": "2024-02-08T04:29:52.290880Z" + "iopub.execute_input": "2024-02-08T05:16:42.236297Z", + "iopub.status.busy": "2024-02-08T05:16:42.235977Z", + "iopub.status.idle": "2024-02-08T05:16:44.901042Z", + "shell.execute_reply": "2024-02-08T05:16:44.900491Z" } }, "outputs": [ @@ -452,10 +452,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:52.293864Z", - "iopub.status.busy": "2024-02-08T04:29:52.293436Z", - "iopub.status.idle": "2024-02-08T04:29:53.631829Z", - "shell.execute_reply": "2024-02-08T04:29:53.631305Z" + "iopub.execute_input": "2024-02-08T05:16:44.903080Z", + "iopub.status.busy": "2024-02-08T05:16:44.902895Z", + "iopub.status.idle": "2024-02-08T05:16:46.267342Z", + "shell.execute_reply": "2024-02-08T05:16:46.266780Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:53.634214Z", - "iopub.status.busy": "2024-02-08T04:29:53.633866Z", - "iopub.status.idle": "2024-02-08T04:29:53.637796Z", - "shell.execute_reply": "2024-02-08T04:29:53.637329Z" + "iopub.execute_input": "2024-02-08T05:16:46.269717Z", + "iopub.status.busy": "2024-02-08T05:16:46.269521Z", + "iopub.status.idle": "2024-02-08T05:16:46.273330Z", + "shell.execute_reply": "2024-02-08T05:16:46.272768Z" } }, "outputs": [ @@ -542,10 +542,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:53.639682Z", - "iopub.status.busy": "2024-02-08T04:29:53.639363Z", - "iopub.status.idle": "2024-02-08T04:29:55.324199Z", - "shell.execute_reply": "2024-02-08T04:29:55.323510Z" + "iopub.execute_input": "2024-02-08T05:16:46.275279Z", + "iopub.status.busy": "2024-02-08T05:16:46.275095Z", + "iopub.status.idle": "2024-02-08T05:16:48.035444Z", + "shell.execute_reply": "2024-02-08T05:16:48.034751Z" } }, "outputs": [ @@ -592,10 +592,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:55.327072Z", - "iopub.status.busy": "2024-02-08T04:29:55.326288Z", - "iopub.status.idle": "2024-02-08T04:29:55.333737Z", - "shell.execute_reply": "2024-02-08T04:29:55.333247Z" + "iopub.execute_input": "2024-02-08T05:16:48.038270Z", + "iopub.status.busy": "2024-02-08T05:16:48.037668Z", + "iopub.status.idle": "2024-02-08T05:16:48.047299Z", + "shell.execute_reply": "2024-02-08T05:16:48.046721Z" } }, "outputs": [ @@ -631,10 +631,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:55.335798Z", - "iopub.status.busy": "2024-02-08T04:29:55.335474Z", - "iopub.status.idle": "2024-02-08T04:29:57.891579Z", - "shell.execute_reply": "2024-02-08T04:29:57.891036Z" + "iopub.execute_input": "2024-02-08T05:16:48.049551Z", + "iopub.status.busy": "2024-02-08T05:16:48.049235Z", + "iopub.status.idle": "2024-02-08T05:16:50.851686Z", + "shell.execute_reply": "2024-02-08T05:16:50.851097Z" } }, "outputs": [ @@ -669,10 +669,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.893710Z", - "iopub.status.busy": "2024-02-08T04:29:57.893400Z", - "iopub.status.idle": "2024-02-08T04:29:57.896999Z", - "shell.execute_reply": "2024-02-08T04:29:57.896544Z" + "iopub.execute_input": "2024-02-08T05:16:50.853883Z", + "iopub.status.busy": "2024-02-08T05:16:50.853693Z", + "iopub.status.idle": "2024-02-08T05:16:50.857552Z", + "shell.execute_reply": "2024-02-08T05:16:50.857089Z" } }, "outputs": [ @@ -717,10 +717,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.899030Z", - "iopub.status.busy": "2024-02-08T04:29:57.898717Z", - "iopub.status.idle": "2024-02-08T04:29:57.903151Z", - "shell.execute_reply": "2024-02-08T04:29:57.902749Z" + "iopub.execute_input": "2024-02-08T05:16:50.859787Z", + "iopub.status.busy": "2024-02-08T05:16:50.859387Z", + "iopub.status.idle": "2024-02-08T05:16:50.863737Z", + "shell.execute_reply": "2024-02-08T05:16:50.863177Z" } }, "outputs": [], @@ -743,10 +743,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.905054Z", - "iopub.status.busy": "2024-02-08T04:29:57.904735Z", - "iopub.status.idle": "2024-02-08T04:29:57.907794Z", - "shell.execute_reply": "2024-02-08T04:29:57.907351Z" + "iopub.execute_input": "2024-02-08T05:16:50.865877Z", + "iopub.status.busy": "2024-02-08T05:16:50.865570Z", + "iopub.status.idle": "2024-02-08T05:16:50.868733Z", + "shell.execute_reply": "2024-02-08T05:16:50.868285Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index a7d95ad7d..55126c31d 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:00.072576Z", - "iopub.status.busy": "2024-02-08T04:30:00.072400Z", - "iopub.status.idle": "2024-02-08T04:30:01.151131Z", - "shell.execute_reply": "2024-02-08T04:30:01.150594Z" + "iopub.execute_input": "2024-02-08T05:16:53.515571Z", + "iopub.status.busy": "2024-02-08T05:16:53.515376Z", + "iopub.status.idle": "2024-02-08T05:16:54.692984Z", + "shell.execute_reply": "2024-02-08T05:16:54.692402Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:01.153731Z", - "iopub.status.busy": "2024-02-08T04:30:01.153297Z", - "iopub.status.idle": "2024-02-08T04:30:02.565179Z", - "shell.execute_reply": "2024-02-08T04:30:02.564498Z" + "iopub.execute_input": "2024-02-08T05:16:54.695708Z", + "iopub.status.busy": "2024-02-08T05:16:54.695183Z", + "iopub.status.idle": "2024-02-08T05:16:56.971954Z", + "shell.execute_reply": "2024-02-08T05:16:56.971232Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.567869Z", - "iopub.status.busy": "2024-02-08T04:30:02.567469Z", - "iopub.status.idle": "2024-02-08T04:30:02.570763Z", - "shell.execute_reply": "2024-02-08T04:30:02.570298Z" + "iopub.execute_input": "2024-02-08T05:16:56.974618Z", + "iopub.status.busy": "2024-02-08T05:16:56.974215Z", + "iopub.status.idle": "2024-02-08T05:16:56.977451Z", + "shell.execute_reply": "2024-02-08T05:16:56.976971Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.572807Z", - "iopub.status.busy": "2024-02-08T04:30:02.572487Z", - "iopub.status.idle": "2024-02-08T04:30:02.578556Z", - "shell.execute_reply": "2024-02-08T04:30:02.578057Z" + "iopub.execute_input": "2024-02-08T05:16:56.979612Z", + "iopub.status.busy": "2024-02-08T05:16:56.979284Z", + "iopub.status.idle": "2024-02-08T05:16:56.985472Z", + "shell.execute_reply": "2024-02-08T05:16:56.984924Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.580776Z", - "iopub.status.busy": "2024-02-08T04:30:02.580450Z", - "iopub.status.idle": "2024-02-08T04:30:03.070565Z", - "shell.execute_reply": "2024-02-08T04:30:03.069979Z" + "iopub.execute_input": "2024-02-08T05:16:56.987779Z", + "iopub.status.busy": "2024-02-08T05:16:56.987416Z", + "iopub.status.idle": "2024-02-08T05:16:57.488799Z", + "shell.execute_reply": "2024-02-08T05:16:57.488201Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.073533Z", - "iopub.status.busy": "2024-02-08T04:30:03.073160Z", - "iopub.status.idle": "2024-02-08T04:30:03.078436Z", - "shell.execute_reply": "2024-02-08T04:30:03.077957Z" + "iopub.execute_input": "2024-02-08T05:16:57.491360Z", + "iopub.status.busy": "2024-02-08T05:16:57.491015Z", + "iopub.status.idle": "2024-02-08T05:16:57.496482Z", + "shell.execute_reply": "2024-02-08T05:16:57.495900Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.080496Z", - "iopub.status.busy": "2024-02-08T04:30:03.080241Z", - "iopub.status.idle": "2024-02-08T04:30:03.083913Z", - "shell.execute_reply": "2024-02-08T04:30:03.083409Z" + "iopub.execute_input": "2024-02-08T05:16:57.498525Z", + "iopub.status.busy": "2024-02-08T05:16:57.498273Z", + "iopub.status.idle": "2024-02-08T05:16:57.502766Z", + "shell.execute_reply": "2024-02-08T05:16:57.502239Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.085945Z", - "iopub.status.busy": "2024-02-08T04:30:03.085650Z", - "iopub.status.idle": "2024-02-08T04:30:03.803366Z", - "shell.execute_reply": "2024-02-08T04:30:03.802737Z" + "iopub.execute_input": "2024-02-08T05:16:57.505115Z", + "iopub.status.busy": "2024-02-08T05:16:57.504739Z", + "iopub.status.idle": "2024-02-08T05:16:58.169542Z", + "shell.execute_reply": "2024-02-08T05:16:58.168969Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.805530Z", - "iopub.status.busy": "2024-02-08T04:30:03.805328Z", - "iopub.status.idle": "2024-02-08T04:30:03.997894Z", - "shell.execute_reply": "2024-02-08T04:30:03.997434Z" + "iopub.execute_input": "2024-02-08T05:16:58.171773Z", + "iopub.status.busy": "2024-02-08T05:16:58.171556Z", + "iopub.status.idle": "2024-02-08T05:16:58.345846Z", + "shell.execute_reply": "2024-02-08T05:16:58.345282Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.000019Z", - "iopub.status.busy": "2024-02-08T04:30:03.999818Z", - "iopub.status.idle": "2024-02-08T04:30:04.004151Z", - "shell.execute_reply": "2024-02-08T04:30:04.003695Z" + "iopub.execute_input": "2024-02-08T05:16:58.348393Z", + "iopub.status.busy": "2024-02-08T05:16:58.347973Z", + "iopub.status.idle": "2024-02-08T05:16:58.352484Z", + "shell.execute_reply": "2024-02-08T05:16:58.351962Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.006153Z", - "iopub.status.busy": "2024-02-08T04:30:04.005847Z", - "iopub.status.idle": "2024-02-08T04:30:04.453260Z", - "shell.execute_reply": "2024-02-08T04:30:04.452625Z" + "iopub.execute_input": "2024-02-08T05:16:58.354696Z", + "iopub.status.busy": "2024-02-08T05:16:58.354301Z", + "iopub.status.idle": "2024-02-08T05:16:58.825617Z", + "shell.execute_reply": "2024-02-08T05:16:58.824990Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.455432Z", - "iopub.status.busy": "2024-02-08T04:30:04.455094Z", - "iopub.status.idle": "2024-02-08T04:30:04.785572Z", - "shell.execute_reply": "2024-02-08T04:30:04.785061Z" + "iopub.execute_input": "2024-02-08T05:16:58.828381Z", + "iopub.status.busy": "2024-02-08T05:16:58.828004Z", + "iopub.status.idle": "2024-02-08T05:16:59.167061Z", + "shell.execute_reply": "2024-02-08T05:16:59.166481Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.787885Z", - "iopub.status.busy": "2024-02-08T04:30:04.787540Z", - "iopub.status.idle": "2024-02-08T04:30:05.150648Z", - "shell.execute_reply": "2024-02-08T04:30:05.150060Z" + "iopub.execute_input": "2024-02-08T05:16:59.169884Z", + "iopub.status.busy": "2024-02-08T05:16:59.169506Z", + "iopub.status.idle": "2024-02-08T05:16:59.539761Z", + "shell.execute_reply": "2024-02-08T05:16:59.539127Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:05.153992Z", - "iopub.status.busy": "2024-02-08T04:30:05.153625Z", - "iopub.status.idle": "2024-02-08T04:30:05.568258Z", - "shell.execute_reply": "2024-02-08T04:30:05.567723Z" + "iopub.execute_input": "2024-02-08T05:16:59.542851Z", + "iopub.status.busy": "2024-02-08T05:16:59.542457Z", + "iopub.status.idle": "2024-02-08T05:16:59.990032Z", + "shell.execute_reply": "2024-02-08T05:16:59.989412Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:05.572539Z", - "iopub.status.busy": "2024-02-08T04:30:05.572099Z", - "iopub.status.idle": "2024-02-08T04:30:06.017524Z", - "shell.execute_reply": "2024-02-08T04:30:06.016975Z" + "iopub.execute_input": "2024-02-08T05:16:59.994566Z", + "iopub.status.busy": "2024-02-08T05:16:59.994002Z", + "iopub.status.idle": "2024-02-08T05:17:00.455591Z", + "shell.execute_reply": "2024-02-08T05:17:00.454958Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.020497Z", - "iopub.status.busy": "2024-02-08T04:30:06.020166Z", - "iopub.status.idle": "2024-02-08T04:30:06.234814Z", - "shell.execute_reply": "2024-02-08T04:30:06.234375Z" + "iopub.execute_input": "2024-02-08T05:17:00.458928Z", + "iopub.status.busy": "2024-02-08T05:17:00.458572Z", + "iopub.status.idle": "2024-02-08T05:17:00.677651Z", + "shell.execute_reply": "2024-02-08T05:17:00.677072Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.237004Z", - "iopub.status.busy": "2024-02-08T04:30:06.236672Z", - "iopub.status.idle": "2024-02-08T04:30:06.434144Z", - "shell.execute_reply": "2024-02-08T04:30:06.433613Z" + "iopub.execute_input": "2024-02-08T05:17:00.680076Z", + "iopub.status.busy": "2024-02-08T05:17:00.679705Z", + "iopub.status.idle": "2024-02-08T05:17:00.882051Z", + "shell.execute_reply": "2024-02-08T05:17:00.881407Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.436337Z", - "iopub.status.busy": "2024-02-08T04:30:06.436003Z", - "iopub.status.idle": "2024-02-08T04:30:06.438847Z", - "shell.execute_reply": "2024-02-08T04:30:06.438407Z" + "iopub.execute_input": "2024-02-08T05:17:00.885010Z", + "iopub.status.busy": "2024-02-08T05:17:00.884519Z", + "iopub.status.idle": "2024-02-08T05:17:00.887731Z", + "shell.execute_reply": "2024-02-08T05:17:00.887166Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.440735Z", - "iopub.status.busy": "2024-02-08T04:30:06.440417Z", - "iopub.status.idle": "2024-02-08T04:30:07.319773Z", - "shell.execute_reply": "2024-02-08T04:30:07.319187Z" + "iopub.execute_input": "2024-02-08T05:17:00.889952Z", + "iopub.status.busy": "2024-02-08T05:17:00.889687Z", + "iopub.status.idle": "2024-02-08T05:17:01.918413Z", + "shell.execute_reply": "2024-02-08T05:17:01.917826Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.322027Z", - "iopub.status.busy": "2024-02-08T04:30:07.321586Z", - "iopub.status.idle": "2024-02-08T04:30:07.426875Z", - "shell.execute_reply": "2024-02-08T04:30:07.426398Z" + "iopub.execute_input": "2024-02-08T05:17:01.921475Z", + "iopub.status.busy": "2024-02-08T05:17:01.921090Z", + "iopub.status.idle": "2024-02-08T05:17:02.038832Z", + "shell.execute_reply": "2024-02-08T05:17:02.038270Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.429007Z", - "iopub.status.busy": "2024-02-08T04:30:07.428667Z", - "iopub.status.idle": "2024-02-08T04:30:07.537965Z", - "shell.execute_reply": "2024-02-08T04:30:07.537475Z" + "iopub.execute_input": "2024-02-08T05:17:02.041133Z", + "iopub.status.busy": "2024-02-08T05:17:02.040771Z", + "iopub.status.idle": "2024-02-08T05:17:02.182078Z", + "shell.execute_reply": "2024-02-08T05:17:02.181503Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.540187Z", - "iopub.status.busy": "2024-02-08T04:30:07.539991Z", - "iopub.status.idle": "2024-02-08T04:30:08.230961Z", - "shell.execute_reply": "2024-02-08T04:30:08.230413Z" + "iopub.execute_input": "2024-02-08T05:17:02.184372Z", + "iopub.status.busy": "2024-02-08T05:17:02.184010Z", + "iopub.status.idle": "2024-02-08T05:17:02.969079Z", + "shell.execute_reply": "2024-02-08T05:17:02.968512Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:08.233141Z", - "iopub.status.busy": "2024-02-08T04:30:08.232960Z", - "iopub.status.idle": "2024-02-08T04:30:08.236653Z", - "shell.execute_reply": "2024-02-08T04:30:08.236116Z" + "iopub.execute_input": "2024-02-08T05:17:02.971374Z", + "iopub.status.busy": "2024-02-08T05:17:02.971169Z", + "iopub.status.idle": "2024-02-08T05:17:02.974933Z", + "shell.execute_reply": "2024-02-08T05:17:02.974480Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 65c66de70..d3b8139b6 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:10.403237Z", - "iopub.status.busy": "2024-02-08T04:30:10.403065Z", - "iopub.status.idle": "2024-02-08T04:30:13.024182Z", - "shell.execute_reply": "2024-02-08T04:30:13.023553Z" + "iopub.execute_input": "2024-02-08T05:17:05.426264Z", + "iopub.status.busy": "2024-02-08T05:17:05.425848Z", + "iopub.status.idle": "2024-02-08T05:17:08.282874Z", + "shell.execute_reply": "2024-02-08T05:17:08.282291Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.026721Z", - "iopub.status.busy": "2024-02-08T04:30:13.026419Z", - "iopub.status.idle": "2024-02-08T04:30:13.342311Z", - "shell.execute_reply": "2024-02-08T04:30:13.341724Z" + "iopub.execute_input": "2024-02-08T05:17:08.285746Z", + "iopub.status.busy": "2024-02-08T05:17:08.285258Z", + "iopub.status.idle": "2024-02-08T05:17:08.637966Z", + "shell.execute_reply": "2024-02-08T05:17:08.637382Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.344795Z", - "iopub.status.busy": "2024-02-08T04:30:13.344495Z", - "iopub.status.idle": "2024-02-08T04:30:13.348857Z", - "shell.execute_reply": "2024-02-08T04:30:13.348325Z" + "iopub.execute_input": "2024-02-08T05:17:08.640554Z", + "iopub.status.busy": "2024-02-08T05:17:08.640185Z", + "iopub.status.idle": "2024-02-08T05:17:08.644567Z", + "shell.execute_reply": "2024-02-08T05:17:08.644001Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.351075Z", - "iopub.status.busy": "2024-02-08T04:30:13.350701Z", - "iopub.status.idle": "2024-02-08T04:30:17.722194Z", - "shell.execute_reply": "2024-02-08T04:30:17.721653Z" + "iopub.execute_input": "2024-02-08T05:17:08.646865Z", + "iopub.status.busy": "2024-02-08T05:17:08.646554Z", + "iopub.status.idle": "2024-02-08T05:17:15.879028Z", + "shell.execute_reply": "2024-02-08T05:17:15.878437Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1966080/170498071 [00:00<00:08, 19659740.68it/s]" + " 0%| | 32768/170498071 [00:00<11:11, 253804.05it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 13729792/170498071 [00:00<00:02, 77179148.66it/s]" + " 0%| | 229376/170498071 [00:00<02:51, 993776.00it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 25460736/170498071 [00:00<00:01, 95453009.47it/s]" + " 1%| | 884736/170498071 [00:00<00:59, 2843619.98it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37191680/170498071 [00:00<00:01, 104050694.82it/s]" + " 2%|▏ | 3604480/170498071 [00:00<00:16, 9937863.72it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 48922624/170498071 [00:00<00:01, 108754354.22it/s]" + " 6%|▌ | 9568256/170498071 [00:00<00:07, 22733434.66it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 60653568/170498071 [00:00<00:00, 111599175.08it/s]" + " 9%|▉ | 15532032/170498071 [00:00<00:04, 33124010.85it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 72417280/170498071 [00:00<00:00, 113485568.58it/s]" + " 11%|█ | 19070976/170498071 [00:00<00:04, 33331594.97it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 84148224/170498071 [00:00<00:00, 114683185.40it/s]" + " 15%|█▍ | 25001984/170498071 [00:00<00:03, 38542476.09it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 95879168/170498071 [00:00<00:00, 115452930.26it/s]" + " 17%|█▋ | 29491200/170498071 [00:01<00:03, 40313666.10it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 107610112/170498071 [00:01<00:00, 116001177.88it/s]" + " 20%|██ | 34439168/170498071 [00:01<00:03, 42784554.31it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 119341056/170498071 [00:01<00:00, 116178766.29it/s]" + " 23%|██▎ | 38797312/170498071 [00:01<00:03, 42575855.01it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 131137536/170498071 [00:01<00:00, 116661736.90it/s]" + " 26%|██▌ | 43909120/170498071 [00:01<00:02, 44133340.46it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 142868480/170498071 [00:01<00:00, 116808215.89it/s]" + " 28%|██▊ | 48365568/170498071 [00:01<00:02, 44213290.62it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 154599424/170498071 [00:01<00:00, 116920831.64it/s]" + " 31%|███▏ | 53280768/170498071 [00:01<00:02, 45603815.05it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 166330368/170498071 [00:01<00:00, 116990077.48it/s]" + " 34%|███▍ | 57868288/170498071 [00:01<00:02, 44811305.61it/s]" ] }, { @@ -372,7 +372,191 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 110845448.51it/s]" + " 37%|███▋ | 62685184/170498071 [00:01<00:02, 45437448.27it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 39%|███▉ | 67272704/170498071 [00:01<00:02, 45126177.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 42%|████▏ | 72122368/170498071 [00:02<00:02, 46040805.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 45%|████▌ | 76742656/170498071 [00:02<00:02, 45311156.87it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 48%|████▊ | 81854464/170498071 [00:02<00:01, 46283694.59it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 51%|█████ | 86507520/170498071 [00:02<00:01, 45720127.96it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 54%|█████▎ | 91455488/170498071 [00:02<00:01, 46807783.76it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▋ | 96174080/170498071 [00:02<00:01, 45884858.81it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▉ | 100892672/170498071 [00:02<00:01, 45622214.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 105480192/170498071 [00:02<00:01, 45635391.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▍ | 110297088/170498071 [00:02<00:01, 45956041.49it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 67%|██████▋ | 114917376/170498071 [00:02<00:01, 45582206.50it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 70%|███████ | 119799808/170498071 [00:03<00:01, 46514478.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 73%|███████▎ | 124485632/170498071 [00:03<00:01, 45639548.48it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 76%|███████▌ | 129335296/170498071 [00:03<00:00, 46446998.37it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▊ | 133988352/170498071 [00:03<00:00, 45593760.64it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████▏ | 138739712/170498071 [00:03<00:00, 46153655.26it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 143392768/170498071 [00:03<00:00, 45504976.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148209664/170498071 [00:03<00:00, 46079464.34it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|████████▉ | 152829952/170498071 [00:03<00:00, 45516536.27it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 157646848/170498071 [00:03<00:00, 46018066.70it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162267136/170498071 [00:03<00:00, 45503104.22it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 167280640/170498071 [00:04<00:00, 46441485.40it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:04<00:00, 41107986.54it/s]" ] }, { @@ -490,10 +674,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:17.724373Z", - "iopub.status.busy": "2024-02-08T04:30:17.724096Z", - "iopub.status.idle": "2024-02-08T04:30:17.728698Z", - "shell.execute_reply": "2024-02-08T04:30:17.728278Z" + "iopub.execute_input": "2024-02-08T05:17:15.881245Z", + "iopub.status.busy": "2024-02-08T05:17:15.881053Z", + "iopub.status.idle": "2024-02-08T05:17:15.886298Z", + "shell.execute_reply": "2024-02-08T05:17:15.885876Z" }, "nbsphinx": "hidden" }, @@ -544,10 +728,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:17.730711Z", - "iopub.status.busy": "2024-02-08T04:30:17.730452Z", - "iopub.status.idle": "2024-02-08T04:30:18.284987Z", - "shell.execute_reply": "2024-02-08T04:30:18.284485Z" + "iopub.execute_input": "2024-02-08T05:17:15.888349Z", + "iopub.status.busy": "2024-02-08T05:17:15.888018Z", + "iopub.status.idle": "2024-02-08T05:17:16.439381Z", + "shell.execute_reply": "2024-02-08T05:17:16.438746Z" } }, "outputs": [ @@ -580,10 +764,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.287052Z", - "iopub.status.busy": "2024-02-08T04:30:18.286769Z", - "iopub.status.idle": "2024-02-08T04:30:18.804685Z", - "shell.execute_reply": "2024-02-08T04:30:18.804072Z" + "iopub.execute_input": "2024-02-08T05:17:16.441539Z", + "iopub.status.busy": "2024-02-08T05:17:16.441332Z", + "iopub.status.idle": "2024-02-08T05:17:16.983160Z", + "shell.execute_reply": "2024-02-08T05:17:16.982529Z" } }, "outputs": [ @@ -621,10 +805,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.806777Z", - "iopub.status.busy": "2024-02-08T04:30:18.806483Z", - "iopub.status.idle": "2024-02-08T04:30:18.809916Z", - "shell.execute_reply": "2024-02-08T04:30:18.809486Z" + "iopub.execute_input": "2024-02-08T05:17:16.985466Z", + "iopub.status.busy": "2024-02-08T05:17:16.985047Z", + "iopub.status.idle": "2024-02-08T05:17:16.988712Z", + "shell.execute_reply": "2024-02-08T05:17:16.988153Z" } }, "outputs": [], @@ -647,17 +831,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.811865Z", - "iopub.status.busy": "2024-02-08T04:30:18.811527Z", - "iopub.status.idle": "2024-02-08T04:30:31.364282Z", - "shell.execute_reply": "2024-02-08T04:30:31.363667Z" + "iopub.execute_input": "2024-02-08T05:17:16.990864Z", + "iopub.status.busy": "2024-02-08T05:17:16.990531Z", + "iopub.status.idle": "2024-02-08T05:17:30.384574Z", + "shell.execute_reply": "2024-02-08T05:17:30.383954Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8ec90718ebe14457846ef833a3f69479", + "model_id": "825668b38db748b986e9bda15e51e13b", "version_major": 2, "version_minor": 0 }, @@ -716,10 +900,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:31.366608Z", - "iopub.status.busy": "2024-02-08T04:30:31.366233Z", - "iopub.status.idle": "2024-02-08T04:30:32.923298Z", - "shell.execute_reply": "2024-02-08T04:30:32.922745Z" + "iopub.execute_input": "2024-02-08T05:17:30.387065Z", + "iopub.status.busy": "2024-02-08T05:17:30.386677Z", + "iopub.status.idle": "2024-02-08T05:17:31.989176Z", + "shell.execute_reply": "2024-02-08T05:17:31.988590Z" } }, "outputs": [ @@ -763,10 +947,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:32.926239Z", - "iopub.status.busy": "2024-02-08T04:30:32.925792Z", - "iopub.status.idle": "2024-02-08T04:30:33.332069Z", - "shell.execute_reply": "2024-02-08T04:30:33.331464Z" + "iopub.execute_input": "2024-02-08T05:17:31.991570Z", + "iopub.status.busy": "2024-02-08T05:17:31.991111Z", + "iopub.status.idle": "2024-02-08T05:17:32.449002Z", + "shell.execute_reply": "2024-02-08T05:17:32.448403Z" } }, "outputs": [ @@ -802,10 +986,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:33.334561Z", - "iopub.status.busy": "2024-02-08T04:30:33.334085Z", - "iopub.status.idle": "2024-02-08T04:30:33.961207Z", - "shell.execute_reply": "2024-02-08T04:30:33.960621Z" + "iopub.execute_input": "2024-02-08T05:17:32.451718Z", + "iopub.status.busy": "2024-02-08T05:17:32.451216Z", + "iopub.status.idle": "2024-02-08T05:17:33.151860Z", + "shell.execute_reply": "2024-02-08T05:17:33.151313Z" } }, "outputs": [ @@ -855,10 +1039,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:33.963531Z", - "iopub.status.busy": "2024-02-08T04:30:33.963345Z", - "iopub.status.idle": "2024-02-08T04:30:34.255761Z", - "shell.execute_reply": "2024-02-08T04:30:34.255221Z" + "iopub.execute_input": "2024-02-08T05:17:33.154439Z", + "iopub.status.busy": "2024-02-08T05:17:33.154055Z", + "iopub.status.idle": "2024-02-08T05:17:33.500788Z", + "shell.execute_reply": "2024-02-08T05:17:33.500203Z" } }, "outputs": [ @@ -906,10 +1090,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.257730Z", - "iopub.status.busy": "2024-02-08T04:30:34.257550Z", - "iopub.status.idle": "2024-02-08T04:30:34.485252Z", - "shell.execute_reply": "2024-02-08T04:30:34.484849Z" + "iopub.execute_input": "2024-02-08T05:17:33.503176Z", + "iopub.status.busy": "2024-02-08T05:17:33.502822Z", + "iopub.status.idle": "2024-02-08T05:17:33.757736Z", + "shell.execute_reply": "2024-02-08T05:17:33.757170Z" } }, "outputs": [ @@ -965,10 +1149,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.487726Z", - "iopub.status.busy": "2024-02-08T04:30:34.487222Z", - "iopub.status.idle": "2024-02-08T04:30:34.562718Z", - "shell.execute_reply": "2024-02-08T04:30:34.562255Z" + "iopub.execute_input": "2024-02-08T05:17:33.763168Z", + "iopub.status.busy": "2024-02-08T05:17:33.762933Z", + "iopub.status.idle": "2024-02-08T05:17:33.854185Z", + "shell.execute_reply": "2024-02-08T05:17:33.853691Z" } }, "outputs": [], @@ -989,10 +1173,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.565151Z", - "iopub.status.busy": "2024-02-08T04:30:34.564820Z", - "iopub.status.idle": "2024-02-08T04:30:44.672053Z", - "shell.execute_reply": "2024-02-08T04:30:44.671463Z" + "iopub.execute_input": "2024-02-08T05:17:33.856930Z", + "iopub.status.busy": "2024-02-08T05:17:33.856640Z", + "iopub.status.idle": "2024-02-08T05:17:44.539894Z", + "shell.execute_reply": "2024-02-08T05:17:44.539169Z" } }, "outputs": [ @@ -1029,10 +1213,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:44.674407Z", - "iopub.status.busy": "2024-02-08T04:30:44.674085Z", - "iopub.status.idle": "2024-02-08T04:30:46.341098Z", - "shell.execute_reply": "2024-02-08T04:30:46.340559Z" + "iopub.execute_input": "2024-02-08T05:17:44.542602Z", + "iopub.status.busy": "2024-02-08T05:17:44.542199Z", + "iopub.status.idle": "2024-02-08T05:17:46.479367Z", + "shell.execute_reply": "2024-02-08T05:17:46.478694Z" } }, "outputs": [ @@ -1063,10 +1247,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.343980Z", - "iopub.status.busy": "2024-02-08T04:30:46.343183Z", - "iopub.status.idle": "2024-02-08T04:30:46.549529Z", - "shell.execute_reply": "2024-02-08T04:30:46.549050Z" + "iopub.execute_input": "2024-02-08T05:17:46.482458Z", + "iopub.status.busy": "2024-02-08T05:17:46.481971Z", + "iopub.status.idle": "2024-02-08T05:17:46.688532Z", + "shell.execute_reply": "2024-02-08T05:17:46.687903Z" } }, "outputs": [], @@ -1080,10 +1264,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.551949Z", - "iopub.status.busy": "2024-02-08T04:30:46.551608Z", - "iopub.status.idle": "2024-02-08T04:30:46.554597Z", - "shell.execute_reply": "2024-02-08T04:30:46.554192Z" + "iopub.execute_input": "2024-02-08T05:17:46.691136Z", + "iopub.status.busy": "2024-02-08T05:17:46.690740Z", + "iopub.status.idle": "2024-02-08T05:17:46.694886Z", + "shell.execute_reply": "2024-02-08T05:17:46.694321Z" } }, "outputs": [], @@ -1105,10 +1289,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.556571Z", - "iopub.status.busy": "2024-02-08T04:30:46.556256Z", - "iopub.status.idle": "2024-02-08T04:30:46.564143Z", - "shell.execute_reply": "2024-02-08T04:30:46.563713Z" + "iopub.execute_input": "2024-02-08T05:17:46.697187Z", + "iopub.status.busy": "2024-02-08T05:17:46.696860Z", + "iopub.status.idle": "2024-02-08T05:17:46.705406Z", + "shell.execute_reply": "2024-02-08T05:17:46.704905Z" }, "nbsphinx": "hidden" }, @@ -1153,30 +1337,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "55278c78cbd94215b2c837195ceeb854": { + "038ec4553cd7485f8bc6b775cc1ac431": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8291224fafb44311a21cd1a944c03a26", - "placeholder": "​", - "style": "IPY_MODEL_7c0f27427fd7458e803f7842e3c2b7b0", + "layout": "IPY_MODEL_c1c41233fe614d279ca59c66cbba997a", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_143179c01bf94cc88f3717bb18023e8a", "tabbable": null, "tooltip": null, - "value": "model.safetensors: 100%" + "value": 102469840.0 } }, - "7c0f27427fd7458e803f7842e3c2b7b0": { + "03d4c196de6b49fabaae303aaa5e1201": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1194,7 +1381,23 @@ "text_color": null } }, - "8291224fafb44311a21cd1a944c03a26": { + "143179c01bf94cc88f3717bb18023e8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5a00804c5fce4ec18bb7db14fd32b417": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1247,54 +1450,7 @@ "width": null } }, - "8a2fc69f5c3f4e30bde00e979493715a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a1d3abd8ccac4d8ca172e65b1644272f", - "placeholder": "​", - "style": "IPY_MODEL_e94269c930c348fc97e754247d9595ed", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 220MB/s]" - } - }, - "8ec90718ebe14457846ef833a3f69479": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_55278c78cbd94215b2c837195ceeb854", - "IPY_MODEL_e8cf996d0fe94c3cb5e2785fee2bf584", - "IPY_MODEL_8a2fc69f5c3f4e30bde00e979493715a" - ], - "layout": "IPY_MODEL_a02d42e775b44528a4ec1f675c156ebe", - "tabbable": null, - "tooltip": null - } - }, - "a02d42e775b44528a4ec1f675c156ebe": { + "70630cd3b71546b196c328130764cfd7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1347,7 +1503,54 @@ "width": null } }, - "a1d3abd8ccac4d8ca172e65b1644272f": { + "7638661cf1ea4bdf9057cf8fb2ed8155": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5a00804c5fce4ec18bb7db14fd32b417", + "placeholder": "​", + "style": "IPY_MODEL_03d4c196de6b49fabaae303aaa5e1201", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 126MB/s]" + } + }, + "825668b38db748b986e9bda15e51e13b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c60e04d7447e4f17a454ef9c1b22babd", + "IPY_MODEL_038ec4553cd7485f8bc6b775cc1ac431", + "IPY_MODEL_7638661cf1ea4bdf9057cf8fb2ed8155" + ], + "layout": "IPY_MODEL_70630cd3b71546b196c328130764cfd7", + "tabbable": null, + "tooltip": null + } + }, + "845005c35b004bdb8957033ab5ca8657": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1400,49 +1603,7 @@ "width": null } }, - "b4faa0e3178b4731a79084ed65896fc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e8cf996d0fe94c3cb5e2785fee2bf584": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ee3ee555896b49de84d08c251eed995d", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b4faa0e3178b4731a79084ed65896fc6", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "e94269c930c348fc97e754247d9595ed": { + "95c4ac1a954348fa9148c8ee12f7fb4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1460,7 +1621,7 @@ "text_color": null } }, - "ee3ee555896b49de84d08c251eed995d": { + "c1c41233fe614d279ca59c66cbba997a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1512,6 +1673,29 @@ "visibility": null, "width": null } + }, + "c60e04d7447e4f17a454ef9c1b22babd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_845005c35b004bdb8957033ab5ca8657", + "placeholder": "​", + "style": "IPY_MODEL_95c4ac1a954348fa9148c8ee12f7fb4e", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index ff8035f20..c13537792 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:50.751304Z", - "iopub.status.busy": "2024-02-08T04:30:50.751133Z", - "iopub.status.idle": "2024-02-08T04:30:51.823240Z", - "shell.execute_reply": "2024-02-08T04:30:51.822703Z" + "iopub.execute_input": "2024-02-08T05:17:51.413127Z", + "iopub.status.busy": "2024-02-08T05:17:51.412706Z", + "iopub.status.idle": "2024-02-08T05:17:52.611238Z", + "shell.execute_reply": "2024-02-08T05:17:52.610680Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.825744Z", - "iopub.status.busy": "2024-02-08T04:30:51.825364Z", - "iopub.status.idle": "2024-02-08T04:30:51.842820Z", - "shell.execute_reply": "2024-02-08T04:30:51.842387Z" + "iopub.execute_input": "2024-02-08T05:17:52.614217Z", + "iopub.status.busy": "2024-02-08T05:17:52.613717Z", + "iopub.status.idle": "2024-02-08T05:17:52.633243Z", + "shell.execute_reply": "2024-02-08T05:17:52.632743Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.844983Z", - "iopub.status.busy": "2024-02-08T04:30:51.844515Z", - "iopub.status.idle": "2024-02-08T04:30:51.847432Z", - "shell.execute_reply": "2024-02-08T04:30:51.846998Z" + "iopub.execute_input": "2024-02-08T05:17:52.635825Z", + "iopub.status.busy": "2024-02-08T05:17:52.635484Z", + "iopub.status.idle": "2024-02-08T05:17:52.638626Z", + "shell.execute_reply": "2024-02-08T05:17:52.638180Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.849404Z", - "iopub.status.busy": "2024-02-08T04:30:51.849113Z", - "iopub.status.idle": "2024-02-08T04:30:52.062082Z", - "shell.execute_reply": "2024-02-08T04:30:52.061561Z" + "iopub.execute_input": "2024-02-08T05:17:52.640735Z", + "iopub.status.busy": "2024-02-08T05:17:52.640434Z", + "iopub.status.idle": "2024-02-08T05:17:52.920965Z", + "shell.execute_reply": "2024-02-08T05:17:52.920349Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.064034Z", - "iopub.status.busy": "2024-02-08T04:30:52.063840Z", - "iopub.status.idle": "2024-02-08T04:30:52.239826Z", - "shell.execute_reply": "2024-02-08T04:30:52.239268Z" + "iopub.execute_input": "2024-02-08T05:17:52.923467Z", + "iopub.status.busy": "2024-02-08T05:17:52.923019Z", + "iopub.status.idle": "2024-02-08T05:17:53.115689Z", + "shell.execute_reply": "2024-02-08T05:17:53.115011Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.242089Z", - "iopub.status.busy": "2024-02-08T04:30:52.241901Z", - "iopub.status.idle": "2024-02-08T04:30:52.445021Z", - "shell.execute_reply": "2024-02-08T04:30:52.444475Z" + "iopub.execute_input": "2024-02-08T05:17:53.118435Z", + "iopub.status.busy": "2024-02-08T05:17:53.118062Z", + "iopub.status.idle": "2024-02-08T05:17:53.371491Z", + "shell.execute_reply": "2024-02-08T05:17:53.370876Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.446996Z", - "iopub.status.busy": "2024-02-08T04:30:52.446821Z", - "iopub.status.idle": "2024-02-08T04:30:52.450930Z", - "shell.execute_reply": "2024-02-08T04:30:52.450482Z" + "iopub.execute_input": "2024-02-08T05:17:53.373865Z", + "iopub.status.busy": "2024-02-08T05:17:53.373626Z", + "iopub.status.idle": "2024-02-08T05:17:53.378358Z", + "shell.execute_reply": "2024-02-08T05:17:53.377808Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.452716Z", - "iopub.status.busy": "2024-02-08T04:30:52.452542Z", - "iopub.status.idle": "2024-02-08T04:30:52.458401Z", - "shell.execute_reply": "2024-02-08T04:30:52.457979Z" + "iopub.execute_input": "2024-02-08T05:17:53.380695Z", + "iopub.status.busy": "2024-02-08T05:17:53.380265Z", + "iopub.status.idle": "2024-02-08T05:17:53.387022Z", + "shell.execute_reply": "2024-02-08T05:17:53.386397Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.460493Z", - "iopub.status.busy": "2024-02-08T04:30:52.460074Z", - "iopub.status.idle": "2024-02-08T04:30:52.462570Z", - "shell.execute_reply": "2024-02-08T04:30:52.462147Z" + "iopub.execute_input": "2024-02-08T05:17:53.389333Z", + "iopub.status.busy": "2024-02-08T05:17:53.389109Z", + "iopub.status.idle": "2024-02-08T05:17:53.392037Z", + "shell.execute_reply": "2024-02-08T05:17:53.391331Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.464422Z", - "iopub.status.busy": "2024-02-08T04:30:52.464251Z", - "iopub.status.idle": "2024-02-08T04:31:00.593329Z", - "shell.execute_reply": "2024-02-08T04:31:00.592695Z" + "iopub.execute_input": "2024-02-08T05:17:53.394330Z", + "iopub.status.busy": "2024-02-08T05:17:53.394004Z", + "iopub.status.idle": "2024-02-08T05:18:01.926806Z", + "shell.execute_reply": "2024-02-08T05:18:01.926205Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.596169Z", - "iopub.status.busy": "2024-02-08T04:31:00.595573Z", - "iopub.status.idle": "2024-02-08T04:31:00.602431Z", - "shell.execute_reply": "2024-02-08T04:31:00.601900Z" + "iopub.execute_input": "2024-02-08T05:18:01.930017Z", + "iopub.status.busy": "2024-02-08T05:18:01.929420Z", + "iopub.status.idle": "2024-02-08T05:18:01.937267Z", + "shell.execute_reply": "2024-02-08T05:18:01.936715Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.604583Z", - "iopub.status.busy": "2024-02-08T04:31:00.604256Z", - "iopub.status.idle": "2024-02-08T04:31:00.607660Z", - "shell.execute_reply": "2024-02-08T04:31:00.607238Z" + "iopub.execute_input": "2024-02-08T05:18:01.939696Z", + "iopub.status.busy": "2024-02-08T05:18:01.939307Z", + "iopub.status.idle": "2024-02-08T05:18:01.943488Z", + "shell.execute_reply": "2024-02-08T05:18:01.942900Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.609663Z", - "iopub.status.busy": "2024-02-08T04:31:00.609347Z", - "iopub.status.idle": "2024-02-08T04:31:00.612323Z", - "shell.execute_reply": "2024-02-08T04:31:00.611787Z" + "iopub.execute_input": "2024-02-08T05:18:01.945734Z", + "iopub.status.busy": "2024-02-08T05:18:01.945405Z", + "iopub.status.idle": "2024-02-08T05:18:01.948895Z", + "shell.execute_reply": "2024-02-08T05:18:01.948338Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.614282Z", - "iopub.status.busy": "2024-02-08T04:31:00.613967Z", - "iopub.status.idle": "2024-02-08T04:31:00.616872Z", - "shell.execute_reply": "2024-02-08T04:31:00.616427Z" + "iopub.execute_input": "2024-02-08T05:18:01.951160Z", + "iopub.status.busy": "2024-02-08T05:18:01.950717Z", + "iopub.status.idle": "2024-02-08T05:18:01.953844Z", + "shell.execute_reply": "2024-02-08T05:18:01.953404Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.618846Z", - "iopub.status.busy": "2024-02-08T04:31:00.618530Z", - "iopub.status.idle": "2024-02-08T04:31:00.626345Z", - "shell.execute_reply": "2024-02-08T04:31:00.625821Z" + "iopub.execute_input": "2024-02-08T05:18:01.956220Z", + "iopub.status.busy": "2024-02-08T05:18:01.955844Z", + "iopub.status.idle": "2024-02-08T05:18:01.964834Z", + "shell.execute_reply": "2024-02-08T05:18:01.964236Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.628449Z", - "iopub.status.busy": "2024-02-08T04:31:00.628141Z", - "iopub.status.idle": "2024-02-08T04:31:00.747556Z", - "shell.execute_reply": "2024-02-08T04:31:00.747054Z" + "iopub.execute_input": "2024-02-08T05:18:01.967310Z", + "iopub.status.busy": "2024-02-08T05:18:01.966842Z", + "iopub.status.idle": "2024-02-08T05:18:02.090316Z", + "shell.execute_reply": "2024-02-08T05:18:02.089645Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.749632Z", - "iopub.status.busy": "2024-02-08T04:31:00.749285Z", - "iopub.status.idle": "2024-02-08T04:31:00.867709Z", - "shell.execute_reply": "2024-02-08T04:31:00.867227Z" + "iopub.execute_input": "2024-02-08T05:18:02.092988Z", + "iopub.status.busy": "2024-02-08T05:18:02.092569Z", + "iopub.status.idle": "2024-02-08T05:18:02.204658Z", + "shell.execute_reply": "2024-02-08T05:18:02.203939Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.869752Z", - "iopub.status.busy": "2024-02-08T04:31:00.869575Z", - "iopub.status.idle": "2024-02-08T04:31:01.355217Z", - "shell.execute_reply": "2024-02-08T04:31:01.354754Z" + "iopub.execute_input": "2024-02-08T05:18:02.207487Z", + "iopub.status.busy": "2024-02-08T05:18:02.207236Z", + "iopub.status.idle": "2024-02-08T05:18:02.771856Z", + "shell.execute_reply": "2024-02-08T05:18:02.771183Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:01.357253Z", - "iopub.status.busy": "2024-02-08T04:31:01.357080Z", - "iopub.status.idle": "2024-02-08T04:31:01.434382Z", - "shell.execute_reply": "2024-02-08T04:31:01.433913Z" + "iopub.execute_input": "2024-02-08T05:18:02.774657Z", + "iopub.status.busy": "2024-02-08T05:18:02.774189Z", + "iopub.status.idle": "2024-02-08T05:18:02.854230Z", + "shell.execute_reply": "2024-02-08T05:18:02.853626Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:01.436548Z", - "iopub.status.busy": "2024-02-08T04:31:01.436195Z", - "iopub.status.idle": "2024-02-08T04:31:01.445937Z", - "shell.execute_reply": "2024-02-08T04:31:01.445389Z" + "iopub.execute_input": "2024-02-08T05:18:02.856474Z", + "iopub.status.busy": "2024-02-08T05:18:02.856273Z", + "iopub.status.idle": "2024-02-08T05:18:02.866501Z", + "shell.execute_reply": "2024-02-08T05:18:02.865955Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 282a261ca..50fa2ea52 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:04.090778Z", - "iopub.status.busy": "2024-02-08T04:31:04.090311Z", - "iopub.status.idle": "2024-02-08T04:31:06.685136Z", - "shell.execute_reply": "2024-02-08T04:31:06.684460Z" + "iopub.execute_input": "2024-02-08T05:18:06.194836Z", + "iopub.status.busy": "2024-02-08T05:18:06.194464Z", + "iopub.status.idle": "2024-02-08T05:18:11.509123Z", + "shell.execute_reply": "2024-02-08T05:18:11.508442Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:06.687749Z", - "iopub.status.busy": "2024-02-08T04:31:06.687374Z", - "iopub.status.idle": "2024-02-08T04:32:33.192723Z", - "shell.execute_reply": "2024-02-08T04:32:33.192050Z" + "iopub.execute_input": "2024-02-08T05:18:11.511765Z", + "iopub.status.busy": "2024-02-08T05:18:11.511386Z", + "iopub.status.idle": "2024-02-08T05:19:01.334173Z", + "shell.execute_reply": "2024-02-08T05:19:01.333418Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:33.195218Z", - "iopub.status.busy": "2024-02-08T04:32:33.194983Z", - "iopub.status.idle": "2024-02-08T04:32:34.284442Z", - "shell.execute_reply": "2024-02-08T04:32:34.283882Z" + "iopub.execute_input": "2024-02-08T05:19:01.337024Z", + "iopub.status.busy": "2024-02-08T05:19:01.336645Z", + "iopub.status.idle": "2024-02-08T05:19:02.446829Z", + "shell.execute_reply": "2024-02-08T05:19:02.446265Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.287010Z", - "iopub.status.busy": "2024-02-08T04:32:34.286715Z", - "iopub.status.idle": "2024-02-08T04:32:34.289859Z", - "shell.execute_reply": "2024-02-08T04:32:34.289423Z" + "iopub.execute_input": "2024-02-08T05:19:02.449563Z", + "iopub.status.busy": "2024-02-08T05:19:02.449077Z", + "iopub.status.idle": "2024-02-08T05:19:02.452514Z", + "shell.execute_reply": "2024-02-08T05:19:02.451942Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.291762Z", - "iopub.status.busy": "2024-02-08T04:32:34.291582Z", - "iopub.status.idle": "2024-02-08T04:32:34.295486Z", - "shell.execute_reply": "2024-02-08T04:32:34.295037Z" + "iopub.execute_input": "2024-02-08T05:19:02.454973Z", + "iopub.status.busy": "2024-02-08T05:19:02.454564Z", + "iopub.status.idle": "2024-02-08T05:19:02.458751Z", + "shell.execute_reply": "2024-02-08T05:19:02.458289Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.297355Z", - "iopub.status.busy": "2024-02-08T04:32:34.297179Z", - "iopub.status.idle": "2024-02-08T04:32:34.300716Z", - "shell.execute_reply": "2024-02-08T04:32:34.300269Z" + "iopub.execute_input": "2024-02-08T05:19:02.461004Z", + "iopub.status.busy": "2024-02-08T05:19:02.460655Z", + "iopub.status.idle": "2024-02-08T05:19:02.464367Z", + "shell.execute_reply": "2024-02-08T05:19:02.463921Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.302700Z", - "iopub.status.busy": "2024-02-08T04:32:34.302414Z", - "iopub.status.idle": "2024-02-08T04:32:34.305247Z", - "shell.execute_reply": "2024-02-08T04:32:34.304818Z" + "iopub.execute_input": "2024-02-08T05:19:02.466454Z", + "iopub.status.busy": "2024-02-08T05:19:02.466133Z", + "iopub.status.idle": "2024-02-08T05:19:02.468853Z", + "shell.execute_reply": "2024-02-08T05:19:02.468435Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.307210Z", - "iopub.status.busy": "2024-02-08T04:32:34.306903Z", - "iopub.status.idle": "2024-02-08T04:33:50.468781Z", - "shell.execute_reply": "2024-02-08T04:33:50.468192Z" + "iopub.execute_input": "2024-02-08T05:19:02.470767Z", + "iopub.status.busy": "2024-02-08T05:19:02.470482Z", + "iopub.status.idle": "2024-02-08T05:20:19.455463Z", + "shell.execute_reply": "2024-02-08T05:20:19.454724Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "633c79ed95ab41e0aabbd57dbd3ecb08", + "model_id": "c8c2e28ad93b4bdd9fc175ec25c69050", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7cc6878891b34dc6b9eee074c27b9942", + "model_id": "ea58fb54e03a45d5b2072a4db0195034", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:50.471202Z", - "iopub.status.busy": "2024-02-08T04:33:50.471016Z", - "iopub.status.idle": "2024-02-08T04:33:51.129982Z", - "shell.execute_reply": "2024-02-08T04:33:51.129389Z" + "iopub.execute_input": "2024-02-08T05:20:19.458139Z", + "iopub.status.busy": "2024-02-08T05:20:19.457915Z", + "iopub.status.idle": "2024-02-08T05:20:20.138783Z", + "shell.execute_reply": "2024-02-08T05:20:20.138296Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:51.132369Z", - "iopub.status.busy": "2024-02-08T04:33:51.131864Z", - "iopub.status.idle": "2024-02-08T04:33:53.739824Z", - "shell.execute_reply": "2024-02-08T04:33:53.739233Z" + "iopub.execute_input": "2024-02-08T05:20:20.141021Z", + "iopub.status.busy": "2024-02-08T05:20:20.140710Z", + "iopub.status.idle": "2024-02-08T05:20:22.899351Z", + "shell.execute_reply": "2024-02-08T05:20:22.898717Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:53.741963Z", - "iopub.status.busy": "2024-02-08T04:33:53.741658Z", - "iopub.status.idle": "2024-02-08T04:34:26.078889Z", - "shell.execute_reply": "2024-02-08T04:34:26.078349Z" + "iopub.execute_input": "2024-02-08T05:20:22.901657Z", + "iopub.status.busy": "2024-02-08T05:20:22.901306Z", + "iopub.status.idle": "2024-02-08T05:20:55.974341Z", + "shell.execute_reply": "2024-02-08T05:20:55.973829Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15263/4997817 [00:00<00:32, 152620.32it/s]" + " 0%| | 15219/4997817 [00:00<00:32, 152175.63it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 30666/4997817 [00:00<00:32, 153444.23it/s]" + " 1%| | 30515/4997817 [00:00<00:32, 152628.96it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46403/4997817 [00:00<00:31, 155233.62it/s]" + " 1%| | 45778/4997817 [00:00<00:32, 152070.29it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 62088/4997817 [00:00<00:31, 155869.58it/s]" + " 1%| | 60986/4997817 [00:00<00:32, 151671.35it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 77755/4997817 [00:00<00:31, 156156.65it/s]" + " 2%|▏ | 76154/4997817 [00:00<00:32, 151334.04it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 93461/4997817 [00:00<00:31, 156459.90it/s]" + " 2%|▏ | 91408/4997817 [00:00<00:32, 151739.35it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 109145/4997817 [00:00<00:31, 156582.99it/s]" + " 2%|▏ | 106583/4997817 [00:00<00:32, 151262.88it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 124865/4997817 [00:00<00:31, 156775.77it/s]" + " 2%|▏ | 121799/4997817 [00:00<00:32, 151497.04it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 140561/4997817 [00:00<00:30, 156832.47it/s]" + " 3%|▎ | 136950/4997817 [00:00<00:32, 151116.12it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 156296/4997817 [00:01<00:30, 156990.78it/s]" + " 3%|▎ | 152062/4997817 [00:01<00:32, 150719.47it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 171996/4997817 [00:01<00:30, 156816.52it/s]" + " 3%|▎ | 167152/4997817 [00:01<00:32, 150772.00it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 187678/4997817 [00:01<00:30, 156789.10it/s]" + " 4%|▎ | 182311/4997817 [00:01<00:31, 151017.94it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 203449/4997817 [00:01<00:30, 157064.19it/s]" + " 4%|▍ | 197414/4997817 [00:01<00:32, 149004.91it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 219271/4997817 [00:01<00:30, 157411.47it/s]" + " 4%|▍ | 212321/4997817 [00:01<00:32, 148494.46it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 235039/4997817 [00:01<00:30, 157491.41it/s]" + " 5%|▍ | 227688/4997817 [00:01<00:31, 150033.39it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 250894/4997817 [00:01<00:30, 157807.98it/s]" + " 5%|▍ | 242927/4997817 [00:01<00:31, 150733.98it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 266675/4997817 [00:01<00:29, 157776.96it/s]" + " 5%|▌ | 258207/4997817 [00:01<00:31, 151349.15it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 282453/4997817 [00:01<00:29, 157761.99it/s]" + " 5%|▌ | 273519/4997817 [00:01<00:31, 151877.06it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 298230/4997817 [00:01<00:29, 157339.46it/s]" + " 6%|▌ | 288818/4997817 [00:01<00:30, 152206.19it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 313965/4997817 [00:02<00:29, 157107.54it/s]" + " 6%|▌ | 304086/4997817 [00:02<00:30, 152346.07it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 329811/4997817 [00:02<00:29, 157509.28it/s]" + " 6%|▋ | 319322/4997817 [00:02<00:30, 152226.57it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 345563/4997817 [00:02<00:30, 153954.15it/s]" + " 7%|▋ | 334625/4997817 [00:02<00:30, 152465.32it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 361251/4997817 [00:02<00:29, 154814.53it/s]" + " 7%|▋ | 349873/4997817 [00:02<00:30, 152288.21it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 376940/4997817 [00:02<00:29, 155427.51it/s]" + " 7%|▋ | 365103/4997817 [00:02<00:31, 149042.74it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 392762/4997817 [00:02<00:29, 156257.19it/s]" + " 8%|▊ | 380408/4997817 [00:02<00:30, 150221.43it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 408619/4997817 [00:02<00:29, 156944.77it/s]" + " 8%|▊ | 395607/4997817 [00:02<00:30, 150742.66it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 424451/4997817 [00:02<00:29, 157351.99it/s]" + " 8%|▊ | 410867/4997817 [00:02<00:30, 151292.06it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 440219/4997817 [00:02<00:28, 157448.13it/s]" + " 9%|▊ | 426153/4997817 [00:02<00:30, 151755.55it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 456014/4997817 [00:02<00:28, 157594.94it/s]" + " 9%|▉ | 441466/4997817 [00:02<00:29, 152163.81it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 471810/4997817 [00:03<00:28, 157702.43it/s]" + " 9%|▉ | 456687/4997817 [00:03<00:29, 152154.88it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 487647/4997817 [00:03<00:28, 157900.06it/s]" + " 9%|▉ | 472009/4997817 [00:03<00:29, 152471.31it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 503447/4997817 [00:03<00:28, 157926.90it/s]" + " 10%|▉ | 487319/4997817 [00:03<00:29, 152657.18it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 519243/4997817 [00:03<00:28, 157933.03it/s]" + " 10%|█ | 502587/4997817 [00:03<00:29, 152587.42it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 535046/4997817 [00:03<00:28, 157960.35it/s]" + " 10%|█ | 517878/4997817 [00:03<00:29, 152680.31it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 550843/4997817 [00:03<00:28, 157126.81it/s]" + " 11%|█ | 533228/4997817 [00:03<00:29, 152922.25it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 566561/4997817 [00:03<00:28, 157141.74it/s]" + " 11%|█ | 548521/4997817 [00:03<00:29, 152579.62it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 582279/4997817 [00:03<00:28, 157149.98it/s]" + " 11%|█▏ | 563780/4997817 [00:03<00:29, 152366.87it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 597995/4997817 [00:03<00:28, 157124.65it/s]" + " 12%|█▏ | 579068/4997817 [00:03<00:28, 152516.68it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 613708/4997817 [00:03<00:27, 156897.25it/s]" + " 12%|█▏ | 594320/4997817 [00:03<00:28, 152104.13it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 629508/4997817 [00:04<00:27, 157224.86it/s]" + " 12%|█▏ | 609531/4997817 [00:04<00:28, 152101.48it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 645231/4997817 [00:04<00:27, 157177.39it/s]" + " 13%|█▎ | 624752/4997817 [00:04<00:28, 152131.73it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 660949/4997817 [00:04<00:27, 156978.60it/s]" + " 13%|█▎ | 639966/4997817 [00:04<00:28, 151079.04it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 676648/4997817 [00:04<00:27, 156760.78it/s]" + " 13%|█▎ | 655076/4997817 [00:04<00:28, 151049.89it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 692325/4997817 [00:04<00:27, 156208.63it/s]" + " 13%|█▎ | 670183/4997817 [00:04<00:30, 143565.20it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 707947/4997817 [00:04<00:27, 156090.54it/s]" + " 14%|█▎ | 685377/4997817 [00:04<00:29, 145979.48it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 723563/4997817 [00:04<00:27, 156108.57it/s]" + " 14%|█▍ | 700538/4997817 [00:04<00:29, 147618.75it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739191/4997817 [00:04<00:27, 156158.25it/s]" + " 14%|█▍ | 715680/4997817 [00:04<00:28, 148734.34it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 754807/4997817 [00:04<00:27, 156048.28it/s]" + " 15%|█▍ | 730868/4997817 [00:04<00:28, 149661.46it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 770497/4997817 [00:04<00:27, 156302.41it/s]" + " 15%|█▍ | 746099/4997817 [00:04<00:28, 150444.15it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 786317/4997817 [00:05<00:26, 156868.27it/s]" + " 15%|█▌ | 761372/4997817 [00:05<00:28, 151122.68it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 802017/4997817 [00:05<00:26, 156904.88it/s]" + " 16%|█▌ | 776857/4997817 [00:05<00:27, 152232.63it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 817708/4997817 [00:05<00:27, 153225.26it/s]" + " 16%|█▌ | 792347/4997817 [00:05<00:27, 153026.64it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 833392/4997817 [00:05<00:26, 154288.53it/s]" + " 16%|█▌ | 807768/4997817 [00:05<00:27, 153377.03it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 849328/4997817 [00:05<00:26, 155788.65it/s]" + " 16%|█▋ | 823303/4997817 [00:05<00:27, 153966.34it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 865122/4997817 [00:05<00:26, 156427.57it/s]" + " 17%|█▋ | 838868/4997817 [00:05<00:26, 154469.02it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 880887/4997817 [00:05<00:26, 156788.95it/s]" + " 17%|█▋ | 854393/4997817 [00:05<00:26, 154699.52it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 896614/4997817 [00:05<00:26, 156931.70it/s]" + " 17%|█▋ | 869879/4997817 [00:05<00:26, 154744.14it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 912312/4997817 [00:05<00:26, 156914.97it/s]" + " 18%|█▊ | 885355/4997817 [00:05<00:26, 154662.03it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 928025/4997817 [00:05<00:25, 156976.92it/s]" + " 18%|█▊ | 900823/4997817 [00:05<00:26, 154618.28it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 943726/4997817 [00:06<00:25, 156932.85it/s]" + " 18%|█▊ | 916286/4997817 [00:06<00:26, 154561.85it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 959463/4997817 [00:06<00:25, 157062.64it/s]" + " 19%|█▊ | 931866/4997817 [00:06<00:26, 154930.84it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 975171/4997817 [00:06<00:25, 156949.11it/s]" + " 19%|█▉ | 947360/4997817 [00:06<00:26, 154896.54it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 990867/4997817 [00:06<00:25, 156556.37it/s]" + " 19%|█▉ | 962850/4997817 [00:06<00:26, 154866.84it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1006550/4997817 [00:06<00:25, 156635.05it/s]" + " 20%|█▉ | 978337/4997817 [00:06<00:25, 154782.30it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1022215/4997817 [00:06<00:25, 156528.27it/s]" + " 20%|█▉ | 993816/4997817 [00:06<00:25, 154378.72it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1037881/4997817 [00:06<00:25, 156565.86it/s]" + " 20%|██ | 1009295/4997817 [00:06<00:25, 154498.77it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1053699/4997817 [00:06<00:25, 157047.75it/s]" + " 21%|██ | 1024770/4997817 [00:06<00:25, 154570.08it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1069405/4997817 [00:06<00:25, 157030.48it/s]" + " 21%|██ | 1040292/4997817 [00:06<00:25, 154762.00it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1085109/4997817 [00:06<00:24, 157023.73it/s]" + " 21%|██ | 1055833/4997817 [00:06<00:25, 154953.40it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1100812/4997817 [00:07<00:24, 157017.91it/s]" + " 21%|██▏ | 1071368/4997817 [00:07<00:25, 155068.69it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1116514/4997817 [00:07<00:24, 156868.74it/s]" + " 22%|██▏ | 1086875/4997817 [00:07<00:25, 154910.98it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1132201/4997817 [00:07<00:24, 156856.61it/s]" + " 22%|██▏ | 1102367/4997817 [00:07<00:25, 154771.95it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1147887/4997817 [00:07<00:24, 156805.11it/s]" + " 22%|██▏ | 1117845/4997817 [00:07<00:25, 154473.84it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1163580/4997817 [00:07<00:24, 156840.13it/s]" + " 23%|██▎ | 1133293/4997817 [00:07<00:25, 153830.15it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1179265/4997817 [00:07<00:24, 156735.23it/s]" + " 23%|██▎ | 1148677/4997817 [00:07<00:25, 152795.48it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1194966/4997817 [00:07<00:24, 156815.51it/s]" + " 23%|██▎ | 1164033/4997817 [00:07<00:25, 153020.57it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1210648/4997817 [00:07<00:24, 156722.01it/s]" + " 24%|██▎ | 1179445/4997817 [00:07<00:24, 153346.10it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1226321/4997817 [00:07<00:24, 156153.98it/s]" + " 24%|██▍ | 1194827/4997817 [00:07<00:24, 153485.79it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1241937/4997817 [00:07<00:24, 156124.87it/s]" + " 24%|██▍ | 1210177/4997817 [00:07<00:24, 153406.60it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1257558/4997817 [00:08<00:23, 156148.50it/s]" + " 25%|██▍ | 1225519/4997817 [00:08<00:24, 153329.14it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1273179/4997817 [00:08<00:23, 156164.18it/s]" + " 25%|██▍ | 1240853/4997817 [00:08<00:24, 152990.60it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1288823/4997817 [00:08<00:23, 156245.31it/s]" + " 25%|██▌ | 1256153/4997817 [00:08<00:24, 152916.47it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1304448/4997817 [00:08<00:24, 149122.57it/s]" + " 25%|██▌ | 1271445/4997817 [00:08<00:24, 152236.93it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1320201/4997817 [00:08<00:24, 151560.64it/s]" + " 26%|██▌ | 1286713/4997817 [00:08<00:24, 152365.67it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1335784/4997817 [00:08<00:23, 152810.29it/s]" + " 26%|██▌ | 1302067/4997817 [00:08<00:24, 152714.43it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1351437/4997817 [00:08<00:23, 153905.86it/s]" + " 26%|██▋ | 1317531/4997817 [00:08<00:24, 153287.37it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1367067/4997817 [00:08<00:23, 154615.30it/s]" + " 27%|██▋ | 1332993/4997817 [00:08<00:23, 153682.36it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1382626/4997817 [00:08<00:23, 154902.96it/s]" + " 27%|██▋ | 1348485/4997817 [00:08<00:23, 154049.29it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1398347/4997817 [00:08<00:23, 155589.95it/s]" + " 27%|██▋ | 1363898/4997817 [00:08<00:23, 154071.65it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1414047/4997817 [00:09<00:22, 156009.20it/s]" + " 28%|██▊ | 1379399/4997817 [00:09<00:23, 154351.60it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1429657/4997817 [00:09<00:22, 155598.60it/s]" + " 28%|██▊ | 1394835/4997817 [00:09<00:23, 154191.34it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1445223/4997817 [00:09<00:22, 155576.53it/s]" + " 28%|██▊ | 1410321/4997817 [00:09<00:23, 154389.90it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1460785/4997817 [00:09<00:23, 151230.69it/s]" + " 29%|██▊ | 1425761/4997817 [00:09<00:23, 154373.66it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1476499/4997817 [00:09<00:23, 152962.50it/s]" + " 29%|██▉ | 1441199/4997817 [00:09<00:23, 154033.50it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1492193/4997817 [00:09<00:22, 154135.92it/s]" + " 29%|██▉ | 1456681/4997817 [00:09<00:22, 154241.61it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1507910/4997817 [00:09<00:22, 155034.80it/s]" + " 29%|██▉ | 1472106/4997817 [00:09<00:23, 149708.68it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1523500/4997817 [00:09<00:22, 155291.00it/s]" + " 30%|██▉ | 1487442/4997817 [00:09<00:23, 150778.12it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1539068/4997817 [00:09<00:22, 155405.46it/s]" + " 30%|███ | 1502934/4997817 [00:09<00:22, 151998.09it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1554740/4997817 [00:09<00:22, 155797.39it/s]" + " 30%|███ | 1518481/4997817 [00:09<00:22, 153026.59it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1570325/4997817 [00:10<00:22, 155632.09it/s]" + " 31%|███ | 1533971/4997817 [00:10<00:22, 153580.89it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1585935/4997817 [00:10<00:21, 155771.47it/s]" + " 31%|███ | 1549477/4997817 [00:10<00:22, 154018.67it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1601515/4997817 [00:10<00:21, 155577.69it/s]" + " 31%|███▏ | 1564939/4997817 [00:10<00:22, 154195.91it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1617101/4997817 [00:10<00:21, 155645.58it/s]" + " 32%|███▏ | 1580364/4997817 [00:10<00:22, 153889.50it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1632667/4997817 [00:10<00:22, 148235.31it/s]" + " 32%|███▏ | 1595792/4997817 [00:10<00:22, 154004.33it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1648018/4997817 [00:10<00:22, 149759.46it/s]" + " 32%|███▏ | 1611227/4997817 [00:10<00:21, 154106.29it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1663496/4997817 [00:10<00:22, 151227.25it/s]" + " 33%|███▎ | 1626640/4997817 [00:10<00:21, 153914.83it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1679092/4997817 [00:10<00:21, 152620.63it/s]" + " 33%|███▎ | 1642067/4997817 [00:10<00:21, 154017.91it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1694624/4997817 [00:10<00:21, 153418.04it/s]" + " 33%|███▎ | 1657470/4997817 [00:10<00:21, 153883.75it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1710114/4997817 [00:10<00:21, 153856.65it/s]" + " 33%|███▎ | 1672885/4997817 [00:10<00:21, 153960.13it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1725618/4997817 [00:11<00:21, 154206.80it/s]" + " 34%|███▍ | 1688410/4997817 [00:11<00:21, 154345.25it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1741184/4997817 [00:11<00:21, 154637.42it/s]" + " 34%|███▍ | 1703989/4997817 [00:11<00:21, 154777.26it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1756809/4997817 [00:11<00:20, 155118.45it/s]" + " 34%|███▍ | 1719468/4997817 [00:11<00:21, 154729.80it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1772353/4997817 [00:11<00:20, 155210.55it/s]" + " 35%|███▍ | 1734942/4997817 [00:11<00:21, 154566.62it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1787879/4997817 [00:11<00:20, 155071.46it/s]" + " 35%|███▌ | 1750507/4997817 [00:11<00:20, 154890.07it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1803441/4997817 [00:11<00:20, 155232.57it/s]" + " 35%|███▌ | 1766005/4997817 [00:11<00:20, 154914.31it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1818967/4997817 [00:11<00:20, 155131.89it/s]" + " 36%|███▌ | 1781497/4997817 [00:11<00:21, 147546.06it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1834552/4997817 [00:11<00:20, 155345.75it/s]" + " 36%|███▌ | 1796958/4997817 [00:11<00:21, 149591.06it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1850088/4997817 [00:11<00:20, 155196.47it/s]" + " 36%|███▋ | 1812454/4997817 [00:11<00:21, 151160.60it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1865620/4997817 [00:11<00:20, 155230.31it/s]" + " 37%|███▋ | 1827877/4997817 [00:11<00:20, 152061.89it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1881152/4997817 [00:12<00:20, 155254.90it/s]" + " 37%|███▋ | 1843464/4997817 [00:12<00:20, 153189.44it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1896678/4997817 [00:12<00:19, 155248.93it/s]" + " 37%|███▋ | 1858984/4997817 [00:12<00:20, 153786.46it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1912204/4997817 [00:12<00:19, 155052.44it/s]" + " 38%|███▊ | 1874464/4997817 [00:12<00:20, 154084.92it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1927782/4997817 [00:12<00:19, 155267.04it/s]" + " 38%|███▊ | 1889886/4997817 [00:12<00:20, 154001.26it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1943309/4997817 [00:12<00:20, 147382.65it/s]" + " 38%|███▊ | 1905352/4997817 [00:12<00:20, 154197.03it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1958900/4997817 [00:12<00:20, 149845.53it/s]" + " 38%|███▊ | 1920784/4997817 [00:12<00:19, 154230.24it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1974144/4997817 [00:12<00:20, 150601.16it/s]" + " 39%|███▊ | 1936212/4997817 [00:12<00:20, 148546.66it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1989777/4997817 [00:12<00:19, 152285.11it/s]" + " 39%|███▉ | 1951414/4997817 [00:12<00:20, 149557.92it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2005339/4997817 [00:12<00:19, 153271.17it/s]" + " 39%|███▉ | 1966912/4997817 [00:12<00:20, 151149.78it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2020923/4997817 [00:12<00:19, 154032.12it/s]" + " 40%|███▉ | 1982262/4997817 [00:12<00:19, 151843.47it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2036556/4997817 [00:13<00:19, 154716.13it/s]" + " 40%|███▉ | 1997680/4997817 [00:13<00:19, 152533.87it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2052197/4997817 [00:13<00:18, 155218.30it/s]" + " 40%|████ | 2012949/4997817 [00:13<00:19, 152506.11it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2067791/4997817 [00:13<00:18, 155431.62it/s]" + " 41%|████ | 2028211/4997817 [00:13<00:19, 152396.45it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2083480/4997817 [00:13<00:18, 155866.53it/s]" + " 41%|████ | 2043459/4997817 [00:13<00:19, 152411.03it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2099072/4997817 [00:13<00:18, 153960.26it/s]" + " 41%|████ | 2058765/4997817 [00:13<00:19, 152604.20it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2114477/4997817 [00:13<00:19, 149462.47it/s]" + " 41%|████▏ | 2074030/4997817 [00:13<00:19, 152499.64it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2129964/4997817 [00:13<00:18, 151036.87it/s]" + " 42%|████▏ | 2089285/4997817 [00:13<00:19, 152513.02it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2145511/4997817 [00:13<00:18, 152339.93it/s]" + " 42%|████▏ | 2104539/4997817 [00:13<00:19, 151666.67it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2161091/4997817 [00:13<00:18, 153360.76it/s]" + " 42%|████▏ | 2119708/4997817 [00:13<00:19, 151082.79it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2176618/4997817 [00:14<00:18, 153926.20it/s]" + " 43%|████▎ | 2134819/4997817 [00:13<00:18, 150954.13it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2192023/4997817 [00:14<00:18, 153927.27it/s]" + " 43%|████▎ | 2149966/4997817 [00:14<00:18, 151105.70it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2207487/4997817 [00:14<00:18, 154138.21it/s]" + " 43%|████▎ | 2165078/4997817 [00:14<00:18, 150864.63it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2222907/4997817 [00:14<00:18, 154133.22it/s]" + " 44%|████▎ | 2180212/4997817 [00:14<00:18, 151004.51it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2238462/4997817 [00:14<00:17, 154555.13it/s]" + " 44%|████▍ | 2195377/4997817 [00:14<00:18, 151195.99it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2254046/4997817 [00:14<00:17, 154936.96it/s]" + " 44%|████▍ | 2210676/4997817 [00:14<00:18, 151731.76it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2269542/4997817 [00:14<00:17, 154628.66it/s]" + " 45%|████▍ | 2225850/4997817 [00:14<00:18, 151531.53it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2285034/4997817 [00:14<00:17, 154712.81it/s]" + " 45%|████▍ | 2241004/4997817 [00:14<00:18, 151333.79it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2300521/4997817 [00:14<00:17, 154756.29it/s]" + " 45%|████▌ | 2256138/4997817 [00:14<00:18, 150729.51it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2316076/4997817 [00:14<00:17, 154990.85it/s]" + " 45%|████▌ | 2271212/4997817 [00:14<00:18, 150197.98it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2331731/4997817 [00:15<00:17, 155457.59it/s]" + " 46%|████▌ | 2286233/4997817 [00:15<00:18, 150187.72it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2347419/4997817 [00:15<00:17, 155882.10it/s]" + " 46%|████▌ | 2301330/4997817 [00:15<00:17, 150418.31it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2363116/4997817 [00:15<00:16, 156205.14it/s]" + " 46%|████▋ | 2316399/4997817 [00:15<00:17, 150498.24it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2378808/4997817 [00:15<00:16, 156417.45it/s]" + " 47%|████▋ | 2331548/4997817 [00:15<00:17, 150793.94it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2394450/4997817 [00:15<00:16, 156396.45it/s]" + " 47%|████▋ | 2346781/4997817 [00:15<00:17, 151253.19it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2410090/4997817 [00:15<00:16, 156233.00it/s]" + " 47%|████▋ | 2362004/4997817 [00:15<00:17, 151542.75it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2425714/4997817 [00:15<00:16, 153347.97it/s]" + " 48%|████▊ | 2377162/4997817 [00:15<00:17, 151551.14it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2441355/4997817 [00:15<00:16, 154251.91it/s]" + " 48%|████▊ | 2392436/4997817 [00:15<00:17, 151906.04it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2456999/4997817 [00:15<00:16, 154899.45it/s]" + " 48%|████▊ | 2407643/4997817 [00:15<00:17, 151953.19it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2472573/4997817 [00:15<00:16, 155147.20it/s]" + " 48%|████▊ | 2423011/4997817 [00:15<00:16, 152469.29it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488269/4997817 [00:16<00:16, 155687.39it/s]" + " 49%|████▉ | 2438258/4997817 [00:16<00:16, 152457.99it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2503888/4997817 [00:16<00:16, 155834.72it/s]" + " 49%|████▉ | 2453589/4997817 [00:16<00:16, 152711.08it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2519475/4997817 [00:16<00:15, 155805.85it/s]" + " 49%|████▉ | 2468861/4997817 [00:16<00:16, 152406.11it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2535058/4997817 [00:16<00:15, 155369.20it/s]" + " 50%|████▉ | 2484102/4997817 [00:16<00:16, 152383.37it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2550597/4997817 [00:16<00:15, 155179.21it/s]" + " 50%|█████ | 2499341/4997817 [00:16<00:16, 152361.67it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2566117/4997817 [00:16<00:15, 155127.40it/s]" + " 50%|█████ | 2514736/4997817 [00:16<00:16, 152835.48it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2581758/4997817 [00:16<00:15, 155508.94it/s]" + " 51%|█████ | 2530062/4997817 [00:16<00:16, 152961.70it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2597417/4997817 [00:16<00:15, 155829.62it/s]" + " 51%|█████ | 2545402/4997817 [00:16<00:16, 153090.00it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2613047/4997817 [00:16<00:15, 155967.82it/s]" + " 51%|█████ | 2560712/4997817 [00:16<00:15, 152472.61it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2628736/4997817 [00:16<00:15, 156242.26it/s]" + " 52%|█████▏ | 2576006/4997817 [00:16<00:15, 152608.52it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2644396/4997817 [00:17<00:15, 156346.54it/s]" + " 52%|█████▏ | 2591361/4997817 [00:17<00:15, 152887.01it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2660031/4997817 [00:17<00:14, 156281.93it/s]" + " 52%|█████▏ | 2606651/4997817 [00:17<00:15, 152751.10it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2675660/4997817 [00:17<00:14, 156120.12it/s]" + " 52%|█████▏ | 2621927/4997817 [00:17<00:15, 152635.77it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2691280/4997817 [00:17<00:14, 156142.76it/s]" + " 53%|█████▎ | 2637191/4997817 [00:17<00:15, 152547.55it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2706895/4997817 [00:17<00:14, 155947.37it/s]" + " 53%|█████▎ | 2652472/4997817 [00:17<00:15, 152623.26it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2722572/4997817 [00:17<00:14, 156193.18it/s]" + " 53%|█████▎ | 2667735/4997817 [00:17<00:15, 152574.74it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2738193/4997817 [00:17<00:14, 156195.92it/s]" + " 54%|█████▎ | 2682993/4997817 [00:17<00:15, 152551.51it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2753813/4997817 [00:17<00:14, 150301.55it/s]" + " 54%|█████▍ | 2698249/4997817 [00:17<00:15, 152430.35it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2769422/4997817 [00:17<00:14, 151987.78it/s]" + " 54%|█████▍ | 2713493/4997817 [00:17<00:14, 152302.06it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2785064/4997817 [00:17<00:14, 153289.24it/s]" + " 55%|█████▍ | 2728724/4997817 [00:17<00:15, 151063.24it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2800777/4997817 [00:18<00:14, 154423.61it/s]" + " 55%|█████▍ | 2743939/4997817 [00:18<00:14, 151383.79it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2816532/4997817 [00:18<00:14, 155351.64it/s]" + " 55%|█████▌ | 2759158/4997817 [00:18<00:14, 151621.64it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2832326/4997817 [00:18<00:13, 156121.44it/s]" + " 56%|█████▌ | 2774348/4997817 [00:18<00:14, 151702.75it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2848000/4997817 [00:18<00:13, 156304.73it/s]" + " 56%|█████▌ | 2789597/4997817 [00:18<00:14, 151936.90it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2863639/4997817 [00:18<00:13, 156075.36it/s]" + " 56%|█████▌ | 2804823/4997817 [00:18<00:14, 152032.20it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2879282/4997817 [00:18<00:13, 156179.98it/s]" + " 56%|█████▋ | 2820027/4997817 [00:18<00:14, 152028.49it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2894905/4997817 [00:18<00:13, 156130.38it/s]" + " 57%|█████▋ | 2835231/4997817 [00:18<00:14, 151863.98it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2910521/4997817 [00:18<00:13, 155588.20it/s]" + " 57%|█████▋ | 2850481/4997817 [00:18<00:14, 152051.86it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2926101/4997817 [00:18<00:13, 155647.77it/s]" + " 57%|█████▋ | 2865687/4997817 [00:18<00:14, 152021.10it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2941668/4997817 [00:18<00:13, 155279.31it/s]" + " 58%|█████▊ | 2880890/4997817 [00:18<00:13, 151948.23it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2957198/4997817 [00:19<00:13, 155117.95it/s]" + " 58%|█████▊ | 2896119/4997817 [00:19<00:13, 152047.99it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2972765/4997817 [00:19<00:13, 155281.18it/s]" + " 58%|█████▊ | 2911324/4997817 [00:19<00:13, 151894.90it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2988398/4997817 [00:19<00:12, 155591.93it/s]" + " 59%|█████▊ | 2926514/4997817 [00:19<00:13, 151707.99it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3003958/4997817 [00:19<00:12, 155555.18it/s]" + " 59%|█████▉ | 2941685/4997817 [00:19<00:13, 151331.30it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3019690/4997817 [00:19<00:12, 156080.74it/s]" + " 59%|█████▉ | 2956862/4997817 [00:19<00:13, 151461.27it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3035372/4997817 [00:19<00:12, 156299.79it/s]" + " 59%|█████▉ | 2972034/4997817 [00:19<00:13, 151534.88it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3051003/4997817 [00:19<00:12, 154260.07it/s]" + " 60%|█████▉ | 2987200/4997817 [00:19<00:13, 151569.37it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3066480/4997817 [00:19<00:12, 154409.21it/s]" + " 60%|██████ | 3002482/4997817 [00:19<00:13, 151940.96it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3082098/4997817 [00:19<00:12, 154934.80it/s]" + " 60%|██████ | 3017677/4997817 [00:19<00:13, 151819.15it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3097722/4997817 [00:19<00:12, 155321.11it/s]" + " 61%|██████ | 3032885/4997817 [00:19<00:12, 151894.65it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3113318/4997817 [00:20<00:12, 155509.63it/s]" + " 61%|██████ | 3048113/4997817 [00:20<00:12, 152008.14it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3128913/4997817 [00:20<00:12, 155639.58it/s]" + " 61%|██████▏ | 3063393/4997817 [00:20<00:12, 152242.46it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3144479/4997817 [00:20<00:11, 155436.41it/s]" + " 62%|██████▏ | 3078624/4997817 [00:20<00:12, 152259.82it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3160024/4997817 [00:20<00:11, 155424.44it/s]" + " 62%|██████▏ | 3093999/4997817 [00:20<00:12, 152703.83it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3175636/4997817 [00:20<00:11, 155631.16it/s]" + " 62%|██████▏ | 3109270/4997817 [00:20<00:12, 152597.70it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3191241/4997817 [00:20<00:11, 155756.16it/s]" + " 63%|██████▎ | 3124545/4997817 [00:20<00:12, 152640.02it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3206843/4997817 [00:20<00:11, 155833.52it/s]" + " 63%|██████▎ | 3139820/4997817 [00:20<00:12, 152672.28it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3222427/4997817 [00:20<00:11, 155273.07it/s]" + " 63%|██████▎ | 3155088/4997817 [00:20<00:12, 152185.95it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3237981/4997817 [00:20<00:11, 155351.19it/s]" + " 63%|██████▎ | 3170307/4997817 [00:20<00:12, 152112.32it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3253517/4997817 [00:20<00:11, 154931.20it/s]" + " 64%|██████▎ | 3185530/4997817 [00:20<00:11, 152144.01it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3269081/4997817 [00:21<00:11, 155140.63it/s]" + " 64%|██████▍ | 3200769/4997817 [00:21<00:11, 152215.78it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3284643/4997817 [00:21<00:11, 155282.26it/s]" + " 64%|██████▍ | 3215991/4997817 [00:21<00:11, 152101.57it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3300172/4997817 [00:21<00:10, 154899.59it/s]" + " 65%|██████▍ | 3231212/4997817 [00:21<00:11, 152132.03it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3315734/4997817 [00:21<00:10, 155110.38it/s]" + " 65%|██████▍ | 3246456/4997817 [00:21<00:11, 152222.64it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3331370/4997817 [00:21<00:10, 155482.10it/s]" + " 65%|██████▌ | 3261753/4997817 [00:21<00:11, 152443.70it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3346919/4997817 [00:21<00:10, 155478.18it/s]" + " 66%|██████▌ | 3277013/4997817 [00:21<00:11, 152488.65it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3362526/4997817 [00:21<00:10, 155654.59it/s]" + " 66%|██████▌ | 3292262/4997817 [00:21<00:11, 152111.15it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3378092/4997817 [00:21<00:10, 155458.59it/s]" + " 66%|██████▌ | 3307474/4997817 [00:21<00:11, 151890.48it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3393723/4997817 [00:21<00:10, 155711.81it/s]" + " 66%|██████▋ | 3322664/4997817 [00:21<00:11, 151792.11it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3409391/4997817 [00:21<00:10, 155999.46it/s]" + " 67%|██████▋ | 3338019/4997817 [00:21<00:10, 152314.90it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3425019/4997817 [00:22<00:10, 156082.27it/s]" + " 67%|██████▋ | 3353323/4997817 [00:22<00:10, 152529.53it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3440777/4997817 [00:22<00:09, 156528.39it/s]" + " 67%|██████▋ | 3368577/4997817 [00:22<00:10, 152460.16it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3456471/4997817 [00:22<00:09, 156650.75it/s]" + " 68%|██████▊ | 3383824/4997817 [00:22<00:10, 152309.28it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3472159/4997817 [00:22<00:09, 156718.43it/s]" + " 68%|██████▊ | 3399056/4997817 [00:22<00:10, 151943.79it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3487831/4997817 [00:22<00:09, 156663.27it/s]" + " 68%|██████▊ | 3414251/4997817 [00:22<00:10, 151765.12it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3503498/4997817 [00:22<00:09, 156604.19it/s]" + " 69%|██████▊ | 3429493/4997817 [00:22<00:10, 151958.92it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3519159/4997817 [00:22<00:09, 156242.75it/s]" + " 69%|██████▉ | 3444690/4997817 [00:22<00:10, 151836.87it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3534858/4997817 [00:22<00:09, 156463.62it/s]" + " 69%|██████▉ | 3459874/4997817 [00:22<00:10, 151774.03it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3550505/4997817 [00:22<00:09, 149036.13it/s]" + " 70%|██████▉ | 3475111/4997817 [00:22<00:10, 151949.21it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3566172/4997817 [00:22<00:09, 151244.49it/s]" + " 70%|██████▉ | 3490307/4997817 [00:22<00:09, 151945.21it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3581958/4997817 [00:23<00:09, 153178.22it/s]" + " 70%|███████ | 3505502/4997817 [00:23<00:09, 149425.36it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3597789/4997817 [00:23<00:09, 154690.37it/s]" + " 70%|███████ | 3520675/4997817 [00:23<00:09, 150104.81it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3613468/4997817 [00:23<00:08, 155310.76it/s]" + " 71%|███████ | 3536035/4997817 [00:23<00:09, 151141.36it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3629200/4997817 [00:23<00:08, 155906.08it/s]" + " 71%|███████ | 3551305/4997817 [00:23<00:09, 151603.89it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3644976/4997817 [00:23<00:08, 156457.28it/s]" + " 71%|███████▏ | 3566631/4997817 [00:23<00:09, 152096.15it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3660681/4997817 [00:23<00:08, 156631.04it/s]" + " 72%|███████▏ | 3582057/4997817 [00:23<00:09, 152739.92it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3676412/4997817 [00:23<00:08, 156830.70it/s]" + " 72%|███████▏ | 3597451/4997817 [00:23<00:09, 153097.47it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3692102/4997817 [00:23<00:08, 156763.32it/s]" + " 72%|███████▏ | 3612812/4997817 [00:23<00:09, 153248.53it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3707783/4997817 [00:23<00:08, 156228.59it/s]" + " 73%|███████▎ | 3628145/4997817 [00:23<00:08, 153269.81it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3723410/4997817 [00:23<00:08, 156001.90it/s]" + " 73%|███████▎ | 3643473/4997817 [00:23<00:08, 153075.54it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3739013/4997817 [00:24<00:08, 155896.92it/s]" + " 73%|███████▎ | 3658782/4997817 [00:24<00:08, 152987.26it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3754680/4997817 [00:24<00:07, 156126.72it/s]" + " 74%|███████▎ | 3674219/4997817 [00:24<00:08, 153400.11it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3770294/4997817 [00:24<00:07, 155956.77it/s]" + " 74%|███████▍ | 3689609/4997817 [00:24<00:08, 153548.76it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3785910/4997817 [00:24<00:07, 156016.86it/s]" + " 74%|███████▍ | 3704965/4997817 [00:24<00:08, 153215.87it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3801513/4997817 [00:24<00:07, 155964.71it/s]" + " 74%|███████▍ | 3720330/4997817 [00:24<00:08, 153308.02it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3817120/4997817 [00:24<00:07, 155992.84it/s]" + " 75%|███████▍ | 3735745/4997817 [00:24<00:08, 153557.19it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3832720/4997817 [00:24<00:07, 155983.55it/s]" + " 75%|███████▌ | 3751101/4997817 [00:24<00:08, 153486.47it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3848345/4997817 [00:24<00:07, 156059.90it/s]" + " 75%|███████▌ | 3766504/4997817 [00:24<00:08, 153647.63it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3863952/4997817 [00:24<00:07, 148367.40it/s]" + " 76%|███████▌ | 3781869/4997817 [00:24<00:07, 153439.48it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3879632/4997817 [00:24<00:07, 150805.37it/s]" + " 76%|███████▌ | 3797284/4997817 [00:24<00:07, 153648.41it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3895335/4997817 [00:25<00:07, 152623.35it/s]" + " 76%|███████▋ | 3812649/4997817 [00:25<00:07, 153206.91it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3911069/4997817 [00:25<00:07, 154010.55it/s]" + " 77%|███████▋ | 3828069/4997817 [00:25<00:07, 153502.20it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3926784/4997817 [00:25<00:06, 154938.94it/s]" + " 77%|███████▋ | 3843420/4997817 [00:25<00:07, 153333.71it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3942544/4997817 [00:25<00:06, 155727.99it/s]" + " 77%|███████▋ | 3858826/4997817 [00:25<00:07, 153549.42it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3958159/4997817 [00:25<00:06, 155850.31it/s]" + " 78%|███████▊ | 3874182/4997817 [00:25<00:07, 153524.89it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3973923/4997817 [00:25<00:06, 156382.04it/s]" + " 78%|███████▊ | 3889575/4997817 [00:25<00:07, 153644.24it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3989706/4997817 [00:25<00:06, 156813.02it/s]" + " 78%|███████▊ | 3904940/4997817 [00:25<00:07, 153484.99it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4005509/4997817 [00:25<00:06, 157173.90it/s]" + " 78%|███████▊ | 3920289/4997817 [00:25<00:07, 153285.72it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4021268/4997817 [00:25<00:06, 157297.01it/s]" + " 79%|███████▊ | 3935618/4997817 [00:25<00:06, 153225.79it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4037002/4997817 [00:25<00:06, 156864.65it/s]" + " 79%|███████▉ | 3951084/4997817 [00:25<00:06, 153653.44it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4052692/4997817 [00:26<00:06, 156360.66it/s]" + " 79%|███████▉ | 3966477/4997817 [00:26<00:06, 153733.07it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4068403/4997817 [00:26<00:05, 156583.00it/s]" + " 80%|███████▉ | 3981879/4997817 [00:26<00:06, 153815.61it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4084170/4997817 [00:26<00:05, 156906.95it/s]" + " 80%|███████▉ | 3997261/4997817 [00:26<00:06, 153450.15it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4099862/4997817 [00:26<00:05, 156560.68it/s]" + " 80%|████████ | 4012607/4997817 [00:26<00:06, 153340.19it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4115633/4997817 [00:26<00:05, 156901.80it/s]" + " 81%|████████ | 4027942/4997817 [00:26<00:06, 153204.17it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4131413/4997817 [00:26<00:05, 157169.61it/s]" + " 81%|████████ | 4043263/4997817 [00:26<00:06, 153101.59it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4147174/4997817 [00:26<00:05, 157300.90it/s]" + " 81%|████████ | 4058574/4997817 [00:26<00:06, 152649.60it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4162905/4997817 [00:26<00:05, 157101.40it/s]" + " 82%|████████▏ | 4073840/4997817 [00:26<00:06, 152492.42it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4178673/4997817 [00:26<00:05, 157271.82it/s]" + " 82%|████████▏ | 4089090/4997817 [00:26<00:05, 152227.07it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4194401/4997817 [00:26<00:05, 154293.22it/s]" + " 82%|████████▏ | 4104313/4997817 [00:26<00:05, 150900.00it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4210003/4997817 [00:27<00:05, 154802.00it/s]" + " 82%|████████▏ | 4119406/4997817 [00:27<00:05, 150874.09it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4225675/4997817 [00:27<00:04, 155369.63it/s]" + " 83%|████████▎ | 4134496/4997817 [00:27<00:05, 150440.82it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4241497/4997817 [00:27<00:04, 156216.58it/s]" + " 83%|████████▎ | 4149652/4997817 [00:27<00:05, 150772.45it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4257316/4997817 [00:27<00:04, 156802.39it/s]" + " 83%|████████▎ | 4164918/4997817 [00:27<00:05, 151334.08it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4273149/4997817 [00:27<00:04, 157256.33it/s]" + " 84%|████████▎ | 4180089/4997817 [00:27<00:05, 151445.14it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4288963/4997817 [00:27<00:04, 157517.68it/s]" + " 84%|████████▍ | 4195260/4997817 [00:27<00:05, 151520.79it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4304819/4997817 [00:27<00:04, 157827.29it/s]" + " 84%|████████▍ | 4210505/4997817 [00:27<00:05, 151795.15it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4320680/4997817 [00:27<00:04, 158060.62it/s]" + " 85%|████████▍ | 4225702/4997817 [00:27<00:05, 151845.96it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4336553/4997817 [00:27<00:04, 158259.05it/s]" + " 85%|████████▍ | 4240887/4997817 [00:27<00:04, 151794.49it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4352399/4997817 [00:27<00:04, 158317.30it/s]" + " 85%|████████▌ | 4256251/4997817 [00:27<00:04, 152343.50it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4368232/4997817 [00:28<00:03, 157914.38it/s]" + " 85%|████████▌ | 4271644/4997817 [00:28<00:04, 152816.49it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4384025/4997817 [00:28<00:03, 157847.90it/s]" + " 86%|████████▌ | 4286926/4997817 [00:28<00:04, 151759.69it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4399840/4997817 [00:28<00:03, 157937.40it/s]" + " 86%|████████▌ | 4302104/4997817 [00:28<00:04, 151725.74it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4415688/4997817 [00:28<00:03, 158096.40it/s]" + " 86%|████████▋ | 4317364/4997817 [00:28<00:04, 151983.82it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4431584/4997817 [00:28<00:03, 158353.82it/s]" + " 87%|████████▋ | 4332692/4997817 [00:28<00:04, 152369.94it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4447420/4997817 [00:28<00:03, 158329.46it/s]" + " 87%|████████▋ | 4347991/4997817 [00:28<00:04, 152552.06it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4463254/4997817 [00:28<00:03, 158306.64it/s]" + " 87%|████████▋ | 4363327/4997817 [00:28<00:04, 152790.89it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4479095/4997817 [00:28<00:03, 158337.00it/s]" + " 88%|████████▊ | 4378607/4997817 [00:28<00:04, 148458.18it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4494929/4997817 [00:28<00:03, 158263.94it/s]" + " 88%|████████▊ | 4393480/4997817 [00:28<00:04, 142262.87it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4510756/4997817 [00:28<00:03, 157835.36it/s]" + " 88%|████████▊ | 4408792/4997817 [00:28<00:04, 145373.58it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4526540/4997817 [00:29<00:02, 157699.84it/s]" + " 89%|████████▊ | 4424149/4997817 [00:29<00:03, 147753.67it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4542329/4997817 [00:29<00:02, 157754.78it/s]" + " 89%|████████▉ | 4439438/4997817 [00:29<00:03, 149259.24it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4558105/4997817 [00:29<00:02, 157720.35it/s]" + " 89%|████████▉ | 4454678/4997817 [00:29<00:03, 150183.80it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4573998/4997817 [00:29<00:02, 158079.44it/s]" + " 89%|████████▉ | 4469725/4997817 [00:29<00:03, 143754.53it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4589845/4997817 [00:29<00:02, 158195.87it/s]" + " 90%|████████▉ | 4484985/4997817 [00:29<00:03, 146305.35it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4605665/4997817 [00:29<00:02, 158104.94it/s]" + " 90%|█████████ | 4500321/4997817 [00:29<00:03, 148363.06it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4621476/4997817 [00:29<00:02, 157979.37it/s]" + " 90%|█████████ | 4515705/4997817 [00:29<00:03, 149972.16it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4637312/4997817 [00:29<00:02, 158092.68it/s]" + " 91%|█████████ | 4530858/4997817 [00:29<00:03, 150429.10it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4653156/4997817 [00:29<00:02, 158194.47it/s]" + " 91%|█████████ | 4546128/4997817 [00:29<00:02, 151102.00it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4668976/4997817 [00:29<00:02, 157925.00it/s]" + " 91%|█████████▏| 4561495/4997817 [00:29<00:02, 151865.67it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4684769/4997817 [00:30<00:01, 157455.42it/s]" + " 92%|█████████▏| 4576696/4997817 [00:30<00:02, 151896.16it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4700543/4997817 [00:30<00:01, 157536.86it/s]" + " 92%|█████████▏| 4591896/4997817 [00:30<00:02, 151748.87it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4716321/4997817 [00:30<00:01, 157608.67it/s]" + " 92%|█████████▏| 4607105/4997817 [00:30<00:02, 151849.63it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4732087/4997817 [00:30<00:01, 157621.05it/s]" + " 92%|█████████▏| 4622426/4997817 [00:30<00:02, 152253.40it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4747850/4997817 [00:30<00:01, 157549.04it/s]" + " 93%|█████████▎| 4637655/4997817 [00:30<00:02, 152253.97it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4763606/4997817 [00:30<00:01, 157330.93it/s]" + " 93%|█████████▎| 4652942/4997817 [00:30<00:02, 152435.88it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4779340/4997817 [00:30<00:01, 156851.46it/s]" + " 93%|█████████▎| 4668228/4997817 [00:30<00:02, 152559.13it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4795062/4997817 [00:30<00:01, 156958.89it/s]" + " 94%|█████████▎| 4683506/4997817 [00:30<00:02, 152624.09it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4810759/4997817 [00:30<00:01, 156924.75it/s]" + " 94%|█████████▍| 4698770/4997817 [00:30<00:01, 152408.14it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4826479/4997817 [00:30<00:01, 157004.31it/s]" + " 94%|█████████▍| 4714012/4997817 [00:30<00:01, 152314.36it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4842180/4997817 [00:31<00:01, 153018.17it/s]" + " 95%|█████████▍| 4729244/4997817 [00:31<00:01, 152253.45it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4857754/4997817 [00:31<00:00, 153817.46it/s]" + " 95%|█████████▍| 4744470/4997817 [00:31<00:01, 148906.69it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4873365/4997817 [00:31<00:00, 154494.84it/s]" + " 95%|█████████▌| 4759678/4997817 [00:31<00:01, 149840.73it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4888941/4997817 [00:31<00:00, 154867.71it/s]" + " 96%|█████████▌| 4774923/4997817 [00:31<00:01, 150611.02it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4904521/4997817 [00:31<00:00, 155143.07it/s]" + " 96%|█████████▌| 4790208/4997817 [00:31<00:01, 151275.27it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4920058/4997817 [00:31<00:00, 155210.22it/s]" + " 96%|█████████▌| 4805406/4997817 [00:31<00:01, 151482.40it/s]" ] }, { @@ -3051,7 +3051,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4935639/4997817 [00:31<00:00, 155386.51it/s]" + " 96%|█████████▋| 4820694/4997817 [00:31<00:01, 151896.91it/s]" ] }, { @@ -3059,7 +3059,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4951237/4997817 [00:31<00:00, 155562.98it/s]" + " 97%|█████████▋| 4836084/4997817 [00:31<00:01, 152492.81it/s]" ] }, { @@ -3067,7 +3067,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4966796/4997817 [00:31<00:00, 155195.74it/s]" + " 97%|█████████▋| 4851423/4997817 [00:31<00:00, 152757.88it/s]" ] }, { @@ -3075,7 +3075,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4982344/4997817 [00:32<00:00, 155277.39it/s]" + " 97%|█████████▋| 4866834/4997817 [00:31<00:00, 153161.56it/s]" ] }, { @@ -3083,7 +3083,71 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:32<00:00, 155619.15it/s]" + " 98%|█████████▊| 4882152/4997817 [00:32<00:00, 153112.21it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4897502/4997817 [00:32<00:00, 153224.32it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4912826/4997817 [00:32<00:00, 151174.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4928122/4997817 [00:32<00:00, 151703.79it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4943431/4997817 [00:32<00:00, 152115.73it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4958721/4997817 [00:32<00:00, 152348.60it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4973960/4997817 [00:32<00:00, 152357.87it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4989221/4997817 [00:32<00:00, 152431.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997817/4997817 [00:32<00:00, 152152.96it/s]" ] }, { @@ -3322,10 +3386,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:26.080952Z", - "iopub.status.busy": "2024-02-08T04:34:26.080738Z", - "iopub.status.idle": "2024-02-08T04:34:40.605218Z", - "shell.execute_reply": "2024-02-08T04:34:40.604703Z" + "iopub.execute_input": "2024-02-08T05:20:55.976566Z", + "iopub.status.busy": "2024-02-08T05:20:55.976226Z", + "iopub.status.idle": "2024-02-08T05:21:10.548967Z", + "shell.execute_reply": "2024-02-08T05:21:10.548301Z" } }, "outputs": [], @@ -3339,10 +3403,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:40.607807Z", - "iopub.status.busy": "2024-02-08T04:34:40.607375Z", - "iopub.status.idle": "2024-02-08T04:34:44.392874Z", - "shell.execute_reply": "2024-02-08T04:34:44.392299Z" + "iopub.execute_input": "2024-02-08T05:21:10.551900Z", + "iopub.status.busy": "2024-02-08T05:21:10.551425Z", + "iopub.status.idle": "2024-02-08T05:21:14.388658Z", + "shell.execute_reply": "2024-02-08T05:21:14.388077Z" } }, "outputs": [ @@ -3411,17 +3475,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:44.395119Z", - "iopub.status.busy": "2024-02-08T04:34:44.394713Z", - "iopub.status.idle": "2024-02-08T04:34:45.738548Z", - "shell.execute_reply": "2024-02-08T04:34:45.738044Z" + "iopub.execute_input": "2024-02-08T05:21:14.390938Z", + "iopub.status.busy": "2024-02-08T05:21:14.390532Z", + "iopub.status.idle": "2024-02-08T05:21:15.799224Z", + "shell.execute_reply": "2024-02-08T05:21:15.798611Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fc2a058975cf4670b5ea53ada4efa60e", + "model_id": "30b77994083048219d1b9180228c2b4b", "version_major": 2, "version_minor": 0 }, @@ -3451,10 +3515,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:45.740842Z", - "iopub.status.busy": "2024-02-08T04:34:45.740635Z", - "iopub.status.idle": "2024-02-08T04:34:46.298623Z", - "shell.execute_reply": "2024-02-08T04:34:46.297981Z" + "iopub.execute_input": "2024-02-08T05:21:15.801674Z", + "iopub.status.busy": "2024-02-08T05:21:15.801489Z", + "iopub.status.idle": "2024-02-08T05:21:16.360971Z", + "shell.execute_reply": "2024-02-08T05:21:16.360335Z" } }, "outputs": [], @@ -3468,10 +3532,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:46.301137Z", - "iopub.status.busy": "2024-02-08T04:34:46.300933Z", - "iopub.status.idle": "2024-02-08T04:34:52.298498Z", - "shell.execute_reply": "2024-02-08T04:34:52.297918Z" + "iopub.execute_input": "2024-02-08T05:21:16.363401Z", + "iopub.status.busy": "2024-02-08T05:21:16.363219Z", + "iopub.status.idle": "2024-02-08T05:21:22.539869Z", + "shell.execute_reply": "2024-02-08T05:21:22.539266Z" } }, "outputs": [ @@ -3544,10 +3608,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:52.300651Z", - "iopub.status.busy": "2024-02-08T04:34:52.300470Z", - "iopub.status.idle": "2024-02-08T04:34:52.355976Z", - "shell.execute_reply": "2024-02-08T04:34:52.355420Z" + "iopub.execute_input": "2024-02-08T05:21:22.542055Z", + "iopub.status.busy": "2024-02-08T05:21:22.541716Z", + "iopub.status.idle": "2024-02-08T05:21:22.598351Z", + "shell.execute_reply": "2024-02-08T05:21:22.597802Z" }, "nbsphinx": "hidden" }, @@ -3591,25 +3655,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1b82d325bec94a47b9760cfd2a39a0df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "21c9e447d7fc49baaa07a5dcce1a412b": { + "0d25ab13f4d04ef39fede621e03c9b68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3662,30 +3708,41 @@ "width": null } }, - "23e3234032514e6680b01e2f25da0326": { + "0df6444b371a41e586ef22dd0d96e299": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9244d510c1fe4a9f858e8d747a5fb295", - "placeholder": "​", - "style": "IPY_MODEL_66b9efd6c0844f4a916d16ba72b3d48e", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00, 1.39it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "29cb9371753c4992adc2f03e9fded233": { + "103b031096294a14966691d435d6a362": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "106210816124408ca0e833f78c8c2750": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3700,15 +3757,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2dc1e15160a4a7da0af031122d9a662", + "layout": "IPY_MODEL_b4cfe9721e084dcf8d5ed3d647c40487", "placeholder": "​", - "style": "IPY_MODEL_4b1015e6ccde4c4299ac75c1f98dcb22", + "style": "IPY_MODEL_d01add5fe210416992ea136cad4f9a50", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "30f03336498f4516a6d36df879f490a1": { + "1165496d989d4c618a382d0b049e90f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3761,7 +3818,7 @@ "width": null } }, - "31f64f3801d34603bcb678d8d88d83f6": { + "132a2934c1e94813804517068cca530c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3814,7 +3871,33 @@ "width": null } }, - "4017c8df71354bda92d5349ae9fef4f0": { + "256b1a27f64b492eb415fe31f617f17e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_38c1a2e3eb594faea8eb2159dc493400", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_26bfc64f16c340dfb305f1ed58a36893", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "26bfc64f16c340dfb305f1ed58a36893": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3830,74 +3913,80 @@ "description_width": "" } }, - "4b1015e6ccde4c4299ac75c1f98dcb22": { + "2dada95fdc0c47b88fb6c50ae7618090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aa8d1da8c49c4d2a884a06dab1f31831", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_605b331b013a4216a3a1d69843abfb9d", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "4cf90d57769c4f3aae212728b54aba6a": { + "30b77994083048219d1b9180228c2b4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31f64f3801d34603bcb678d8d88d83f6", - "placeholder": "​", - "style": "IPY_MODEL_c3029038eaec4733a5f0438439b843e5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cfc0a965d67648e0a57cd05e92e22c4b", + "IPY_MODEL_256b1a27f64b492eb415fe31f617f17e", + "IPY_MODEL_326727f0539e449b89ff29010c44925d" + ], + "layout": "IPY_MODEL_1165496d989d4c618a382d0b049e90f3", "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 437.20it/s]" + "tooltip": null } }, - "4e185115a3fe481bb647f7f4518b4dfc": { + "326727f0539e449b89ff29010c44925d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e24577d1ffb640629f4e974978dd12fe", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d8067231e5354369991d63ab259e569b", + "layout": "IPY_MODEL_0d25ab13f4d04ef39fede621e03c9b68", + "placeholder": "​", + "style": "IPY_MODEL_0df6444b371a41e586ef22dd0d96e299", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": " 30/30 [00:01<00:00, 22.03it/s]" } }, - "5003464293884ffa8065ab5b42f55410": { + "38c1a2e3eb594faea8eb2159dc493400": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3950,80 +4039,7 @@ "width": null } }, - "54e4956dd0ef45b88635518452443a61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc49518bd58b48719e6296222d8ba180", - "placeholder": "​", - "style": "IPY_MODEL_716682390a83470282205d2427adfa3c", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.39it/s]" - } - }, - "58627b4f134842dca11108614dae515e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21c9e447d7fc49baaa07a5dcce1a412b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_80f77a5f99b34520abdbf09b57cc9c05", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "633c79ed95ab41e0aabbd57dbd3ecb08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_db25e0c95dbd4fe58acc9c2e49009d2a", - "IPY_MODEL_58627b4f134842dca11108614dae515e", - "IPY_MODEL_4cf90d57769c4f3aae212728b54aba6a" - ], - "layout": "IPY_MODEL_924a2835da754654ae4815fa9f5ef2fb", - "tabbable": null, - "tooltip": null - } - }, - "66b9efd6c0844f4a916d16ba72b3d48e": { + "4e5ddda315dd424898bc3e19b40c8911": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4041,7 +4057,7 @@ "text_color": null } }, - "716682390a83470282205d2427adfa3c": { + "515057138d954b6ebf522b421c89d5f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4059,7 +4075,7 @@ "text_color": null } }, - "77a6a651adfb453fa5d94c5e24358725": { + "53b94fb45c8f40ac801a8583ce8a7a73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4074,39 +4090,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7dbf6f5ff049453eb1a13021b098acfa", + "layout": "IPY_MODEL_797d2e014b75484db3c4d231eb1ea0b4", "placeholder": "​", - "style": "IPY_MODEL_1b82d325bec94a47b9760cfd2a39a0df", + "style": "IPY_MODEL_85a1f5bf0cac46fa928b2505eed353ee", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:22<00:00, 1.36it/s]" } }, - "7cc6878891b34dc6b9eee074c27b9942": { + "605b331b013a4216a3a1d69843abfb9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_29cb9371753c4992adc2f03e9fded233", - "IPY_MODEL_4e185115a3fe481bb647f7f4518b4dfc", - "IPY_MODEL_23e3234032514e6680b01e2f25da0326" - ], - "layout": "IPY_MODEL_30f03336498f4516a6d36df879f490a1", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7dbf6f5ff049453eb1a13021b098acfa": { + "6d2092724d374342be5b8f9b4a89b9d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4159,23 +4167,7 @@ "width": null } }, - "80f77a5f99b34520abdbf09b57cc9c05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9244d510c1fe4a9f858e8d747a5fb295": { + "797d2e014b75484db3c4d231eb1ea0b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4228,7 +4220,43 @@ "width": null } }, - "924a2835da754654ae4815fa9f5ef2fb": { + "85a1f5bf0cac46fa928b2505eed353ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8b227e07b4534bf5bb14643f40e77d70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a1e0af03c0aa4af59354b9330442282e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4281,7 +4309,7 @@ "width": null } }, - "92739bcd527e4b43b2729ff01f60f8f6": { + "a38d8339b17a4450931b440a9b5583fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4297,35 +4325,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5003464293884ffa8065ab5b42f55410", + "layout": "IPY_MODEL_fde2f9b7dcca4cb7b2e34c2392682342", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4017c8df71354bda92d5349ae9fef4f0", + "style": "IPY_MODEL_103b031096294a14966691d435d6a362", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "aa70cd8ed63c447d882958ff5fbe6dd6": { - "model_module": "@jupyter-widgets/controls", + "aa8d1da8c49c4d2a884a06dab1f31831": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ad6f45a3725e4aafa3404454d480c462": { + "b476da5146714d8d93cca98c05787c7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4378,7 +4441,7 @@ "width": null } }, - "b02aada907ae490897286a7070c2059f": { + "b4cfe9721e084dcf8d5ed3d647c40487": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4431,7 +4494,54 @@ "width": null } }, - "c3029038eaec4733a5f0438439b843e5": { + "c8c2e28ad93b4bdd9fc175ec25c69050": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_106210816124408ca0e833f78c8c2750", + "IPY_MODEL_2dada95fdc0c47b88fb6c50ae7618090", + "IPY_MODEL_ecfa15309b0748c9a716660fa9b963b0" + ], + "layout": "IPY_MODEL_b476da5146714d8d93cca98c05787c7a", + "tabbable": null, + "tooltip": null + } + }, + "cfc0a965d67648e0a57cd05e92e22c4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a1e0af03c0aa4af59354b9330442282e", + "placeholder": "​", + "style": "IPY_MODEL_4e5ddda315dd424898bc3e19b40c8911", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "d01add5fe210416992ea136cad4f9a50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4449,23 +4559,31 @@ "text_color": null } }, - "d8067231e5354369991d63ab259e569b": { + "ea58fb54e03a45d5b2072a4db0195034": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f71171dbaac542ab888563268f45ef8c", + "IPY_MODEL_a38d8339b17a4450931b440a9b5583fd", + "IPY_MODEL_53b94fb45c8f40ac801a8583ce8a7a73" + ], + "layout": "IPY_MODEL_f5093f8381674d4c92872ec4fd9fa6e4", + "tabbable": null, + "tooltip": null } }, - "db25e0c95dbd4fe58acc9c2e49009d2a": { + "ecfa15309b0748c9a716660fa9b963b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4480,68 +4598,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b02aada907ae490897286a7070c2059f", + "layout": "IPY_MODEL_132a2934c1e94813804517068cca530c", "placeholder": "​", - "style": "IPY_MODEL_aa70cd8ed63c447d882958ff5fbe6dd6", + "style": "IPY_MODEL_515057138d954b6ebf522b421c89d5f2", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "e24577d1ffb640629f4e974978dd12fe": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 30/30 [00:00<00:00, 423.89it/s]" } }, - "f2dc1e15160a4a7da0af031122d9a662": { + "f5093f8381674d4c92872ec4fd9fa6e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4594,31 +4659,30 @@ "width": null } }, - "fc2a058975cf4670b5ea53ada4efa60e": { + "f71171dbaac542ab888563268f45ef8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_77a6a651adfb453fa5d94c5e24358725", - "IPY_MODEL_92739bcd527e4b43b2729ff01f60f8f6", - "IPY_MODEL_54e4956dd0ef45b88635518452443a61" - ], - "layout": "IPY_MODEL_ad6f45a3725e4aafa3404454d480c462", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d2092724d374342be5b8f9b4a89b9d9", + "placeholder": "​", + "style": "IPY_MODEL_8b227e07b4534bf5bb14643f40e77d70", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "fc49518bd58b48719e6296222d8ba180": { + "fde2f9b7dcca4cb7b2e34c2392682342": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 2936ca8bb..b9ef97a18 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:56.168205Z", - "iopub.status.busy": "2024-02-08T04:34:56.168034Z", - "iopub.status.idle": "2024-02-08T04:34:57.205458Z", - "shell.execute_reply": "2024-02-08T04:34:57.204912Z" + "iopub.execute_input": "2024-02-08T05:21:26.796223Z", + "iopub.status.busy": "2024-02-08T05:21:26.796052Z", + "iopub.status.idle": "2024-02-08T05:21:27.890548Z", + "shell.execute_reply": "2024-02-08T05:21:27.889969Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.208050Z", - "iopub.status.busy": "2024-02-08T04:34:57.207540Z", - "iopub.status.idle": "2024-02-08T04:34:57.225990Z", - "shell.execute_reply": "2024-02-08T04:34:57.225451Z" + "iopub.execute_input": "2024-02-08T05:21:27.893054Z", + "iopub.status.busy": "2024-02-08T05:21:27.892746Z", + "iopub.status.idle": "2024-02-08T05:21:27.911932Z", + "shell.execute_reply": "2024-02-08T05:21:27.911437Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.228346Z", - "iopub.status.busy": "2024-02-08T04:34:57.227916Z", - "iopub.status.idle": "2024-02-08T04:34:57.283231Z", - "shell.execute_reply": "2024-02-08T04:34:57.282803Z" + "iopub.execute_input": "2024-02-08T05:21:27.914373Z", + "iopub.status.busy": "2024-02-08T05:21:27.913935Z", + "iopub.status.idle": "2024-02-08T05:21:28.082310Z", + "shell.execute_reply": "2024-02-08T05:21:28.081788Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.285089Z", - "iopub.status.busy": "2024-02-08T04:34:57.284916Z", - "iopub.status.idle": "2024-02-08T04:34:57.288911Z", - "shell.execute_reply": "2024-02-08T04:34:57.288480Z" + "iopub.execute_input": "2024-02-08T05:21:28.084545Z", + "iopub.status.busy": "2024-02-08T05:21:28.084209Z", + "iopub.status.idle": "2024-02-08T05:21:28.088771Z", + "shell.execute_reply": "2024-02-08T05:21:28.088328Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.290970Z", - "iopub.status.busy": "2024-02-08T04:34:57.290645Z", - "iopub.status.idle": "2024-02-08T04:34:57.298491Z", - "shell.execute_reply": "2024-02-08T04:34:57.298062Z" + "iopub.execute_input": "2024-02-08T05:21:28.090816Z", + "iopub.status.busy": "2024-02-08T05:21:28.090483Z", + "iopub.status.idle": "2024-02-08T05:21:28.098465Z", + "shell.execute_reply": "2024-02-08T05:21:28.098061Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.300467Z", - "iopub.status.busy": "2024-02-08T04:34:57.300291Z", - "iopub.status.idle": "2024-02-08T04:34:57.302706Z", - "shell.execute_reply": "2024-02-08T04:34:57.302290Z" + "iopub.execute_input": "2024-02-08T05:21:28.100552Z", + "iopub.status.busy": "2024-02-08T05:21:28.100251Z", + "iopub.status.idle": "2024-02-08T05:21:28.102793Z", + "shell.execute_reply": "2024-02-08T05:21:28.102365Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.304634Z", - "iopub.status.busy": "2024-02-08T04:34:57.304375Z", - "iopub.status.idle": "2024-02-08T04:34:57.820042Z", - "shell.execute_reply": "2024-02-08T04:34:57.819446Z" + "iopub.execute_input": "2024-02-08T05:21:28.104759Z", + "iopub.status.busy": "2024-02-08T05:21:28.104437Z", + "iopub.status.idle": "2024-02-08T05:21:28.627194Z", + "shell.execute_reply": "2024-02-08T05:21:28.626590Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.822290Z", - "iopub.status.busy": "2024-02-08T04:34:57.822100Z", - "iopub.status.idle": "2024-02-08T04:34:59.439361Z", - "shell.execute_reply": "2024-02-08T04:34:59.438712Z" + "iopub.execute_input": "2024-02-08T05:21:28.629718Z", + "iopub.status.busy": "2024-02-08T05:21:28.629519Z", + "iopub.status.idle": "2024-02-08T05:21:30.345006Z", + "shell.execute_reply": "2024-02-08T05:21:30.344349Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.441941Z", - "iopub.status.busy": "2024-02-08T04:34:59.441397Z", - "iopub.status.idle": "2024-02-08T04:34:59.451265Z", - "shell.execute_reply": "2024-02-08T04:34:59.450745Z" + "iopub.execute_input": "2024-02-08T05:21:30.347698Z", + "iopub.status.busy": "2024-02-08T05:21:30.347087Z", + "iopub.status.idle": "2024-02-08T05:21:30.357476Z", + "shell.execute_reply": "2024-02-08T05:21:30.357044Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.453333Z", - "iopub.status.busy": "2024-02-08T04:34:59.453038Z", - "iopub.status.idle": "2024-02-08T04:34:59.456989Z", - "shell.execute_reply": "2024-02-08T04:34:59.456463Z" + "iopub.execute_input": "2024-02-08T05:21:30.359601Z", + "iopub.status.busy": "2024-02-08T05:21:30.359266Z", + "iopub.status.idle": "2024-02-08T05:21:30.363308Z", + "shell.execute_reply": "2024-02-08T05:21:30.362856Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.458991Z", - "iopub.status.busy": "2024-02-08T04:34:59.458687Z", - "iopub.status.idle": "2024-02-08T04:34:59.465944Z", - "shell.execute_reply": "2024-02-08T04:34:59.465410Z" + "iopub.execute_input": "2024-02-08T05:21:30.365471Z", + "iopub.status.busy": "2024-02-08T05:21:30.365138Z", + "iopub.status.idle": "2024-02-08T05:21:30.372669Z", + "shell.execute_reply": "2024-02-08T05:21:30.372107Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.468039Z", - "iopub.status.busy": "2024-02-08T04:34:59.467734Z", - "iopub.status.idle": "2024-02-08T04:34:59.578269Z", - "shell.execute_reply": "2024-02-08T04:34:59.577713Z" + "iopub.execute_input": "2024-02-08T05:21:30.374752Z", + "iopub.status.busy": "2024-02-08T05:21:30.374445Z", + "iopub.status.idle": "2024-02-08T05:21:30.486095Z", + "shell.execute_reply": "2024-02-08T05:21:30.485529Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.580205Z", - "iopub.status.busy": "2024-02-08T04:34:59.579900Z", - "iopub.status.idle": "2024-02-08T04:34:59.582454Z", - "shell.execute_reply": "2024-02-08T04:34:59.582023Z" + "iopub.execute_input": "2024-02-08T05:21:30.488417Z", + "iopub.status.busy": "2024-02-08T05:21:30.488030Z", + "iopub.status.idle": "2024-02-08T05:21:30.490919Z", + "shell.execute_reply": "2024-02-08T05:21:30.490384Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.584391Z", - "iopub.status.busy": "2024-02-08T04:34:59.584095Z", - "iopub.status.idle": "2024-02-08T04:35:01.501613Z", - "shell.execute_reply": "2024-02-08T04:35:01.500883Z" + "iopub.execute_input": "2024-02-08T05:21:30.493045Z", + "iopub.status.busy": "2024-02-08T05:21:30.492674Z", + "iopub.status.idle": "2024-02-08T05:21:32.504865Z", + "shell.execute_reply": "2024-02-08T05:21:32.504227Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:01.504393Z", - "iopub.status.busy": "2024-02-08T04:35:01.503839Z", - "iopub.status.idle": "2024-02-08T04:35:01.514594Z", - "shell.execute_reply": "2024-02-08T04:35:01.514050Z" + "iopub.execute_input": "2024-02-08T05:21:32.507962Z", + "iopub.status.busy": "2024-02-08T05:21:32.507270Z", + "iopub.status.idle": "2024-02-08T05:21:32.519238Z", + "shell.execute_reply": "2024-02-08T05:21:32.518685Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:01.516381Z", - "iopub.status.busy": "2024-02-08T04:35:01.516208Z", - "iopub.status.idle": "2024-02-08T04:35:01.562095Z", - "shell.execute_reply": "2024-02-08T04:35:01.561636Z" + "iopub.execute_input": "2024-02-08T05:21:32.521281Z", + "iopub.status.busy": "2024-02-08T05:21:32.521095Z", + "iopub.status.idle": "2024-02-08T05:21:32.670893Z", + "shell.execute_reply": "2024-02-08T05:21:32.670418Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index d24d88255..e6bc10dc9 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:04.398007Z", - "iopub.status.busy": "2024-02-08T04:35:04.397665Z", - "iopub.status.idle": "2024-02-08T04:35:06.939373Z", - "shell.execute_reply": "2024-02-08T04:35:06.938787Z" + "iopub.execute_input": "2024-02-08T05:21:36.479014Z", + "iopub.status.busy": "2024-02-08T05:21:36.478839Z", + "iopub.status.idle": "2024-02-08T05:21:39.260693Z", + "shell.execute_reply": "2024-02-08T05:21:39.260048Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.942203Z", - "iopub.status.busy": "2024-02-08T04:35:06.941711Z", - "iopub.status.idle": "2024-02-08T04:35:06.945187Z", - "shell.execute_reply": "2024-02-08T04:35:06.944736Z" + "iopub.execute_input": "2024-02-08T05:21:39.263272Z", + "iopub.status.busy": "2024-02-08T05:21:39.262890Z", + "iopub.status.idle": "2024-02-08T05:21:39.266644Z", + "shell.execute_reply": "2024-02-08T05:21:39.266095Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.947082Z", - "iopub.status.busy": "2024-02-08T04:35:06.946758Z", - "iopub.status.idle": "2024-02-08T04:35:06.949800Z", - "shell.execute_reply": "2024-02-08T04:35:06.949361Z" + "iopub.execute_input": "2024-02-08T05:21:39.268836Z", + "iopub.status.busy": "2024-02-08T05:21:39.268440Z", + "iopub.status.idle": "2024-02-08T05:21:39.271716Z", + "shell.execute_reply": "2024-02-08T05:21:39.271145Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.951625Z", - "iopub.status.busy": "2024-02-08T04:35:06.951369Z", - "iopub.status.idle": "2024-02-08T04:35:06.997911Z", - "shell.execute_reply": "2024-02-08T04:35:06.997500Z" + "iopub.execute_input": "2024-02-08T05:21:39.273756Z", + "iopub.status.busy": "2024-02-08T05:21:39.273496Z", + "iopub.status.idle": "2024-02-08T05:21:39.431458Z", + "shell.execute_reply": "2024-02-08T05:21:39.430885Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.999896Z", - "iopub.status.busy": "2024-02-08T04:35:06.999613Z", - "iopub.status.idle": "2024-02-08T04:35:07.003072Z", - "shell.execute_reply": "2024-02-08T04:35:07.002534Z" + "iopub.execute_input": "2024-02-08T05:21:39.433686Z", + "iopub.status.busy": "2024-02-08T05:21:39.433349Z", + "iopub.status.idle": "2024-02-08T05:21:39.436960Z", + "shell.execute_reply": "2024-02-08T05:21:39.436501Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.004956Z", - "iopub.status.busy": "2024-02-08T04:35:07.004665Z", - "iopub.status.idle": "2024-02-08T04:35:07.007970Z", - "shell.execute_reply": "2024-02-08T04:35:07.007435Z" + "iopub.execute_input": "2024-02-08T05:21:39.438986Z", + "iopub.status.busy": "2024-02-08T05:21:39.438652Z", + "iopub.status.idle": "2024-02-08T05:21:39.442126Z", + "shell.execute_reply": "2024-02-08T05:21:39.441657Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'getting_spare_card', 'card_about_to_expire'}\n" + "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'change_pin', 'getting_spare_card'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.009913Z", - "iopub.status.busy": "2024-02-08T04:35:07.009601Z", - "iopub.status.idle": "2024-02-08T04:35:07.012666Z", - "shell.execute_reply": "2024-02-08T04:35:07.012208Z" + "iopub.execute_input": "2024-02-08T05:21:39.444139Z", + "iopub.status.busy": "2024-02-08T05:21:39.443815Z", + "iopub.status.idle": "2024-02-08T05:21:39.446990Z", + "shell.execute_reply": "2024-02-08T05:21:39.446538Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.014589Z", - "iopub.status.busy": "2024-02-08T04:35:07.014274Z", - "iopub.status.idle": "2024-02-08T04:35:07.017484Z", - "shell.execute_reply": "2024-02-08T04:35:07.017043Z" + "iopub.execute_input": "2024-02-08T05:21:39.449158Z", + "iopub.status.busy": "2024-02-08T05:21:39.448790Z", + "iopub.status.idle": "2024-02-08T05:21:39.452098Z", + "shell.execute_reply": "2024-02-08T05:21:39.451644Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.019577Z", - "iopub.status.busy": "2024-02-08T04:35:07.019165Z", - "iopub.status.idle": "2024-02-08T04:35:10.758978Z", - "shell.execute_reply": "2024-02-08T04:35:10.758450Z" + "iopub.execute_input": "2024-02-08T05:21:39.454177Z", + "iopub.status.busy": "2024-02-08T05:21:39.453859Z", + "iopub.status.idle": "2024-02-08T05:21:43.818413Z", + "shell.execute_reply": "2024-02-08T05:21:43.817812Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.761717Z", - "iopub.status.busy": "2024-02-08T04:35:10.761342Z", - "iopub.status.idle": "2024-02-08T04:35:10.764293Z", - "shell.execute_reply": "2024-02-08T04:35:10.763801Z" + "iopub.execute_input": "2024-02-08T05:21:43.821245Z", + "iopub.status.busy": "2024-02-08T05:21:43.820824Z", + "iopub.status.idle": "2024-02-08T05:21:43.824334Z", + "shell.execute_reply": "2024-02-08T05:21:43.823797Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.766209Z", - "iopub.status.busy": "2024-02-08T04:35:10.765897Z", - "iopub.status.idle": "2024-02-08T04:35:10.768449Z", - "shell.execute_reply": "2024-02-08T04:35:10.768026Z" + "iopub.execute_input": "2024-02-08T05:21:43.826165Z", + "iopub.status.busy": "2024-02-08T05:21:43.825990Z", + "iopub.status.idle": "2024-02-08T05:21:43.828635Z", + "shell.execute_reply": "2024-02-08T05:21:43.828168Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.770307Z", - "iopub.status.busy": "2024-02-08T04:35:10.769984Z", - "iopub.status.idle": "2024-02-08T04:35:13.014309Z", - "shell.execute_reply": "2024-02-08T04:35:13.013691Z" + "iopub.execute_input": "2024-02-08T05:21:43.830526Z", + "iopub.status.busy": "2024-02-08T05:21:43.830206Z", + "iopub.status.idle": "2024-02-08T05:21:46.180921Z", + "shell.execute_reply": "2024-02-08T05:21:46.180150Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.017176Z", - "iopub.status.busy": "2024-02-08T04:35:13.016589Z", - "iopub.status.idle": "2024-02-08T04:35:13.024329Z", - "shell.execute_reply": "2024-02-08T04:35:13.023868Z" + "iopub.execute_input": "2024-02-08T05:21:46.184093Z", + "iopub.status.busy": "2024-02-08T05:21:46.183446Z", + "iopub.status.idle": "2024-02-08T05:21:46.191352Z", + "shell.execute_reply": "2024-02-08T05:21:46.190879Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.026211Z", - "iopub.status.busy": "2024-02-08T04:35:13.026031Z", - "iopub.status.idle": "2024-02-08T04:35:13.030054Z", - "shell.execute_reply": "2024-02-08T04:35:13.029615Z" + "iopub.execute_input": "2024-02-08T05:21:46.193506Z", + "iopub.status.busy": "2024-02-08T05:21:46.193111Z", + "iopub.status.idle": "2024-02-08T05:21:46.197017Z", + "shell.execute_reply": "2024-02-08T05:21:46.196578Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.031935Z", - "iopub.status.busy": "2024-02-08T04:35:13.031746Z", - "iopub.status.idle": "2024-02-08T04:35:13.034748Z", - "shell.execute_reply": "2024-02-08T04:35:13.034239Z" + "iopub.execute_input": "2024-02-08T05:21:46.198840Z", + "iopub.status.busy": "2024-02-08T05:21:46.198669Z", + "iopub.status.idle": "2024-02-08T05:21:46.201986Z", + "shell.execute_reply": "2024-02-08T05:21:46.201534Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.036619Z", - "iopub.status.busy": "2024-02-08T04:35:13.036448Z", - "iopub.status.idle": "2024-02-08T04:35:13.039213Z", - "shell.execute_reply": "2024-02-08T04:35:13.038788Z" + "iopub.execute_input": "2024-02-08T05:21:46.203999Z", + "iopub.status.busy": "2024-02-08T05:21:46.203703Z", + "iopub.status.idle": "2024-02-08T05:21:46.206673Z", + "shell.execute_reply": "2024-02-08T05:21:46.206231Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.041004Z", - "iopub.status.busy": "2024-02-08T04:35:13.040835Z", - "iopub.status.idle": "2024-02-08T04:35:13.047467Z", - "shell.execute_reply": "2024-02-08T04:35:13.047008Z" + "iopub.execute_input": "2024-02-08T05:21:46.208666Z", + "iopub.status.busy": "2024-02-08T05:21:46.208364Z", + "iopub.status.idle": "2024-02-08T05:21:46.215877Z", + "shell.execute_reply": "2024-02-08T05:21:46.215417Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.049366Z", - "iopub.status.busy": "2024-02-08T04:35:13.049196Z", - "iopub.status.idle": "2024-02-08T04:35:13.273122Z", - "shell.execute_reply": "2024-02-08T04:35:13.272656Z" + "iopub.execute_input": "2024-02-08T05:21:46.217922Z", + "iopub.status.busy": "2024-02-08T05:21:46.217631Z", + "iopub.status.idle": "2024-02-08T05:21:46.445403Z", + "shell.execute_reply": "2024-02-08T05:21:46.444769Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.275446Z", - "iopub.status.busy": "2024-02-08T04:35:13.275087Z", - "iopub.status.idle": "2024-02-08T04:35:13.485654Z", - "shell.execute_reply": "2024-02-08T04:35:13.485184Z" + "iopub.execute_input": "2024-02-08T05:21:46.447993Z", + "iopub.status.busy": "2024-02-08T05:21:46.447582Z", + "iopub.status.idle": "2024-02-08T05:21:46.623478Z", + "shell.execute_reply": "2024-02-08T05:21:46.622935Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.488027Z", - "iopub.status.busy": "2024-02-08T04:35:13.487654Z", - "iopub.status.idle": "2024-02-08T04:35:13.491219Z", - "shell.execute_reply": "2024-02-08T04:35:13.490753Z" + "iopub.execute_input": "2024-02-08T05:21:46.626118Z", + "iopub.status.busy": "2024-02-08T05:21:46.625719Z", + "iopub.status.idle": "2024-02-08T05:21:46.629542Z", + "shell.execute_reply": "2024-02-08T05:21:46.629055Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index b9cc787dc..c62fcd633 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:16.410970Z", - "iopub.status.busy": "2024-02-08T04:35:16.410808Z", - "iopub.status.idle": "2024-02-08T04:35:17.885044Z", - "shell.execute_reply": "2024-02-08T04:35:17.884466Z" + "iopub.execute_input": "2024-02-08T05:21:50.726788Z", + "iopub.status.busy": "2024-02-08T05:21:50.726620Z", + "iopub.status.idle": "2024-02-08T05:21:52.600696Z", + "shell.execute_reply": "2024-02-08T05:21:52.600068Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-08 04:35:16-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-02-08 05:21:50-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,9 +94,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.250, 2400:52e0:1a00::718:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "143.244.50.89, 2400:52e0:1a01::954:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|143.244.50.89|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +116,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K 4.92MB/s in 0.2s \r\n", "\r\n", - "2024-02-08 04:35:16 (6.64 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-02-08 05:21:51 (4.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,9 +138,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-08 04:35:17-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.32.209, 52.216.241.92, 52.217.130.65, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.32.209|:443... connected.\r\n" + "--2024-02-08 05:21:51-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.109.243, 52.216.165.75, 52.216.36.145, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.109.243|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" ] }, { @@ -160,7 +174,15 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 63%[===========> ] 10.25M 51.1MB/s " + "pred_probs.npz 1%[ ] 193.53K 925KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 20%[===> ] 3.38M 8.07MB/s " ] }, { @@ -168,9 +190,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 48.1MB/s in 0.3s \r\n", + "pred_probs.npz 91%[=================> ] 14.89M 23.7MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 25.5MB/s in 0.6s \r\n", "\r\n", - "2024-02-08 04:35:17 (48.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-02-08 05:21:52 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -187,10 +210,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:17.887413Z", - "iopub.status.busy": "2024-02-08T04:35:17.887079Z", - "iopub.status.idle": "2024-02-08T04:35:18.908219Z", - "shell.execute_reply": "2024-02-08T04:35:18.907684Z" + "iopub.execute_input": "2024-02-08T05:21:52.603109Z", + "iopub.status.busy": "2024-02-08T05:21:52.602917Z", + "iopub.status.idle": "2024-02-08T05:21:53.718005Z", + "shell.execute_reply": "2024-02-08T05:21:53.717446Z" }, "nbsphinx": "hidden" }, @@ -201,7 +224,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -227,10 +250,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:18.910770Z", - "iopub.status.busy": "2024-02-08T04:35:18.910302Z", - "iopub.status.idle": "2024-02-08T04:35:18.913807Z", - "shell.execute_reply": "2024-02-08T04:35:18.913374Z" + "iopub.execute_input": "2024-02-08T05:21:53.720615Z", + "iopub.status.busy": "2024-02-08T05:21:53.720142Z", + "iopub.status.idle": "2024-02-08T05:21:53.723864Z", + "shell.execute_reply": "2024-02-08T05:21:53.723387Z" } }, "outputs": [], @@ -280,10 +303,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:18.915726Z", - "iopub.status.busy": "2024-02-08T04:35:18.915411Z", - "iopub.status.idle": "2024-02-08T04:35:18.918230Z", - "shell.execute_reply": "2024-02-08T04:35:18.917797Z" + "iopub.execute_input": "2024-02-08T05:21:53.726015Z", + "iopub.status.busy": "2024-02-08T05:21:53.725691Z", + "iopub.status.idle": "2024-02-08T05:21:53.728578Z", + "shell.execute_reply": "2024-02-08T05:21:53.728151Z" }, "nbsphinx": "hidden" }, @@ -301,10 +324,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:18.920142Z", - "iopub.status.busy": "2024-02-08T04:35:18.919798Z", - "iopub.status.idle": "2024-02-08T04:35:27.926989Z", - "shell.execute_reply": "2024-02-08T04:35:27.926383Z" + "iopub.execute_input": "2024-02-08T05:21:53.730588Z", + "iopub.status.busy": "2024-02-08T05:21:53.730254Z", + "iopub.status.idle": "2024-02-08T05:22:02.922587Z", + "shell.execute_reply": "2024-02-08T05:22:02.922022Z" } }, "outputs": [], @@ -378,10 +401,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:27.929541Z", - "iopub.status.busy": "2024-02-08T04:35:27.929340Z", - "iopub.status.idle": "2024-02-08T04:35:27.934958Z", - "shell.execute_reply": "2024-02-08T04:35:27.934409Z" + "iopub.execute_input": "2024-02-08T05:22:02.925250Z", + "iopub.status.busy": "2024-02-08T05:22:02.924929Z", + "iopub.status.idle": "2024-02-08T05:22:02.930371Z", + "shell.execute_reply": "2024-02-08T05:22:02.929886Z" }, "nbsphinx": "hidden" }, @@ -421,10 +444,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:27.936904Z", - "iopub.status.busy": "2024-02-08T04:35:27.936728Z", - "iopub.status.idle": "2024-02-08T04:35:28.262039Z", - "shell.execute_reply": "2024-02-08T04:35:28.261376Z" + "iopub.execute_input": "2024-02-08T05:22:02.932624Z", + "iopub.status.busy": "2024-02-08T05:22:02.932228Z", + "iopub.status.idle": "2024-02-08T05:22:03.297995Z", + "shell.execute_reply": "2024-02-08T05:22:03.297346Z" } }, "outputs": [], @@ -461,10 +484,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:28.264636Z", - "iopub.status.busy": "2024-02-08T04:35:28.264297Z", - "iopub.status.idle": "2024-02-08T04:35:28.268345Z", - "shell.execute_reply": "2024-02-08T04:35:28.267788Z" + "iopub.execute_input": "2024-02-08T05:22:03.300463Z", + "iopub.status.busy": "2024-02-08T05:22:03.300279Z", + "iopub.status.idle": "2024-02-08T05:22:03.304705Z", + "shell.execute_reply": "2024-02-08T05:22:03.304158Z" } }, "outputs": [ @@ -536,10 +559,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:28.270309Z", - "iopub.status.busy": "2024-02-08T04:35:28.270030Z", - "iopub.status.idle": "2024-02-08T04:35:30.566284Z", - "shell.execute_reply": "2024-02-08T04:35:30.565622Z" + "iopub.execute_input": "2024-02-08T05:22:03.306754Z", + "iopub.status.busy": "2024-02-08T05:22:03.306423Z", + "iopub.status.idle": "2024-02-08T05:22:05.755355Z", + "shell.execute_reply": "2024-02-08T05:22:05.754674Z" } }, "outputs": [], @@ -561,10 +584,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:30.569402Z", - "iopub.status.busy": "2024-02-08T04:35:30.568623Z", - "iopub.status.idle": "2024-02-08T04:35:30.572686Z", - "shell.execute_reply": "2024-02-08T04:35:30.572133Z" + "iopub.execute_input": "2024-02-08T05:22:05.758476Z", + "iopub.status.busy": "2024-02-08T05:22:05.757736Z", + "iopub.status.idle": "2024-02-08T05:22:05.761956Z", + "shell.execute_reply": "2024-02-08T05:22:05.761494Z" } }, "outputs": [ @@ -600,10 +623,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:30.574726Z", - "iopub.status.busy": "2024-02-08T04:35:30.574428Z", - "iopub.status.idle": "2024-02-08T04:35:30.579908Z", - "shell.execute_reply": "2024-02-08T04:35:30.579362Z" + "iopub.execute_input": "2024-02-08T05:22:05.764107Z", + "iopub.status.busy": "2024-02-08T05:22:05.763785Z", + "iopub.status.idle": "2024-02-08T05:22:05.768721Z", + "shell.execute_reply": "2024-02-08T05:22:05.768190Z" } }, "outputs": [ @@ -781,10 +804,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:30.581974Z", - "iopub.status.busy": "2024-02-08T04:35:30.581604Z", - "iopub.status.idle": "2024-02-08T04:35:30.607040Z", - "shell.execute_reply": "2024-02-08T04:35:30.606608Z" + "iopub.execute_input": "2024-02-08T05:22:05.770716Z", + "iopub.status.busy": "2024-02-08T05:22:05.770545Z", + "iopub.status.idle": "2024-02-08T05:22:05.796512Z", + "shell.execute_reply": "2024-02-08T05:22:05.795932Z" } }, "outputs": [ @@ -886,10 +909,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:30.609082Z", - "iopub.status.busy": "2024-02-08T04:35:30.608778Z", - "iopub.status.idle": "2024-02-08T04:35:30.612868Z", - "shell.execute_reply": "2024-02-08T04:35:30.612332Z" + "iopub.execute_input": "2024-02-08T05:22:05.798717Z", + "iopub.status.busy": "2024-02-08T05:22:05.798431Z", + "iopub.status.idle": "2024-02-08T05:22:05.803963Z", + "shell.execute_reply": "2024-02-08T05:22:05.803248Z" } }, "outputs": [ @@ -963,10 +986,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:30.614887Z", - "iopub.status.busy": "2024-02-08T04:35:30.614588Z", - "iopub.status.idle": "2024-02-08T04:35:32.021894Z", - "shell.execute_reply": "2024-02-08T04:35:32.021397Z" + "iopub.execute_input": "2024-02-08T05:22:05.805972Z", + "iopub.status.busy": "2024-02-08T05:22:05.805666Z", + "iopub.status.idle": "2024-02-08T05:22:07.269804Z", + "shell.execute_reply": "2024-02-08T05:22:07.269179Z" } }, "outputs": [ @@ -1138,10 +1161,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:32.024066Z", - "iopub.status.busy": "2024-02-08T04:35:32.023695Z", - "iopub.status.idle": "2024-02-08T04:35:32.027757Z", - "shell.execute_reply": "2024-02-08T04:35:32.027319Z" + "iopub.execute_input": "2024-02-08T05:22:07.272129Z", + "iopub.status.busy": "2024-02-08T05:22:07.271782Z", + "iopub.status.idle": "2024-02-08T05:22:07.276036Z", + "shell.execute_reply": "2024-02-08T05:22:07.275437Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index 9b5397fb1ef116cc1b946e36314d422738d26dfa..3a99398878fae649fdd89b6476ce5a203a90ec71 100644 GIT binary patch delta 9015 zcmeHLOQ@Y!74~@kBGFb8ylMx@JwF%YKOc^K(tsmD3+>Doe*gW?eMNisT+R*m5|Vw-dVcHs z)_UTFjc>fLas8Q7@?pC2sLx+1JLF5?pncLskT)?=7OAAd!X%+eh=q;K!G8VLsV8rp zn&JD6%Uh@B&%J;4^zu7?zWLEH7W^zCG)G3NA{=MoR(5a!~A&(&Th7zB)PF z{?q*J%hQi`zn?X&4`2M%{9@lQPQ#76yPe^!FV5f6Q<73378A8JigO?zIQwK>DKW{k z3a3)kPB}a_Y*NxO6lWDOs;VzJ4ZHv7Hiiek+I7q8XSyHF7B-PI$?C+mn3M~<>|_;= zgRwQJz4uGJe`eP7V34U3eZv7Yd=0OL?_cZAF31@nt(8_W8-qmZl#0pLm=LUq!|nGX z^&k9O_t|c<7@tSyI0mB)$HdjjnrzX96F&27cke2o>{uYsjL*bV9|KA0lk`>wE;$Up z{O5dQKcJKC$0;B>*|r`7lEc$abmz8>*H=Hh^W{rh*RI{yZy8fX^rPP~BeepR&{gOt zSPGe>SyfD;vZhE!N+sj0CZmW&)yX^5&keiZMHYVjYWJ<#V~t{|Em*z(!B1VjaPcD_ zec*DdU5~$R&#Ilhj6KM~PEqmfn@DgLJD5 zxTLjA_)m!*6e7p!Wlrc0gG z=o`jY5WHvT-nI~wiDKm_vo~2pLLHSWl4VjM(Nw8lyf*(#w_qR8+pJFV?=@`G_U^npKYZ@_?(X69 zug&{jsKn7rDi-55M2dp6S0j9U%$`?+rAHrU7bqJqflr-+iUu>&2p5XTRxIUBxVRvV zD6HhH(bZK*idIQhsE$Y3^L`)=n`0ny(XcoIPYtJk+-<&3UpRzabky(57q(V#eT0MFbM#(|0UidbRuJ?6F3H^l>n?+VuGA zM$YsIz2BV&^ctb*L+G7z+Bu=d*;?6P#FNn=4?rXo?UuWLnSZHU)Pw|O9^n&^E<-Vu zEKyN1NJlw>y9H+kGZa9tC=iRMz^>YitQh4~o{~B---(usaKj&d+Fk4$w)bH7f!=}` ze8IF#*%+-+CIll=RN1Q{{lN%zHAamFLjXo7L6k(S!H-lB$=^wOJ%QW;2vQ*)<79~0 zdDgWg3ji>B`Nj{spUs-qCw`D88($IL!_RkH3tvgp7=#zl8XPEqb+dxbskvyWm*A#H zx`ndVSVkJDdV^7if#8^vz~4NJy{=r59cD3z(0Qp8fT?68Mu3rG%5Ee=!d61I?$P`a?(Soh$!lu? zWyqcE1Ga%kqF5EBFBOZ%-ZTj(d!VLi!Y3Qg!;QaoAKx~5+Z~}ijn<2iQ)KAo00d?U zSwc{fNUw)1cml7#u}wZwD0J>2;k9?H4gIS|^>-0I7F@qXtbT%vuM?dN(SwpU)Oj*o=0- zf(0mN!B`xzQD>#cX-$|>6X%_5(obF5GC3`I&wjc)x2Q~zhf+iRRa1et7(Ij}LrN#C z+ebum?;-`Kg)Y`QgXN9TmL_wScu544QVFGB2Z7*k#qYgSS z3MzG#S$a}s_|W4A60b+rqpKel|s-q)2kUHaaY zGoM^vUDj8Z_0?s4by;6s{`bY_P>!yzF6*ny`s%X2x~#7*hli>I{kguntgkNXtIO-3 d$<|kw_0{F|4n6Cu%m4e;#V=oa*Immu{|9A|87u$* delta 9069 zcmeHMOQ@Y!74~>`D5)`RFo_Pl_dkt_pl!0>4`+%GB8IdSM601$`$eIFHrk1UP%ed3 z5C=;22T|KjDz<_*gZeu$YM@jcrHG^8qvEioLTBRZ`_F%pdv6MN&*faW_YTf~&RT2l z^*z=)-+blhGcJ zeEP=08GheA+&DOY`M%k+!*|?#^Xb`B{r1)Q=>?A^kTG7ylC}0B_#i^ysjBFTP1L{s z=lT1F-@HBl3R~zDz2&Yd?xj{dMd6(y?}Ms5))=Q}&!1u6nr#Xpc#c(vlCm~3#7v%w zAzww#zUObvkM;jO%Z?A{?_}3z?KB>Lb$+&;z?DPnRDbw)^Y?V3aBj6gY-{ycO{&tw znnNx*5cLmSXGf>9Iv$GBCKpLj>tZ!g$eFaP%IKQR_~^0WuYa7sINPj&7oM!}Mi`AV zi(2YnOsQE!ulwsyuw(uGuQE39f6iZ+EgDIbesP)cMI(OcmsS1X65HrZqH2n%!X^YR zHVDTpEW=Tu6T2W~{I8o33^M&OU5s(e)al^56thV3KlC$mK|S)v9M z9h}Zm5-&z7#YttaLZo5qZ|qmIR@{E;`dl=_K0jw4>7RRu9qOOE%r@^cLOlAZQ(r%K z;?kvi7bi3qrHbm6S7=+~VlXA-SP~~=L++2fjQhGfv#+vF7N4sUTF0U@1#&V+E`#9Q zcrW6Bj{VW>$^EZNq!S2w`u;CJeCF(@Kl6o$_ixu=_CDP@wG-#=?XUfw9q(FIZ6Css z{Nvl~K<8`FE>RM>q6-xV5R-D!IYGr4)4%?)Tm2fOjJj&#K?Q9EkKS09qLsK?XGOnt z$AP265`~>K!MdEa6S!vKtp{X@Ql%`b=d^ruHw+tD@czR0*@Imxfh%t^-XHGST^p7g zqq)gd7>@ro@(?}g%BA&c*xF_nS(m_AJaa1?j-W(=)+R!Jsd^)zXJlo#@3|^P7lM-j(WYams6) z0TqghvI<n7qBjjGIe7$06jZULdIU^~>EgysY#EYVs* zS!7aHZYgKK_yZ_s(^)X5F@U1g#U}vG@DW0|v!YbL^+AAhLR@tcFZ-AhB!omE$Gzqy z6%d=xx))d3(cOq^CUN7J?Cc`%pMV{!`a~x(L7jq9u4YZ6I@AiK)>Qy1#Y|~VQZ6l8 zICCze1&NkQ$kPc?3Yp6B?y*gO4c-@;ROFmQ)B!}}ir~hj0J@}L>k4m;xGTK1LQZXZ z;Tro;r-}zS#smUxOC*f7xW4C%xRQaLT$UJ&6D;X@OcS zJQp|sDS_rxz2&sdv5h1`5l}%irUNKlR=CCN3J3D)SpKp8?$5D9!{ak{2~yX%roB*V zbg10>bmQdI2)qN^?D(Qt-VX4D3od4O$?Va58g8kUUIKpjvFPJP+reVQ;{bwSvENl0CR^t+-21 zcIFhjt4k*0X{965hbTLQEuM3gl!1y(h+jEPSe23ucj$nsy{^$z$*c1@Lc+M5Ob-0x zOX%2Yvw|`61d|Cxq-;y}_+%&^jQ*tDJ65xq1-;2c*NP82!uvn{oo#HuFybJ6fV+o- zgk=CrYLFjh4rBZ0zY9maB$CefRE&ZmgbGIty~|ed3MW>Kb5Za1n$S;toQH#kapTzp z7?NTve75yTQ(Uo$-#4}mOVMk_-7%Y|KM5#Gsdh=9jRdAghfstqGDH@FCTvbJ2^rkP z{Hp>3jI&5`^usVN%fTR5jfttsh}mMmbnxTZla1@TP0bpes`o;$b#Aw`uUXa(1XJ~; zCY=ICI;~Kna^nyn3K+85vKr;4D~5%EHNjw6Ythz-C>ODB!-bg#ttqNjQ)Zj14RRsmaexI3%dHD&r&wA@w7)arg2CLR|RhZH{*DJR*%@sWSd@e^SpWTJL0<+mLY!yWYv* j`@hz1VZD=CZ4cKwnQ<$$-pQJU$gTY0G^Z(nNZEw!DKmWL& zj_C`N(q9X`S_WlRDqR|gmSCLr#03{D0Y_L+CRpHJ@mr{^L~Te76ayLR!1bi~V$jiY zBtuv6KS#@`Tydxa9Uq^%JT@98hq8tnpA6mgqI#&Z8WCJ)e*FU9vpnOuMi{X z$xc66#K~rv*4kU8v$e`ato*3Fe-XVyJJ+5@<={B#nMf2DLQ0=f$0fvv<(_%TjY)|i zG*`vkS9G&dRrY;D3!f7SBK4`3xfKFZZk1q85g~b;FyS;W=6~WtW&bODesAJUU?!@) zQgI((jrKG*N(AJSK-o%~d)9<*6 zj#XTwxcdY5SKk1=#X2!8cU0!y5t)NC&bl}ro=ar~F_f`ZChiT<(OXPf296t>Y9S4A z#7kkElWW=|_bM z&{9yvENIFN1>r)RCRZl6k%@B$s+A{=#FF@sE5?9=RmR&0=Zqq8yNtB*7zT=^EC`?q zwC6^}4j_nfL{V$gO`gj3>pYc>*LlPu?ouFm593L=VlGXLg+^~dqe2QfF@g@``Vl6>LLC_U~ z##{<&h&x1-64cNTNDhJ25N%RROCWaqA{+8HG`ii7|9$???>W!^&Q3MYPBlMyzZ;KO zH8^@jk90{DtrsNNNWC#QdakHvUKo#!^PW>0rE?5l2TcWN0_tpjrVjR1YT1!PR39B0 zyEHfuM(YhXG+LNCn1EZp{sD?52lj&eU;vetTGp}t{rR;5%l%*p+--ThD;NFX;on8` zFdJypH@pWLjj_=2yVz>2Jk`2i+_?bWfPdGX07dT*=p4?X8trRyXnK=^~LP#+j1NTx$n+9jr`&?tvLNh^pP)ZqQsnK3p ztO9l{JxX^gOb3ePw{RL{NKqs>V$sCJFSIstfm)gBZnRrT5ClDwahcXF@-Av0IZJ|PXGV_ delta 72 zcmca}jpNQWjty5h4GWVja*8S~3-!${(vnilj8c=*j8hU54bxIgEsRr4Qp^%l3=@-6 cQcR7F)6A2TO$?h^x!PH|7`L->F@-Av0MFzX5&!@I diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 24b447a44c94ba15fbe0bf2f663256073968a68f..729649e4a28ab62f303e1b85b5d56e2c3172a6ae 100644 GIT binary patch delta 62 zcmdlWu|Z-(BBNoBWk!*CN>!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO RVrr6!X^MsE=1Gk6xBzdW6LkOp delta 62 zcmdlWu|Z-(BBNnpl0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ Rv2mJtazf&I(`_6_?u4Rb6rip*20QuQs(Q!SD#jLnmcQw=Q5O%jtWQw)+*lT(unOp*zf&I(`_6_?u4GWVja*8S~3-!${(vnilj8c=*j8hU54bxIgEsRr4Qp^%l3=@-6 YQcR7F)6A2TO$?jgb8dgn$r!s208h#oD*ylh diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index bbaf2d2acccc1c9f28fc3b6a77004a3b939de683..bf799ab83fa7354be780f00abd120c8ab5174b5d 100644 GIT binary patch delta 13432 zcmeHNTdZ7F8O~g^w4k-2luF^urhq7v({;ZHiDJa4+-%SXw6&~j3!L;y)Q}+5`k;WZ zWRM*bqX`0n7_~NaOq5GvVziitisO`GPNvu6MM zU;pL%zW+bZzO?4qm)89FXDjKF-MLT4+tX&NlktY@z!R}rxL_j*DI`xsAS@Y|ypYkz zBQLEydSm_Kg`Km9uY@y(+v2+6Iq`zwQT)3*UOL=+>soyOlHrqK!*GARp#I3?oz=tV z;?@7*CvM2k)!V<)*)ZI*qrW=rbh~z>t=sq9yzAmk)y4I1Md#hax9@yUuleFi+1aq6 z`S#N8{kLu1zI)%+?fY-ry_9z0{LbCG5}t7G@X8%)htKU;sOu*>YkC)Ny<>Q|K6m)> zouB?6+gLZe>DbEQZ*D%=dVlDa{ySS=PP%gbvCi53u~S$6v$HU)mMYxf`r-YztXm!2 zu8@|t-?q=~+Mmpm?Zx+%=;MPOA_|8UytaUJ5F-O{i-xxY3jfW6Ai=N{0^8 zr$_YZ&R>2tAWmr$eT}_+$6X(TRJy_jCp#c%B%S*##ytC&nk9O(4Na?vtwTTiIJXT77N*_noR>Jk<|; zy?b5RxcfDH znAA_d)+I%ob>mKb(KovrD#c0mG%_PYK!l~yk~*Ct;fW&Zvc2}PD+4Nh%+y2_68>iA z88VLJfAn~QS9G83KLt-B6PAmhh4dn7XHpU*8E$fLA_hG=d^H?im~FSFKj=|(jhP00 z>&JT^>~2_8YLVXhq0RfZZEORSbud65r|_yWDsK|Lj7Sm5xK8z&gbZl|RO(;N4dCpr zyLWf)ECgvIQsZNvxN-Zn*MIn`Yql4%)GR+;y0(qmHdS^1Q@wSA*{T1w4PvZ|&_xUg~cRo3$0 z5z8#m^dw3^G36s;nM?0$*{oOlqVG46@p5B|Knu8JxuO{BM862YCfL|C8`3Y~Ip?6PX(5f^Bz zah6Eb5p@J%aSR>VXH960wz+n6*Fx{{P9+7SLZa1MgauXWyq4K=%DlJEFg_YLk3qqD zTXO}osjaym9qkPkxtT7xj7X|vqRM!g?9ovu?$>2pEz^lE%eDf3H|2R&Q*vMJ+zEJ` z8K~t|RLafer%U&SnyY)`lAG;Y6XA=-C8yD{b+n!+qXY=B3(BGM7;19F<>;wI9i-q0 z_Y(A&Bju3Q##+s|LC->($2PzyxqCYUDYF#L1<+|>kOdNC0pF1-Qdn}6iYpqw?s;Hc z!R#c!FF)U1HAnz%L8Xz&qDWA7DFGd*0GSd1z8VdG+(ozc7krjF5(HdWv{`GK8U={C z6g0^bXc&MIMoBEXdeSJ}?5O4Fds(1a<6r}uXN^vLr~4SX$86KS1v)a@>;xcQc%i$# z@)BKvcuy7JSTODtn5AP1%qei6V;h-6$9r4*0~d%)pov+dIa%$1RU~PA6Az)3H;|1E zA|s2`vVeLMQgTZW9(;!J94(1%wC1nCxk1V77_e=@Vq0`C{JDGXWz(Cv);~{sNKz}UPeN;N0)hvAX}wa8=qZRB zfT$roVnpMT=(i9JIe^I!&X~@))+vHnFrVv3{?Wam3TCG5G0bhQKl*BS%>wnF*%=>n)daD~_q#_|oQ08OHsCba&iD|+AS6pYrL zV_i0wZE_Nat5)^~mx0_~`v##zeQS-5<m7g&jl>wG zCrAK*Fi@@D0mZcf^cx;bgZ??mAmj+G6^duJ-TJB5x^z%5SRa5asvq6hJ7*B1R0MYl zs({f0x|K8F?V7TnaQ(hj)dO@c$S>nSKR_1{4e50TVzDfJ4tAPE>I{)CfQ>+7fiM87 zO@i9P90t0Hj=g9U=xn>G1?Ga?3CZ~WrM-p4MPa7u%($#X6w*=)RLzhq&N@sV97AwU z!gQ-g3j>l7=)|`>cQ)`nD>};yt&o&q`RUS~yKzcwm z89r`Q%j4QgE1Lh@<-KbwKihPu*Id>&7037wT7WteLElGT=X^{(n|Z1NuL5&8?I4-TFIy-;0Hy$TbXC(LxBaR3k(6G%AlrG7#C*^h1YLAD!&3inhpxKTbJH( zUGKcjVsV*(1H%E6GMWcmx`uSL&0G}oIhwOyWMSag9DSWk7DDEiSCpBZ zs;8VT++aFce?{L;)*oaH)Edn>B55JLq2(}rCTO1?(<472U@fJliDqRa=Z&NQ5s=Da z=*p7z7Nfuk*uC=i?$^-#F}$EqNE$O$&<1cid;ukw6=rXABH)U)|FEsMr3xjp@P*X3 zf3|ll9HpUl6?6Vq&b==L>@Qg5WJTIm_{Dz95*jotQ5O<_m(i`c0W>O*dZ< z%ohZw>?P(4g871Az95({2<8id>E8jHF9_arH!)uj%ohan1;KnlFnc*MUl2?$#{X{@ N1bTG-&Hclt{|oeQNXP&H delta 13458 zcmeHNeW;#g8Rz|oIkk`FahuJZ=iQm1**v?yKT4=1rNYf31+BA=_vbb}?Hl_5n`;r3 zk;+>>1d(WJq*2Z>-lEh&5@-=>LPqK4KY>U=|0G0Uzvq44vz@c@eF*BWUUtSg9Paa6 z&vjoPzu)h=-sfIf_1r6~9{I^iy4Rb9eV?;?H*1r9R4n<-qjNMzX?PS-xkz1zQF5Mj z2!bAcW#zFO`p?`n)t`&!_P-q0_4nSq20vfg|6SNve&FHORR36*>E9bS_TLqY{@=sK z{tNM{|LhO0&%fEcuzUZ3x%u7u=H~Yw*u9W;&CT!Gv3pm#cvJ7<;C6+yFgJf-pWC%R zr+wA$%K5Lf*7bkA{lfmW+t>G}cC77RvHk7+e{7%bzhmbG{k_{~+H<$|kCYeoKeFQ! z|D$KG?%(+2%Koo*9)`1P`x_R{!_BN)eap`M4sOhU+U-A(_64^u4qtb}ldUz~;ZN0- zy=Cau4!3K2n%}c?SD!2t{h!{nrhn|_qJR0#^1u4Pqw@=!rhDG8n6y=1r6>$Fo>{|K z&Mr8Yn3eq#_kXeZ(4hy;Kk9G)>x!O`TKLTH&sbqI_ZrDUowrVhuJKUyxJ$oz zVnvS_MXl9hq z;p3VP9j3^2 za4tMjN)ncEPn4i=LP-`n7mU1VG(PmE$!zV-CHJ-0&1yc&ZoXpk{%teEkTGYHVkS$H zj4+v4C#??_;FLp%YH-)e&hBnwqpGf8YOv?2_E%d68{(yAkSHJi=neB*uKD1VSI?XA zDVvv{9)E9{&urUNcCPEJE*jh__r9%jX-`@sWX_aWRwW~~5gt<>9Qv1WDlQ4^dSpOE z?FA`~5jI&PiR6S!6r1Daz1ush2PbcD-`?saw9_P<){=YSt+FPws#Ob>(Z-S(?EOXO zRb*+C?cVn~*Yw6(Mdz>L`ktOgAbL`H}Tz8t$NUIiaViwd%1HVzG zECxqyO2fu5Kx25g)yoyjQb0KT7twlSk>5n&o8r!xQ2Wwsdsu94yxn0?HkUs>)+uHM zkxOa~n5}pSGAn_qx9DdK9nAzvi3>s1uGI~4dOVg79@)^nr**K(wQ(U@UOY{ix%_m~ zl`WQ9uhA>y=tXxw)_GHpD4H#?T3HbQPs{?56(~Zi@ILFMjkM63qR%Q7qC;&)ZKOx~ z1&^FINZfK&>P*!YSA-~~h#`;)OPo^30~-~d9Fp`Au(N=pHR?6K!Pe*7Tj9}I+pf;m zSD$a6T^NCP0yfFunF#3h96u@aPDT_bY5>GV`-~2;);xHLQd2ZKgBKMR-U-W$@q=f7 z+j*i@SPBlHh-Y9<4DCo}<0UwhilC5uF-aRt<{ICcOx8ZU_+oo)5s1R=fo(~Y8mHbc z8gwEuNF}9;BM6{AE3gn$7M!4{Ar)xE?<^0B5GHG6D`ZeeNd{emmWMX!lEL2q*drXX zqyBR8p7sw~y#~8>=t$9Ew`{2{EnoUmd);MBEvdB_lgY_hO)?dNDifon3fCUBCYp#P zJ+YAuS7#T|O*aH-c@Z_FCSQKK;qLUQl52EsvE&NMm^Kb~0k;JT&3MC8RxAjWw9hrm ztf`AN5Cz&v3Ym(In>{+a@IEDwmjvvqZ*0gjFHDTfiVSB2nI>MbL=kx)L4;7=u@Ycd z*IR>mQa<>%_Q#6`%jJ!awn_P+*V?P5d1jF_pcWN`R**+Bs4nO&hhxiQYEf+xVq1Zv zS*xvgP~0*^W08uPj?xtr+)`&9SHUAkspAesU;q|MBFE1pm(vhjV_uV^gr@I|4`vWO#pZoH^F*DW-36lg#70`7R_9Owl|POM;( zP*%Is19bt@#u&k9Bb0R@AE;3VTHv%aDAF3U!+68x5!t1MA8)ea{y7~dn5v2mS_!FYB=aHCP^k-G ziLdK!NG=P7bcZ0bnpaPx)f{(6(?6o5S)M&fnWJQD3k{;@i^7}KLb%o=^X3z;}93i;JoW@u;6hSOF zZ3ZvTRDuUR(o)M1DgkbZ!(hBtXziRw57CS5Lr~~wX)#I((1#g3pc?Ms6psj#s%31A zb`5q@4ckq2YuJA1-KaV;E0 z!8|@hXFyj&V!Gu8*Klp*bip-wwODXHYjZ}%1KJ=4A|Q)Xw0=NY&cr1>@*ndQ_>b;n zsW!n^6Ds5~Mqk1c&21*&kF{>7#T=KKC#M63M;;?2=&Rs;7J-n6Uqn9=bB)Gtd2eS+ zFO0XV%2k(jO(BtPQ~*#VQp!P!8;u;*UJ2ru;5D1A5!*nOF&`mhIDl6`Uz)%{J|%}t zRYHtF0h48qR+OzU9*2@olCgxDiUFgOaU|q=4TgE0piMUG1npeenJK^?L8Jr5iUCv* zoq$66U=EiPAv(Fiq3fzjb6g{331l3I8nD$woOLp0$Sl0{Vx@tOf?tzBP>xVl))Tmb z$Z*WS;Pe1`;PFpaTuFajQvgv?|99l#S&hX5(W9n4C*rTUGT7&x{gC|$4{p1{-b2bR!8 zk_*Eox~Sh8Y}@kp+d2TX@wSJ)kn;1N>YUrtz)*|@7-LXc3X)tv_cA6i7y`SDBk-+5 zO3_b1o|&x54KIzB5rVZ+W0nkcGkE6dp@?GYY<@<%U81QaOhpjf>V9jitg37;$t{$*D&SsMJ`EDiKv!_MxJbN&gY Cl2g$D diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 7670e9cd89edea45c6efca0384f6a1dd7a055192..1361f8144fe2795b5af900e63687cf81faf2095c 100644 GIT binary patch delta 83 zcmdl#Rb>BEkqvt|4Rb6rip*20QuQs(Q!SD#jLnmcQw=Q5O%jtWQw)+*lT(unOp*BEkqvt|4GWVja*8S~3-!${(vnilj8c=*j8hU54bxIgEsRr4Qp^%l3=@-6 jQcR7F)6A2TO$?jga<;$aWCUU+AZ7+)mg#RfSuX(q13M6y+W=Fa$q9siK2-6G}@UCg=O?JyTFbvDgenO5Nw|b5IPnXj?%EMhy;} zC>FemlY&yv3I>bbQAeF;(18{w)`=iR#aSs7J$)}J303b8FoVZ?_i;Yf+H0-7@5LK4 z7jMjLoSjxH_`)lJU(ZVzGDI*TnJh6_O2{(hl%ups>I{^lbqwzGwYz7}Uz=Vz-UdjK zYy>7*Z2iW1gtpq2tdL_Vrx(`W9$a+(z#G5Z(Z(zxO5^O!>#|c72?bZYX34?(JU(h@ z(L0;#{pNbJ`1zEV0N>4v>&^DBADiy-g7|9u_|d%ht^ZmI(R8mZi6?gbckte10%5-d2d)nAmE)fO{ff(#&a@{E>zt`25K>1359 zNI${Y-NsCV^dS^SE>vT<$QU#Mg2O;Xxt+|0fJ~ST;@B4Mpq3_R1&h|dcw*_*BXg^( z3+-GgHM3sV4=C%DuJ%jCgb=NA!S|1RDvnPLrgDOM?RW8B^X8CtbM?|E4?lbK&@+!c z{`AoSALH)TG*G>{BMaTsIkB((Z&t~4wJ7r=MFkSd9EwcVQYJ?>83+`?5^%TtO%2h; zG4WijKp+k-grK6bOo+@mW}h@*G~_0_?FeWq9cL#q$6&1GY_TMyP@93Ofsvg0<@d$a zrX7F)lW-2+zOC^joFi=^cyef6^{vb$I%BMp!J~;rhrV`)V^gh-6%SQMR0r5B6=ISu z`$z?yH~cRS_7n>17+i|chQx>tJ%$3xRDQc1Jb(iy4j#lYW>>TMaQDF#aeoz;tgeFT ztl7%wz!~o}BL~A0RqAIytn@}?jc123YN`ql#t;yFsi=!G?w>o)DApbXui<1ATi+oNWeSOvuS07~9evv|2iYuxRv-crp+qW4s}$Eyrr7+LkIt zG6B#cPnywaVAgeOr8;?SoX;Wsb|-Gg#=BP!R4?4h=Mb%%`8?1)e@?tRIKH;p@!ka8 ko1l9W^!7Kwy$L#gz1^Fj`@6jf`hT3Du7B`P@x`5g1IodsfpkS zLcr@|6Ho*l!NGvN$}0O=WTE0l-3SsNWETQKPj^p`Gce}<0DITBIk)P3=X;!c>BfOe zHx6umJ`bnJpM2@HaB9W*O4+JHRp%I?X5)3nY-5I)ayD95mlDFcYj-?w;oAJk7h97g z1R&6*M1+t@LXkC;l4>ka(z&Jew|a{%9D4oNTUzgGQN=r#ltt%5%vI^+O3o=2Bjxz0 zzM{9c)`wf`&GKh+#vA+XqPX5nfBo2WKP-u_#*ZH?ia&;5OCg%>)fMsRp8wA5ym7hd zu4{4M^nlCF@QM+y$QA;+5`!`kHKwGzt-y0A0kY0EmEoIJJU`c_T8h=F^57DtqJxex zxkMpCvY>0nWp{OdJtqzhFK&u6O&btB@=20->V*^;$__G+4Aw~U!`1i1@6Dj+_U@PO z#L@oCk8FttyT3mb2fDTI#jW=j>x;yy6t@sejMmk_7bzK{iMm_;M%+Ezd_g=t*8=(A zgQi?1p#vXXrcyjPjX?(QC$P?cDCWA&^Wyg5vD4xs#+EUrKuF33o|z%3ldi$(!pA5F z6^EbgH^tCYt_|rx4cq_q_YA7Tu4wWrFLGVVWQay_l>Xa|b!}dG? z0Etp5pCuWMD%4EXXSWZqkDCD*>z%?7Bpah@pU7EcKY%pGc)Nq^%ci%F39!`H#+13k zC_^y8Eo=4c>6Mp{FRZOCwF`*G85gUwRiTpTiD)EHuRU3aegbyTW8Ch@CrtR+KgGMv z8-3I*@U4#>d+Nl|Cm(*~i4%Py-di1e#jdpb%{!n6Q*}LQ$bMdbEp;+8qk4*N`p2sBYQ^U z$eCA|;GXNZt=V_`l;E*7=Le}$AaGVk3h2FwmaUmtm#BQO*sZSZcvCv=Ei>0P6MCtr zaFVkayaA(7mVG45-Xs=pafwr&p(M1#v*I~Yl}_3SxLdYmvU@5~nHY=Lfn l8O#z$yAjj_dNAS-x+4MI8F2*yjzHKK41@#Tpwr`UMI9s0X%mRooNCH@@C0vO zM$bsZ>GL@BFmMKXUZ(>Da5w@EhtuQHyg=<-n{jj)L9A0P%diImkw_%q(44`bO9!$2 zVYjYF0zRilgI|LU|9F)?tsgyyF7+7>~K5X zA;U+)wE-i9yJq6;-Rxn95paavVUHg1>ux>d1tJd3@cP}MpvN81iCh~nf?U@{ljoU@ zGR>z&m+lxLpPt;YTRd_95;i-!^wlC+TJ+-T+-&ox)w()=_?aC+(=$VtLS z7woP|lpfr%`|2+Iw{Kao>V+;uH-0vsU;dpe@yEYoZmNH9?!P86?iiu;%5at1oe0Xe zb~X*=H;hnvC#v=xV!D7o=ii?z{EJaaQKE6c&rB1IuY8qZ;RCN=1I(JQ%y0nH2!F1* z$iKUSc}2^EAAUcP@pGl%Qh439tT=~=o^;BI%jaxrw8HA`ouux@uE#W49};$0^6*e|+tQ zO3@YLl!4tZ(2PE3?Z5J(`2W`1>A$n=PMz0IRPt4KnMcEZboaFZS&EQJ!nK7#v|~|4 znaH$&X3Rd4ASdb$`z(i}+~F8R|CZWy|%o#J;8GM5=AkqXW3m&zHct5P%HDe_^u{p zzLK^*2iudxsZ0w;bYgQmfx1i)!^Jm$qqJmI`xeVF0ja3}$2wC*`u5ybtPs#YJxOLH zBzWDEt^7-2<*lSah}Kf4hZB^tbCnDWTkqj(?Mi_aOdLkX%QwHM6ewDB!)NnZb(*GZ z&6_kV>0p@VjScAzL&6$8y#9Qpn?(@kTf3NYRZp4bB{OA}ty^=jHHiTL9sDH?i5TyR z12IU**pfqQ8fkz?jE9Sq9*iH@&t6e};md4FX>{qw8SKX#o_&A~!N1EsR|Z;tL8tM3 zPE`3%9XmcZy6>MF>zd1pzECD9rTnG=iedc~A&PVP)-RM2Y$G(P{62^KPld_@IZ@}k z1KF5dzIGEEZ9R+#2Xd|`ij)5;hu5B_^fhhpf@1q9JuK@%8=6kqVC1PIrXgwCx@f+n z(MkuC8;6O{jQpmi+~~pYJ=P2r#E9hbeJhoD%4*RU73dmI z%z-2#`3a~*S01FUSURIr_w$AlIt{^SIq2r*^~CzzAZPpY;Os>UkXh)!CcTn zujt;Nt=+!LIqtZ|{$o{jMWAtZ33{^PM)Ufblwrs2w3as=R9-rHzeeH8*;hHyt#e%b zjoymRcYddI;9X7t&vD>8WhE~zRTe8f_`VYrH|v%cEeiIJK3UzKZwd~uDF9^?S<_jCEbse88IfL~yM;idNcWCB?k`c+v1g<}#aQ`7vp^Oq zKPt-h585+;C*ve!5TM>|s$fMbZwRsBlJUlil;PT33UEPJH#w!$x~Qs%^Fj#hp$ z^QSIi1NhCSDUG~-9UH)$PJZ?}=7qnpSrfs@^LFc5iQ?qT4zXeUjP*cDfnNXT0V(z@e1V#br;KaH3qq(^hb)%Hgjx71y%-4c-mA8~MwAbpY$?jw)w zQPJZbJ+^2WB*Es33`d`{c=lo?N5w3U?>k4yHyh3}4{6X`k*2vTH75y^4opyqZCr`z zUdX_7FNfO~E2?0W{ZE#wA|KRA9pu_++H~nK zB57jd&W>k(thSI+x~f9T`jjf}UkgFC=3sa059mZI3MujP3#hq;l=!jbg(4;%LXaiA zXsu%7H;q%;D|4ICE!0*a%1b}($~=XX14au)2;aK~Lb!*T`Gh7#veOGG5oGJ#eBZZ9 z*9`O+pfL}wS_+uMjiH=Xr)$i1xRVAkEl_S8C~hG6O8ji-`}7d&-kqr4Rfr4jrsp~wcU*H;)#&Co zeWMg4`bSx!yUgL1YlC#{x!9i6$x62u)5I3zgmm%}aEX5Y!k1p4RI)>bB8lkSQ)tkF z;l>OLlU7JO7zCk4q@-2is;UtyB6rsF-RB>Cnt=9QniC30OZWnx16ow+pCSdJ0Q_L^97okcVhogr(oojBcT}HKL4`epXMi z^tXGGrCYip>RHq*ES=b$-ZTA@hnDBQGB=ret3?mC=3;A-8Kf?I5Gp?bl^DuHJ;~VZ zDABh)g|WA{ktJArV5QY2Rz6fvZD{E*wYP0jN}^jrU9CM4Mzv9Xt9&cF1cq)Uir@4+ z(gG-txrJe;TmIyAN$F0S#ZO*t94673Y8!Q?AIel=6J|YGcBVI0PLQ3U!dM$EegF`Y zVhdq?BXkC~-0k$9WXnCwZ7qIUNto5-(kvo$Y)3?pd?WEjm$ zAj1%blo-{o#i&*y$uDeTZEWJpHpA|KkpOI1>>+M1v>+Fg3&uwU?eV{wEX&lg>+3}wd^2}bjg=I`JE z=dJ^g(V>&ER-rGPj5MZqn3r=fBCUz8CA^w@6DiAzroS8Wo81mZPGSs>jcBbsYI*EDWCS|Zh!o!1v5ZOd2!SWK>%?$#Px)~~>ZjLKT z9qcP)Hy@YXd_;6}&y`Ar$!EBeP9p4l)>Y8)16M2UTDIk~-LjL{A;(=syyI2MGKAo3 zuTpN4pyFJDeIk2xiv-=Zg7r#6w)-_oO`Jz`$L@~o2id8+1s-+kHR=@CA5e0mJ8KJh z!yzRrv5t;Sd8m0|JK(YAh3(uYn-{iQpN=nVnL`|dOkBtM!?Rf0I()ImUyLtpv6d$5 z>9Eel0j@w}r{b(DFWLzM8e!$r)ltKW;v3vOd4Qd#ux^5){Rx3NJ2@V1YT`xke>HV6{rJ?>-`qNUTPxO<#_ zcOAC8!J#)PjYr&EPu=8gwVh2_0Fd#<#(V{`9%*wOcCzJe@=>wMcmrFV40w^j!2gi7_-7K_bgUQFrMcg131asLmn@5zg4bD3CdDn9a>B45?ZykwDCqb`3bN@B+V|N{A3dLp<{_iw)&P($M}|?K*(MtB5aLE2wMpyTjjj| zFog9Q6YMJ2i+Zt}2ox}$btiJ|O8(%I!UTfR`A=w@^PU^n5QVNyvOH z$!sCS@j_>Nf6gd?IS8xYg~=A1x*A9)Z#tMX^1dr%v!0H!y;DMw|E&^AXTTECJlRjYLbfUL-J9#VlNUuV|h$fP^r@tU=Y9S~`~pc<|+2cCb@ zi3yeX+&;?au2?V6CKI+XZUEWFrAU0#0AU-!0m9hVVdXsJP-dm)*#pQnP8%Rn)Jw2^ zHi(CZC4fxnI#C)vKrR)KWn!sdCK0$eElDR0M`^qkq#GR|6nu{qW&>8ZNkJ_SOtuJCYo+ z1!^hRgxc5KOy-&<$j+|Vs?5imHKmxKc|@v-PqFVSkv^rGQ09usBvVa-qg0dN2Gt@H zN;R>ZoMYw^#6mDv)pw#_N3O5-p0x`QpxH%qfV&IWwErP&d z+8i*a4MSiBlRZ<$8*16_6!GQ*C&im`m$1w_#QMNV@rIb}aZM4EZXJbC5f{0M zwJtFy#!wxJjhv;g7BWpi%GU#%k#K4b zf65iZj8zXLB;tE#fQa`~MRd!*vqV6+9%ay!dNH1GcAmM%Nx@*0mEZahgDYn=NT0!D zdI8=O17Mwo?DjY*4VgQMiL-F_tWzW(56xnWm3CJ~;4IOqiPU4DMvCsQ30r`_WD9eU zPCt$B8>bB8lY`&`@FvG7O_;+xjm*J17oldsB`Lh80gZ%8m4Hf_M{f-+0q#Ocz2%7;oZ*B=*aG#9P$-h5oF>|DId6Kq&MtkvZGp@bz|uc0OIhI!1) zt_E4r5+0DE%||ZxX_OChM*~3Itx-PwB8pN6B@re7kJ85pegL^r;~V$G&hM6|n1QQE zyk^7)J}t%KjZd?oX$AR|1hJlsJoiJ-@lgF&AqZP+<+V*PN$`Y!F#>$AQQiu06e0-e zN*oTlG?8i7Nb&Qn{E}^K2rfh6Rs%exWn2U|T3}vUPeHmuPCqYJH{tdrK4=%jT84qO(3H^wuXGmz3kot(g51k~la(E6>C*_jA(6Qon1b>;GA zR14KF6lL7CZq&&OJgIH0EQGs9j3DeGXNGmMh4ZZZg4b9b4G(`Ep3)9T#NcaRWWwQudC@Ya zu>g!m7;Z#>cJuhsJCxIS(IU1;*@T?kY@?B!*xd^R;4+ovI+X4%glUo3-GOC!7iOa& zH-e2aL+DG~g~6iS2*$@$$NjDtpxcoATZYisH--o-o3ZlWVnlGJQ2Ad5%~%u9z6hKL ztzd6KxPO75nBoBunnFbJ9}vdjLX2tvYf@PjU56o=M1q%2rrvH++C50t<`zoxy2Yfr z6DxJMFe55B-8gmO{9@VVAkYM~7QzJHnBgg#`MeN=OU%SnBzWnV&J_&UeO5~Fl&z!| zw$d#o=?XU`cd$!4SJ{YtA7gz4MY+t4`?DV^H@6s%r)2}|%J$+XHL??x2Sn?JNov=q zJ)CEGi6Bs7ja}lV=ZjohnfD4B>pY~8C zQtc+LjBav!jHFHB z!7XcY*)y_dY6kS|Nl$dn8{-kLE5Ga%)?R|1+p0!x4)2oPY%h>GYz_~NlZQL(wj>E? zTX>)BV2)&m9ega&!CO;1$d_(_z>@71HrvTdfd$S_Yp-Mjqk9innbRwRi<9rVMka|p zkan3DgNrgb0a@>*0HZ{(N}LK6B4hxTY8Yecn<;SnCdi)3M0w4pR@UE3`Nai%%_df_ z^rr^i(4@4#@(PIO{k$T$;FT=pR-|6ZZt{}nQ65b&>x<0(<`om23J-WGUc3suLi;X8 zfCmI|+H|-HpUbTMvHp5*)c?U-%2!CwYjtAP=WvLQ?w|RDCmD#9{}BxMP1k^Azk11& ze2#Q9<$5BGcP3F}=e2NE8Sjg+Vu5eb5WgP+fky^wJHboyxD(ZgOO8KY2dUjuzV#M4 znDm~ z&l=nB<3C-(d?sK=;Q~%0`Uxpuji~3PlfuQFTVR2`Q&Bot$04&aAP;(0hGTb@sXk51;l&*h; z@DoF@!LT-9U3G=fEfoe;kcmyJARl23Ai$ssUVDquU#XzPWEc_ZSJ8TF{g2<61X*dj zef1x|Fq!C{+=Bn(7bX*^iIF)Cn@VRLxuAz zXqf|Wl%o++zl!)WXZ6-{GW&*%r0w}Xe5*1cX#6FmKYEi>V0Om$n-YC|fO^4~{tf)g zRQwBj=l6+*P_5n28sD}QKILou>QP3Vop(E z?I4;{*TGr|UyWFe0BfP!nC$}rw4^aaZQ-ESlj={t-h~3w=HQ=wy(`gEX?uV2^{xcI z7%6ix^zsQDmP+;rn9x=@CW>1JfBG577G9NObRLe!_CYkU0FoxwMOe3RQ1iq(gwwVE z*j33B>(9OXm5@;O@Q+CyA`45V0!hb z6w|9$rI=nLxUyaDK-E=>m{rG}ugE-R0}jC8O1}AF*s5v<3|ESYb_P}%){O{sYNZHU zj#p&ZqT0cN6eclMl{C?=sicXc9AB-WUu-8!?_NBk_ zkn9qqBUU1_wGy{Ib79Le-TQVR31&z~ybzF(R9edsE(GK!025tOs%Qaz8;bXPrAV9e ztK_BtR(9cAcf&g`oAJ3bK8qt3SYM$9h@6VBw^9Wr(FGNiGzYFpo&)JG7vv-U}7(F<98x~c#1AAAM$k3mbjPFCB$7xvbK7(>sGronIE)-=n?sKcixIe5C zIoSh$BL0!5}Z@OS2MvdkX8PiN0B>Fu9u7 zz5=UQ>e4fBLq2{;=nsv04Ri|}do0Hv0i=!p^mE&tN(9sILa(kw}XZzist-sHJS4XHNu=z2LJ^)A|KLM2J#wDT~AEH1P)(A&@lkCPGth`Qkg9=yIP!a-w zBr#!C)WnmJf)}dER(B`cYE9CBqa-;ANu;5+hDj^!i$XHXK9uYQvShwZbTB3LV8^>+v`f^YjN?$}@t z8lQ3hz)B>wT6v#=#AtE#8OnU`FUrWSMmnj^6;l0%^jFsk9bYA-`UxvHNvWu?v6eP3 zR<~eIn82LwGaSs2_ZdhCvE7}H>r;XQ`%i|r&!A+Ai|B9H3Z1-JOB=uR=I2474{K&7 zNb_~A*k)#f#kh2)N)#uDE;F!y3neLUQeB!2ZB`(8X@dnX2V{Hr2I!cEs#U(*D5bq5$fIan+h;V-TFbmZ~aVA_(~JD3uK_XmrB|LtI5JO+Y%Jy@(3 zp^@;Y^0C2UwfOL0a*SPuh#vY7;o-rwS|s`pLT~ZJjW$Icd|5k_+|nA1kflRJ46efl z!&-%PwL^rhQlV-H+3JiT!hzKwKo#&p2L{OG4v1385ZV_#y#} zvE)F73x|+z0XQN?NF_t!z9sX)!Q@-2GWpsnr3sQ*6qHY}n9S_K!K9uoLOn44w5FJ1 zH7#cQhX@1s5ah-syP0pzGwBRs6MdTi{?bU+qcn$yP<-kmKza=oD+v!4X?NN(5uxA! zIol*|kpc)|Q~hD+AFkSe9YT7THdN?gD&qW#-GF{T#U&iY3|% zg;ljzzL}HoEh|tEky^|{Ld%8F#aPbDOZAmzv4-Vi1`|7e!T62SV`Q6f#*K_e$_ zK0LAResaORs`& z1rQsdWbsuXk^sL7lwJbUFp}V0WOletgpYz@!Y{4H%G_bXQBWa!7)@gUBHa%A=zbw=3*Z+9 zP8ue3fB7)d{rX`-_wbi=e+iOVH;iTTXpbGWE>;mR1OQ> zUX4Bcb(pZO+~K5K{&YX^CRzNTVS*e4x9_h&sE)(Q&WeW%m%>Gza4A3ml|F{Z{WPrg zdhAc`)uF`yqrJLBSEW_`$-TM+z8ES?G4y=IaGD1|M5*a+@nkFS#hHZVM6r6dNcOooMAMj zRuAI`3t2U6uF;g*KhU%o_Q>nYOm21`=pHki-NR`{?HVp-6#S)`aVJuFZ8**-zSe+{ zg*zArVGQ6?Kg=>hxURn<5aYFjOyZ4i1R!i`cnyXZgX#9+G_U%O5W)0bMA|-_<`r>y zX*kWRBW%i%LiZh&`IgD+fW+16On`k0QXeqH}nO31G?56Jq6vxN#S}G@Km$ z1DQ!DJ?S^uT5BRbTv|=MEQGW^je@;29F13b9u3tVbxgORv62Bl?EwQmgmSytcd)fw z$_{bo2*~WvI`c;g6NbNJgfAeioRO3d`VwI7ks>J=ja7#AMT8nYQp5#lBUGx)0eUCG zmg`6|-vuLu`EEz}&Lhcui9?5x!hF+yJj{FKkB51azwMRo<6${*n1qJcQAfl!@;^|N z^GA~1!Y2w%ZtLqPu)|=*&WtbSZdUxQB7X5k`g?tTqp|gvHlHS6ak7U27uy-V7C;&x&(Cbb#K#hTH4OhMVTwXYhfvxG+-UG(c%3?#OG$gI`>8Muzo06tBZba=Do!DT@K? zM2lq~%0+C&D3Qo`N0HlwZ({(qu-jRq$ZlbKv1pD-+~nMk1gDQ8(>*%@dFCj-ubjc{ zn>gc-5N`b_zN~`5%S95~LbcOH8835A9z_E?_UKCpDO z$aKHM%Hq*N8Y=V|O?Cu;Xh)VG5#S{;ba;!ieiYf!mzj8rb2xH^JDkJQaGfYPSbjzV z^@0Fi_Zc?|%>i}-Q9HD)#eS0}v1YU|iB+SM_O+C&xie%MV^!M$r7K5^_xPiu#g^78 z@LKdKGkn{b?pnvMZ#v`e@ncKs`s2mX6zDo4$!AB4K(|MZNhVhQQ;rE0c8^94Dc_(R z^6qAP1lm1X_zj>yla9zeJz8#OAzz^&yuFEcIpG}zc$2>?KDCml^B9sS7wNViBeZnF z7?DoS&Q#&RK*qZq9KzWy@UR>o>zPa9g9?c~e+$QEDbPtSIgV8Qa+ z(S8=6H34=|_ReC1l@QW*GyfRc(7MiRn!r|#5iZ}3jLsOtYka1c*k!;R&$s)^%JJo< zI(EYtvC%Y8R8sgl4GD_y*~DD!#JgIr39hdQuC$HzndIt2S|0-@en9Of$+cQk z0t4{@HDw=h5#PCcWeob9YF_g`8^uPp<0n*`4zRvsxwEs{Eo#p#HZ_%vh3zbd+IQ@6 z$3>k5d8Q`W%Ac+=4P-UciWv4Dh)EgE48G4`J9v#nb{_Oa*`R1F^u`fb^CsJZF8(WY=x zQ^q(PD6D#IjHxo-#QTngVLHCK?ZUC9lbYMwk24KmrOjTToV79=pc2@BfQj5%o)gUhOPdPg1DdL`%f!THr;HcQeHoH< z^K<8#E@PLD7yjf5lwO`vf&+-SO;`6q~RcohlHoe=x^B$J`A zlcfy1MJ+#df$3Uyj*!9no~Wb@Yt{tHuz+Iy^b?OX2K$NsBDm*G`$zW^`&j8>lS5&z zNdBKA(U&L0wk$Edps@EO{{yo2$z`TK3j0zD@RO(|0bURS0L>Nxq|U7W@S;;pYnZKG z2+*UR@BG+=UoSnw9`uBr5pPfr8E#E?1igWP)8P$<^ayZATqI_ptS0(PtCTe&*idK^N4$sFctHN`yED1{5x zlX6z9G+m&qMUwJ$uWZCPyB<$i2JyqEn`-FOGB-G38w5%tmA@dY_!v}I3A*77(=vF= z0qU!*Jw+Xj*_rjEG~k3|79f$zqFbgPZ*3>Uitd{3OC7`BeDj5-MeH3Z=37EccDCsn z{_85!UGUMVgsde<=9~K1&u5#SRG4X^FleW&{m&YcPhmL|MVKxZwItY=La?{$F?Je9 zGN-}q`Nq#oJ^8igf|DOI5n~~SrRpW?gE-`yQp8!-K^!1F@xQos)R&r?7KhHi-r&U0Mu;L1(V69vr||++kq=rsbl!%2f*&{7cA}(EdDwZwZs-M^<9OP zP7$VP6G*X3RaFDGJ4Kk{08vY(m?(0KhUMLk5K3ZL4Mz(KU>zSOaEcZ`k8 zRBu(-(kZCt5p3lYQZW>lwpU-0)!q2S4ywT}Zf<+LgL*c#q53NXd46g~^;32;(doud z>!do_T>=5>-s_}Jl5Hc{6V284c2;LmHPWe+bTIc#HPRv6UZGa-SF_aa?4v1UMSFpY zRu0{cFDNe0RzGIHO(7%tc?ucPCt^_EpVFogjqNCmXh)XXgOyGt4kc5`PWw(x7}4Fi z>hMf90!{(qMl=Gq?UBJR54y`5w(~=zG@BB_L$h~};@O%NE zTFA~sXh*x{07*-Zetd^l?borzf+G%|Q4Zjj5;&5WQLa`JDYWpzC|qEgaFi)r&7IIu zPGJvCBiq{w6u?K`Hx133XAM$0dvzL__V#IH+7C}7O#(o(e+0@H^RrVZcLK`zefA%x zi6Hy^G_>bL9J;?+&E)oK_3ETx)O~t#@a;HV1mAYkDfj{rvS#2(fjxz1*G_zQje1V% zH2$4OYSp^b70P`bgkIjQ1)niyI+_WkQzJoy7OVWiPO))=)h!B}IbB35TPGOKk<()p zL)8rmYn(3h^=Tcrs-;N90d=wQ!&H-KL=6-P6rq6>`u#`)K7RFRT>3t)=0-a=IN2tk zr1{|W-OW#^ePi#8P-iO27Wm;5X#VgdH@kN_Y2)hYq>YW!6WSO#U1%ePi>nhlnz8(v z(Q0>PFA^Hc-WNRH<<6(o0k9}&7h5n!&9*APVKaQ6W0G2Gtw70tp5DUG90HACu-Xs9 z)FN2DJ6&kzp8$(~MweX%KQo@VGRF)uv4Jzl#QM(w6La73$rP2bF*AglSxGoEV!r9> zxs1)3A>7QlvR0j?{-Cf$a5jny!po_a7d@|vyQOeo{IY824P4D+t{FHia1Rz+alf-S z>o)_%5-w+%5RC#;$}nBiN!Y|~bJgMOR*+QKMAqgRNj7m)tZbfop~4=3#1=oFa5GZe zJVWR=1@=xLS*mL6?QFLSPw5Z=I>68c5x7p{=fFA51i9x$wpNsy&u9x+1 zk_0+2^UQ=3i^+O)V&RZ_N*9(lvxO6Tyctb6u|6$Of0x|JiKXfEdp3%H5*J6j!@>MII6 z@wI2GbJ%;(W$7l~0q!l`MCVx1YS0$@VkX&y#nu^Y;vHVUTg{EVuvUFcVL#2}YtL0@ zv*Tuwmw;mSdFocI#?4Xw{&{LG>q2eqegfj;@wfBq&QV|KkT`ooXmBZ(qGs|rv9m8w z`zoyeEMbhjsb!`x#uO<_q#DOw1!^2Vi_|z2Sc1>5ofTJOY`{A8Wra1&B0bKTMS2`L zi}VOk&3b$XI)IKpg@?N{x|&9|L6E;xkiU3VBApp)u}enGezh7jv)^V3 zCvy?P|2!-9&l}YC7S?gLa5C4(+Wxnx)6A@JHaQvVy`mO#894DpY1n=-4)01S{z*~@ zzp_?HLVhJ>OrGv6{K~+4)ER8@>}DgXpPghxFLaLXdef7gQu_)Zg9qV{{G!%acOsMe z+2lITBr%0c*)8gM`}-gry#yN2bwr61B|lh&$v&rB-0;#~@_RfwQ9DnHv^&WP3Hrd;6 zv&r86HJj`WfST>Cezvf;6c)L_0{uqG9N{;WDJ_ASE5#H^U|hMLRRj=92{PeuVApBtOFTivd(cR?&XA}N1MEoJ+WiUaGe zc}qP-wsqqr|5OLE@8fN;i~k9(H2aFo@#6A0{)Se56Vk!NbgG~(rf!NTvq4E1^3Qq) zrf&CnG<6H+(bUbG7oWPZ>UY%>6sFIkx$B%qbGL9F&0T~R*$NVgjmacjS zR@foI!!LNuotFq0*S@dLQTXcpYA#>%qshX5`atc*h`;2)a%Z|)T3VtvsWazU17K7hOQh$_X(;z-1263wx#QRWDZocPJwbSa5 z|KtVpmIs%d9Jbp}T0W18CoNyTBHT{Xy}B2FPRLQ_a%eu63!mkGlTQW!!{PEcumS;e z!%M&|0pRCX-Bbnur{?gr0`O?nnm|AZkJ~H2MHTVzI(&MZgyw)3`9&N3ivawN&(y;I z*PU?u*-r5DdYJ8O=RA>n+>7dZbsqohU+OUG%It(fW|Kx{&--twL~G~K{&a7$?dCqX zU&z~ip?d#+?LisaH;=Nu)sF~$PylG&99{o{w7mcI39}j*9eKw5S?x%%@efXz_|NYi zxjU;D{MW24t+Dyy68|9wAa}iB1|1~VS!I1*sE@W9w+n~K9u~3ZKItg$CPyjq^V@~9 zr2IT34!xcw^7H4uhP|-jhUVzpry(giznMk(c}ndbK*kk*bwk3V??qmH8YoR4-=h9w zQI8vyZ?JjLfNA=CVn}H^R$-d{FNu$7`k5{8zmWBqra$|w8nLoV;1`9O_b9(^MiXiJ zwE~ql3}X3~Y!ZoLeO5{ra`>`-@VR9;2kgu*_!Z*)V+|DVV;~u%>JK%<<2@hwn|cBJ zM+1fXoedQ3pJ(eraf#_MOjb4y&7!^5-Ida*~Q$ z`6!dQ)%Avn(qNu2nQP(uNkD%fZ5~EI;uh(gJ3CgRnhz-WK zzgYY)haWIeE+smA!xWQ>4ew=`PsYEnY0!f&%rw_1HzonZ_GX%g2ojjfl?%c`zbSIm zw9xN0oy|Rz7r9fj=FnE-bAHnCGyb@aV|R5hU#!5l_Yj2Nbh_$c@A*m7FZ)T;0NSkS zh+iajDGbMEi^T5Q&gSk4YzUM~W*q{=EHjWu?iOa5A-VfH+uV!W^HnP!n`iFH506#L zcvTm39)IRTHJ`toXU^i+7Qik^UVgl;G#~0JHmb+-rhIdbfLo1q1ouQ7&f;`AwM{#6U2KY}s%)|J%Jwf0>h30Pm zi{1Wc3CpK^X>(7r_rJx_1|QWzYvMZ_;D?rO5PeS0ai))i)u4>N{|&X|$YkWd&9{9b zX}B&v!|c|(#E?+lutLl$<`0l-n<3{DoGrq9;`UP2Ze1_t6CF{exVgWz@T-}9z^}fQ zm}&nIGi@i%G;#NIM<4TgxY3NxP`K4E1LRiU7Q6v6)vacw@Ow%G&~8ByK=Xqw1L%41 zYuhl@MjTcz$ES8lp|moX97<1w-z3ESn$jSJQlLbk6x=z6(p0`L@$>qdA7!(GVpC#= z7?HH0<_-SR0P~F0?GJZ0cb1y#*s5SWx5_#LBx(^V-;O;}YF?_cOMj})E--+nQvC&0Hua`8hcUz{LL_zBLPaS-bLZh2nyj-gxJTI zxXsgTS}5#wyCO!=7YOTqcPJ1F`MqwZGiZd}p`f21+-J#+?L5;wOSS1fEgbSWbXUj- z>zd2$4@H7n$Ypp9mk(Z~6rdlLS}sv+P#^aB4Ua$IaO+N&D-ba>-4pUebj=8AVZQl% zqJa1E$E7^ z9b#Fm+WcW7pa;TEryh*xKELL7Y3{H~cj{rkFC6rsbOo`!51H>&YypSI;c)t00ICOF zZf^i?4!T`lzb6v$g}uR8ZP4m=MBM!Ge;txUp;Dgz!HLjEpfI$x;&`IdL%i(wG5xCkI(F~X2ba`T+zo!+O+v9Qh z+#%3|+pR;JAI8TKa`_@Y%^L~98+@mm^I``IEq_()ZSeL|U+itLC4HR8->Wz0lso$_ zJf*_nD0jfClrE#pHFhw3P_WmkRi*Y`nmY&`3c4JQpi_7H3@;dnSN8{Cc;RMdD7N*G zWr=Dxf_eZnJNDI51A(zwTjL11nv#$;Q@Xe=5mWg)n(RoAiR&73!j}DkS z*<3+K#21M~++mn84kH3a90}@SuVzHtp0GFO{Erz_>hk;DPAwP+Io%OmcZPh>p&Ah~KLRJfVQs=k=p6b2!2JBC)m4m?J8`=^=Bb&2W13kk{kTBSDbS zFu>nv;3Hh%Aj4YN$G7bP-E0|ZzDMcl(4632U3y4!>0wVK0Mj($*CG*@4r+wo1W~O8 zu?^pvZ&&PX@OSg9Y^$?p8=N=qH}~N+0dsqPeb{1y7lX=-7W2>J@jBgMe?$uf!Fl*Y zUg)kr2s-e30GlVF9{BXRFX#`4yaD(=KZZ3i2VKFC5dbp< zPaFg)E`)#~^y$8kU-x*><2FaYqw@~%1uHCL+T=~qESiBfBjf?Ep*vj8KnS!M^cfCA^E(~T!GP}d$2N~OL)`HBylxNdVZ)wy zSa*Tfbvd0H_+0~bt=(Qv3_ARjVhl zf}suiLN1RVrlCjk#MTVKun_hbTG;E5SO;E=sx7qBB1N%-KcN5}410Cmqd~}Xg(EI4;PUyM?tn%P zGAZV@p{bN8)`oS4QYPHdN6%=Ed2Mx0#JsR82wDt=f+2AJ26#(P*bPz8VR&ISX~9_b z59nB{9=5c%xdJ{7G6Qc=gQUi#>5!>;eR|LU`}2Tvl_A_w)f!JoXylh0W?@`lZpF7`+us5v1Z1T-(K z4nSte7~L?wV5?qVBp|KTrgEUyE8M9gIm zukR9t^=#`~99U zxLYltZeH>33@zX z$lk(`aDs+C{;&oqj1i2$TVc9elW|dVYheRoH@I3qtVLjDg$q61>DEH9Kn}GqWq4&w zgOC*QXfEhBOk+q2Jzk$P;`jT!;jmK%$2QoCywuhf+eBYra@u-${ICpn!Ri{auz(j_ zi3<{LIE{vg?uMnmC0`n9I1&kK7+xHHA1s|5UPmARp&sno;SEK6F<3M}ly}0S7v6(| zReuCV2IjiQ?FbqH0~`*l$>2-JW6klTG;%b~?uhU*_BPnc^}@nE<{q$};B&ak;1s>p zd;~RlL!JPvZ=GJ4T%ZofP6F<*#}P5yK0k&D$^yI&2P|}SUoZ>~#|_zn?(!JUu*2Vlx-NTCwbQAR;*N?t%`=hQ$)(7?9Q(FbaNy!$`%WWGDzJKg3xNES+Fa z1*WLa1v3@)OalIZ;cS_fw!z!aGY?zpd$z$^`Nrbl-uEpX>^{_-q5C0uj_4kj2Z9*v z&iG+B$>|KZn)hbH4%!fa>{^3p;CBTK1A;@y?Fhg!#c+$f)UHJg!;b+T!jT>f2QeCX zU~4`CD+3L(5VFuZ=n@Q{ph8+g@RZy@V@#}6_3d7WMXoeT|6N3;AFkmFb!?x6yJgeHU z*_33pjq!BE=b*if{=qIAZqS4wf;mI*cCZ6h88FTK;M-si0`_K{pe~t#QdVGhdvH17 za)e={Q1=;-yg`uD0!~*Lj+eZKGq!Jz`3A-AHy}OLVSfM;I!I6bUKf}xL_=RF1o>kC zex`GdIY$PM<4%*t_D^^xC2|Yf|0UGjnVX~k%@f$E3!>~;RIVP;;UU9jm3_H4kuD~w7|hZVaQNCIi-7ic@{{#k1m5lIGHxshlG+~TIN)GTWpv*!6TG8#ixM80x|;I!5$AJ(JsTG zV-ny9K;}=YMev-?80zqEfVJ?$Br$UZ`~X_wm8CR$+2S#)z-%O!LehDR)Y?0>ZILvf55~1isF(K5uc@fAYZ4ilqxr3i?k8HzRGq#$KoL>vpQW@|%M2=I8qM_|Evi zlNR~shk@!WxHQ+>+LxUc7 zmgCdk@aYtMI*Q}JG*`-Gi*8opYU^g zO=sd0el@GM_Px5Fi(zE+2F3*R^1TE`v=;Y-Z}*)8x_vuga>epY+lW68%+y{((e)mC$vzJ;ZA#T940?6dF583VfSpy_@|kkq;5FV&(ps z)-rY|J?_1oTjDCcc>Nr(8(Wyy4z>QK z67DGicbUXJN8my+9qw52SB@CgHv)aG#U7y9F*35qIEr(8+pr z;Yo|bo5l`M*ISk^S#fd@K15K09}1L%|7czk!EXe?FD1d>1wkmL6XyP|Nw@{PCqE@xwO(gWqUeznbxE;KQq+lJs_HuTPC{;w$a5s}Vu=i& zt^#pVktd&!guG57Um%gWM7|&`^3{EkkROo9_e)vw=4;Jm&ATeVt**H zp_~r8k0S~D7m59&#LhTLC<4mqu$!Do*u75@YP6pu)aaDhP)>(^zbgrQjKm%(v1dwb zD5t~zUQ5DWA+b-E*yl=YD5t~r8A;eTNbGAR_B|3C%7~rh1n#z`Hv*?SiR4R?E_ zOY8{}8_Mahw+~9fULdg>CHCnO8_MahJ69!PZ<5#>CHBn{8_MahCs!w7KPj;vli06F zY$&J0zPcs}`%{Vik;ML9VnZ3RlZ@ckjPypZu{Mch=LJF$9To^h6fO{ofO0y4E*z4C z?UmSu#2zNGp_~qT$Iv8fzr>y^v6o0}D5t~D9+rfCvBbVmVqYb(p_~qTD*TKkrL7|A zd{AOP^#VnaC{_FniU!WO*E3&ohTg<{Ne7K$;4ayslj jqm!`9B=!J_JxF3h8L|7eOagP-r8k1YG5qn_p@lFN2t|rmse+1t3J!4X zg1Xoh#C6tPQLuNxwwASEWmo+O?uvc+opbKZBr_Q@`+c6@v-=M|yX3w1o_5bY_ndRf z`_A5{dhYnL$G&^h9n1WlMawVtE*t3fg#AIo8S;l+L7&eN4(c9PPzxHqpu-mk26dM! z><$Dp$AJ&hmk+QxLZN^&Xm@Ca;n(a&*yl3*?_Z z?E!CCv%9sR*Xa%GhC8S`jiAHjaR!2sxr;XB=_z13cybQ3FK21Ckk93E>&{Tv9@4Zx z!0ofU{hG(&*6d+>(9ps}Efow>`>N`1R-41Fhh0vu55x*+ozd(f-7y;@k) zMJH1MA-NkT?d_5m2pQgxAN1r2yELEf_XX`?haL>Oe1>0l`Xd9YHl&0(T9tdC)8Z+0 zX02EU0hYcpNM2_HrGJSZkuJd53<|OS#Ph|U7 z^TPix2n)_1xT1E)d@KAvbF1V31@pk1YHqFv` zqf1nZZ;9H40&&Peot>8ImLXYEW~Le}Rd&} zTH$~53+5M&yW0cbKeA0uIeiG7-)K|G&w*P0>mli z41h!_YHts!Ve<_>G0ZyiBi|{i33&0cuUR$$aK{I1WRk}0W^9HUPChZ4bxJ}cdQm1Q zh7D;VF^;rg(_G->a6;bqvQRnKc(~&d*3E1KDlUF_8p~A;XR({?g_SpJ%*MueYiSN- zCZMRf8!DvU!?({ib+-@$Colh+zWx)XPH|$f zf5g5f-KwfEdyBKVk0}F0p(s02{^7-JWOiiPsZy&2+l#V!W(G)!_$Gi$!^+%jzG}8< zoaBuTY*#iLtRjD2n$4<`OAPGN(Ife1Hg79#S?a zMf?+wvRKLG%LXb2%gW))eqj%?fjNS#6G`;X;k-NhnU&>`em%18-5zW)tIpw>k0>S9 zQc(%KoJs-GvPJCE^N=2KsSsS&2`;O1`1;YNAJ`o^kz;>#vE4a*`!HoV{w=S7v8qH` zx8(3Wt(6h%X#sPHV7f%??+s#a=kR0g70ogV;g0f5x6(VZ?RzT&7{aG|z~4U3RKRY? zi8$ULzLQxU8~F4-RImrMMt6S1;S zt}r|*09H>yAOZEhSM2WE40*Nf8AbnR3#IwS26IK3u0jph+zls@rQ zWpnh2GUcEe34YZ#4YEFmx7e+IM_Au(AERG2lKsZ*W4uZAfmei6u8)zWz;!yq;pGM#+uQ5?BF( z#l@Kx!HH^g$0X=b=Q<|_;^zGM$uP?@Ye<+PGNd9c02UHpoCE;hB*SU!SQEn0KTQP< zb#f)|8UYqGC)^Ua5ICw#2hDc7LbEsa3==J(T*zt+?q~r7HO zK_`0qLd*oh24(`e#7TvmMH9(@0TCV|7#p0lIWvI`KtVo`gh=$GC72QnY9ekUlSC@X zp_t)`x|b!-ip+*l>~N4qnkPKj)EK9Z=0MDV4o*_CqVq0Nh9%33vJ`{2pQ=1~0CYKsS7aFspAYZ>p@mNe|aP@QfvdfjZ%EeeEGNjWO0ao^) zKxLuAa$bIga*1*^3Y5i1#y5aR zIryP~(#_f$>uY<6oawa4nS?%$)R{&lXL~%xgS9n_l*zUgQYO|@q)exKP|EbgWvnY7 zdY4k6bmR7I%2;bI^6K1^FWtZ<@GW;k*0OG#m5;ewS-|@Dq->{$g!t`l7|9_$MYhvd zRAPu_IXxk%Dp5{T4;nJwDUes?Z&envMN)tTJ!3hWa=GB`LL!&-6e-&-!Obh`8dJ8l zNL{9E3wnxVYM3DXyd?dMAU$p~>%w2VPqD!UkZ#~sRX-|rqGIbI1D7rjmFy5E1dKls zLR2Bc4}0>VTiAF6@65{{P|^hn+SzJWiThjZq!4$4z>chatydG){21(cQ8|-%H!@Z7 zg#M;UJk;O&q(AnI?A$ETIY*utxZ*t2Tcqe{7yje{r5AHK`N?ZpA?}yin%213=sc0K z`jK{JUZnPo@d(hF|GZymBk}Sg-@Oq`THBL$)7Y#$8uSH%2G75a^=itcS7gas-Qp`= zf2%cHD7&>xvc_&zivjc^|j9A(1F39Qzwmm=slAo?f0C=mt_B0=>)f)e3J@-PvGwV3h;B`b31 zwAZ>8(H_YYxiGQYpVuT8F1CqWcoTvZ+C(lq+$M72jaXS~6S*)IhS(?Smjv27BLyW~IHeq5Pf_S(ZG3C>0q*cBc2lz`$ zQCgHAx%D5q%-x-|JLIe>VHO|9+yJh zkM#ePFNXN26zXoQd{qiXg_lru1q=X50K!@XByfyR*=UUSm?O2ZwFGd7g~b`U|0o$f zh>T9z$PWH#qd5r!PAj2te}t7#%B6@-n_Zn-TwB0WM33L{Y7rckB9KRZ`RD&=DWXH> zHdU!ey%b51Amvg7MEK_5f3g%wAe?F`0(A2a{YOg?cd>&uu~RQa5Hc=}OSKeH5hL3B zc~J3xuo^+&|8O9Rx+ioWp985br=C?#E* zNJ^dFqs57v@7bty+I5_naqri~kA8#8VXfFJcWslkXJdQ3ddic*nF%iH_yp8rs&{+% z(Jo<8I*~cRgHX=Dd768O+=L~@0@-%n!n{QA(OS~RlzJ}RUWP}?Y zcm|>g%P|da)|lOl2f~125(z}L6R4G8O+;;E(OlBxa6-_X-#6@YE1aMB5u){ueqs^# z&(pBKIX7QvL))l3hp>cQZnNPicG2#Y+~>w3?Q?gcmc#|qGyO#9o@{|Qb*P^R-S71i zImHC5e7m0r-Bfs^ABFC3`%&ngi0yCm6QLWCF?189gZ<=IH?eQn>K4NBvTO$HC~QfT zrX6hmLOxpdQ(Nmyq@7+M_Pcvwy>6X`bv+A&JXGjbfKgjX=X-utdh;UzrHw!Y{K#zK6(l-UYFSJWC{|Wv=}Q)|0lu;zwwhAvM4LRKn4(<3kNp!CYzHORKf^9I?u5T1 zIj%-}Zx)E1@UMu6b%U&2Q6VOwd}&uxnj-P39`I=;P*zA= z;x`uxU2?=JD-_8nF&bLfWEt>hXu&P<-3az5hzZ9r>~+cSW~_XH4B!*x?kr;w&i)aY8 z7SRwWTREI}_l{JbY-4>0X1{OEYx(BD6jj{ z$}TUWu{c&lV_|s&F)ycPzON%pCSrM6QEYKw6-xjL=<^~!#&+>t?j{R_h9KLxKsXIb z^qM>tB>yY)6UQ*SztHkySeemZXqgJ_`qNUbAK%`Cm0ACS?d|&07%IP_Y{k}tSoc#= zljVVk{7sh!AX4MO;!95Cqr;Q@p0i5?vadO6bp zgWmE1Ljs$mnS2fdCjTx2rJU)2A%RNLES{*08;(l3CNbj`IlNwMZ!w35_V_F{X%5c} zJsKR%rk*K*M=C8P@Xfd+OW={o?s4qvGiLA2s3gtak<8B%Se`s-_=qcGnb_4EVFhpY z0o-B2`xv8ZnY@p&xwcuR>UPPa8Ih?{kup{0cF~ClYvUvzZ5fX=t$bMxo6F$R44%GQ zM`K-gCxs0Q6}s^9>Fg4wIVtpy#r7_+X@u7>tWLh?URG?zI+goofTzX71!ROrH+ZsO z7W^?cjq#r%`AYUD4@6xaeO#6)Ze2_dXh@B??)Myhs-41q9JCnclGX#UVTHcB$W zTr|e$T0u{#;n%KblX&hN$UpCKio9U26Y|eOap~nLr^uQ7$oEOuiv}gL$DOgPlI?|y zDi0~8bm4`LPU!4QE(PGg#37dg_?Vb{e+w5_^?w&!78E0@qV6@C}m?(8CM zFTnQSrMABoowpF7KMx%Viy$+4SO%ZDa%4^Wfs~n#$Fpg|flj zF3JWsL&xwU3|y7C3NEz#D0%%$@S;mL8JggA6Jod1#EDJ5MvC7f>VTrWWYbz}w1$64 z+V=|DlQhwf2^#eSPHenz(&Ba)bXe1FD_HlM%`B}m)ipb@StzC0j~wS~cw}>)K*xic z)$);!XI2T>q5_hRXJXVF;I^{Ca6ALd8;@tU!mS6?(i0L7&oM&Sof0-d6Iyy&^yG2b zlgFqha6HqM&xISzCYK(6r+HY@nr!yA?7~aP;0+DVXeJB7FgLYz`vti*`X5WUGt>@jG;`FH}s{s>}X7XO;$_YGFQg#3!F^!&U|3$agi zGSmOV=I3?cjS&|YVnpa+ofcxu5X65(z<=u^9q(ia@AFTr%!134c;$`?83xUD03=F; z^)SeXyY)kKO2xmiiW3>wPNabGGZGo1!%T7UouKZ>zL#vMZCZ={ChTgVA!Z0%2cyE+NRZ2Gf%WaG79c$wfNrkxrM$wvk=g z8Ux*oG9PPlBD??Z0`A-ao_`<6i&q{Wa0`2Q(@pkp#4YUM2uViv&>acB3h5zU8vLgK zJ3(N=9?TvwFMA-I!uRZe`JSD`l3(< zSp)HW&MmCrwIQs(suk0*U6>cYsfZGv^QPj>#rnkXI@}{>Tp^N$Ybj(E(}kFP-;KEE`~Qyc;cCDXD``9 zj#t=24nKUK^bcO7)e*LW(H=YkOeZj552L+e`VB(3k=~ep&|@Sl)YMUw(Hz=)$v@O{ z-<@ot(w-WGTOej_yuuLjK2{v64yhI0<~dQtM2Ua*u~L$Y^@)bC2@W98uUDcd8{rNl zx`$h&e8aKw2H1{A*Gq+6UfP}6k78ueT^=?fjlX_}GzDd&5R4oIkz5ageX5j`OnAyQ zlK=LpGC&jue5MRZD%4Ra)Oh6os#n;=mr|(FSox_Cil28cB!VBK1`Cu|1@E#Mth*Uu z);DNRcna7xKYcID;aeuKV!{951U5J+|F(m~e62<@ZIFzMrFkhAfx*X^!4KUJ1~G`2 z-`fzn-GhWx)D9x6m^nyI zItut0x|PX%&px<+{m>wObRVl`lLt}M=GFTFrh1UD1a%tI@V2*8n8F>gBLCYoR^EwP z5{=;4xur8I*2eT!JI-ie$Gr*iZ{`n%`7vQZ-1D1tP7D}$H8O+aIp#M z#67clSby$dvQ2*CQRsP}!DI#u(Pt9T< zmpJbnEbQVSSK8E zz%u#VA!3fKMsB^iatL&88$#Y;FyD8Gjewgs`G;9=3K4(_&o0(x2p<||Re~oT4Dr{( z%q@!P^H@bv5oQSyESr#14T`XtEtT9iV%;L-UTmRf*f>4Zz_bRL77M&KLKsRJb`GZa zusV(RU%-Y7?knIaDfeBH(`Mwf6SazGIyQFQV2Tl|s0KG``Kf2YB|L-tWj22p?&f2l z_-Y8bgwKZvoA_LaVt;{Uuwz4nJy`krSHQ6GE|xkJ!Gt|@!D`*Q9eL*rjoE_A_rEHv z%0f-Yh++h7;lm+h3*Mo^7Iq@$hk_yP>2Je|_lKY@1eg=T?NYV}BeaKKI>9tL%PIHo z8uP~*AsL>^-HN!Ahmu=R7GeD$Hh-vy4mV<3Xehabbs#Auk2g~lidqOB3ndn3bVR0l zC_nlYgpjV2OoLF4^()wFA;(`QnMNg%V|Sw*e?Y=F4;3!qk3vOzux`H;h6)d&z6z9^ z1?PQ7SO)ll!$(+Q`ujs@{BKO-zfFOC7~sD20yZKCwUB839}snZ=qOnK`=~}5eC4k+ z%IFc4!&FNK@a!Al6w*tCQ?QgY?%eb$5o@f6QOLX!v2)YC1Pn;ru2d|1|NB6?=_^Zf zA(ge$9yD&?lu!xxZ^q6 zTS7y1Q3)@9pH;x6TM$6b)iL<&Vxvm%6nDH}EDv#qh!X6RRV5YU`j{Bjr;z225*j2v z?QOAfV|@Z^?-7EC!rl@ZrX9$%SYQEXI=_uVk_mfef+y_Tj7rM$P3j`Q?W2Zmn>#;- zVfa=K!#{8sx^zMm~tMhOsFxQ{3mC$>Jp!ukc$n^P)IY?lijU&}f=vAwKRY`vi^U748d|AMZfr|()$p1xDL@bsN{=JzuCcS3sE!93jc*ueGF-yeTE=k5peTr@>~&r6m2Z z@^g~JLeIxYX(Hixo!D9kaf1+tVt>1G8tnXZII49C<~zQ1C1u`zm>7^^@-H-_EOP#J{|2u!WSFoA?=WExb;HOWW)Bl{6#mjA(~#nfVPp(!t$HefVqX!FVcp>*N-qp+)oP``{^_=@S`~af&BFcj0BslJu4S`LkmkZs`a-E6F&v2%o$Ykk+Xt-8u$^ znKTTYC7Upe*2ypfXrXjvYts_8ez=$xYle%^b*Jb%X1jZa3s<>^`bIZhCL*<4hl>dI zOe5%F0u@p09l>}Kg1&*;5sRe5F)9{nx>c0XSKc_Brpc+{!dFg1%o~M5DKRFl9JU+5 zSHh(L`2GbyIgQD0GALc)B_$8f(@hKDMnLm6_`rcP{*X5XRHGeaSI`Ww)S*Bbe1Dcn zF0cwJ$o*JnVME^vVGdO2RY9|0Xa&uJT5RuCA!b2F1qraTtr9)03U)#=pew+haf;lO$aqnL}M3gWf#LJ=?v`RX0}}R&X09V zWbdf35V{2?c{4;$tc27KD1f1NjFzvQ)-Ahpjbgx60WK`@pP2qV0H zw-F-VoQH6o_?{jn+5&>b!Qr0ph?l^q2}qFR|G0uIdhiJ0_*Wp>$Dk;5{KV^T6=cn4 z{FsJQUV%U3$21T?BnMK3XZV;#ZX;l$5@(DMI|rw`gLj)cLb&!NvX2*`u=UtS7n?T% z%~`pOSNAlHQ07r@MG&8g&n`A;1XtiIBF(?Uk;~xfeDY6p*Xln-zvx#zgI!N80?aK@#@~DC9n(X8)&jc$}Y%dX(NTb z7LO!bEE*|XG2Ag62nLS_U0aY?zmdXZ#|yAA1SU*&?nq&>TM=$HQkDlBV`4Nc)Yeaw zaVNXaNHW`XBZVX0hNyk0S?p&M&-{_Xben(b1h0;Zb#c;9onT{}$u@tfw-ZrFOnPq} zDKe28P@Wq>Gnk1Skp0_=tP9d_m3nu{QO8td^v*LPyL`*TH%xev`7b6-H0Y1 z+1wj9|IkVnY=YRuov@_u6gTT%l6Q*XoTEVrjb{Co?B8yb^Rtn{tbddJyBRBgiuKPz zsu^bTx%XS|Ikc~v>9Q8;PhNq~~}pjV|Zw%bwI zeB_@KsSfp2dZL`AN*dPu40}9B2Y?mQs(f5!;~va{N?~sgAa)pmz^5-3ce9m%K*H5N z8&}!%7LB7=i@#8>HD0LKnq6VvRVjR4wE;fwx=LY0_er@QM$UI3r{1(Y<2E-y-C0Ri z^kgLk^G6Wo&Pox?kpQH$yvze|*H*?Z)q@C4FV#a4FD~H~|K<{XT#1)&hp-QzSLn$8 zC53qm8J%bp#zGa}VnrbW(;ogo1Ompi8}o2_>^41cY`9I|oMTshc(7@ZxIy#l5D1Uj zC<>2?gYOv%8L#bV8y@kQs$pAwj~fO7-v)gV8I2yr-G0;a${egOv%W6tMg|}%EWx^h z$f25C>pP;J99-ona&V4OVz&f#>tI#R1A|O9G63bKMwWP)Mu|4E{1nMNGKzMAlotfc z^ThAd8&#H z+t!*o#{hoaJAh?WMUM8ccR4i*9RYl^juqSF{TEyc0mibf<}SRl-n57Hs^Y$_svXf` zB=Ygn6Z@Ne?bj_uv-n-J2sY+V3dWp%Sux%(`|HwXvnsId% zOlSJ?9DTH`ee|XCOtlK%GTdZXGg^bRS64-Y%S=JW?yo`(l(9#sb66}n-(?haYF%YYV{GMUp1H;}imetRLhGYxHMGkao9eb$-kCAIGS{&lAQ>_Duo?Rrx`Xp8K>s|%m7-n5%N zJDQ(dZ+aBr@3{O_9jyog)JFFE^~yan42pO9qMR?{o&c`3Ba5C$2N; z@bcMMQpjpi$rtZ1-NYu16$-hWD*4d>L}Ax^pUEu0Zq2u6 zs6F|0_nV58EPisWX#fVT%#87ILF;7eT@RREQSt@Ax=Yfm|3p?9<0&2_LjO#Cm2PhP zgW%>$#*>>HJf7T~2ciLn)yWTm=dBq}Zf?qWa&u+l(akZ>cu;Q^Khjz4&VUI9g+wOs zv0d<`i`e?{Vot9a4|7_NuGnvKcV#z@7n3@@4M@qyNB{k@>D#XCzVS4vgR;`~m8nlx zE4^&^m+>^Ut%pPtDR9Sl8fl=5BMnlJk4sQY*S126ucZ{nLD*YNMbVWeb(qpIb3&_D zD^|`ww_b$@kVKil%R8up*uTf)d|=00B;8w*)+UG!Iwqjgir!>Vmne9TVzV@s!nQzp z^n_?_n)-zT86Px=Z`f(FVRLKMr$E{V4W*V+s^t0Gz_N{Vu; z6y>G~*vmpwy?Fv(`hV(1zP`PBd(V#0$<;gRv*AzuQwcqPMD~3D1o8woAxpdtmfxV* zj0D9_k}9yMPP?aC^0| z>^+^-O>9CnS@zg!vTRQ^S+>2p(Xv4-vg`!<3)_O19*Rjq5nC(BuM*@hh85W@CN1jg zs^+J&o2q&FT(!h{KFWH1H6Dd`;T;aC=dzvEpyhKr)~~Mymj~uI)I{b7=;RA7z&=ao zyI6J;#M8(62fY|e4<=?l<}JlwTyT3sBI9ik@Z$V9_sG& zsI#z*$bTuxC$p_@8f`0suN?)$abO}D*gl};@+uGT{JpS7T6#e{e#Id5bN0$avauH@ zl8yawBH7pj6I0sQshEvPHoplrKMOXe_>o&odi3_8YGpd>JW1HuX_Px>QWHDtI7!&q zzfl#9c6Mr_u(N++|D~P%Bs&duR?o&xqCQnkqDeDy5}DXUxXWZ>^Ct<g>8HL_4$0GJT=nOBHKLcQKQK|iW_4Xc3qte%) zho6 z-MIsz4W(9Hro;`#bM2xd7OMLcSQZipBv+OfP_uAhZ5qU^ipA<0g?Xk3xAn;q)v3T8 zk{s|uo+;6h=cy)Yqyc$}(58q1NnmqC4oLNW*y?D%3Iorwad)-yT&wHELh4ZeVP{RPrzVW#z9M)E^W!bgJ+#9#M<_ z1-`HBaHs{0O(kXgB4zoJWQoP7u7og!VpM`|hPM|+ar2dGrE)%B<`G7bv21FbQB+0y zZc?vQ;2?(}FyS79M3+q!gPQ<8u|3~3Rdul&rV3?Fld$Bq?va%pZAoCRsEn+?DmOa&YW4h%?2D_kc-ePa_|ZIgNZo`)R^QoZO>c#|BIzA5l1sd_?Xv(trDDjm8M7At#Z* zBuY#c!LG%!N>yx!OqrJ8C${`SP3OPesooHm!d^Np-dQZ3M#;NUkCggF9x89gfD$EC zz?kFvqd!|M2xmSHvVK0DWn6PZWUmdO-5n#LhY8p1AJ)rK7 z0lf79q{N@b15`bzeux0VsR+6vfxh4&wXdT5(uD0RvY7@rLC!ZC2e^oJs-dyXuA#Bb zgk2<90!Dj1tiGTydkqclfEpUyE;SSYGPxrR+qU<>XyNiNf%eDk8=OoLn=44y3eq!c zgn#MvsCsp}vWl0@RZFeMQOt{Lnz)w>YS6u8*86MX+{;Ylir0{Ovl^h+kiHy~-GuaI zJg@#ExR`x{=>vl4y)~4>bb3k+nAs~e!pAr|0Mi$1qOU!#!k30WtRWvWTvq14rq;j* z_iM<>GQTagY}u- zkPT$!Pmi;vB^@G1-*zX~p5H;Zl)=-5OSu^Nt3Z#* z`VyENBqod4&mb(O9;X1TN$PPW|M0kaTbwuPF(clabeJKw0@}{N+ye*z&w&iskt0c9 z_nc%`0yjR8-QXDs?Edj}0y}>KyD5_0M8R(GjF#BFF4=96?AA51i^6jM93`%2cO|g8 zL9*HTs;s4JtZ2#yGefgBCC~U$^I!^fNNA)~b z1E_b~`KF)LS)C^Uc{;vQikqBXO_(V>?{_U&`41iV#-G)t83|K<30HqnYnp`?nRIOa z1$Gp!nHh5gTY!C&u<~n%=uf|>*^J#hQ|z7mjsk3%8Lj$VeMw>W&J;^q$7#^m!$`%B zb=yzFst5jJxY=nl4`9zUH2rbCxu3#q52+Sxr(kkgP^2U#BZ0k{AO2h&%vUq`;gqlW z(c8eM&~egnpa=8ziYTh+$giO;=6weX*;=4`(D61AAuq?vR0 zp>j2sFG(|J@V{KBcH#HM>iV~Zy8Hg5cHNb3hK?ZETC5_l$J;j4%}a;6E$QX~0_4wF ze6gq6FKTIRp8a3uTeV6pgfoB8g51LIk^$pCZdQ|^IeM1J$&FcYK@*fkc~H@;#)#Pw zkwNzqF;_8jcX*+Z6b$bYf`VavckHlg@b^2IJLD}`Q5W%XJYVVd= z{Hsj!NPeW!toB5u%x(RF6&=2kb?2?K;JxersTlY@3$CDVNdC(fgDY4u=n-a^dvq`@jXE#PA=qDzYiR7O}@UXZwJe-|JfKV6x zD-?+U<2$8f5Opi@HPd z@uw0qhB3S0_PTX`DBXMx&nQzfdD~J*O7v25NB&YeoN`dz+)_wcHpSQ3hXCB);_Iws zQ1`$PfjcDn)ey`;{wK_J{>ex+o&8!%j=^#oN9rej@+;gAhI@wX52^j&3ldO<-}xAw z*0KH=8bRav1E`PEk#}(98_pl(Xj3}!k!J4B2F{^z?LUXcwO|e|;Q3p_p!@y`a}KlF zP~DxowbosB-7dpQ!yln}UOgOiyn7_5?e&r7G`{?0HHWWz(PTEa_Uc}^S@>5|mf7nx z><(T&$_$tJ#sK7rF#tIU@)CmNCx=6wtpe%@1QL?=+^G1U3X#<;F&Q&QY-kM0gn<|} zhkrK$vXV(7At!#V(%j>}tfK$xXzsyps5HC(mlEW1{MBAIdk*dCR7$<9se)1dA6ido zj@jCJdKEZ%GE_dd!rbY9WXSDu&8^v@IbsKWvd|CZ93$r762esPm_yF8V2+rp=fE^< zazdvgh5_>zwzU#`=bX&g(Nc$9<6$E26%+XmF_CxA5n=f0@#d}U$vNboAD=`1`EJ2- z_negec^>gt#Qr`f%H2X}E}iA^11!uEu}>xg>}O7<4ld z`m~f^I@$afE2S#0K^_k{Mtm`}r(zu4Ui{jd%;o0Wf6=H>B9A-nDaP?w=Yk9|JB-SD_v_K?T#^*NmW=&>8k2Nhci z-T}UEl*MjK!8XVndeoM0yWG+}&+r>CKmiSYmENa$f^M(N?S(*wf`@#bVD#8Emh;p+ zUl`t4HG&|dD+IrJANK2h_@(xc5yG+cJEGgWSe{gDPM6a#f}wy<4>&cyu6caAD-d+J zgW-TZ;P8cHM^doVL`PDvgkO2Zp~+ih>B*n}NohC0QEZGG2ET6JYxU~>wq8NaZ+E*r zA*VAG)IvUx(d}}=Ppr7y?vTgOnhumB6bd+lc86vdV1`E6=YyZ1*F%Az&j6*s2lHT{ zc-^z+cF}DS%W7qhDV_E( zyn6{fhw=1zTz-GZ&S6q@itf9>e3z2vcLkif(--tOogOU!{r0UZ1C_k#CnSpqo;Q!QoZxl6_F&Kvc6wdm5d46-GQ`q3 z`pI0&UL_@WF&|ShZ|GAyUU~~;Ze?FEwW!IA41`^-uvZ5M5e{fUx7`yA_+g%T!Xd-s z0SQGP^Fq4E8?*@ttXyux2mcF(odFG|ryOOMJM060=?rRazZTX&OAat`uu0e> z1#=HI35GrW;D{moc)=ZnH9ySTfDZoH8vsLxdBKm4wB$sWzG{9~Ny(hIdB8ljXUn{~ z?M;h=|9-0_y{8{0jN9W00yCIhK92{C7M7?%x5wdfc%qK?%n&uab~^;Npu;f0tX*EO z-|Y_>K26hnPN&}&=H>T*Pk|74pOWWr`#~p0(2i5u<@fkKc8@ElfuXoyzWbvvv!8&8 z+A>>y^bLz6CD+3{E#y<$^8dTbk_SFA=+i=WuN}Ok7Se+re>m)cfeM9uM$l^)UFqp{ zIPC6FFlg68PAwP=`y3vatk4Nh(CKmV!&5=gq9*}xMPb7OQ9j_(U?ja^w=Zaiz-~Zn z*Mg$cqzeTdUdYYhI}h;A1cx+-g5VY)S4 zBjomk?cia9BE1t+FNFZ`1DA&^V{IvT%Y0|TVM|s|JLEBj1G)pVTnpIUKCkBT*kP>f z5bXWD?4TKDJtm>HfZ=u;p&(>(hF9}J)@^rzF@~IBzsnKuy8TTfhSP2j2SaWMlp%1? zVXw#T_dw8a2b>{rF(K@HL&RuV0LYmz70pY*oML*znpy7x@-1T@+doOGm?DUkDs} z*cW!eFX2IQ><#-Mk#V|0E{_f!gzO3?VaVrlxpl~^U?OUPfZJz>2;c#)VGrAbkhH=G z#7)8!BNmRIRw*nt7!TdD0*!FPB+N_EH5lbWTi5_s2}zd^wlUFr`XRZ3lr-oL;oC?d z0|z)H=Ag|B@gfB4Ij~Zgt}d595DY<5>d@hfF;2~JHwk|>NZ5n^kmd}80$x~-c|C?5 z!eH3pMr%jI5o^Iz?8O93$(S51PQX0f0Go379S&b02nnO^h1?Mqc{)Tlh;$md6c|n? zcoECEyS4f2f3Apo|_mX-#6I840Gkyod*=_{f{*zVF`o#rz3Phh!Y$;d^XOfyLjm|?qSk4`!c_Ea;cR8C+LvJ8pIPD&%#}5Lz zAhohXxDWauT!Slh!vdAIBk~+D7%nFasuvP7Paq5v+wXPQgI*2HH>{yD8t35}SP`~7 zc<~b}mCeRO!^)&373wezZ9Le2`<*$mhQthZnoVVlF_1k<#;!coZHZi9UmSXw~Ze4ib z?698%`#tanumg4x)Wt$D6>qU_nc#~(+tdWKmdn{2hknoix(0`NF0N(dkb$98)3~U!bbIeORd_& z1rY))&wzCh1P<6<@`Ut|+Zl$HupSg!EOIFb3n&9aW&pPCz_5KDUnmrILCUHF1y7R& zlr05&89Llri@f23zH$ZCmJcnnw1!Py4OVxC-S2>j1LFz1O|YA2_rY}|7nrNq61BnB zrUzUD$moJaA?!!{!a>}La_X=!40+)PiW)bVf(GowIKv+3x2{1V>VaEK9@t%SfzNd~ z92}O*4I4};n9I%4l*}8tM02rqsmnNL(fNbz_Ca=ge;b5gXR#r^QYE54>_tGp_c-j} zF>vG559@GnCb~c11V0*(+w^%U-VLX2G~Fq6v^3RO*Q3rz!e|#@v^G zP;Pbezf@ahraU(g!7=s0L6fPOY76-6iA75XC1+18&YoDDJ+U}@VsZAwBI#*cd{jJp zViA8@a`wdH?1{zM6AQXHbN0mI%tt0?Pb|)!Si}xv&YoDDJ+U}@V$tLZ+u0L~WTzx& zPb|)!Se!kvID2A&m)Ba}=RSL40r%3+o>=_I^Jot^#``OinkwQ9nD^<<1@!t^NYWL?`&>ubHRep zg#(s{mY%o#{2leV@MW&8Z5P1}o<#%b)%_Ja>f2*o(FOed1!_^3`n~YsqOI-ETY3JX z1)=3Jm|LguZ^u~k*ru7h{a9-^wr(ab8f)#BpYW5W^;P(U9~rD4jZgSRx%x5qgkOcKAB#`; z*{J$)_=KPHs2`6{_yw5y3HXGsT-R6Q6TYciKM|ks^`ZJnb6crEwJ!SYIO~fFyI?L~ z@3-37in+Xem9>IxoXfY@SqEU*x7h09*Hv3>U6uhhyq(j#9lkYNzZ^ z*8A9QN#hnt<3ULS%0NS7H_qkDYOGx|B$@f`B^iPJqQrhqV*gcQLpd4t10CY9zn9qG zN$gfWAwQIpVSk?yhuzI5df(Y6dS4*1p_~lc-7yZkLSmOo>`4+E%E_=-WyN7Hme}YmrzAF%lVSg>a~yW2UkpThzZi%-zZga+ zC&Tu3jl&)!vEd3T8SyBI4drCmYr4f@!}};S1?EcZWfB|8$*`a99*4bEVqYb(ZoDBP={5WhYycB`{ zK!vMJ=nrxNVj!TL47)?`IBdJb9w4zxBsP?jVNdB3hdo1LPm|d5BsP?jVc*a<4*N2R zy;fpxlh{yBhW*hwaoG1s?7JoQV-g$6$*_C(i^G0PVjq>*pGs^fBX*n-%&;Ukf^G$I zB!8DAe~~2H1jRr=IhjD2MRC~Yz@2d%#@_IX01hL(DnM=>%E_>&^^e1zAhE|v>{^Kp ze<_fEl*nHuNA5GYDYDX$uk%|StOL9v1XDqQUnZ)v z7Gp7)MJ#}yCZ`;Sk`raHz=gM;2)9b$LNOWcgG1wRg8~;{O+voQ1uhhu+0x;(+HW3j>H+EK%Wyy%DuIDeArvai}u| wYK=slFHmceqW%CsoYq9(4FYwYMBOe>*AePDO>?rx(~}R{x0U>z-PY>=4+xv$k^lez diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 333deda9c7c6b441fcc0b2857cc7fdf783f3f855..fdc89b7fa727d22f9544ce2083cc0d7e89065af3 100644 GIT binary patch delta 76 zcmeC$&D*t`cf$cr!yLqtv7{!^Gs2 e6jNj4H1p(S6T{|@ob4Yu8G)E-`$taZnZW=PcpB#b diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index b9e4bba19886f59c7462853f1b87bdd297a85a13..74e6f739c477729db8587c31ecae137ac1ec053d 100644 GIT binary patch delta 62 zcmZ1=xj=G5AfsW9Wk!*CN>!@9rFp7Fl7+E(vT>?`rMXFBvSo@va%ysFl7UIGfl;bO RVrr6!X^MsE<|altZUAGe61V^W delta 62 zcmZ1=xj=G5AfsVnl0{BYrDdVMxkXx1ikVSrQkro}VxnPMim8Qhib;xDVv1p6a!QJ+ Rv2mJtaI|jtzS_4Rb6rip*20QuQs(Q!SD#jLnmcQw=Q5O%jtWQw)+*lT(unOp*I|jtzS_4GWVja*8S~3-!${(vnilj8c=*j8hU54bxIgEsRr4Qp^%l3=@-6 cQcR7F)6A2TO$?jga<;$aWZeFilW8*_0IbIuHUIzs diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 1b2a6ed237d28480c745654171a5880e7dd6dfa7..d040aa998e2b5c9d49f753022228e8ce28e184d6 100644 GIT binary patch delta 80 zcmZ4Xka^id<_(uPZF4L$ip*20QuQs(Q!SD#jLnmcQw=Q5O%jtWQw)+*lT(unOp*p0CZ#p0G-hsWdHyG diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index 162ebe5b7288db948315efa4aa5f5806001769e7..875dfeaa083da948592f709b84eaf933b5115bae 100644 GIT binary patch delta 72 zcmcb4oa5$kjtvJm4Rb6rip*20QuQs(Q!SD#jLnmcQw=Q5O%jtWQw)+*lT(unOp*_g~-8{CE4;t90-AMCE*GsZIU{&HMXS4lF$*yBq`8i zOF)!uF<0-hr3dY{+wHY2J!$E&+je{3C)@3PcYAFq-S^%<|I9z5nSbUV$#U3)781+z z{(1L%-+$@mC3i1auy6tXQ$M~^%47?BqN#McP)zHU+4@oG;&^RJFH~pmn(e%0cK>Xo zzO0;@t`uwKaecPF0G=4nWb^5=UYOkhzdR0~uV(X=s4>7Ic-o}REZKVD;sp!VRH`$1 zeQk#Z|3nL8*+QvS)uN?xajI19;-404RpDc8FMW;_>1?HxPt6Q#gFw|IT zeAi^TSSzH5wX-f7!2j8Zsu|(o@nXJM9v;gB4S#4&k0E-;n#y=NTdHc+nUX%Tva0W? z_T*B#Q|!}~OgGcnLb^DO*0^{#m|$bJQq>E3IkGBWOr=+KX^~ECWUcLmg-TV+#7FhK zjyBUqG;Y4=q+Y$4eOkG2W=m>vGYA%0nTfCLw6tMSZj0@RW(yU)TwRyWrN&{bOSf#= z7+IN`sOn(q^vW)6r)iKiCB`l)6#rS1(n!jYm6p1?nKGs`*{Xh?sF)H+mn}>V_m%c& z@dVfgRneW+$BX4uHCrqUla;y6vxR)Npm&eui=fl7VmYmsyUVF`wpJM)1lqCUp6*H} z1xg!^X)u_EqsFxIa>(Y$>M-!d!cdZxS2;SiGKzyikrIsn{6C*1#)oQ6S+|vU* zr^cdXy`rbe0x1+`|UCbdd=JP1$lDC2l^ zBDFg^UM!3zlKrJU(NbY@rIyOWD^_wFO=r{9%y1uug%Kq5cL@992rG0w2eN;F?-N%NDdtNMG7|)FK1{&^dgjCuM!GrbqCoorZ(%@9gLRN{X7b zvza4z%x0F=7jFS?f%I}Xt+0%GIIS4@_HbG`oK~#JUs{3|0(zdzF_p1Y zy(3kvma}8EDl|mc04>Uyj;i!;@!{A_*Mo~isWq(W?@jw)ekDeu;2YxN_msYx7RHq%jG$~&#+_Ee`z_-}qF zQyxg)sP_yF=!0W}y#wRDdTeN*FEu`tj*aW%`dF-QJeJT0Q~Fq6GCi2=p*qCI>G7&P zz!X;2*((-jR%8~{myPnqVK%dn@UaU+9qhC^A#;p%}z~qvYNHL z*-@B_MnIlTOh215t2fuiQW-A`p!iq7XvK8%y zT6TO_1$q+bQjL~H16xg3H29BJEoy0|4&KFR5%^noaiSZ#H5M?ST20@R0;kn0o!ACs zNiEn}cWJc>^nF@2qiZ|IvlFRuJf^MT-PZKCzv52BQV#2oDDqI%Gufaxe87+i@~8oaO{A9SYH2%Y2N==4&`B3 zU79ks8JYKJo;pB7+u0NV*uH1=>MNn+-<{Q`wc>;}ok>--X?;~b4~P>3y^0BhXN}?2 zt9iq|6f#56UO!$$^<#Ox+hxGVZoc1RNWoAGD?4|ZvAn{aN|54}q7+!`@&J_~HHi_oLh=@H-xC^H5MJ;G z@de(Ig=%^|NdC&&STF}UUQpAr`q5*xd|t1P=Ai}%tg|wWWpx?;W)x(b5`JBO^s2Jn z4KqOFdZp4tJ;*|}aHi@CcqbUC?{h* zNh664%o-HVhbLgd3cxhvZ`KD!JD8VSQS$Ns4^o*ve2gfK;8>4}j+L1(bHtp~htG;H z^Y-F~`jD9pR~R0p!f+boG;h!H)Ww6QE{?N%A9IxD^$yD=g+U$*CL@nj#^Tw5JX&~* z-E0=C$J)G}bGpoo1YwB(3B%~hhNx=@B;ge{E`uec<&cm*>X+m{3=e&Pv5x=)I_S(t zOl#eJT}9VY8elTA5441iHgO6YdyV+siOs#$xw6?nniwokBV3wF6?#gndF-an4n zcrltwc;D%c_xYz3HUi|6IBzrq+nl$XBqb%5ZbS@$T|nU5si$C}@zl(U+zB9YQ_+z@ z%kt@N!*uBpcPES_+mzaK_oF#hr}~ zKiQ@in?Ag*=@$wXTkr6+jFoa#szdGy$2i^|YZQnazL~u3X_|+sC2R(Btdqd8&TrPS z?%aTmByk#{8LJ}V0IUI1NU#E-PqAc7=^8x`TQ*!NwB{iq*}{0fhHFjuhK6Yhn4aop zt)I95z2xBH&vet%q&^^n?&GX&U`XBbGBJ$ z-hA<%60HB?tdlXtsa0TImgXBZm<6Tzp)yVZfk(o+D6jK?Jb=hVm%A(I;*Gg*Q%i^E z)v?8+niCJXdzE~KBk)te5O;+#gtwvVOBq6)tuO4Rdi;K4q66DTnj-~IwIJMDci_Hr zCp3rYQ9!I?0P|V$Nol-WBtV#*fTdkCMtvs$a_@AgNC-}-58~^%wK}X11)qP|F^+$D z;+rWvpDq!^vZa$zZ(U;n;8BkQ z?}AT#)8SKd-IYJ)c%QcqbD-aft{kPLIIz|O+TcDCH3y5V(;!QJm00&y6GkFH-rSc= z#Wteece!@EZp{*3)8YL*h5;_8jKP1Qfn!ZR=El@m7N`5N%ke|jf;RX02FQXTJONfy#qWv_pcZZ;PSk-Lx`BQeT}{NcrJp7OUL5c>Djfh`cZ{3 zwpDVre%!kBRIxxMWHZbP36t8qxLMBGakaUm%Iz+GWT`Y3N~KXyX}3XXYhqrwE)QEG z(=%Eo1%Xw74V`5O$n}$2`P$_**i%@BU0evA5|mBt3U<@KhJMFe&no~3OmYOp7h z12X3G74in^_Gxj*Xcl=m!6u(_b`R?kM;q7V@O`6L`5>F@9Yc zu|I815&Li`^tR^oy$7#2wZgfv#%HXGzq4`bCfStsmLuM6$Rs| zW9Lq;NnU)HvJV9M2gCCM9e-QxV^v|NA?$AIa7c4{<1+4*pvi-=1b+}r(M$<8cM#Ub zazz-6cNtr8x@o=&t^q0mb5aZg$TT2lHLJt6OSZ1;GAq|fjy?$}vtUp%*A*(WfLB>D zZmiB$Od9ps`k)IYkuc4Sus_0=X{m%(b@t?zRcMQ`5$Xf1pUv8Q*oB} z#y{&5=vc;c&x3~!`eZshV3~_Z?ht1Y7Lk5dNB{*IOJ8dC> z@wyu9VXJ^GTV(Gf2xW)MxacrS+IN4;Vp&2^TV1a9A5ilfBp5dUB z3yi z(|>noE4cX{H@kG$$T%$Sh(@CwXK9;KyL7Dr+g3%{(Ia7VFO2|GJg|IODi&zv9L#Pr zDvWS3ZhOy8Xt)&^=W5wmM{TT}D&Tf`_@{fY!rij>jXWf&2)#itp5V_EqQEstil*mTCx(c#EwhU8? z#}BG44lh z_>HaAt}ot}*uioqq)zsO=>s>o_yE*)I#WNJ5>ZQCfbQ&6mNDJNkot;T0rdueT{bgc zU##ybmHAONMCN&l%F$5+>$OJB<#<>8Hl>I_LAk)Fe!|POitj z3Ly>3J5g zcRi8%k;YvgFlAVP8xG)rNW=WzB%`-Cq_{b|1x4rq@k9%@;N3ijC|H?@YF7!zVDK&Ljgyha3Og@|K_0aV z;m1*_!qlR?Cq_W06?~-vSm2WS!ROtD;nM=F_YsSBoqYU8_h?A#gE*5Pd?8eXP?jVr1fS*E!mEA!Lmv;)7= z1xMVVzb({gn{!#8g6m_nN)c{|G1z0N+u0(@B3Ve8RUY8QUY1~i|i4b^m* zoG&z)d!;eg^HHMOrF1ma*c?IcNBG5GPn#=o`ylR$#l1~*mI(x}K`Tzbq|qENH((jE z#Rr-$*79j>Oz&`6*p=A8pgn6e*+(p1{Uo^eWKz-I(qIFGs6%U=`jT56>r^5Tc z>3F|)obX*o4TFU|W|TwGA;^~3PXn!cd%wVJgR-pkg3DVMBwTA7S`&2w|Gy5bY`#vx zb+mODdd0)hi>D7U)v!sG;L$7CK;lEIJblO>5kGk{%gs^K#m>;V+lCqg>>!EEm$ zpd%-&&+UT&z2IE#7K|x&;{^wEXQQHnfw|lPAjc-ofO0E=6vVn+F2dH_k_8LS(l$aB z)p%+(3Jh(Yge%J`P=0AS&#a0OfJkuE2PO6E zVLTyOsK9LE)Mx>(PswL*)M1~5Fv%4)pQuFF!xeJHiXNf6$+mesw57O(c#3p(?SPdT zVv23!u#an$ZW#5l4ePFn$0Frou{yFU+JnDXg^dIp9Uj?IuIcR3I-1+^`44Wv!G?p8 z;SfwXTtRY*+1Wujk9v|YoNa(B#)7k^#u?1yU8DnI1UOsJBCOBo)ZnlJGz?nAI!x1v z{hRF^j+F8a58f-b^6Oia0jLc}CI^aE{jRS!P zbq#h6iGxt@V;{-lk&gy4UBi01hToZuT0>*kVZ1+^-h(TIg;JDGn@8X;Fa=wPSl$(7 zx4S_XX=k~!6K>nXokmyUiFCS!gzlB8fV1bJbsNK-wfrck*-palyOIv~qLj>A77RzW z7y*w;7pJ1*nPPTaH*7SDzlLQky&!(jsrB?|{ayT`lo9eA!~ML*gV87T2o7X=X(!yP zXa4}ljl;Ej#tkfdU@_)+Fh|+7ktksFS`u2&oe^xreJ45xn-~$aV{;5E*-%^yaU^>i z?q0&z!^`lmD7eSFz%IOp#$^sp2pcjWaYa^HHb-?#!u5LE*_Bn=*&0)qc?&^jXQxTR z$8e?KzXSrK-X6}nhqEqo`NLWFaMnGXb>}+knoapSx2F8%lBT@wIoG;2NNaA+wXTMz zUFTX^n{Ed_xwkku!oJ>^T(v`&u#>CyQLgwxZ~)YZlWZHqBZP74OLVvmdd72xco%^a z*$fRWP&qM8hRED7O(RzkVI$uSYhXEOZO27M`;KUv-~J%KtFAj9>t?I1*#AW*Z^SN^ zK?ru4UBd%#%Pqc(1M7Ksv+3+F0&O`FXnmQv%h$2K;IoPU>j1i+PwE%+`tI#xI!qhy zWv6MLrI*KGr@++yZFtcmw6Aa}Ub!-|ef##k+xPDXs{QSF%^uvOorOa=`Lw=wzjbq9 zgR=dtu^sl~IN9U2d6IH(+V>t8`-*cW);_Hz`4nh%)|gz#@PirOb+c)@9Z|wf(4Lo> z8hb-vjV(qmY*5&Ln+mfh>`47+K+bUbm@V98mU^v>-9!;2$$PwDWR|*C3zh)wFUR9- z?Cti5cC8u4)O?urI7i9&S&K_Xt_r&G(%aYl^u{(cIP1k%h%9Km!0YeuK+@<9H9Wmw z?enN#Gdu-n<+`gyxCnnrAMO~YiH~8px&+rwJ771K2Ag5J*{8#rnPS;*Qq#lm8C-hG zzUP3|B8mXKQLh6o8px-;Z`@l#zZbaSyG~3}x=T~w_85^_9%=RuSwz4!w7Eqv{}*^F zH@6UXQ&SI;}YOFKVX?WydbnQqoG3b}%+HA@yM4Hl^xQwkKXvh9A( zs2W$?UaDl4FYi_H<=hND%}nxFFiDMk6tjw@?Z*6<`yE)$jPfH5B{oEzy&Z?W?$n)I zoW4wjQ#0!R1Z=*9*z~UD7R#BocW9<#_YG9{9 z9$yDgq1=e_M=SWKW%m+kCs&0(OuJqm+wK=oYwXeF*73tl6Ii0D5MyI!Ts#rU-6+1R zOXXeM8eOpk!5I{mK0kr72i?^pM98Ki7J_ykVXC@KV4t-G_NZ9lt_)|8oapu#7x2Ud zZV<`}pl_)NVg}F?AjH>5h`<4aBwr3dVmKgEQBVhDYGocMrzxPktZu+J8~jP!TU9^T zH_uwm%Jr*6W2t@NQU(9vYTvXNorje?yOfdK`>-y00+*jtne?`mxmno*xUf##`OZ(l zsJXYoWS3XpZ^s<1ne5thBzzr3(B=Ndc_mvr%VxWz(4_|qC2P)%z1U9Z(nVwep^H80 z=M1gn{w$PSzDL5h0k89gR6^sEnuU2QsT& zd^jHO(h|wu!B}53mYgfVVQ-?=Hpd^Yip>sVWt2xiv7s8Rr=cl7#LUvzXhrNfH#GkE znhJYn#GQz|eTjIJN1WhhMDux~5n@9LO&G~riH2DM*!?-Y+8JkJ1p6V7O)F4nCV)J) zj1G|5PX4F`K{k=SA13|SG03D77r4jV8t;H}>#u`hk~Ph|n+MYxCq_{bK)@_V9~m-~ z&Opl@3DnSdHHMNslG=e;G!;S2pgR?%cm_!kIOvGxlmIk_&oU(i_E}Oa^I18Kfm*Q2 zWL9rF5xP|kMuZ|-AFjbUZ$4WTS^CR&D7P`euZV9kXT?%vk)gEg#6cfNCe zV9hhz3Tvu9KJ5W(ZXmKl4%XbO;?^A2%py^ z8ERq>`y!iO6q*Sj4=+ptP%SA-wDc`;RAZ+rT|8`iBm-#I_< zW?ft1&HH@3+5_IahsX{&c=K%)x90HX8%WeFyum>fdhUxblD^7})GWMtJdDtP@fJEf zyg6=}Lg_Ly{>7+^4j`4SP73e_Syxas4bN0ya$bd|lU(UPiD`d$b4T31Nn~)aZ=lx$-o%EJL$GW!*w@=1ABqkQwg=x_&@6|% zR5m}5RW3KGIJUS+<{C8UrR3W#6V9zdI4KqO%(&Z(yzL;~yel&XhTv>O^BkfPBBXr? zrv|TfMw=MNz6j?k6q*Sjk1(TEWVVw(Dj*!P_r;_iJHpAv9s9>TB5w`s&GZVp@DOKh zb8qJ%wKne9W2PpA0CMgI6@>yh&qn*blqvXN067n-2x5lbbtuIfNQ%IrM>PKwfX47# zrli20ONwQlE2l9)4ptlhIh*YuXCzqm_V9AVO_iPo$~{8p4(QK^MsFId%&E(64@aKbI$Bg$)3hpnbVP|S(t-^DD>VbjHFYE zCf6*?Sr&_3$L_h)JOHy#>+O&A^$oh8f`OJR z4%gP;Le5}+Z*(Bh9;CCr1x)ga*^;rWy7^MjbEx*Lh?c#BS*fu-YZcykg9>|Q0PaHG z9w6T20VsGK(Y%IegivW8-g!T~+8K6YK>OmIDHNIsAP+U8Yh<>QKPuoIviEJIA3NU3 zCjjpR3qfoKz2YxC?p_C5ixiz6rVt63YImBvpx zTEW>&8|^_Gu}W)Kh#&k}?qefA_`|w+=R4;I{_Jfl{8JTazy5zuWYG!sA`ZASaZ zY$tzIKtN>g|0Mm`5ztgWA)p{ph%KRK2!@A17dFoU53dXR2?I4Fi~xepI3{Fp-G#P1 z6{uY|jJ6*H^{EJAhT)wkMU12f9EL>G9e~F0Vy2|PUQCK*UM#0EKoC|U0719fLD0Iu z8Qsg{xxckwBrBIcCzO@$Mk}$3YgdUM40;wN18>Xv!64SvJKs4!FzCLv!k}Ay{M!Qt zy@<#TIT-X76}RRv=uJq}EDXXy6ngVlU?e@rjMOX)`j0R|f680v@G$5*Dx8?P|COkV zZ;&p$GlZ}Tgsdy5nucepwkHs=WfEY}>u7kPv6I7~zro|qW-K%edM&DgF(Btv=tjwv zUQJB;EW!U*-rkbfP~22Cz5{bNT@JGNGMPsQe)^9h2f#l`WCRjBW(Q;VWFnP z5x`IyG!|;6;a||4JDI*4XByfMhGtX*F(dJAAj#Heckg`X z{J^1iw-pY3*2lv=;LyJl*&zpqexu^n91i^wiJFB&IEX@z{%;sbKVwE}77jh-IF;gI z>;ya(iQI(_4~JH&aAIcv_n|IM2U6MUrvQhLbp=(^@J!YA1S0lL0v!4gSw-mXrF<0`vvF)xnY|eh{o?AscG!z?%4SC&f!0`|uqU2Ct zbZDSG>p~k^!zVAEts2fMpgUDuT|5o+2{iF`a^X2V4OCNM&y2)JkhdF%H}6`Fp(3~+ z(G-YAh?({wq66@1XZ(qg?Td&$jzTj5qzspyc8ukN}F_3`z?Hiav`LeUPdAU;srQQW3-q#!sUZ?SCO9;hiA_ScI%AsG5dn zsMN$L_g< zBcpwAS#>NH9~$iQTqx>=g`&Y^U!o7Mej92JFuJr=obs-%bpu*u^g&R2@O)!^r=!STbfump%No}H6IEIHu8(PB!4>cH$0i@=H5+KsA zKy{%4?PqA$pE1QZ23q^qjTSvcK@c+}e}q!}oumjHl0@@(02;%inUVr~G%1#Ow4BC( zNLZl&B7M&ekuFxs@?PH0{jNo$S^2#)l(l|=)?yXet{Oj>bheMR{9qF6`kn8bADHy( zw!)F+A+neq5II^kc5H+eh?PDnI= zCK@4f+6R-Ky1X$8#rXDxNl&2AOaOW08BHa#o%~S&CXv1Wi`m=u1zb182RKX$5|O-7 zbPdO5U{XuC;Gwo5KEPp8GeQY4sTb@UD$tI^K} zOVWkB1{g32Syxas4bN00dlz^{!fQ>!E-X6GouCK3mDBk$>s5Y3C7#QqJCi|kj@iwg{wTe?-LoaRFfL0mp z0po}2-cCb9p9|Ek-CL_*(nTulneliE@^%67CXYwK35jNeXoSdVA57W`uXavWi1F+0Gnz_fJNcsmOd@+nNI#C%qy&DwPvD3&TRXRKYyu{=h6^5Q8xr_!Lrn`M zz@$B(x=?}kOtfp2DZX(&qWv)G4i!Pnkkn9$10+S@kR+Oa2tZ?aG*ePwk0!-3kCxLI zFbOLZz@$^4dltS@^AtHuu|y`8GKw}t&+66^Y% z@0=f))Y(>;^aCG1_kc;?C9*>fCM|xdN;Wk%-7Q3-W?>QzqR_i{VI)1ljMOYldS)1* z&-4~LJWT3W;l!)~-KdKM>CZbu2%GMZbp=(^@J!YA1R}Ok0!;c}vWn2`$zjs7fE#Cn z78)kSQ5B23|A*W>oegZ!aR=BkP1Dv4ebECq^7t6_8r z%J6XM(pK@o0}ci>0aH_g36SZ7pukX&X&qYkeN6oa17!N5iXdiSj-V8uBPjw0Cei#y z02;%unUVtgH7S<)wVcL)OjxY|GWFXb(@0=glw4trA>6{a>N0ex8vA(BNp3NPAr7i6J^6)1Z=`12Uz`O7ep)-xkD3!AcGgr4vgIy`LJtHOy{2QEilOp`8{pWnS^ z!NLXjPv(>zvzb%j-_zjVGvMDdcgza-31v{wIlYJJ+@49C!~bb9#nAaQywLy2@zX2d zac9pK8b57DoiGOEyb4V#`P3R>+JBkp-UMB>ipxyaMc?~0SZ0dhhCEOFlz{zseeqtn z=sOneYtud7m$!~rUQ$~*q*Ybl2g(ngeuSe-*Q2@L%}m$W(6wr@>2oUVnc;aY^7ik< zn|B$)s1#h0Xg*0aLj1H3KRpJocE+L@<-YjoIux1-Adf$z&t$ffKPuoSviHA|ew_G; zUAY}NE~$6)3d&~iQ;YcE0e5MlU%*fN8gNO%@e)kHPe+^-GTfev)_sDhzcJj}zvOhX ziXdiSJ_n_EDv-+hLq}i|%~Jx<7=F!^6xgpxvCOaKGzNacY6bY|S|@%|t4*G+V%+m^ ziDLcm9M8)1BcUv|6D`Inv|T-Z_-TlI)jR$A;U@+MobQ|;{50NH{Itu**FBbHH+)7QgZo@g1byo+n)kXA8$0+b&LHdWEw z|I19**vGXBHa&HP0()jumXNpOfmES8BbsA~Mu?yG!KPL4YG*8pQSJ+y$|y7wKpuZa zd&z7ke^h`?WbZ#Qd)tmORT6{3vQvP#v|2ouplk*&V-?!29zWRhJW3VbR`!EU39fp8&BCVNhY|WW-a?0m zO-oJ=)1bW&b+Hgg{TejmP!qDQplTYPsoI`E#D+?MO`oRWg|<%)o6ZKtovm7E*mNtZ zf-xZHRVaz%N}nL6{bAGnz3k?2cHrQ#d+ub&X`cq)rZgBE@BvQA{#fr|9QNzA>HCy6 zwvt<3O}rL;A6=In{cNyTpS>r`hVcg=Tp8 zbb0GI;b8|u3IGb0)%;VBmv91vs)HIs%~;%rHolb^p>f8d{SfMPDuS5dIg3)filhh} zo<#HV05pboGbIJ~Zc;4sZaIwsp|ElRgu25Hp)OO-{GQHYtUa}GL@VciGL+R`j#gt8 z+pZ!%81*r#^4^yAgHa3>INv!xFzQupg;9U-@plgx^*bUv?O%(LbOO=jnuSq=VT4Y43mqOtU9Q53Sqol=y4XOv@Xipz>JzfAplTYPsoI`E z#MVlHQOD8nLIWs=Q8{?r*|dd*Q4gXj7z1)%1sFxHbTly?1V;5)t549&8260>j2am1 zA50ATtUnFLvF;0_-iksq0pw9=G@8tI@<#<2MfSdh z^y7q4eZm@4py)K4$3BS-YuswU=&s^fKd-QVU%j-_jDE$ zMzw52E9W0`ih}!@R(mg6ja6*Biu_>IQ9f4lgHa3>INv!xFzWqng;B#`DA_E%2aFmZ zvO^9=?ND)Rz8du$Bx)8$;UEgV{Rc6Uu4hJS7Dnw4BlL~lLWhS@cdBq=W|a@2E^a4X z$ZLVI8ilMYsG5dnsV6U<}B46}nb(rK^bP zATWyG{K}457#9Wa)A|$rgUNW~mo}NVN8mw=WMA(KPovOG0C^M|jV805{80f$k-a}b`fjA|JtJnSy-HE$Pkfl*&;D~!6y$KO3*)IK6RX9%) zf7n~-@G$DjDx8?L;9IDR&yy~^GlZ}jg{&*6nucepwkHs=wGv>|eKfq#0Lo$1|G?wU zrY$s#`W~u+F(Btv=vv8@?k1*#z^EbHYSaO~sjq(^0so6NeD|##M#U5T@qvM8f1AGh zc4Kb~x#jh=wS!tE^@LMHc62{MqaO#@g|Q=!6Au8BN`!! z+6SY~gI7BvQjB$981*9*nh79}LZi`Swv#_9z$mi!(WDE#qAZB>}9Hq#U6oJE&XtDul z4DV)23hdpaSmxbw8UsdQLnn+<&HP@G!2Rzsd0rPloDen<6OnCR$;wfB?QD1QcD(r>8~Z% zp2HJTc@_4|2wjN0Wr#QL8jc|(xFyl(L?gsf`@q!A@M>pViV^P%rWT>lOaOT-8to>t zo%~S&Op(2>BK_FG)O26M4yJ;{sM+$l1!#CUwXv1F@Zf_%?SQHo0R>3)T2N*vNOcTa z`jyNS2Lq&fw~8QUkRF9nyo00&9Hd0^wg5DSk256&_Hj}y^Km(i0jaQx0i;^E$o8dB zSA?hmUh%+vu%%;K+5cOiEO#7Qj#Y5Gn*3nZ*Qn}yTiXv-F_hqZ=lsB`3vk{+Lw{Z}KUjIalq;r^& znuS#x!w7wux6t8X)pJ!iG3&uesEg;2F1#~@0IQI71y$4VOx5-TA~sn9tXfIK3$36W zRy_|MceZb#Vbv+93dVq(SD}9;S2}~3_FtWPMPJehtJtl>0IT{3`V#%ge&=m{HdvMH zjmP83{^($vw)t&tEx){~wt85ru)Y!u5j+D4mz}Rf)8EI;*x1{(YK`h0D(smNdOGs< z&%~QNLIt-Znumx+h^6+ysz>3~&bSmK-WOJBC^Qp59*aiH$!sToRDe}v@4HDqPFR&} zfK|RRYPOMX0on|#Y9TK?_%`+>8(>vv0R>p~-=NG;q1TC){sA*ZW9YSirRslG1Tlm3 zY?R`UBt_sLC7Ry{pfP-$DJigzlVX{V%V`W)g;fk-)#*-HrCzhV;(`0%6(Q=1=a^RZ z*G^Y(LDO>QqUBfxx2wqyRz1VVa(=Lip#woSj0} z6;w^bGgaFYh}dKauxgTq7g|9%toj%{?rh&e!>WE%1!F+YtI)raE2W9)Ah1ffWR{&_ zV7C(Q(+1;%$-ch+hHZZ)tcv4mRRXR`AL@%H+qCU(b6-pOnQ1Vb6@v^N_dS5pVJc72J|&eoZt&EVU0-b)3-{mtw^G!m1Gznh79} zMWf|pwv#_9z$&u$H<`U{m!VJhiI2rYEb=PhCVb%F6f|x;iAxd!`Nf9_miDobWjp5@=Nr8Qw6w7>EPGi6-tYQGG z&U3;l^%~$658MZ@2vJu&$F#D)9?Ei;qUBfxx2wqyR;7GWvLCEsD8c#8`GHkev=vs} z<>T`nu<9R)?2v<1?@@7U4y)dYM9sn~97Lhl-;9y;FU&~I!m6)^5&BEsLWhS{KT+Yt ztOr-3E`CV5kkL{(TeG3h%u0>Ta2IRa7 z{VTcBn~CWFuqtW4ARU_;I!*pnj30js`3WQQEA`m2gtb6E9fBx)8`;UEgV{w|E9KQJRT3#(2&Q>C03 zJ0G8hMD9X|hgIDwoS5|>kGkjtQrW7kun7=ZS5P$#&s1$sAYzjxz^dPpRfJYh4y!f+ zH_rAgG^{G2Di{NDUWNXZTjMEzOwvTx8uH+a< zf^!nh4ABS?)jn`F3$J!Yrx^FX;A$F$W&+3~(r7%H?c|RN;EL>>CjHpK)lAZHWqGhj zHQPzIFbxl{Hn)}=9)d7z!*)QB(=Q!)2`NCVcY#VnL9Cn6-v7c3axg%wPpb%GhUz|) z;!%H@qi?gz6NYH+@Deqh#%+6uEyTPbfpJz&<;iR_SrSr>rV!LzG@ zI7X1j9dQIdYlVX-^!~SEBn>koH4C$Lh7o#)x6t8XR#}A;vnCusT@*+c-WfuGS;)GA zs%dzpYI_0^+bscR_0#Y|Qz(a7FN4ROja+D$bqA_~F(Btv=w!*2dWmWO)vH$}`<-X4 zps%58)d6O~HGg8y* zgAVXkX3WMeuT^VUkE*a|#_7wDw~rEU@;DWolW0CfG(tqR4`zJ>UhRxdG46d~)+`Fm z1dvCh(R?!7$sZM97TNpFq#q~D>Tfu46(Ca0hSDuen}Jy^<%Wmg=48Jc%<@Y|UP1~m z>o1_vPyzTVwD%vFK^g7eJXFr(5P=oWG z^8>RUXe-Pb^YMERm^DgdhaAj$k&0XM)vV_uQL``$2T|z#AH+zyi5aO`nDt;7p&#%T zIy}sJuL>t-O?U(9;+>=m?+hWpEM#3l)igX)wLO7|?Un$u_R{b|Qz(a7UxUY;ja+D$ z^$@CpF(BtvD39bydx&X&nDy$U{UTd7M^1Mi@6+P3*x*nCu3nepto}qI5$}s8V%cg> zWk(0Dgstf*mG!k99nq*(PE8LFYxz`F-_t?A+digGW(#{OrA)T4=UIArELF`;?cX+D zoSI4%(&L#_xiYeS`}V!t_wVSS{wtEZamj)Oowv;5MKVk3SGSyH-sR1~$X12@16U+f zqxVkqf!{KFHa2>#LRuZqRAA2x)wd&WOMz6OeIuGhL?Z-M`;gY@@M>p(ilOg|wBCV2 zGXdm5Y4o4WcJfCBq(%1r6|=YP5Y~-J$F1i9gVky(T_QC+)Vi|8?C>araow<%Z%*Wt|tv z{;{{v;o;WfDx8>A;bW+aKa(!JGlT%QkaY!B)9_5y_5>pKTmszs2n{cEhH|*|jI$fN zxzKRylc);DfSgyMK$0tckeK#|Td(bJxR{+aadf`20j}O;?@&BCm~0Q= zx^@nj=FQ%mjBVA~VepPnpzHJK3H?Alr$@A|RAJ8y*v}wuR}gRVfEB!yXf7ohA+*{D zy2jzvO@Xe@q0meKd1xAaD6^gXQ2}(3y?aSN_T{a8{f+mu2MbxDyKIct@UZLZmNUd- z5k__cULdVscJdNcfL<>E-G++9uc6^@VwP!~{%Ak+x=%$AGiJYpQp}PRfn%0vUK)VL zaCxSrz%EaUWiBtLF`yULIDlTCu|uz`!WIWlpE1B!>j$>V!iPfH@Ed4DR_W~u^MhaS zr|!Vp?tbu#p$X?Z=Ldd$yRGo+7e3za0l$7qWQQF5I{qA$9BXVUJO+uHg(d+C;V!>Lp@l? zTK%OBTFnrT#jE=pZ+34^Q~`c{3UnJP68{Gc|8ZuS#z<^G{Q8cHAZE<|2Br80 zNf9_^iRP;TXbhKUN($`qq*&(iavB4EVT}X$^;0MO3RxVy!h?I`Rbi`+=fGB3ShPyP z8BH7h5pBpSyAYy5$T%0OZXERIdODom1UM|lbz>e#-MZo8Z977Y%cg_#| z`b%5kR~!r_+u7j(zoJBT$ic5IDsIhJzph52X5kkOqJRk=$4J`DjMOars)iBz25+Im z!>@l(;l#`;e?wh7pL8Lw491Ow$hv~6X?Uh;djb)=FJblTavEOf5#{jf4e+?LuL}*o z7A^)=Fb3qj3XLtf(j~-n5coCVa;6J<96Uz>t6%ZHq4+@WfcKYZ(Xp=NU?LIgk0#r+ z-SFD})-%nE?3|2k)!C1OT|zZ|9q0)kVODKy`dS6QzM;aN8L&%{x33Uy@_-e*lxV(4 zG(u>#4}Sd;UhNE1F#-6(ucJ_CCV)INjb4=5PX4F>zsTMnB>gzy*MQsMt^grxwSg}2 z+6??^HA6fWukIi4SpD+LPF|u4@axz}$Vgm{hF=EMuIte4hhHmI1TkawSd`*)k|J=- z63wXrXbhKUN($`qq*&(iavB4EVT}X$wRExVON*}xTO2%n#$5dhS#>-Iw#ve#p=|h6 zv>~hXc7^%DuZt+Jc-!4?^^2hi=R4;IeysrWx9{tVcl&t12mGoK*&zqN?pJYZ4!`a} zqGsV24x)ewPQggJiy5g|`1QUpLchmb=zZjZuzH@%yS8rS4*TX*E z?*YI5jmQo;`1M^Cx90HcTS(L_{K7#LFhM^?($|@hnuT9agc16$-a?0mUr$-BP~yzW zFo3!^21sSAyaN0}))iDu!!uRe6NuP-3GnO7G`!Fw%HdZG7i3{<_|3&Bzms4oC9Qkh*2pd;n&kWlOkhf9d&AYH;TnWBPG~0t5-#I^U?5eiHu?6SK+f)xY_BRTgLk^Ce1=^c=r%<8ZOb#XQ6!aG9jP&EzDRBcZnVjm{Ju~TSxp<9&0 zu^K$??C?Uvv8|{I#(9PYCby^Qg4E6RV6GIK#5luK2gInhN z`}+D})hyaO&@MPO7i{xVd)>gCjBZuiyTCfZ(~@xCd`f}{nPIyF zd3!zaCJ$S|SBd6zL?Z-P`{39I;MLAx71Mw(92-TUnE>(tHM&w}JNcsm93y+zNk2|F z=6b_>punY0(<^G5fn%*_iAUtM1O47`%qLHIi7UXdZ-a(I#bXA||8-`c#&~T1%GhsJ z1TiBwjZ*xQqzD|jMDw!%G=}3dB?WeTQY>?PIgJ6wu-*Y2+u?*`p%b~M*BDz9uL)lx zJcqUl#K~O>4r$skhjwI@->x)2IQCQ@JNm&fhAy1%oF6zg)mAumF&Ij=YTyCKE+n!; z4vuA1+?ubB=}6Qp9K%5rFhU6aP#5=*F67n0 zI2(qnE2x@=XR5X*5U~#v;Mj9%c%fUA!?E|n{2P>iDR{HA(=7N9T z1~4%&F(3HivVABt6F?rRMtjO^Cx2AHWn}L!Fnil>r+?mn>+SS`BG~K;-NLsST-JJ) zctl=1;Cf4aQ{oD^>`ZWjQ1SR8H2-Np?Yeik{kW`OMG!M`Z$T*%Bt_uJC7PZ9G=}3d zB?WeTQY>?PIgNqKu5a@t z&Em4ph7tPTy@d{s%f6?=iCG<9g1Yz?=|Wx|3|xk+E2x@=XR5X*5U~#vaM?f6@ItpJ z$7O$q$6JQWUWTe*49IyET3m9a*AmnIxa{?VanD_g(Cpla2giB`2YQDF;&NoxA5Zr7 zCzH`c{~RDQ7eIFX95K$z?VOEo)!fsfA)CNgpjVs%)UHint3X*og*`KP??v9C#G5>L z1&<|~bBRU>v-W|q4e)Ab$co9p7nI$PLNfv6VQTcI%y#le1yDxzUP1b?FP7ar828@0 z=o`LfTj&q6P` z^=M1h3D_0q2hUzb-GjIN{oolx8_svm4?KHgTjAM%`b2>TJo^lh9dhvOcPehp;n}Z| zs9AW1gD7BzhcJ?U!Hm=_JUgLBrN9_lH;+dmccH_>vuCPsVpfQ^pe{5Zl`RhoyBLvm z1y$4VOx5-TB6ef~Jo^b*Md%yl@a!Vs#@XwIUN(C>s)8{f=T&HS$(8<_xl(b7^~J}T zr3~fRX5C*u*e8Q$cOX3LgO#(yK)?6B9&F(();BcJA03#Bg)>)pHaCp(f_wcODMn}n z$5f(2JX-c|=oQZ;ub;!CWz#C`nZf%mfoF5U6pzd62K%J& zES$(fRK5lD915O&7@gpa%t{9XJo|`>AZGkNj8c4nqzD|pMDxA?G=}>#B?WeWQY>?S zIgJ6&u=W8wdzTZQHBm6ULWO(fmS(Dj=inAR`%x%ceiUuVIsv=l{NUMR)IE6H-w&QK zwBdZ`{J^u1w-uh97?ZcH9`I~AksWgI4DM`F$h8Ji=|duSq{3R<%*p#_Bbifn%w|r7 ze@}yd&wzi=+%YR)1{_2IGkg*wDb9@4EIhkDjL=)Wg$@tTvMQXI72;E<3!QY~ogoBO zBkKyPrs0{Y?Fqzb$v-UyKUk6Lrs0LYQ4Y@zz~jzdFEl*+461@LAm>$RcFC1i6VpLf z&pfX2W&4C~CwMlPhz<4k_eu9P_QwW>;H+7+w{7rjZW!kU_xiy(8sDn9Zv-2KY6QQ6 zUhz-N!i|k!t5(lGpu(ORyk9`x{*8E(2e06& z94acmjZW|jW~IicZ2#)nlDL8(X8e8~rC120esiNj{1VL*B)L514fkhC3he%*Smyq6 z8UvnT?E`rB1t&afBB6VQ3irw_%~T7|!L3qpZYW!R7j4Np0lVV-;Mpo4Tl&E>hBln< zoF91hgSNu6XZu8s2RwTgksWgIY@do-^VPE%Bx)9(;UEf_;fEMWyP1)ig=en}BlP{= zLWhTEZ&TsKtPuZ=x_F3mA4=0;>)LDe)oQ?)&Th#i@*dRC_4g}zY^&pro_JA1v* z@a(6k3dVq(SD{#vD;0_90Pt+c>qh*??ty;i0K&6mVlXi@)IHTqL#JNcsmJR^JmH?y~G?fd2-&)e|>gs<5aCX~a-B%=rBSO0j{Y2pqpe zvpxWg;r>iXf!&`J%iLd1W56@4eE`pX<$!0+6b!FW;a<6AP6oG1MJbdm|BAL`oq%0& ze()^slfV7o8ABV+cg_zyd!nuI?A1O|-~rEGL1c#HZBHN`aP4sl9ifAi!?mrzjkD_u4cE>>RWJtRyb5hExzb-)y!)O-d&5xD z2d>otuJtDp{R8n{`K|hJqNO(;>x(85?YS)E*>lD^FS~R22CMS!R*4aD_Pz^!qfEX( zhbPi*S7FZ#;Ry2fV&Y96!h+ut%?pV}2)6dYwb#I_oq;Q+1m88a)hIL*Kpw0{r^;+6 ze^h{LWbY#B#|hVxesE11#Af&D7QxNHwYg!7N9XlJNk6z2N^AkHeHgSI3a<5{D?H3> zbuhrSFRKV*MsW{H@p+OWa1;~GX9Lg}LBNz0I0#6wEC}Q@23*5B2yiXpglkPzJ+FY_ zp82fiDwF5%R?+z1Q1(osJy~a9SDqhS`y+J|-ag<5*BJV6zH@%y+F)DZS|o|RsYG*& z^*yEXZ0^7!cn(fz=iyH<(%D3I$icNMKHZBHO#Zzim+t)tt$;jAy_Je}5ePQH3xEH)f7zD_9) zUtJyTYuoDDT(Qo}?z4yH>Q?0MxE4-|b&rJ4Hnh zGm1B&6ep1sfuopcP6$9_1OZc0;2- z-YOdBhqC82XiwG|*p=r8*UqD?*eySE|yU2swWvBz1f9SeALaQZbkar7(LUF z-KBEqQ7Lg0;e{VXx^pv&GLg-h)tezN`z~d?F&>ki41(<&w?cC~0QYVU#s=cj<~SaQ zyBh}kqsca1-SC{bD~!`BAU%R38Afp_ILsv^zGzjbGVxEDHZn2!a9b$ zecUGkP#&Q@CYp~DjS%teYmdJTuXbh+G1Pq9<1`A*1h9v#I0_1FbOy|J@<)aCnC$&l z(vQ78egTAnUw=R<7UKZT;x{d3bjh~bxM|GZEMMPb zDe(#)?xu4#zEwm9LK(M63Cn03V0Ye{&Rb^jQnDpJHKBiA*3wtZ2Ot!G+S$cUaRn1QA-!@*Hno1SYsGO~U9_PyKp@95}o%j8^$ z7K~&HzSl)?u>|@S(wi+|?O7pU>zyV&c{fsitvB-z`>T~&?^Z<8fwo4{Tm4k#zUua7 zB2$l~^I0Tayr)`DjaRdUNiEuwPE}JqlRH8M6YGm;}FYh*$`&Ad^DrJOwTosy7R}#;6VMtAJ zeiT@o#Z`Szb(Yu54z}pJ=~b3A_9WvsP4!`NDYe9Q0J}3|PJxB1{he)3Y!9?Gv8@=C z_pTl-!c&P%J+UQNV%w0->lH1PFYBrFjFv7=7xKkaT2E_Gm9^b^IXjWn(~evghSYS) z9^kiS&BmM2Kf6c+Li(CeNngPfAj??odY!4l3tUvFl%(G7s#bO;*y;8M*3@|w6$Vp9&VLIvkE>0S{xB4i0>^-CtAvxWklAK5-+wH=e zI&pkXN|EKMd3dv_*oRyctCX@n<*Ll6n$PgurAlUs@&3SKxF@mCTT<8)ieD1Di`*!D z5@Vt1e5b;)A6uzu1zh|Zq_WH<_6eLwW+VTg9(z`{QcLBtH|koYIHhaF39XvZHL^6~ zFKkROC20Dd)Km$&7j9K`LT1+pgz3*fzkw%DGgkn`k4*}iPWlc?6=qt>G0uPCI7gex zShgmuS5w)1#hkL;ZS2wi`&{^wk)gXzKiSv2*OUZ}#nQL%tdv2$lBU#yO1r&5!8W#>-vi=8`nbLSZ? z)~fleUdCUoUL6_FXUBITI)^>E;6a_MSCiXBGRx~v_kM>ky?!RhD0)cdL6gbj9jtJN zJX&B-7^%}Sl6O?&)aC2JH27{X%kugXl2RB;!qp0QWpL(BXw;N2?s?&PT&M}-H1Kz; zskM{5tpbuRZ?Kp!>Lw-bUTkX6p8v!MK}~NnK<{rH-e^T5^c<%1<9Db5pW;VmJfwg> zC&m%qX3ZgaerRjB}09MSg1hP73xY`K(A74%hI9h&W*IR3I$Elw5309!Wv zIsv~P%a+p(zvzWujHjv%pZCG%XoN zE9I-v^7vJ$a%!rwZRJFEvR2lk@J9v8<;oqvNMxvMfU$rskkzsU4H%fzBk`m$1R85= z*9<&sylq={hiSsp9{3zzQmKt0W0BsjWLNgwI2#g4!G{Fqm=^GJ{3o?13fzxYv(>yF z5qxG_wor}CbndW5fhSE}l1jINI@lmIOlnWI5?NK8m{`R=CYDh3hSD07S0tO>Q|Tg^ z3_(%6QIG>z0->tK@^~g%t3oY};%}nY(r-xR5E($s-((gQ`kgUCr;#@ghab1n;qW^g ze!AIZ&3X8l#q|cC;)-+Fx#vN}JdnEy{tHWJv_LbPy9IvQPhVP9fWH~V{*U%jE41EF z*`2+&_>sxaEk6AC75h_`+MDkdfQU1fLbqr&(QB`S99Z71Ymh*(nTD#Kf`5yJ{0#Jy z&_L%aFyk@-jRQ2+wK8 z>qkNVHdzDs1hIjeBiLq%97V^9+$T`gaQ05NpT=WN;$x(9w~0WT2%Tch97sGcbNP%Z0vrKd2)wz>3F0S1+`kY3F)IU4UB zjYUg^NtWikzFD!ps8-I-)@$>_TD@Z&rbx2TCBx*}{@MD%)w8)iFhm7iauxgq3f436 z5A$TMJq`O!W}Zn#wbR()u@OR(_s@83}{SuS>^h82U|k<+kz?;cHoCC$J-s_ zc-s^wSa2!}-%REBn%3(jn1ILH)W_S6Wu{7nQ3~P3Ti$3FR*`VF*{OcJQ;VU1YUA@# z>s#M_T&7S1Y^8hgwgIvGz#q(ldpBs!Is2vDeY^}+AFlhjlU&TV`-s@O4<1mG<|8

    ?X_JbSn0or$pAA|0(6M&Ck`Kf2^&e72>Z90=3&uE!c1sWuH9k>K}Gwe8oB`MhXlPXVQD_t(tD%d0! zalXosFiNXlV69ZuH1jHWigmsk%+`T$xH^oQftEW}D!~dc>=r0$ur>pG8OJpjhv2G7 zYa~IcFr!TYy3A`4&=ZiNbCgrltVK8ILFcq90p`zeGR@dM$zQ^BT>e4Cz zAoM8tE-q*9pI6rqy65vuCpM6mwPJpZ=s`T{j^a)wjIrJ^hCFl-VBlK`U>s-nOkvOl z#wK`uulqVMXLd2VwlL;(ff=nYE~KXP**Y5`GhIK)HCk|@I-?5$ZQZ_b!Ge~@&to^= ze>j4S2(mJ^(?hJP$IGi&sW?EJK!C1e!f)&micnf- zOT@Ivy=*KL8{>=$UBZaAjV+4PMhcvqfi?kK1V(5rd$V_SLEXZ&dSg-DT*;;s&sLrb z#nH)fDjgA4;c+F^_D*6Db{F7|CTlqyA8TYW3g!c4)!CY%H`Bd zr17_m%GkHi_-jo&iwcoehBYK8&ycH2#X_3;DU$^(*f@6X<_M97bdBr};rklfO z?jbRA;}53FA9Yi?>cZY5L6q&j!~erT3hR}(FKU<)5sS~(Cjg+FrEP?RL}Gt$M41F_vhQ5obE8KmbWnO7yDh#9N)jrk2Eq%z^C z#exnxJ4$8TCpNKa3o1q!R4WyWdBAa%OsWK%9``bJG`=HB5A266V>FrH_<$D^paZ5X zfd@orW?_R(mJSwBZH+H5Ip9U_a3t_qiNle=XP^$TNHB}ncioCtxPIYVK}wj}FMJZ7 zcI_8fIkWc*(!~&ajc-w>a1VA0Q;j9Hap5Bp?6HivtsubOjHB21%$mD514j{Au=NpP zU)}v{D&ysBsj5|HO8Ur3nxun$-!Qe+v%8Rv=GcDp=yWzcsaLyqXZ7iGbCqIY<=VX~ z;XE=eq>VcbS-eU^nX4WGgN$1ACg7|o{P$CZPLWPktQSnptZY@ly&3~qkY zhsM&Wcv4Ts^?2{t%KfmZpBOTaxE#bBn!)r;P`(qxiwnnoyAEHCa}{U07~XI5#_29J z_7}Tt-eA7sh&0(9flJ^u;tmDxi9ciYuFj59z^oa&XrFdB(Cqnrd|GCn!|Xag&AEr! zHALptbGsx6Aalq+Tij!ncmiz zN|T+#op(M=rQhVDbbBnr^w(6XI$K|o2Y9xJ?}yCr`$69Bs^}4Syj@e85VX zp|+aZ`=m_|E6jy7CNY0k4UO%vODtwE?^{Bm2Cb8*hlt=>1$Q#X(;lA&xz|~s3gAym1$a+ zu6_yW$~x`0^+;HJ*^sT$U6p(@9PEOZ_%NC+mtm4{=4#qsf48K&#uA_3#v0WOfIw8`vl*wlqfBe44~3ilJhkq7gl z7PeUmrhVwh16$^1ySehk;w}wVQ1GNW-b7$6A=83B&K=X7PqqrLp0EZK_U_U9E@KB6 z$KmaCfCBdenrqd#nX8yicjL>DbAtg~vo;Pv($2Cp>=r9lVFz3VrvLMB`-s6We<-a3 z|5aFyfS0dcZERs&y&8puMW`tqZUe<-uVT6eyCOj)72p7_Q78bm?uzfAn;CFN7Z(C| z^x)>Yd~q5!iWwWf>`YJL04dG~-|DHseg>q2b*lVK2bckOhl)o?I;}lnCpjI0w*3g( zm+pmd5TS!`Amk)h&*4$Oyuqu4QD5U2)jQm9vlH&#LOy8sR)^)9!hjMs;kpwy59WNH z(D+MX+;@a#bgKrtR1SxUJWK>lH(1cR5awthnz-4HG~!Db;bTg+!pmPwroDxVDc zG1@=e#CqUGsX*zaa~w};#Vw&~N}w|@VdRIdw;omp_A{ME3W8W$wARIq!!2YkfT4Vyna>mEegXdLI#tLV z+nz4kzmU1?NC>XR`MWt2-?@El@I#75%>=`9&1YqmqI z4`U?ZLYi?s#y`W)>V{et&P&2=Fhx8e zScKz5DN1g8iQ&bNNEP+9M0g8L+IRZ%i(RTfTv0@c&iw%#0*>QL` zL@tHF^4Gc{;U@*FruolwGk-XgdU_Bi;8iKt0Z+T4ROS%&Fl#?by+9$_8o{jUW|S)^ z2)vV{$K4~B64{fkZA%=qcaJ1EYqqwn2x=DFwiNsvwrzW^pQU+#*xEK`XnRb|Q`>f# zt!>-7A7()}!(q=#t%TQCHsv=Gj|YC@YX*79k* zTB26Ki{2VoaWD(Zrsn)BJv>zeRa8(z)`e}T6l!5pa6<`hgEy{&vpUB||6iCv=pFCC zFmvxln^-A)_1PgE7VeF=bEr}uK1JL zx_kia()2pf`_LW2trNY6{K9RH*e1j$=$N6)@{6$&L|H{x1%gb%*NlX_28=}@+b|x> zKVI*X_PMy+(=a$tAUAAb!}uzT|1aX0ZuAv5HwxDQe=&$N@dBUw5IpVL0W-(4him&g z;BkehZN3BkI|Y+>GWO_zA1AUWT?gEE@OHqQHCqRK)&=$s_$2r_YzKS-&`MY2c!1bC zU}k80Ow3aUoVRtr^{;KBX+3j;8(fc8rSC(~9RU2AN1lkHIJrhEO3-kN$# z;eFIE)9fBz74{67fI`2v4xPfiUsJeE_cF&Q-YJ3iXZT*~&))VVQ?S*lIaO!(bFWtI zhSs-g({|t9cM0v(-0@tcw) zTClvt$!ah!xyj)r<~M$9tpIkv43K!X3b&lhFnEbqE)qhAZ?w|kK8p%~O~@}j+5~>T zl=T5%>ondpIsuo86#0@(;~W4SCdHdIQ*h@b?hdZPy()lhlV>}IgT)nNr3TSC0_G&# zdI;C7jAJr|?X|G|7C#j?uHt8qUcL5N!E#OnuDz^*b50ViZ8m^58D|T&ov@al;)Pt` zhNdfaqF<)qI?6I!FG7<5a9@QEW+RvndvcBYDq)Vmyxu)!pA&%OYdE%r*gw)T<+FvN zwyR$VquU$-AcWCrQY-OAq*FXCDZJ%nj<@)S8S+J8cHcqk4px9Wl^86*Z}AH7`i_mX zl!{lFOM=P_3|pGF$65rxehs$nS766`8dhBky0LE@`h!t;3pwCiy~k3}LrV7NTVG$` zP*9lfPU35Mtn1x$Kmi=tW&>ceYp-oe1Ak%y!iwQ1LB6J^G(L_>3OA+kQHmD7DUGeY zixw=H$WBx9 z_w#?hfd1J(3-$8*P_G*5Ww^Q9@4!&LRg+Im68DH!;qyv2O{X@6aX3!7nHwXaW>`Iw`_^iH&GG z&<^8H(Zm&;C_=w2*YJ#eDi@=QzJHw>?x`QyzU`4vqrokfp?T$!q!L-f075XCQv`wFF+6I3zr)^#VzSGc# zs_vn_4_!9gw9Vb*yS~#lr-5g~-Hx!^4Q@T9lfzy`0>1xY5}$;F%>UQkwa3VHmG@2J z=O%VyCr*>*HCafy4w>1RoyX2PF#$VHY@D@&ouo#N8Q**7&d!YI#oQTt*Qo=21mbdO zi!v=LYSbdAARu@qC`+Kqf;@w<2 zMGWqTSi}oz*C6aI-qR$D!BjdI_Z8IDoc{XZX6*5iN-A`yQ(#nwMJ3F! zLv7RyD?Z0z9cHqQ&_;+ch;;C8546zjD1^)OAq+Y9^0~YHFAfS{^jVzt+R`ka-lu3RMkX!p_9;d|14Z^R_)d_61XhEP zVPe*D6Q_mlw?j?h1Dy^*3@7NNQeP>Yja2K)bBb!r&Cf>{BGGs>6{Gl%HOkfr?6$m!F@8N94lBDPY99N}u>h@~a4S-=_bX4xLWT^hV( zD*9cvQrd0bej#BA&@y~EzFKXv7^Jw!T!7Lb&zI8*+yLo*@ZlpzT$c^(NU6(kOlhhS z=)5^m^Eu&NHK&%U>RcJOqV@WmwQrHJ^-RX1$m;w{q)=O}s3d+o=BOy3J1d~G=D)Rj zzq%yupikmlOZ+?f>VC1wb$d^!T%|tjE48~yAeuRATv+() z=ru???fAar)8<3i2l@vXp-$l@B6)`&HT1Ahd0~o}Zkdu{C%jjb{|Ao4%}cvNp)~`?{cvT!??8)W^?9Uoa;4^svTS)#hE)QqGS@_Sc3(_#Z_IT#&K|NZhH^SvTjnUbIiLM; z4Yg^263{v0vKBdP2hBjxJZ6266-(G~+FFtlMJ<3wuz;5FnCJXLEtXoMJ$ju_|5%+& zI)ggH5w@3X(cu)%-33}KK)yq&PDmZ3+g^a2IClBe)Fagpf?dJs*%?9@$8@LzzcvKY zT!vRkLBpzK8H-vL1>OOQsAzE0S#YX|%g;_&d*P&O=_%LMLpmE{0zkK>Q8aT1gA`Cm zP7$^e9@3WY9p`pt{$LJ^vF&2Yj>VX>Hz`Pk*l}ub?{?Lbol!wIfmla71HlwE^fjBC z&=BNWUBOZtI{~L@#~|EjGFlxnyy>Wl&aiZ1qZSoqbrQu{<8l4XYn%MjjDAvwkQT({QLOU^j!V1)*2itsT2JF~kwyxvtO_12#brUV0U42gFK4$Y)M|NFckLN@lA4;IM?dzh=?FI&*dm z8Utefx}j4NR~fGi-sGoV6=TiSmSKs(j{Pz_G9EG5**@62RnS?hJU2EvK}c76P$lN- zkk|Fy(_+Olc&V3YQDkd~_c|^&mtL7Vv%i1PbT>7{?EhWg>_5mtM;H&>!)xhZC61x| z2i{4~fj2$z20}wGLB!U4;Qbbo)4>kBAH=7>nT4>-|Ydh_7}q2rGpJ3v$WdA(l63NWj$a66mqajTMaCSYxK@u1ZK zl^32&0d=>3va3FAfCdq!0xm+>orCfs#~U!?aLesD`+0UZ(Ue=wX`d4X$$9%PxFvw> zi5i`k6G8V?478%$Eiql9Mv)AHLqz-gW z;EKyT9n3QCgyQp8Oik&&J+R_3Ub>cqT&oWnQQ9{*yt0P5A?2AH=*jN%XVCUF&ketY zOa`1A-iJ^7m>d3*%?(Gfq!p_{=tJz?m#V7v`i73bbG_G-8|c_df3voaAabO7d|%-Ul4nQg17ekP&XcOm0n?&hwTI^ z9W}C*tM=S>b{bcGESMo(eEt*xRsOs%w&WfkGc0WM^o+SU*zsxh0JS*m9B z67@FE154PvUSd10)(33U>IsqH!i=r$CxE_I0JT-g^FgX)F#Y{pKMKXx-@lF2f%=;( z7q9;A>Rjg4xkJ+2S8rL*5E@@)3bpgLO$TbG7ujb)PO0twZnLgP5{o>9Mt_PR8d+S3 z&ig`VtRV+m^nQfe`)9F%LuTySf;s$$tUp{0t;mGT=+zyMGnO{QXlMP=Edu3w7i)Lv z)cx&U>b7@!hQ_!lup960)iv&(5&JB1AK6W~rtc;Mhr*a~THw_oz1;r3-)jsC)zu+N zI3JAuGJ6K1bhOtR0#Q1duv4^IC@<$=!~B4k_=TKcyyqLR!IWjXzGHd%1^UxjzIn7z zX0CqhoPo|$X;0l+&Erg#Y&vm5)~{d7jEKK84$SHbt2s>|ai8bs ztT1-Y3lK&qst&#m&q6{d_)Av-8>$ZkK{c55+Uf@|F$EOgh17x8D+kXzB-Y=0-77IN z+D%1SYW>eKf$gkMJ6NxuVV?!bd3%-I*6V(`0C0{t2ZVqdN?x`&ehn@1YmR{}+Wn+3 zUt)davS=^JShW2{G@~whoO>;W`icX0iECkZ_zwa)+&uyHw092$c5+Il9`^&r}Ht=I!8~D6sV&W_Y0U`Nq z5He+5T>p%ufDBn|^Wm6?-^0e8a%}F4yXNk=rIiEqdbNW_}$VT>y4i5v2y_J^Xp(~>un!((qPuxefYHZ z-ne;yUGH_xO&xZQgU{c@#<4KPhLoG#iEj_;#KG*Ull^q1P%Fg;kvh<>;@#@kEFZsO zYHIyYbfrV;9yewp?{*0TNM z?EuP_n}D0&ocx{PQ<h-i1Zj_WqL|p9)tehozD9`Ie4ZqA1Ia8OhnFYsIs-&oxID+&!i1T{7TgEP&5#PMy zHY&b_|1ojUIKSY!A)~q>Us&9tWv7_JyA(|H@Dat&l|7ufn=ZI2%@sI&QgPV+@6mUzhF{gyNA9GmA7Mn(+3}@Xi z9Gem4TQ}&k2;B^ITU}xMT3#6ajN2xwxOyUvi^EBMF{P^Nd^R<|K-cl?D|RP-{qo7M zfIHS?Sde4EB_9^9ZSXJ9jO1o3b9`{$d5K4lutGP`Aa+&xMPHRWFExahEYATRuMKex za6L7FeIbzgnr-}F=Du&@N5DI+ySE+OE2s0rUpf6U&E!{#o3AInJu@|Ruc6foHLPn_ zYx>?9HVty&ojY5}MvBeaDyD`AsDI&W8D>5(Zzvko%FG+5pO|5fGkZc$%xEz!5u1<4 zb9yS4$j&b;YD#iZOQkebRTdW)6qcw=?jxBBA_C%Z<{<@ltQ+inaOUpN4F3`THcRa1 zH(5o8dC|rk*%$tV8FJgiJV^P?N1~A^C2(q$={r+T%D`N$6dh`xIa|=rWtbNd>QZTz zN~j2b*+-My34;q~*?Y@=3?))?l~Q53f}(M8zS3|C=da<$R5tuCL3faI-ho*IfeX21YKvSW29 ze+5=PG`G|&S6nS~ehSKkJ|P})UsgO9-^*pi)eM#`zVxL*uc9>#oz>5utNmkeCGDTR z70MHTfvc;@Rw?9G+kq87_@MOy1&&Mj$T_tpmo|S1^o~(_yOI?u?aA=Ym#nH5VWef? zf9!l}z2iYi*od@1W8&pXhau~Qs75f3RDNB9`pvW{B^q{h@Y4Ge z2aaMH#pKRdS~&$bW?gj@>qnuYRHaTMwpw>E&gy*Lf%3McYi5R_7mcTNEs;#dwd_J7 zoy?_GEu}6jBsDFjXh0U3JYh{2LL)vd~V|?x1Wu?!t9g7^p!CR=LsD#{eWt~V`8znMoUHYXaZJLVnI*jVhc(lnb32KT1=gv z$NZJ;fbMJ2fFiK%b`6H}8tf)2UD!-6SkeE3+eSSN2}lYSshUoa5Op%WXC80PN24lP zV*z$gPgNji_izh6VkkMBEmXiN4NAsXGOxkHC34yL zyqbtjtRRA`ZM8X|rs4LZkiW@(5$(-Q_KQ3ldq3OzMbUURp~V(cSv{pD7ITWKD0(~^ zR}>`)ODGz&mDi zi|Gnh+_}YQazV?bbLzaFO~;Z+fE8rp+SY;_tDyqB{@X~eJu9fEAt7l6^;89tRuFAW zEzQwCp_9?*o@n&WQsW->$K9dWd}?XmoNOw4;NU2aqT6{hoi$@ny z2`!hMm_&hNZ$Py(F^MKeXsbl>;65Fl9HFu81ino@pG>9FYCN4)aR{R>rc?T&npI*+ zJsHzuaW!bt+*e(BO-`Ebb`546xlKRGZK8uHT`b+y>I!H`tm771#%uXPDO=a+p!cNv z*reCK4?cAcJbIqDc~bYZrsy;*=q#t_{D$v(ovU16vS~SeWXejB9VsFV_>BFoP+{+) z7r;Bfj~L%*c^OUIU7TYSw@n+k{_veY`i`Im8wHcOT5Q)&4sra>D8j3SG^NLnN&GOG ztA+4P++BRiNq8l&y#(6=Syvt9+s2rT?ed+Kv14qRwW4tgf;EVNA>|)leWY5~^5H{eWmyli5nzO8DUR}PSNQn7oE^-e zy)HJ=7-)-)ws75Vc zsH|XC%jy};Fj`NW*MU&4Vt|!|C>3fJoki+qCGVW(IcJ&VUCVSSmo z9pRkdLxwAbynrL-RpLzvQJY&w%q^gRYk;D|Xqh{*Rjt`5l#B?XPLr!fwqx)kdWX?iJ_9!D9ofNhYy!KKPZUhp_jiPi^1_J-D=8$dExtv50y{j84eyWE`4D<%7Jqq#$0 zDWKQDEzmSXqK)Rptgbef@%eVJ&{4c=qyURe8E>|t`!${F4ZOA&D(It(UIB(k)iSp> z8@X^AY<2kiX77&~ylLL$ z8D7oaFySWnomVwOZ)U5R6)3kO<~8~X=xKCB`*gl!QUWd;;+4U$rMxoOj3aUfG{maq zW-&A{_O3!>z|2!&;|$5SS;@eLQ$piTwan}3FBD=R`W%f#y+XNV0r{16<(&Np5#2%K z3zAb=h9H&-{^$*sd%%v&Ip<%~T*?FM9w8p+5-^BQ9n%p0I00@o2}tMZWG4W%jx z|5XOApfxh@XkuiOHoKNR^T$l7N+C;G=iZ{_6$&a3#ws=}(a)?C@%5Qz4Ml86?HYv! z5a62NBIKv45oe~O8g`PhFq*0_9g9nY!W2FpH!!^fsVS?7(r1w0t&!LD1`64wA=R0T z4z|!z2J}TBDkYWiw7G+FCeVpviz~K^<`sJ7YzxuF%q?7@U<5-LDc&oFM@{-B*$&GeH0JzKnvhWR~w(jvA?*X$=I zEjIgElNOjUY4*c@7J_$#Y4U3oKLfs3^LEHHCXrGY6rW*>oHYxoOcu?akL%(u+=GO- zVK|2|{SXxlORN=gN<9`0Tl}uA;%$^HiUHTeRn+r(*r=9uBH^T*A!`NFnXFDUQ-t*u zOcn%w@dX5KH{aAWbntPy=534eG|XTk`tPE}|Xuc9tVx8*}-2UT3{ z@qN?WN*zpmdDPv!i!ZWXy2!fVB5UDAR^N-Pw2RIBjg<0NQF8uZ@z?Ob;wB=Xev1D3 z9R2lf`s=%C{PQ0A>n`+B@oD;tsMDL~Hus=nC~wmWoYaN}GJiwbQ>0^qWrzC>PX{5x zAS|oZl08mY((8OL?bKU6Ic^oDvX6Fp@`rrX8#MFo^5FRv>T8~DsVQx71R1EF~f@2w$YK_nBSD&Olck$ z{D$T|`?)u1NQDMD6N36jaUjdZ9Kon+XP}Q~LVOq&&g%DsDx9FW3FbpVO?h9BJihg= z-$O3nde^g^^5NDv5$Hb;Jl#Z`omnk84dnI3=kNuHwLK*ES4ScUNqTP29>f<|X-rRx zinhJCmjRzfF5Q*^mf2sdfWa2kq(V7`y<I^B&eu^*Fj@h;cr7)vHM}pbgw~QZVv*js&y%w(-O4@1!yNo1tL#H95?v(2-#FsqN#3*-xY~`|(gPyW*gf-AILw1hb!B zJ${(oioTPx8*joFYquNkmcxt+9SLS{-Z6fdJt&RY{X@a*Q8~=0(2-#F?w#X@Sxp+V z@=!2)QVugJbR?L4;o9-T?02Ox`< zm_2&^_+j<~Y0SPi6wLlh4l^orB$$2h=f)4S>kgqar1pq+;ET1}jWftaVqc#M9SLUt zc*FQ%wpSXnJww6lupDMo=twYo{m+jdW;tohw4q?uki(1$9SLTIo5l~b-;~D8913R7 z%3(%@js&w$+&q4m{fRVYe>@b-{z?urDs&{6y?o2~VfIaF%)T)c%zh+?85KGb%+j}w zA7;~UL1#$Wjhpes+U>?0kc))fNQI6BvkRf|!z?b1S#&6vy;%-3Ds&{6eg5|G!|ZWs z%-%K>%!+cDQK2KjZ1d~J53{GFG5eLFVD^k0W>n}%Fnj3rQNq%r&WP%!&5In1cg zkzn@zJH`*Qm!vWK%1|)-jvQuG=twa8>Yd|<+0!HdV0P2& z_+hqN8nZj`#oBHC1v$*9(2-zvdiVHYc1#+xqeH>$v>aws=twa8!@I^0vnQl6TNw&w z7v(UcLPvtxKfhu8F#8B~hSYraA$+lR-S|hyMPfdqLPvtxTzLF2`=T^ve>)V+zAlFu z6*>~k8j_4P2dwD3BZFop(oKc}8!R$}x#t*aG(06jW@n(FncHJ13!;A_Y31L&5B0 za+pz}Bf;#8iSfhiFQhU1^Pyn&WjV~K(2-!aGc|sg{ZJaS?+*pD|CYmy3SARsOQns$ zWE0a1eSmi3BSaPyVssXv0?4>3MgasPmBt=HtkETf!|kza39XP?4DZAjeuJ-hOa~2( zfzm^|VpGT|Mo2+Old=xZuaHG|6SC=ULT5p0Qms!vIq-j?p_iz1o2TS;=n;v9J#}E; zg0n&Jlx#YF;IRY84hW)>C2do%@DKwJ2bA#%W;X$=?zAOchARCys7jFFo;oY4m?10R7|l>soCLN zNrC@J^0p=5_vIvj8oxFP_@(|N;KI5|z^A1p;8Ot-P(D~a7s^(3BP3|`LVk{0P`#FI z!{aO?d%drJaq!qBLN?a9R9kBPT25-H!`3D>U+Pb4z6`0+&7C%dso=L`JbPE#uNigZ dl`vCFO%VT{S0Ih`ezRf~|6CWNLM`G5bvM>YTe delta 16676 zcmeHOd3;n=vgXuDItg0>f$T|l_5?z>y?2AM2?~ZNiK2)ykaTy1s35DLY!L;K$kvg= zAS$b%I4CwVJvu7jZ)D`L2#)*Az@VcKWfA6yjDtR3opWxdZ?EB>_uu$alRl@azN)XP z&T?<(#j~kPUhn+st0~6mjgI?g%yUlfZ+A2`x@{&;W0Tq4&|qwGTODS%#cgYF8yj41 zx7BQJvb$UsqwjP|+T_et#?twQ_J8IZj82_>|ed9-6hQCZ44y#J{W5+MRDO+l@}6O|B=Y$cs_2 zC|1Shv{XAxf*5^G$BF~P6hq468uYt|>igdM^=(iv%VZK|9NlBN(uC@<#XZT0f>9mn z4dex&4K&1G)ED)9?YO?oXTKr&BjfSJ-5n4YwnKGMP#Uj&k3FBFqw7shHnbjHTLS3Lzj;To#5j$;Ey9U#JH<3(XGcNitRF z3&%5M9^2(aKIo_jF+)6b6z`;s2+c;o=f8A@(2=20p?bd2V?!E=J*QPx%TstHI*Jvcd1>b-9 z>OnupY}52jj0k=?u1gIMfG<$`nrqY^7^WQ(02(6zhZ>*GH|3U0mz4$=Ps@jSRj z8{r)Io_Rf4M>aB2Px5pYqurz~i~`DRaagT3N3~Vvn%o*LmLDb-!bya*#10zu{dIpm zB+Rv#?qMxsNlpTX=gWqg=AfY1uoG${1Pf$Q1qDO!YuUoFBtN!Q-{3!hK&xz4LhcmHVgss&7c33NS#6k-)bknsg4@W$RvRNvl3o$MVUKqeJgXXPOb@t;-Wo?-uNB8g zLLB3Yd-g}ik-ez#Z23uShFhXjfPTqN56XuC#a0W4dF^zvj&8P@neiCONL`6L4c_k* zyUnN=jV3ldm1Ii|n}P#&d$mKZJoNT>Dw2etN{DZ9HN(MtH=V)!EI=@xA2#U>(RB^+ zu%S1)EjSOtiPeeL$5)E$BiF@5WkwJZ4bJ!KSv(8W#Ug~O#087186KOj`~q$dn_1zf zBrA2fOqbDVwip$xEuOCKk_@BWVYk_;P3+=*x6n>Nge*;egT#2tv<5l2HMs$C<5sCbIuQ2xC@u-_ITmgu*O*l*!3YWQsj zlpS|_M{05XnyDpBN>RG#<|7W^dgWx z>MhdZG_t~pkS}TmH$ve^alcst$LDUq|V<*b0GkMD>d61=5kihD?OS zP_!r>e&3ILO30nz@uO>Tsu)|ZJE1NP1k6eQvhJGxo8H(smqr!T8LbBMaxsby2(;zpPL&agSTJT}B z)hK)H?x?boub^y57Ne`k3rM)i<83W%3)(8s^TpX-<7zwm#ZD4oem1)_kxYcAv%Pf> zT6BNnk*(p8nPFu%J1~jNBQLTsPBMb5WCxt2n2qUAlE{4iyE$`ScBf9W8=Ge(cIs3q zjVHD~hEd>grhtt(NfKnl?PU^lNtVf7QDqI{G!~Q%i5OMn8HT0Z2c=##-BGlMM6^jC z@W|fHW_2%+<#19)dyJ2L&ZDi?iQhlrzpF96%VVtWCiHlqllxAl>{2?E8xBzUX>!Fa zll#>E31&A=zNbC@agkX>C*x)@x=M5!f>}&pJ%$l0yLdfGWP@kGE$s3jGL;mt={3aQ zoz#{AxjA@>>dPk11Si;Yc;P0U;sIN7*twao9Y*G`Iwu*d`$`P5JvF5F+NB9>&J-vl zMsCI|N}A;IsdQe{)5!%^m`NTW^MWXI+EKc&y>nnKtd&rgxz$xU{tXX73W2Q>E9t5n zWoPHYGVqDP3byHO$j|}h@~RgFq?IEKCUZ2{N$XZ2^p`>CziXhMdIaXePZGL2H}zu< zyK6pt2ilS?A(6mCDr`SF%5HcR7Qr$NY?4)-AuEXqCgpnfOdP~*x6B*tRVIz1 zwbxNLcnkJX*<&yp{JGu}1FF^zNJ!h88z{cXl~{el*ol+i=n*zLlCrYL!3@VFpjTOu zkyOj^_U5upk7GTY)J)XL3Ga!@bY@&G* zs`Gf(Dum;As{XARn6cx=<&Xq}#AJc@qP<^o?cG7O47O)Al)^0<-G%Bb=}QNtg)+C4 zvisJ+YPdI#ttqE@EPE~Vfoa?|CF|ZiHCi%26DgNG36`W4v5l^wY-kO&vsy3Y!MZ#) z{S@2)-aPN=S|_Z|W0y`rDNAdECU_;!YrJa|yv(PH+27AW3arQZHpt|1#(jW0%TSt6 zu(s|W9-j0Kq8>lX6ZQCUp5M9-mXV$$zf-4~vnQ7~e~;cHx0mwRF$M$RLLSyuCA;`K zB&3{^Qy=GHoml~^;lw7mA-sCFQg(Pf?1RGmATy+r)lDM(ypswN__%HZc=*rh-@|Y+ zFl6eh4NxLfIaNDjQ?*;A>hLp2RU?|>R87nmRNa#=sam-a-0(=gplU9kQmJy|JW@sQ znQH?sP1A1{-0QU8EZOxW^Sl z;ake&3em?0sej;B*b9(cz?*Lvq!sW=Enz?T;bFbU~Of?lM#V0J~wJUhFd6 zIg~^1fACG*rD3#Q-Q46T`|K@v7VZ&)a&t?{RcFL5W7UgYMz7}!On=DJqaPKtIY-Z) z+6VbbNn937XU{%xriIm~fi;{b53pBe5jQ_kbYUOwhsWS$=~Ovad{NJKAAqaymg-YK zb@0+VFb|GueX^)C+$VNqF+OP%v>-BHjlz+g0vUdmy!>0k%j56Dqa=gX%_XCg26LO~ z26p#B_>q+JF-*le(l2R*IhauHwW-7TY2f_yWkbBsjeYq(6cE1*GVLlDVXr|n z_a1baH}{U?xRj9NQeX&BI~?T#YKOm$QhWnK>A(h*r}kbr=v0}Me;Y)xUNHoV^{o$K z9i$hEVx7(1PAl~9_z2exC@GZ1`iLB5x=&yQSj3=u5_?q4u+6QQyfJu;g>Ho+F;|2` z{R5c^cV?M%#$CvrNognyE&^hSXSl>KV|_k{?IFwj6DX(ME*~zG+vP(XQ*M`mb-qEm zB-Z&D)v-Fk|LtF34S^R5Wp%9k8`xoYp;*LmjGTm(d`_hE={V_pMw8CEQ&0dO70Pw` z1LPD>5$_lJF_jAlTqqPv^jSWvCh!x)=1cVZ(qGNm8BW=DNm*8rpsaUMRLbW61MjTg zehC{xc)JdTwY*gqN#6PvMex>}wXDTd#^Y^wf`2n!Kmf)U1-ptgvNdZ+6?0^O*nmx3G!8mLfst z^L$RFa|H@;I+w^W;?Vh?r1OZR^H6j;7k-Cyp1Tl6=fyBOzfkEs6-nozj_Ev+;NN-? zG6-}p7H2caC>9lnAI<-S1AJKU_OXVy@P+QL32f2-z(ugDCI(9r`0<`uJ#+mR!y`V|r z$$w)K+t4e1Y*|w*lDHCa`O3ECD$LgkEL?!yoo-~E^=}AMEp!ZQ&%l3g1$@beN5p3@)iO05*=s%rK-9XNB!mLRS$&IMc zr!(ln&OalP{HiV6oJmJ@30`}D;To0ReI?0kOD3HSS4+H?n&nM)fSQw=v*>yPy-Q_h z{G3hihWt{|jyTquLk)axcMcr|#!`GDSC!JgR9xI}v^tmGfwSVw|9mce6>cbHb$Rq{ zuF)f(mbF_IhmdjYRuAOU96l#9eVr!L;Y~g)ku?>dy@TpghT(cT1s+4ia(W}QN_+UR z(m)k4d=mK6haN55!{DuDWTJngf%XB|Rw_FAW{%iW>Zir@ae&uUb8iT9onJ#;@d#lg z>t9SqcGKLfQ4*`Y5spY;{CK5|u5UMRvVFKq1uey4!AngA{Q)kP;u%(9Gb`zyAixTC zx`ei}H~P@d!Un&Ij+U;;vJVU6Hci4U;qZbK2~un>LCU zqMf{#YAa#9>O+%>Zl^F$`Y=c1L!;`$c9QCY_9HmwWj=EL|j@Xh>^f~BT zAt+2gTVtq!NH(c*M_92U3YaG9(|kH_tFTHXG-N9oiAL!+gsp+WJO z@jDic7Q5NlV0Yqc4v*W$6`Nc(hGOad&&Jag#Nctbnw(CXTWRt*EiSXG(dseT9o8m~ z$JE$l#TUg~md%|&GyK1~hrWXf9r(aj{fge+u?u86?XMUWlf~wA;NPbx3l>xviX0}V z(PTpJn;I<^{E9(?$>_pAdvRJUF2&qnvZ?XeT}qS5ZZX-L+;)rA;c+PVH!%*2$zyhz z8tsjW^!fM`G=Uv=)9&oM@zl?bxak)Ls}+ND;lGV;d=qW7Hkw=x{vCI#%j0QuSY@<+ z)Z9h%9r(ibJV+Hohpu3p3d5Z&-_T%mn;RP44wtLJWx*c}_zg~v&DvNb4& z8M+tn-mz;V)l=wJ=|A#3{fffr3g+8No8kL>rr(Blgmd}q#%Hx<13iu&F94b7vkk)dGlv{cJ}0KJbyQjsl)^M$mTly(X2!H z=6e1cfA`;f8~=^Ja&5ky|HdDcH;?7N;nio>c6x}wyh^+eRVQRLe7chKRm4BwwQ z@$LMOT{IPNux=MMv+SMJkTweyG1ddsG8yuhBIAGHw^O zBs`0%tZ*mI3K+>w3K(g5jq>ZMbmEX|<8!SOI2hf?uaW~sgeR8+R{kli5Xw$}iI<$k zFVbAVvFJv&ri2(N=%c!l+eh$$=X+tq;HP<{PYfGpI)~V}DPUu`YGbU%5gd!|NWZQD zBXzGMB>@``s5TaAY~WaQ8#B5EYzRhv9Wb&^HL^ov1jnKq@plg~@=n0WKGn!^Y2@Nt zaTxh2HN?i*fQ>V%jUP3R;8=7=hV}>;Dcp~Y^i?y{qpz&gqQ06+#lh%Cmi7!75tLjX zurffkQlqtkgVC)VP7krt6tLn_t<2I|!NKTO(t3wjSrxF-s#1Fq zE*;dc@>|u$L9Hh^7~PW%nE@k$mD2%FPO4VE(^|p7=vGc;X|0gXtmS9ym(}NKA|zGG zBxO};l7xfYP(QvLv?km?WvZvG_5`%*W=@+u!{uqiXA1bG0Ck!9M1EyUE;D&7?>xN; zzvmMKP^$d3XOSitsv?Xzik}2PUzUHFCJ%1a-8SNm5%nY50#NVK=ulyA5D!s&@g9OZ zL4!NKim~(bd$>;<7!G1!0ykyAomIi;?o7BQ$Z-kbkV`d?ORCs`@92BbriH}8=#ai^ zgWMYd`HBYei~WidkZcVPbMh Tim9=2nt5`viQ(pKMq?)cvQ!jv diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 635cf971f13dfc73077f690c8083df2baf3778e2..114df6e61cb01d283f362d573969585a9f2cd238 100644 GIT binary patch delta 68 zcmZ4Xon_f~mJM4t4Rb6rip*20QuQs(Q!SD#jLnmcQw=Q5O%jtWQw)+*lT(unOp*}OJZ!X{Jv+}GtVu&FQ3o;!FzXABG$KOEw4Z`1E_-nvl zBmM^CuL*z6_-n!65d5{`uML0g`0K#mQ2u^h=YIPK=H%ui<|cBpPRu7~r)HmcV*aE# z@oakToJ4v~CLc@3*r!KzUiiODtvtH3rD6nYoYL9EmUeoFu&qaT4&nP9+_|z}VD7AR z?xfl2)ZAEd7MP}ICt}&etkj9KWAS`CmQ2Yk{x>O(ES@{GGM;DK26|fuBt`_{=>&?} zmtm_beDm15cXc*twBACK%y)NZKqGYqVT-rQwn^}N&)_9cBjgNGW zXR&qCs6lHbnq+g=bp~B})r3f+kFM+du)+lzwWsfsWibXVwbu2W{XLcGIGgoaXPY9J zN#y$SY}Th;^Vs?aI|pl25fo^K-M6XJTb+z4O+^tH+tw6p;(I^Tc~m7SuKuF4MNq6x z5V*1-IDtL>ht5W+YS3Cj`|=q!f}^a(dcx=hyz_$!7iiR$|EAOLLS%MA?XBN*)_JPZ z*(}@m7sD}@jrAqi=Fh!?V?%XHmGzS-;wS@L1@U_VVoG!R}_n`Z$KN8(oKF2mc*y;7eGue1w zl5M;e;fmU9sLp7pRzhi6l_t5GlG)<9y-obt=Rr`ITKPz4hXM}wsTvd-1Q;f5*JKSWtBl~jSc>iU zT4$i7YOpob#IJu1ZBN3cIe4ThTfD(Pjt%>uvq{-D0=3%qRd03%3zVxxv4riNZ=wkn zz()1c9lBV?tfhLuP7tn&r(#x&#aL=;pPi@)R^>4K93-=mNFlj105I zRF5FrT!4C1wpW5`4cRT$q#ETP5LY*>RX+jMJ*akk+*yyxP3MwUuNp@O(1)x}>Ym3Q z{5MKva89-OQ7XrD6&m`{t2w+%g&Ypv{q)DWBYyC87hPE zi@)sr7S-x9YZUMNT9?OUsWJZk*PWf7>UcIUhYwXZseD#OF=#f`paWO1;sThW7(4?O zXz7Yj>#Fb`gL)-hldmT(bY&QWY_rlg0<}^AP2@||t<2egs7n+~7(b)h`w{BaW!&h3 zur63B-B&!`0iK#<27|0!yYYCYFV2E{hvu;<9o{BOK+zTg33lH=Z=f8=KOg8lsZyaP zZ%-rU$Vj{Tv*+gvD6D+Lnl+Xip29LV=?^!~S^9LmN9OtDPH+AhDl$%|@E#1Lm2 zmwAWuPm19_mc;;Hu`0BH2sf98*ADcCYtkh(cMtS7@xOOaEepKD=WUijAPn!E;+@Ez zYJexDdI9`(gEvwd5q9G~s^C&~XEd1-6_^x?s{&NJ7$4FFT(b$b?evJ?+GODawJ)-X zzF17wZfWgVS76rg`yTJnl}g>t9@c}GV&WjGSLzciLnoG%#zplypmr8?h3$sn-VZA* z+iqo1!R3|D8tMJMX7Duu{clMio=YU-aZ%y*$vDjm|pDX*uT_&{4c z#o}YVP5(DhzB1*VT3Jd~_{tQ5?QZlW{Ib)=9J3E&?%0(5+MfP zHq|(|3^9TC<>TZ|e>wHWm6)_$G1hxjrIs*3Chc#&8q>C!S@a>&z6mm89X{<2Srk@l=pFmiOy_fD#0 zD~>mLSnNrt@jcC68nH^LauDntu+9{ZBZJ))?9rL!Y%e<%pW@|VQNCACrGX@!!}pL~ z@9|_Rk9mUlSoy^~44Xzk_nJZ=&9=<*2Fro`KW9>{OXChPX*S zj34k*s_}AGFFsWlsK_e6=Ui`{hyD8`#Bny6#0u-^Wg(Fv z%7L;d-@eRyL?v5rvbU+4EU-1lds_yGI*ZF3How<9j=gg-d}?sjw=4VL9xQ|L&?VmY zE7-xOdIy)0VBjApgYnBQqeh;~<>IoDv%owrx;e~0SjFq!lUc(}-WqnyGVh>jw}^*C z5Dr%@qgruk*GeeQAH0U@TH1!^+m+b^F+IBTVhSKqBS0H_{bFy}Ni}vVeonRP*wNx+ zFVlIG5hH%mb!fwbm+SdJU`Zeu!>3Y)?Rt%>HYOH|lBo=;cJuQ+^H}T}?_iH5GSC*u zvgOOrNtT8A&u_xO&qiL1(Lo8V+3sy(TR6E9xv;|`Jrmd+7o!I+#A^xfLo0jZVvJnn zP`>k44D77ovJyEM3&HE0LYn+F%EzstAYXB{x2Ewb+b!{YGQpO;?rrU_C?^sbw&(-& zaPWzzjI4GKWc$)t_T!tp!KzYrg1fPtw(K770hR2XTTt7ONib73!~*h){UkJj&AQdw zQh=f^rS%(cMHQFQ6xLt3*ZXP(`_pPPEVqo&hhLfo7jZ5shp?8qUwj^=GKsV+R8pBV z#yjzS^vT`m1yE^9Lc2mpBv|h~=mpB5e9FV(3rQ#&H+T}#y7)pGb1!`%xdm#aK!Tlf zFMT1E2KlXziZ7(nDBH2#l*?qS?eePMQU{RA=dwu`>qIVxMY#Btk$Ft8b|f@wArY6X z9kfn|QjX1fI^4`h|DL`ZByMs?3l`=#AMYK{0*_L3Q2qu-{Sh9QtP7N@07~0eKTY2a z1+dW-vMSugYN@LUXIn6^`#PQ=Vv1pNa_wQyM2N8WmA&6gWB4M z{j|G@`(B{ve`+0qMoJMuTWZDU80tl}J9t4JqTU_U))sjze39C~J?jk*%A>%B@WdW$ zY}-zepQB#Vj)7Pr5${XUYWjS(dg#zJ|+E^mL2Cz(%Y z&<)f0po^YG1O&ehFJM<~LD3vs69?Xx$w=bmQ2v*HdgoSZ>sIz;{K@xvC$KlS(f5qV z+`zRlWn1tr1M-fKyx&w5nKrtDb~)V(KA|Qb$B-yFt1&T-39p{+fc0Qc$`MhtrHG*I zFAwv3|3h7!)Hb|4%D$NFfOwNOU?i|OM(33))8K>D#!Bv~~%k`=Aiq%hy!Suv?U0S?R-CK?$=~ zd6m`8Uv!RZ%ZufL|C9XU!M^7IlV$!&jStHOdontL906+X<$`i9DJnbvQ9mDzEb$cD z37S?XcD6Eb^mI%wYAb!TwygkchGmj{IjlkMXF9W)*f?T+=NKF{M z%kRVDe;GY+3^kiaRsEIJ zU3vZpY&`b*_OE1bRQsA$2Ep0BX5~*|!BnWuf&|=Ih-#Ht5NH)oWO3C9-zydDwr0bj z*aG>$%D>RUzxsSX)Uf_h-(FQod=65TE0GLlyTQrb3)rusz99xw#RJ%fubEv@U)VsF zUgHs%4g@p4A6K&fXwz2t$@Hf4x+bu1hWlEDzEy5zIyJ%y zv*l@DOSJ)&Cm`F0@eQ76W^bf@gB$@>XfoDVgLr5>z=tJtvM%CZMS{?0VnVzt2S;nz zZGLDTd^A*Oc=mW7*3gY%x8_CrphcF`{L@6=H#O{yu|9mN=db~6SAPy0fYbz*><`uk z)%Bl?Q40{P|FS<=8v$KaP!}Qk)uFxvE7|$OeI7P_oED^7QT#JxiCV%qwr!kmh%{tZ zsLW}=cwgAT3Nx8>gzvQqw(msEqgelpiM~*I{S8O?>akUXPd1ki^7w>%;97LxKRynP z*nw5i0ppwD)# z4b1d?i!CB!*Oe<9I~!v`8IWH#+t<&-?wJlksT@v_h&tD?n9bujiTLyrj2!_TQzVdJ zw;f7@jnQ_2{C5j{hgY(_4+k?TVi8Yg^K8mtVMW}5T^87@GkhUS*9G#XQ+@xeVEqt4 zSPu{Y7KJ9Oa_CTSR_d<@U=R)DuKYWZ1DoB7_F;95!kBx zhd1-5&i3IOs9_-@S%_HVA;NCkFnj{LW}&amLEXlmTj=X5gYo|7`aY;&-<_t5ZpDQv zTIO_Jv?7e3wZ!N1)MWE98c3)6Iz5Rrc0x09pL^KZz9AM?E3q7#agi@G_rU|AK7~mYXKxtd(ibE2s zIFXjN9nw;nj$jDV7-vN04r^^)uy(*g>mNTxtR37{G{M@z3U!ZtoaPs&-i+3mPRFv6 zx~vm4usrp)bnH!#cLa0}B#@Wn%Ygi6Pf>V(bQ=a6DPr>%8H`;W9LG*xjUK6tz|HH? zEjgGgbH4o<3iGWG7y`EYMEQgV%Bhcjj@q{1pN++F7zkCb)?8A_bSBLX+Xs88g1&>x z&u4-6p?4FNUk>GGZZi&$GAJO{+~~_*=J3EU%rgXk2QSD$1VA~I|9QJ{fg>Z=P*fS& z55J>+S`eh{-R61bW#3>AoAw7^eRVFK#2QSszfDXyQt3S6TXk?BZuRwN-*W$_no!kUAdY7-RK*(i=E&9aQ#$I{Aw&D`tzu)Ei zSB1rd@^MM9PyXg>WrLn8Z(`&>sOyWx(n)+QqwAB!!~wz_Iw)*5E?^&T^)-32j)crW zN~BrfEx5sGi^)fdFgEsT94Y+Chv*5aNtf-uU6)O(jy=aWo}4hGsx%JzFs-pd(|`H| z-GBqTO9k2?1VB06)Nbkq#=MDE6i;KqFPT%;=zHQk`jIpx3onw zRoW>&^($%xPwqrFAk|GbpfeENAjsPSE*n()Is?<<_yF^$jeI^Sk@`5&Km1(gJLAtG{&* zI3GN~FS*y(q%al9J3)|+rBax?$?)IQ=eHugS!dI3d<}xW846 zka2ups`)vBqCe}baY;$$aUqqX&}c1`P{T1K%T!ixW3ldT6vVe*^(4f zcm&D-HnN{f##O50`}w<6i3{|_*TJtseteK$-s*3*gxm#2yo4>#DuJ-j(B&V9&lMcU zNwdZgh|NIWUxUrABz&S~`S%a^W96)j#I78|vA^G6U+osaPAqnT#pQ=_BmBo!dW3;2 z6D+b~+D!sK{M9#U)xQ2Zc2f{eAQMug-iS~!CWrhO_zYNQK$*eKqx>IN*crIBABg+W zSCm(;P53K4Y^V<$^4L2!ZorXxY$m_(3KnPX8}4tx7m^G00PV}9nBxIAUKs=b{qe23 zZ{B}!r6foak|4W(AHU4t^bLN?1qBj16XAgZ%w+J3ef@7&u=C@7beIJ)T3`C00MrK9 z_xoY;deh$C*1GGnYNd|P9qqpvE0!Q$1>doT!)0t>TZ@jbIH6Gn)?OKaJv5hojnL=A z$NP_}WJ~vvRj;L19OZ8jo{>`GQ$mMFk&G@0d=pl=6zKB{C;30DU>8IXz_J)dKr6#B z5kb%(s(>FK1b4EE9GX@lnFL|#F{pKTYA{Ubu@r&PpRLa!b_;|&LP$ghzE|7^6vo3x z_%WQq2Q5m18i%AWv!Kxw^ow9^9L(F;q@zvlMqlS}?$LgXr{Ld@)j5SM6k~8gD|>vu z@^;=i*6;IFCvzC@5C~pRDwV+(lU%~O@o+yDVKh`LA*|GngJTO*dB;ruf=Ve3hj(a0 zVqNz8iT*aBL5Q&vKiZFFATnep^Tl)g-&Yi;vs;e!W0|l>{EfLZ2z+`1YBQZm=0$CG zdcY#zhfOv*q)s#}tX5)z2Tp7oooY&FyIQgR96Xh}`K1$4KN5#u+qF&22;W0OmoQ_K zI9chI&7Ur!4*k@FOgUY8M6R^n-+$uA)DQe{<|T)ZT?8xWWyN?eCVhfl#$dG)Lwt^- z;lZTilRcGUV<+L*Y}>hpp2Q_RX;VbzBrta%V^Xkl(k+vx|IDy+aHA*KIq8<(YZqXU z^5pPYf-O;^22bMhi0*~1TnO65*yHC=zfhFUf4J0-WhiA$)frin3m5O4j&K%A%JniM z{~~`^aWX&pNA_*O=vqMp;(n5~&D=p)!ik-az3fS;leCFT*yk$9yY8<9;fQNj6Ho(7(i! zcffiJOf%FSY&&S3LD|?l{W$uu+Mz3@7JrWEl_NDKf`i?XvxB<|;9KO6=q%jI99euU zcw;S)3Qw?0_sXA;&m6;6#-eyn-bGW2iObQWCgVA*MG<`^luyRkvZ1)scIq$C<2bN# z0N}n{irxDQ1g`_yx_4re>+|(Ar?4`xiYP2Fw9qMg6xhAN-_AOjDWc^AQAEn-pp7)M z7=43F$X(DyH<*H!vhc`*ejJE;^geVIscbTXRb(d+a(SHfli#H9MSphMYX3l-C@m%Q z%k}6n9RsQe!a$0@{+J&pVaMFzZFsCy*badQhEzd_Eq={E#HCISD2)((gA|(0|JjdIV4&Y(L^OLU749e~_VorYG;!zi zer*5W{~OdzE{Rnsu&043m%t2a>;{axlb%5<$Qlfz0bwz=;xY7}CK-c4E^+;C+!%Ue zyC2*ABOmv-NfaK(peqe-9EL^6^)ATR+xZ-QLkNSU;uy@l;>YHG$0l7uLXFns=Mmkd zwC;FK@fuQ-Pv)>CBZ*-%3JXkPLIGmf+tN^NN$XN+ux(^`_{iA?DGlil@Pb; z6b?PIo$q-Uura$(jF>?%Rm+2QmMz_mViYCw=RTonZs28qYZXAY_&qW2BNeu0!|-wJ zwwL|w1~JCoc-h}wl*%Ljq6uvS;=2fAKYk6NtaH$I_{z`yn6hKX0GG679i?$0J0^$P z(Vu{cgVo}GHn1E!{}TjDaXSCgfBh$meGeFuu7(2Jcs|D0TXy@~l!|n+GWFVS^e@ts zozBBQ_B_+beOC+h zfL?;QRj0*G-~0UD>Qo-4RmhE#04>rRz@DwxDPRlct5HxJ)!47MNbCP0vaPnk@lw(P?WU&~D>y zu3C5U;X+ZWBzfmLM#?!yu|QMW)DNkUiLDVnjEqMg_)AtzpikhlQ#&(VPn3wCEf`#QrBx<6-qD1_o87WQ*_g;JFsM+$W~}n-&EIvM1(PaIJ)~ z46``U;fAUSVq^ElI>%|}2c}fA)h8)M5O3FZG5epuTIU5iM2>_QlSj@A^qN%5+LmR3 zcQ9YkrF7~1aX}zjN@w)N)W6ry2@GJ*FA5B*%q1wcy`ChF!eL4~>yY3A_WMPFb`8`@ z08c|K4nzwR`Keb?Am4FDpo1X9QinDqM(?gO14A`n49z(+&|8?upTCAe_R0k))~9F7 zVv#kY^wQZfcRP{qw~``Na~XgaLhz)4rh}W9a5{aXp|UWyH5hCXCTa?E+oE*7I@{8NN@TT1>^Hq2L@sW zh-2Nm*9Dr{rWXR$wc5NGb!OfZ7{sPrQzX?-N#Q+)YtRF`P1Fcb=JVfsC`^e&fskXN z@m@5V5)!tVh4)gMgiw7o?qsFeiYK%)68U^gSN2<1QkSf8=?#g;$Q$VON@D!RUk7Fi zXJ9K95;z*6y@7X0U|&|f_C=9UKOsa>1!wdWnlLE;=HbA9gfEIL)G7^iKUI{0qd)3t`t~ZL|H~cJa?W}pfXgbe#Pv&q9f}+L)tACetak$QS?81GU{LSU ziYgSKDDQK=`!0pTcbfyatb)z+cy+K<^rmn<$>2`s1P0>mZWQHKS%Y`C8&jI%Qs(#% zsN(#%zkn)zAnV+LCg#XU z|By@{7C_;EjzS6P2w`RA^Vr?^&%c!;>e=v*j4czW*jBz3XM-F{V)U$5SMC# z*k|i7p-YjanXlo-F;Q`VS^~%v>I5B$miNeHzStMUp$sD8U`7Si((NQ`mA3=IAfhUZ zco=(J(C5L4SY#k4r)LffwpVEcOX7sY*uw*Z-6mDZ^FS1Fg_9q79HnNnh6kJ3&RM}4 zEWu-DC?=+_Gz2?v&c_8CldX-xoL(q5^Sz7T?L3(w3fgSAO~d)Ve9XRU%vSaUhgKUibw-YD z-Us(>j@_RcEu7VAtZ6cc6GZ-DIb6MgudwN)3Zrq_B6N8w7e47g5lK>}=g-bLSEUAe{27WU(IFQ}%5>b(n#Ht$h9={nI?AVh4 zKjzRNW+N-ICKp{!+O|r{*9N@ff`iy=^$6lrLKZ~}!67oAXaOco|6xY(qYAeANVLb4 z+qTgK+n$oTsoBALhb2wqGq~Z7_JB>*M2h-E@wN(xwp&=O#Nt%p-Bx-vrL$f82b%aL z3xe1|24AB$9MlB9W^`Z@1JgFG3B*_g%N{G;viQ!zAU2N$O;t);4-8F7OirRCN1q1agwB1B%umKzT~{y0Z;qC8UC`8gIWK z4|&NB(Tx#77D40vOcsKD0jjjc>DtfFAs?KxH-Zu&X1Ej^67JZ8p}9+_x<7Y~*kP z3zHG;58U^`p0j#s_2ucPKSw~eb}5ixZO6goWkCLmi>Rd!ALnGCn;_-|A_K7lz0VA| zL)p**cpiiV671X=h=npB|M#WT#BBye`X9}53Rnp86R)6&*_5+_ZJ4#;l&*+*w9Fj# zaxpWT&t8FZaFG%Ousf;*YNbG)WzI%}DoWU~|yonZh+M^m1Y)p$R-K0ZCK}WQ&P9mih^gK#(o- zj%eop;X!QogDSo{L~eqs%1Ep#{Le337=|M%M3x9+Mb79{8I#k08^nG;IP3BW(pn9q zyGyEVeVo2Zmam0cCWTqC;4Po;#e_30Uwuuk3l6nl`FbzG^yur^>w-}Wv~ksC~LoScN- zr_Tik)3cW`eCw_m98y2HfCI{O@ED8h3)qo7*iofn6~qE|Pg@V;^y#LoNM}eZF&=&~ zcq;ByQyy4KMiD*AzBmu{yT^iF%y$)3tCZMxj|GPnC-W;_3Rb#o8HJ562Yc*HG{C=q znL4U_AHio>9(z~IYC`R@iKXy@FFs#pJ}y~0u#RAYldcE`%T8lORk^T|OH zyhYhG)P;ty!2K8&RW|WDy!!V<5sV-f*%0Agx2A^pJ#SM-oqk*~Fs8KtBkt8{SGF4C z-ggxJHcy6b35iyW=@@1$STqn9Z&z#!c2*mxNkZ;E3dD!n`c)8OGdm*9eDOyV%i!H^ z@Rw0g!W&v66B+8)(FB5^q@43aI9jA4Ouqan1vB_MMTVj-^2+DX2ow{YlTe%duV537 zQf07f$u|2#UV8B#eX*$DtskOgI1moU0>a_ukI*oRlKIlFgQwvfm9P{a66#QvL=_Hw z8?DxXw54fpqf|x7{M~PZRkkH9zV#m_W6D4!^XWfOW%YZDIxIXjD(k8u#dZe+3)us2 zp~rEO5m@4V@7-@9XD1nxcS;yO$ z0?2#-7-Ph#IGG<138BZJiYf*fF)B{xk9LO;dlwH5VTzuk=DX|qP%B$KGUTaBrqc2S zoO(~Fft~*&2;zNgmkhRr(|vd$^iWU8yGIHB?MNaz7*UT`Z}ELM>+VnsJ3pzi!Gk!H z*iY+1d$BR$Q2!c{jU%FS;dLRO$fb+`pB*O$d^#XBXis8nWW6eFIXf>Wl~dYq89SNB z0*mnq?i^-m*_D2kNc&|#O@R^6G7qt^e0E)^k({DU z5U$N@f0V+O?HBrh1)lEgVmFKqEwWax)?Dfhvk_xL6OErrscRRN!1xbiw0E!_mB$%~ zo!5ujWXNO_`BfuBr?5dDSp@^C-2xs6^x+P;j+a8b3OHMKHqH?qF_GFk;-y_>GBzF> zif>+eH$u!Hv}5Y4s0f5=J`Y^@Rn9MDnFV|Ra-X!trWk1hUXft4`I@f z!#+H^Z`wcHFd@|GK(!Le5;-s1G$B-9jPYf&DaNP7(6~Q2I8=`Z2x2UL0dgQ^CZ3E2 zLrf!8x-klF!-`V*dvmFcPfjAhD8nKFw(a0hZ&4~gZoXoMsd5I76$olL7)#rH^wJrK zVPbC(oTSBE0sCp1*#HZy0?1aJkFS>vr&E+_ZdzvJ!6D3BgaP@u8TeslFN_mrjDsO& z_9or2JLC+CQccpfYji;q9~&ifuR4ojbjLhYhWITV-E~#tsB~I91uidW_4`@yJ=CcxE~e@vGI()l#D6V%i8AU(9407&;1U|3TV${GIF z6%@oTortg%_R(WdHA>T(ac2n(bcZ>~j==-3rZE2O%n*(a6k7ySRTj#~(fZA`ism5Z zy$}_gNa3f+bOqPo2q@+uVh3sg`)n3kNC_eQUJwbP4bDcJ-Gc!CZk6J^7rWpt^muXP z##WAj3&@1rn?gM|7N91B8|I>Kq716EqK5dK8x?z5#3BK<*L+pDB8b0ob0~}nKOP-a z{S)S_bazjD)EsmLnz4i7hwcc=vumzEYjM)6kj{cjL(P1|ouL!(b0n}PIwb)dazW_F zj4uaKlWq)su^csHk{vrgzdQ7A{P>8rW8@cJi*DZ}JMy*bXdZdzIuBMvOT@t2mu++Du_5NEM@4@&c*ibe?`H z6vC6?SmBn{gfFIC3Mb|<*e_t~HlPL#gzs;H670hbsHmc3e$JmmSQHVa6d6)r%U0p3 zgDG1ug|Q%GYvq&Gz$jAAL=I7{6D# zJ5*Df#*#!_&us76fWg5n&`$|uh#NX5m$m`wzpCTSJ}{QK9b)~S+bVBC1dHD-${e%J{^0>0Ol6``Oa z&?NEfDGzi0j$(=-haNwQKZN>|x=gGYG=p6+w0JXlPb<)39lcz^z3(fMZ4Ridy@%R# zQjN;bKhzX!@`)HO?4b|A161|+;i^;u=l5|1i+%(Qb%~`6w*Yp^NFXIRmIL|U{-qfz zkwshZ@u6&s?Riut-nyo|ZD_?7jCm$i=f(H^LQ}NNX_TQNdrGA9jbDYZ9DV%DAd$@A zN2g3Zdhj9`TBO)iu6YIBegRxdFl{JLdok8B<)L(KZdz3sq59sNrm!xh?zc=qY^4`!!f2FWxEFikKVt5KwecT9 zcuydo##76xqp5ub?MF<1H0{?_!LOT=_k#QKfW+%VU)Ta zuxu`<`{lzWj-KOxkI$kXJDM3kLv&)~;d4(JGDC)s$RnzCd|9}3||W04n`5o<^* z{)tYe7}Gu&;9!^op^U=zT5lNpsoD*ejIm9AD5>fTgfUlNT@%JTGWZ!75!{%S=Wt{Z zzu9;)+teN2s}OD?7zce_OVqOvFGVKA(b?HORR5ytWfqIKAi_l!;)w5GD#KcnkXmJ( z4Xg_HDvOSWu=wn-Fka!c3Qf32>ak7!u&)r4xe47LjSOSj^V{z+0Oj%cQH*_`4AX10 zIGvzg-(B4vZjc5XfhH+Xg0drnXKTqwmM>0)(WEC;hOs1%H-cu(!U#8J?{E!Xkj1SR z@dz(*c7s}5&@K(}m$THk$JKH{K@YRWr#n;p z=X;0Wu4X?Q9bQ#;eLwvq`R=p4UKSe@9!0(y#5S}eLhzFj2s!02tfu3@9Q|Ys95&R# zKofJ@&Gq3xp_W7%2Zo#Y+Oc6w7vZD5*js*Mdh>Z<9H$Wa8z$pmGu+fzh~r=??Dydy z3j)N)UO2Fnw#Z|zabe6LFY<@mRp~7Aw+(g|&w_;R#S_BVYCV1om?d%vWJatj@c8uX z$U^p3(v^&#e!`Ot_%sQo!kFXR;>#99hVU(igt5c;;Q=yZGLCQwB2UsQr*Ph0ys3wFi$hj4+>0>w3gl8#xh~&vqok zV)9;q1yU$SkqZB4y6D!4l>{j_9LJUhG5;9PCS_4Z2SgbKh?`$T%>lF)KX!)b&xu+w z%D&H+*4j2p^yXv2oz=N4&R0@Z;b+fdDfz&us4YBnuMqrHI(EKr-%Qk2aXRl@5XKYY zs4lNGN4yY}WKTS2iVCw3lwH_k8x9N)cND-?X2UOENSzg`OO;O5mMVm(Em;T`z$;Ft zG5P$1;fgHIPRV`>pW8TeCEi}^IV9}05d6dx9&N&Gd*LDBVOF}-*tH(Vr>CDyO>XdE zCn#aQ*y2ptp5vk%4iKC}O-9YqSIG_Z(X*x<+l+4e)i2CD2r_eAX zQ1WyYx)C<^*S(Y2A5RGTrIxAzWvy;TctnYG{_dsJ3m-5`m(H!V>%4F;?m?S;5D3y9 zpK%4%C|GrP@ceKZ`}-8A_+5Ija4Qx!!3zlvh#!b2FiXsOO96cC3dL=xhN(EUcnw`x z73UW~&}*ZZxhS)sIIJYXTdq?iO<`Sjcb*p>j`QC{Lef_j`8BH?lK8N|c`->6Z#rSy zZCMk3xAxfS%rm9T0DU+-hkhHaCkm@rwkaq2+gxt ziPzps6t`T07?tSC1HpM{vrR$YpUa5Qu}KjVI)w)JvTM6#z*)^LR> zg`Lhn+MtPHVLG2-+dd4p>4!ICbd6Kod;I%_=l~6_-_;~M#)zMT>1Q>u+P(2^yyY_f zQR;#OOVY>O=-DtPZgF8dcn_-as7q-)F&HMW(yrj?q+{}{ZT|YV)bR+W4sP@WQzzZh z8~y}!GE|B9Nqg)xtXvoN*5X-)6g{nJ>aYYRC>j-d5I4odi=JmaZP*cv<5%_Sw+1r3-hlL?9=uA_d z7zPRz5gk~$U-o5Z6aVWDs>|u?!-H+1na|3u3l^B@b;dl41}1YR%vfLcEDG(UTZTvf zohtPB4enyQl)>0lGy*LPkG?~JtBLoo#<`ZP-BPpkQw4H=c+t9W6P4c*Qq5HeWsDar z0o7(9z{ak@Ouh1B+Y|k(=-6>E5*fl)tPf+sU*;wj)=>4$A~&~8t(3t^+_Pb9yx8j1 z1j%ep`^@%BK{m#Oc1;0p*?I3@6!_pgpgJwy6+_%t<638&O&N=eN+Wh)+Jqk@N@F`w zv+u;#bvaxpc zcNFMuYg*^ncT5S$l-7CJ6G4<;^cKPl=N>Qxm8DMNOH&P}eLGxOZCqf8&m9OsM@Ogg zDYX%dG_6!}iOP~oiz286D+kk>Y{%OuVsSeEUH=Hin)Y{0IV1s9j;ZgMa@grSJy0=g zWSc$;55QgHr09cjuo`>ps*?h_0vN}t362xLfLl{T{DNjhaj+1;#b4Zq5j2%;@q}|M~ zV0r^c6Su)CfNbU|-e&$pFoKQ?)hoDb86q$3i+6xDbsIMJHFq0y><{aTp#MT;3--2* zF`((&pkv^Uo(Q_H22Z3DuSjA&BseLeo*c)q+AN}4%LZ;- z#I5~qePpXL@;-B zK~hot)LG}giuX|bx;2dB#en@Hn0`oI5%FM+qhiJ2Dg7hE?R3W~TRA%NhlcBG)vAzO zH=4|5jgR1AfH9HR$rX5-quAs-^^swAx?_^}-(PtF5i~Ke(Z77_kkY+5Ppf4pgg~Qj^c+_PiyJ%2&PQJ=z(}eg4p2!Uj=9-HghsM zlA>fjXr3a6Mqa1_YG~gDsr<49hFAu_=9x0YFuLQni^XrN%p+<(>`GZMMtOqM?5aL^ z%&m%P1`cA0qo=zTQPUQcCuOMejP9EKBD0mQD;?}c$m~R2JLV2PlR7a`c_qw=%5&1K zV*K%JYPiXx&~s<;$gfQjw~OO4KHoSBBwa8HN-&&qG~DfiU>qa)SbA5x;e6uw%&`%# z6rnQ1d&012pp&OY{0?M{UON>mg;B*)8(gxCSpI3cF0Jy7EK1#Rx+n!&|G7wU#O`q- zm1KcQs)vr_r|aa8Wr3mB4dQAOR-~z3kB;E1O|hQ%p{&tYDTbZcWlZ79f}|)^&MS5RSG(`}_ z**iB3+oHh{)!uR-KjD|u8c~^O=%g=3VbSNJ3}l`fCD?ikVPhVYF?)6EYLGv76E#p& zEtacGi!e~f3Ug_YA8;!*R|K-$OUCLx*kj2UkJz&dnj)vLw+bMvf#PLYN?nmb-C9-GbgbT$fw3T2 zyFtssh4)5qhxExMk-@93#K4=((J!;!yb+TbIv=&{(%zHVf}cg23P4z=P2N1a|7Vdv z0S4o=g-c(|fBAI;8=O1u#^43R_$9tCP_Jjl1N;qd6Q4H}9 zpNwF$le{3o_@fwzNKZb8`|8q2GZAz^V^ni5hWIgmh+vyrvo023nsG72w>}-gR=25h z9Bjw6c&c+xf}SfATX+}KF?5xT+LpU(rnVgnwT+HP?2iq5Ue~tLjX#X}guunlohE9b z#kii~ zux@nnuW2fvlcl_P0%q!K)T|pGMuiGk@+5Q1PQ!0VU;i*hB?B09uRM%V$s}9mo_>=W z@uC+ajiM#dWd`g6!goe>+0&|(Ihdut-%iD@k!^huHH)RqBrY?^3Qgjup}HIinoUI# z$b%#V+dx^A|MWfTy+L`fONL76krw0&)!^P-Bw_M^3xZ`){*Mo+3x^-j1xpIb39^82 z0!Ei&fFJ*H1m_jb-6+`&z#XMgy=)&PvDsl{eq_E?~}E!M`NR*MA_{ct?0sj^i6Ldas@0aR@%cN{CF0A zQ)gvEC%zdO=_pwCPOIs{hV(5vN-4dyLl=TfSxO()c431Zq%a4-!9LYalQEpg$GhDp zvj<w+z)P3I$w#OSYca$!c3m{#wv) zdb`lQj;ZeQ;g`%1jg0cs7O_+_*Ge|l>T9}2TIrU#;Ul}yy-uv{!rr(sXY{VD?HXaF zTYC45QnYa85`83Foaw>;IoV?^99lYvaEg)74jr+U@jYVwnsrvI;+B#aEcv`-2~RHi+p9fid#La2vp+ zhrYzVnaLEV@l<(>~S^Ro}s(0LSFWC1$JSBeJK@xW$1QkXb+yIco9iR#TYplRh>;;Eu z-rDBoBfHe|+frMOqeR@6P~}$kiMfrcFw&XqK2kHch1@2Hx{Vf?IPDlvXCLg3Mw7&S zI$7&DtA(dLcSiAxJcD{sF%E*`7O8AsI?diV0CiHF&hI~gg8#eW2!29Eb*lm?%?f|l zcs6iCd4VYt&;m*;^T2Fs0m~<$1(cRxTPC3el*afiCwAf6kH}WzI1;LPb(eaE9;Y9Z zSa`(Uqy?-2{hEVoZxWsnw98=p<5M(soG-y|3!jINAldAtaj{P}U_w{Gz;4^byEMdS zoUUn?77(mUL;Q`!iZqsHvWRFI+qhlKc78TORdB{2sNig>4VKjISc*a z7f?X=PC-ED#9M~48>7V}v9C0bZJ&aWb}%p|EY5}=hLA2!=cims^}6)Dt`@d>QdeCS zMA**DP320w1z?JH_Q#fOf({|VT1mhtEIEH(|)5JPlfMKeD9fZYmdz<)Uzo5zncdrLO zLr2ER=c*6E%F&|3eG?gItQMN!ao31S}4m!j_xF^}DL>eIx|!PZL< z^A3iC6olas!%GqKPCA_@Nb;`xyNdO7xaX$oy;;>TKDr<8>gUPg?k5(mh`oHDo7UvlJkzz1O<4`cI;big<~4Lc6xAKx zgMpP>x|;bT&r*|z2U=W`yZ(b-UU~w??&6b(F~(tRkcZ8D#@NZ?AhC3ks>3Xrx7v`odOcc%BcL)80%^8=Jp#}H6>orY zPv$=_k&BjWpbr<3g;i8#LCkV$Hts=U;zs(AG3teR%zKrba`A(xO-IOG%0E76N@>-O zDdj(2r;gBaM-DfJ(LfM0DziMTZG1m$0fRH}L84KW3s8Ex6TZL)iN-8V@o;DA@5&W8 zMoThQLCCsz8nkL7CIbd_TZb3=9IVj#UGFL<;8RLlck9Cks&oZ8i_(SPw_VU5m;P}o zz;QqVZ=T9?;&6b^lZzQ#Wo}8!ozSJ6w!Q7;(!(__0#N4E;FQk6%J7F{msnp>!~3bOjCQwq5gTSD%3_Jz;vzplur8RpjEfl)xWlm;cV__daID4(?cYAsus1Tc{Z(J=N!#x; z+%swXvYM!Mt&R~BYZ&xfFQ|7cP8b1QJ`#vY2RNWEAcjb>{&9Mjc7U?rY7CTxcu$5r zURw&Boj>_iBIqK_l8 zg}BKOl>2Z-5Ct^4PNsbR0aU5PysQD@UkF+j-WjKAwG%JB#gmxqlOu2&5-$gdK_8y* z*$^&Y=J9+$j9f9?2BeM{P}2ufIHPjCTEHp1uuKC!X#0y`V;#Il6rolYcTZ8wO}R}L z#s;XH5*pO95jmn8o8506)ZM}Y!@CDm;TEtAgE+1!h%mTvayQ;ev@x7Bj)_RvHn}_O zhN=mYJKbka>&8xZet%orlmI89$%Lr;Ra3fK9Vp&rHOoMWStw?v*SK8`M7G0+(*4V3Y zXJJf$a(GWBZa-DC##2){d=tr-r=N>|^7)JjXMV0YR2h8a`N*rpK&#szW0@*qlVW`EcAkN|={LMUmp{eaG=CD?X37IGR z{1d@CBs48bBDWk96}@^g8eXxgFn`A-RMUcUu^5hbQK558RCY1$lrnHRb#cC_-99|A zhK7A}cN^QfUv~|Tmf9>DQ9o(iFs?l$NnE zR2kM6$xM(Mgl2fhcf_fZ8|xNA3LC|a1=T{_WB|S+3v?~}9nVtKgEq!umwlrT?ii3=n5BQybJPV+y$Si_Id{tg)rka- z5aZdaQ&_*7i_ls^>FujSZ|)vdps6vwYa7kvzrM9QSOwb-b!i%JU`=2b-qsy9+1zX^2mKiKg|nw1oLC!{__6P6V&&5JuEfyXfTxnN_wZ9U3f62ha} z#QW$6Xi%|D8{HcppmC!V#CzW{yy-`i@Ibtdb!@}O@b(Bco?q{o&yHCO&y#|k598f_y0)QlQv%{%sH{Q$<)@l`IT1$u%Ypo-|56_C z;o3TO>GAEYU4TbWa6d|&h(gr|%1YdVsxJbu-;Je9aX#v;uW8&z?fbQqVW~6Oy&rxI z;;(y>XoVY!)U8a8{*Gn-<&)+`D|li%Lcxt2>oqTR$I4**`u;s= z2dRG{Qf1+cd82;W%erty7#}jQ2VDTT<75IhC0%il!Eq|=gq+kpj|uW+1g-@4LS-EI zz?rJx{W!ISV$P$7)dOQHbPU|)z?_CIg!K>!E`$O0Ps z+Q6mYzXtnU}GKuFse{jgFM+~BA}c;B0v|f$T)wfM~6T)x~3Q#8|-OQ13#YW z$0x2B1c-hCjuH?qq93OaT)GDg{A zsU3DfpqqKe_T0^4KcG>U$YWMdPj^8cI)6TWf8~(??zG{%Z`NIy1g@UggS!_A`VC`x z$qoK!rxOU(Y)mr%w;YDwIF57W$UEI-rKC0S=Gx{-)IGpkLHu$g4qdP8X%P!S@9Wu`7pKXNF_Epo~qOdSQhA`V!{(wDIW7xm$YZW%+5 z9ZDSr!p2_{Pv>#Y%kmO_kDM*~02>@GFI5)`!r^!;6IVW5ZYmN(#K2x~H{QK#I7ay? zplt14*3+ygl2Gg?_+)$up0bUJr<~K00h`&= zGpclngsHmY$yZN|>KzOF~UWQ{@!D`K*B&Ey`-InoqKYTwB6^d)*?#)u2z&&;FFW?@Q| zwODsUs%KOg-H9ht!-601ZIZzhqVWdhh^j;)!FJ#0Kbf7<*Mk{?3q)&5;7D_dO`p`` zw5I9;DPdygdMq{FznFpqe!#*Z4B>HI)O|nI4ifCN4gQJD?FLIuH#?al{4mM_9U~&6 z?z1RD;0k;UnvC2A;EX;CEHH5Q|ERcVWm87?^sC9x4;niS372Z{G@_b>!ZGb7rEu_y zq+;ZrQCP3FEnry#XR5?J^t^4s-|Z$ zIqO2@5lN_=C3vO#f3ft%#pIfYj)HHqS=M883P&|EP05x=+l=F}dH#v0YGkj5j^;A(@_ z%Ggr2pSl)4SoJ>`GN?`+DYu2Yjzi~K#=^LtYwo!Ii8G?6zd(P0D`jfMiRjlP+ydxO zNIIUj31bLxtH({wQMw=bvoiYM~e`$Jb=gZn(LDv#>NDhX+tYE}T|!faj?CM;2*ol)rYDasej%lmlCHrtSi@ z0qp}@LiYKp2%FFBiBc8UmNUT*UuSuutQfgsWLX=3y-)c<9Brs(4a<9~YY-IZ4lSo- z^9h87xLW|HwA0yz(xTYvA<;Pbr@Ooux)Hp?EAHmyA5u-F%@N1U1LPLqis6~BtWse`%II$glRS)jY zC$U&3_AL)Nzb90wl5y}7zm$<@tIqF<=`<-Swkt2+Ox{>=4MsmQv}t7zekYv_iE~NM zE$a!B5+!Rx4Hx#rb(&-7k*BGnJoMt8fW~m7lQPB)k=uIu3XF@amp!97;J4tD*hgRa zMbD7_@tBz3rE!EI@)fOKeL5e1(8!StGD;y`V4I2q_dbk zfMCeNaMGDD%wI0VI4SLtj!x&JU!=(bXyU6Ptr$+=!2g8s;x#F%Wu`EvK*X%GX zi&0`Z3QusWjI=Sn*V{z$nqR>+Ib3nZvLmWf)5N_nz38ydU8qn;LK77dId<_~s89#( zr`(ie{`Nz}KQW9fVF5BVW9-xE4g6^hyMqu=nvt z6t(-_XUZ(AQ)w-|&y<*bTwt{IniHq(+ksMIDL8|BZ zLtjvx3Zha*)TuHq4u=V<#n^Xidt%D0;GzwV_=c)fFfCTP;676pm(u!gd$3=6HB~9z z7N-|M-|uNvRf>I-G`eW9iU6Xtr>!M47a@_LDjiuC>rOrmEt*lScuE;Rp!Mq z0;mRU5Pd%7ji-**;)}=9(f~iNHi{kNeNeBZV1|kvSqk9a)9ZCan)jlDS>R2C1t-?^UyEqtRdigO^K+HT27zQ{v9^bNip1t=y&q68mo!)(OKfD|jW>E2Kj zo8usElOPGLyl}g#bS~v}ktj~SppLN|_D^^qk00m|9?swh?mwSe}I5Qww&RZ&d%HCQJ*YIHYj&CT7-{Lp+9J@ql3 zXrP8@)jD(P7W6i{dM)SZ!@x z6rV^Y-KepNqoa4Q&-(f59~l#^sHnWYf}J`#6kt2=?`-AqvC+0__Hbo1Sd+(MC+@tB zi{eNb{cxh=1q<>BNbc&FP$94FMJ4t4s(QdKMU7Z z1#?*rQgf^h|8W%CpmXX>F$vaMf_N#d4U?ld1p#vHY}4>)Km6_*UUS@t|9y5u6blaY zV|E)C3_qEnrb|iSCoIq<_o2C>w!6!k*!FMSil{$Q(e7~Mc0UvyG9Zr$ow6f;VrHi& zS|C$z$z-VZd)zkqX`G3yt~^Hh!YVUmSrRv0%LAhlgNs64-d91jwh)iem2{aUjVmk>CZ<<~pL27I{4RNY6xS z3fP1axf3jC2$=FP-Y6%*Up+C3g8>K)>5g)8%s8Z+1V3S36o(*g9~KQ&XJWYeCVYWk z(ulJebnkO@4&_W51n;?~a3U_lZX6yRruO>L(Jra#)U?Vld`vXyK*~4D^iekw#S^FMf)**SovMrERH81| zYd0&F7^$);%#=YBzsre@dHfj70yY&KEx-ey4=X`;9udVCfm>eu*30-iX@~|*%w++K znq;RP6ZHs_;>TyeGEx9)vyo$>@d8Nb3DZyAO~W*3Vjk@>t+m%pMayo=;34dN%x6FGcAkdp;x zY_roV9b!=ctiweD+B|s2%7MJ;VO70>av}`ON0kHlFFDolGv|U_E{-bM_5{YFWCB}u zyQX9J>Fo1R9R{c+fJTVT=bDINn^bUDlx__+Ir7Or;=tn-LZVBu=*k_xg9{kukepcS)1Ux&7-7OIX za6)I1m@2Ih%aAX6i$qkR=>c2uzWmb9l}m=YM5%l-GLkY=5g9}7F38lPs4|6%h80;V z%=G&&m8aZHi><+7ZVHy)426rnvHjK$Ume)Za@tOkP6Xi5u$j1FdHo&Ixt5UfnGnhv zpOq8fFI4oR(?bXeeasvFt+FseHgq>Q<9PspYV`p!hs+A-T+TM0Q9-qAK4oS)qQALIb9aqxy!ejgEi$bbKg4y_ExukIv=+`T1=Q2^7%!}jhSqT2%g zE8b!K?0p$1wMN2i|GXEX@zM|<5Fiiyc3TvugOzo+ZpDjH8~`o_@f9J(x`Qo!A5n^5 zbis)f3^*!|Q@K_21B9U7Ss?T7p(XCP6V9 zge$saK?rr{12+sSuP*XAcVsX6U%11jRBQ=Ou}fS~5Mk+uQN8Gi5fZ{uEq#!^l~yT`Vn`~w^Ehij&1ZU1OVDwpbkMQ(EH2p2{Ee|zWs zAVtyiad!{yK!W6Wz>)6Q+udXLcK3n_P(TC~P%#Jgl87Q;0#rcsF(3wz(29Ya6x9-BhFGHlkPYnN+9FcKTl-8(2Nc8i_(Pc%n zE=)1e@1ykXiDqX@P`HezwdAf2QEL08SfF`r9bdN;jcX4vg)Q3?(}zh=P7k^J(hEf8 z^dfb8qU8k~Ry*}UCtp3Ro`$7sX5rXS%tte<#M6^LSA^iQ%@z&a76o{g4MF-$eTs#q zGjP>%%H>q$7{m6-c1?HqTFxo+)x}Q`INEt%Hyw3{nhkKik7aS;2f^ppR5P#L94Vvv z#?Yn&sWb<`eb0%%Z znfXP1ePL%?7Hbhf!x&Kg7G z+I}GSg{(NuhYw_@w9Re)=Cw4jQ`hMuj(9YC=S=*H;KAar%;;*RAW|C0XzB)Gb#Y%5 zOOiH}iJmt(QAv}r_xW1TC}x7z_a-mx&`(i#Y5FYIht+$hp@P}G!#cXenu$)dwX{(2 zfo|t&(1o|U!N*EU@FY-5@G)Ha$ISz}S~Jk+!(}qJfyAd96msxMrPMK$s%hOo^TgwK zQ61BuiUp?=7!~b7pWf*3*@&aZ2$8;!!#8!P3&(!;G%8>k?lk)@uMHh%mt%*a+%;;M&e=x;jT>A7RuWp|wKbSzz!_-?Kb7hJa^YJ6lehO6u; zVHe@S>q5R7fUvu!G?2J;gDAxvN>R!_qm_w43n}hO#4RnH9%N#|CiA#DaGLtzT-U#& zr)eAds6yajJDYfM2?ag@fu}WaVMOk9%`q&F6K5@_l1Jp7@vVB?2H_oEsy2!P)%G9p zT@M7_B~>qxLr*I&Ao8B6+7wzZF28l154Tzoy=x=c3vGhelfk%mb<8*oaF}Kvh(DCB ztV2qrU6gM0;g&0M;D%Ad0+QhN(ov>ZcxJPYme)rj@X-aVa-)x9GKlz$DSkNXeSgeQ zqk$wsHz?GJNTHo$7@nzV`ZYeF*zRd357Njvbl|d=_MrEDN<*3+M;_7_QWfAZth?v1 zIP5s~AKKw0A+3$eQx4K}DSU_LC zRPCLBe%0Kbxbh_*?y>Y%zU(Q$Vuw%aT&w3#M9tUSp7`ul zA8xM9ne6tHEV|Tz$!=d#wOu&hQ1sl2>-|={7FO4gr?B<2dCb#<9v(21E{?inK>yRW#>DWAPqR($? z7}GY-dymEvF{bo372ZENwL?jt8h-D93?#!i`}@)FDKU>PMuBr9>Pbo?y#Tm>iJ_J;;$BRDRf@#U>t(%j z{^!HJ_t#&S;!SBOS<$A#>bGTd7|_wCbwit3@rw^P<8?~#i=qe*PbE_ljnVZ}{pP(+ zNwR^s&-%qLqIUM6Ma zV}?j(B-zaDuFgnOY1qih%*T9zbY!dEyRdtNvFKOVnHbq9A2(-_k`AekQbtHSqL1#NP-?U>Y$;?WERIqV%e_c^(l!<-q zC>`zI#Th0wQ42ov;U)^3)?dV4W~eallhnL5VX

    QYE;eZM~+(}9lIZDaB}Y*&}gR~F=B9?&C< zPp#tVv*ZZl_dUK-ulf|>SCAgzWCQlV4MIG^NhK$bm5D8}d`tlpeFj>nohA9LxC^9L zO`pOC?I?IxX*lwVzG(xh^DFtMsrL=N=^!s7KaynA?LXH)A3q4Mtef98*~a9n>*g0G zb?N*Wr|07bArgQ)?eujG#E)ke3JdAu3i`A62tGHdqL;^@!rAf>U!>;d#N$Kq@k7Jr-Eh3`Alk?m$ryM+*pO3q|WIiPWVxD$azduzk-52W@_s@@r>y+47nHYTw#sAoV zeEiIE?VJ2xL8o^$@n0rM@VGdK+nBg)kt~8@tZRT5!5{RGP*YFI$JI5nK~_jNh*9)~ zwJ8%9-6`QaJoSOs1}9#9Hy0OSoAl4m6$>d{6!SWK_FY4ncz>!Jel1ND!gsn?lfU9# zH+~#T@C!B>Ki0vcoj||Hrbj=m0j*Gn1|=MSEy~1;Gu`;PNiu%o`8#olKM%K&;Xc_z z$2!7~)}l+CsU&)ouASDwCmnNPi0QO-C86DETHLb*QorCYDZpvCf4pmzB+Hm0ZV@-L%cNY zho8OQ4X@EidMln@ItOL!8sHBSxQ<>~OtWCa^Kj5|o0#~y=i#8`>eBFG%V;u0COW9~ zbgovf{}nj5t$rJMx*wnbvuTB-`<1&0Cc%JYhw z6LzKN#mVR7=cF2s(Q4Eih zrqoPvDb=x!zbv-8#w55c`?F5A!Cf20tsP zC%SGSlU7w}Q%p8Yv6k3ZtB_$=;OK>}qUWe;D z9;YgX8gILj8t+?;$N7q(!c9baT#i=doBbl~L%nX!&(%#*<_~J3m*aco=KLP6QgR@s zTi=o&b5-(92G?}kS81=gaFX;pW%3bv!6fNenpfSig|E|2gQ#)rz=AYbQgcs!b_T{* zP4CxZB*oi3ML`1}r8UJ7EaqbuaJDCY+(W~SIB}%VTKL2ZFq-1)y$BPB30LQk3Nc13 z+Y{s8rQt<*P6x@NOCdI=AF10Do&z$NDD(L!;8+p8#6_{;jZwS|hehvB$-h$dA5VLf z*#Ph7Q3JeyG@f=QQz>+!?2~+aq#SW#2T8Wj!HRvoJ~V>GzHc^g?IU9B_NLOY|LJG> z_%=DBHoB)nbh?Mojqas5PmKODA73TMsA@b5pDvH8p{MxU$P&^ec+FBT9*^P0G&ny$ z*+LeeMhh8c?V}cb;*G;H+&T^1>Ttflr7Xs+t+>OkGm&g#dUBFci#~DQPf`Xc5s@d; zij$MttbFh@mBoki=m=AU-*Gdp^ta)@Vx0#1jZ0_CbJk)nb+l}swWaF)`E>kobev7n zDbMrR$%h`Ho&4TKD1K^#V^4`+R?rvo`hd`OG4_Dk8f?#x;3IY}o$lgouOB=6(xuoN zl8wwhezTMg=CxY5tgatBJW_zm{UJ=cx-R5n95|Kx;Jd&`Bmh_DU8Q55F5O2d1-Lx# zDxD7EJxu)_ryULboCBQ7>P9q3N%If<7#N_C0Gx)qTGM{@E4)|KO=*$tq;C_+f)his z62isYO=Q98CMnY`yxL5%&_OkM9p^M*`d%pQAyN&c_$UqkXh1SLrL~a`>o$16Z9eux z(}>X^(W#vub0W&3V@fmXlI#LpaTIhLh<)7v?-}i(Ly)UXr4xTd z{Wwe@bQ}(Ki{y-e&zF&X{VF`7$1%}uVA@CcI54_O!~U%$ejFxr_{kO~j_{rCr8`g5 zKf(W3okWw~{ze`edfdjr@&U!ENhroTANu8^ss^)%$#*C39jfB{5mBgwQ=}LiKBZIaOwW-zBW!~jm=1JCYEdSB?I#t{4eO&Kn3}lGNNxCS1N^xD|M{PY z4-0zYiWXIbu2$T2#v9R{&&a(}&HW4YkW}m5X>|d9{eAWq!cQvo+($|kelV{^;>W>$ z+%=r#@jC{nf5|qx@6Q`Br-Q$HW`r%cy?4!z^7^4T?DfwI~zkTo>3|0a!%Q(VE67{v>JW5_^aHaV?mlucZYZ1@jlyqDu@fm!a2Znm7Y? zC&6e8cSUi|s4pX6@b$^9G~ga^13mb7N(mRem^PG&XGcot-7UO^|`YTD6J(*GLZj#sabsuHC}xV<->Vef%9&P6vM`UP8i~vdS~g-?~8r_mOc^ z88^pqszi10S|5L>^i~a1S{1AIr}zVZ+aeJjPiYxaY+72d5$8@RmiW7?qx1c_(jjVK zx?0fBA53*sqeWu#&6J$q1K2${sv1p{e}LKF8Z8nhPm=uLBnb;^U|DWAHKnxHusk+| z)KC>$8?-wGJ8@FSVK5v`%)dkO(H-mcVqvk)OL3~8Ga=@2spYC#RP+1!qe+!%x7$<+ zzT=z${>)@6!*>1v>|U;0)4-Z(Zs4(K5f)yg!0S`b@Lq69WKIw_MRe3jtu~;w1(-`v z3x#!)$|S0$+=%n%PBUq4L?LvqLyeMwivj-T4oVW5Iqbcj1!Dn9SmjNXQ$tH#!g%se{30x3us1l7A`*CCRw}8JBa#$OW z@VSdM`A3%eaU=MivoJ;_QTl+E8+;MHmwaS~|0>mMuphs#94-4NEq%B2p25hhtK+n3 zQh&F!`C312krtip&*e7cKef%-I8}V!(3;kpoP)8~*3(J)D(Yj^e!4|EM#qlpnAF2$ zgia6V4s&{Fvys1v#vbwGN5LFSjv;(&4wuW^835~q&_g!*V$n&1YqsM4a;qZB22RUO zJ4TDdZCj}%kdd6!b~GvRZY%!uX(TdJqm^MzAwR)%J4TB{!|hZb$WeC*Ejj-=okoI; zPSO{e=Eb2 znH;x`>B&uvU7witiX;XXGVu-ue3-nOm0I{VuTxI;-be?9PzlZ?-I~E`B3R!G58j-T zkFULq!?7vZK>LseA+>iL=Fg}JwMm^m*@34uG^yBIK*_c+o+33$=XPBkhInEZW$4wZEzO~KSQ2gHQ z^9srh&u603WXJVX?WX1ibvehT6Bq98U|1bh~ndQJ!?9N;7A8pr!s{JJ?8pCBG zvq=Esj%d55G)Xc0%tn84ipGRzHVg1Lcgw^tXWXt)Qw9fGJISJFi0}=~r~LQVsYQo) zBdMhL#c^7V-Hmmr8?+1XSa)|?rH;0KMoFI?VYKs7TbMn-c*p8;_XtmSGP{F}w;Ket zGEHE_-HzI9bjgu1$3+hPJr^o@c7z9@BWivF%n2y?+!Qr?AawzrH= zJ$cDYkb~6W*B<)(j63q2hos(gfjksp<>H#G_RzwgOhauJI1Nc{dM_6QDGfQ_(IF3u z<8e788_k)BY5(oF{k{xGm(oG3AJT1)zsRmi{2Ha|f9oBZGGI4Z20DNE?M?Gw<-QcP zX?p!Wf3Zs%s>JOjvbv zj+>l3d4KwIy^+|QQvz)zarh3B^Muxrwt+5c*I)ij zX(1iZEl|&Y`C}F|G3n9(t}pLu9O$fBdQ&j<5QqzQKeCH1EHpf^yI)TMSV zQ7<0A73S}n26ECom=?Cy3B+o#FuOc}dyxnpzfGD2>eMa5vLwao*1>@eSiL6swJ#(9 zgXik7f-8UM3!(Q+2Qh8o5fuHQuf|u=Oo$BNm_TrdCIc*|%a-+5z7Tm=Z6URVYag-W z?G1D+Rh#1Ap=)R&L;`R;NIGzF1kT+{)u!Ox$I=|AqaTwU$gC3$;Y=0fpUtZj>lMrp zdXJ=nmng>VC>^;8Il9Ee@l@~#JGX9Fo8+izabsD+Oh=uhN$=1~$86UnvTmVTN4$81 z(Y5T7I^0^wS(B*BvvWaW!E`)5)aT+nD* z9TQ`TKklHIU-JcW>yUlCJr}@tVy6b^gCRJm>W9!S%||Ltt;4J8emv4>Z{SXY#GO+q z^lt(I+^Dj)P`w85XxD0@`MquqqR}X-(aAxbtSHt@FOpl#N+%($MLlUzsygNcqIJ`> z_}CqIzR^5wCKWwpLRuYO8fZbONP5xxJY^%jMbeAT$CxM;CH2&`k?N_XqUxuV)NV&7 zDVK=q6P|pl=`sR9eEGMRK zq8-Qyzb+OdEu^X5ok_xlSf-1`#h{cd(9d4I z&;+v3MGYB`napfLU!u?}Kp+u4Z4K~*9&G3}ATsw#E;{Rm8L*UcgwgHvS`$b|S4#`m z6*3aC=uV)W9~ zI6J~iDkUmsJW4oCht&*ARk#rz`@Q26O30AAu^&^LWHNMKdTUQ57dyTu!JV5 zaPNLRiZzKi+Y>(?rumQ}6)pBiEZ`4{e>72;DH?}UYi_2gT>Bxy*`Ap66U~4Wo<*xp znB?}tpc?!V$i~~WKXiQA`=5m>T#*~`KDSVfEyowV@z=97H<(qBJEGOd9oYC@Za?p* z(&*!bs(L9tcmB&l)pUApG^-~y`f;J^vnati@#92;mZzJ22 zKUpWv>H&X6v!?`0vQ8w|g^SeK+j1}W48o>>nx5CFepU%>KW&j}dKS8*g}#eapWAaM zcrRb1st@G#$~vA}(8d`E6BfdQ(Ndf1iH$G&TX5-8N2qk$*X6G3%YnLXT@9AlMNn8x z8pDZeeA2!(Z%yy^Wc2YQ@6C(U;Y8k4&n&mcYO*I-*E?N$+>1JQ-y(HzC_0D6x^t(} zMs#lIC%L}*PcHNvGa~=Yl3W#^7KkR@I-Q{^Np7vBGfySm56OUg3|su1+(LEWw*c-# z?(Edavrz56JNF*7C?j}{_wz++cjLU6_Ym@ss^l(EOYUT^iQaG@HBio$M^H z2TiErE`>`}T;>pJ;Nb>MmOB3aLRMc0oRNt&R`3+Q+VO|3IDGd});u3PpN>SX4i!f_ zterQX4nppBd~OZDv1rwE@6C(#hYPbVB!A-&4$90seX%;26)g4Miy)}HhLLhAdPwE9 z7!jhpGSAl=xrg8VlAYxlNB=HhOV^_@RoGdJFlA`Rvxfw+x`FNwFJpRO5#|h6<#siH zF{TW6b4pMDEj=Ahes?U^<>lQcX}*LuzRlg8(+~sw20}n-d3I2zBA)BHpF@Us$g2O> zB3)R+a@FNaowQKz+%7y}Y)+tcTP9TLTj9UErdNdC7WJetJb=1{JsZM&Cng=yh6 zbQu-q`9duyLt<{t?hwqpo?5-eaqa5TrL|`p|9i)|9ow_nCqcQTrn|+Z#*yd~bzN$% z$_+%9n!CAeEpgOe%6rH}>Pg+Dy6)7~lY&iDr|G%5Srce;yQLh47FsXmSq*JzR?F1j zlQJ~JJG8EU>JnXm*Gd7pJ#agw3((zMTgUpsDGq0ulc@)%lKqzI!*4ot^!8q&E7Frs z+luCVlRXUObGT7(l=s@DT$ZDk@&q>1^iog0`cn6t$02}Erx>*`+Sjtn| z3+y-RPHOZVEYV>UN=@pGAoXE%8k97teFh737`=xGY}AKQ?c;9b^M$~fc<-K;mC_{` z4&$9m93+qLa)m+(=4O^AmAKnTN?n7IR7G1+q!(e`WjuH@$+Kq}PjBs(@!b3XZEOXB z<~S`hU&eD>!7@IC&Y%{wkq)82^-)UO`U{~+)peJSP}$+WC!PQwG87k6QFM7J8n^4H zx@gMw+IoJL^n5OLVc;^J?#iX-b7D^0p!9Ac0&dHme z@|=94;!?NQ)~TuD|55UfvC|Xa9oRu=0z^^K1n8N^wU$`MwYCZAql4+Y=o!`8UW@{r zvf;0;n1y8PEo`J(`%N1Ci~*oiwuZ}js1{M9dds=ipwy(^2vXPDF1Vpu3oPeaTSf#n z>RQu2UPTh=l2)H_$U(*;bV4 z)i-cCSKoT-OaJ9ueV0o}t7+rK5UBdJZ~@|@BkXm{x%$>p3))E42V4)Vwsk5tQuPho z7wDYQ89nhyB>M8!zI}nNX?i!1+;;<^G+k|R%#=71)S(BKb1g2HI5yJ8#S(`W7A)sl zL`&UejiJlB7GGVaYjJh1x_G~lNv=o9@}`=)+B)}|^y5kD2gX>}jrOq~a@`!*cctu1oyY)wP}MwZ%p{B=<^bc;X5^B;z6Pl{oF|y*#^K z)(&cX<_fM)G|(3GMp)4G*%C_Br)RA4%*VlP$g3Snv;IvK6uL&Wzh*1k8pZWQyk-^F zlOjGnjCTq3#Xl5hUW%p_X>i4lOKY!&Vr;fT7vqb%7;!Pou^N}36`zyck04-$cmy2`YV^H-)+8J3jCF9dz)#fx+JX07V89*16CXGtCIZ;&oT z^B*n|xJ+Bwo<8-xwUVd4FUk2X#6-UvDgnJa8)!m#Xl@&uQv~BLQDh;q-rY%V1G*Yi+%6xthzPF?FNqYA%ob z)m$FO(#Bi}R32LBx|*jRw50lNq_O8$p(OkxGB9{u^HhItu(3BIPo3utO8WF+(8=n0 zV{>iY8nRl&<9RVpo|@MvIMmxbPt7=?!`0rAtGN=cSe;%8x1&QeGqk5J--5+<(J zmEcA5_{LyQw-g4^$CsT60uwndA?o$cPzk=I3b%Vn6{A8ZN^Zt|UL3;uEbi3YyIzvl zjhwDt%|rjZBrk_H?v&(d;TiOrhJN2_o)NlG3))CC0&qPeXj>~*yF;F-J@bf@)*2pZ zwA3T5u@$RpjC773Y0eK1v}6qfo!pv|v?#mu24!qRGPY-};jtaGCVgzLSi@smLY=Hw z!($s?!()r)#@O~#!A8Nh>h(VYjqpuxyly8i@ndYeCRI2#ld6cuHk90)fz4`H^Uf{2 zv)1r_(T99aU&BMY0={p^i)GTbC6cU@NLYwI)5t!(hDWxSvyny?v>sV)>b^BJvKMMc z)0=c2KttJ$I?&bW6877$-jM9f0qM*DGP@6*z&V2Vdl|aEwDBA1jTXL=p+ieObQ-&F zO^u;DNe`V4-}SCAY`n#FuQsm6&Bt4F8)bS2%9x!gV^+A9$E@dC8Z-aw1C5SNywW(> zps9DzS{}1=sdod`Cj2=;&vD*M)^dJE$=2(81}8W6UahzGP-oo`Y?XBvtN4J>Z!I4X zVBZ|eVb^&B)wnkfTKT<$?Y*0&1Ix(XhPCS9-oYi_|A_xJvJpp}HtO*{ z!Oq@wYq^|Y%=J`fOWqA-%5y6o8&B$-66~1q=UR_iFf#iT?{90dOe`jupFutq z)JLUb6N^s`?rZLCyN<%_q2|93XswH-)jBHLw(7w7!8~vCbre)yvyn&EdXBkaMBd15 z^^Z9QorEDA^v^wS z$0@&ruC!OJOZ-?CEUoXoN%y5!){V0DhO2|?>Ur;x9_p0OU=^ploO_osa_~AeI?JIExZeIX?DB%!-%_}F;30nZ)NxQuIiE4aAWW?kN25%dQ$PO?~xcVKG@Xb z-K#eQS`I?{x7KkTj_5JMhil;*dn6v65Zvp@ID`PlPRnkuez+x=?fn|W#9+vKXq`HE zbFhcjF34=uMs>R-SnNHL)IM-auzwocbiHPeg~elTD8mERqt)n}f}_<_6N3$shCZAa z^n1H+)9BW9g}PczEVV&}N*0p8)d1s+Nom|fp{#(GXJnxh6=sQcCgJ7>U;nldZ< z)O3f>v%|=3a5&v@c%L}DC&l4Uw*^1USm8Kan(FXDafs%q@8;^3e+9E$hfUKWe60r` zZr@zbyZ5g3RN_ylGwuv-Zuawf&oS3g*$2{yWsA=4%~0 zs$XUV`+2{urhO>Tf_9nzgLOK;l3nJP#N-EYJHY#=ZW7J%8n% zSuK1Rf`4zINgnG?o!gnE?7uFipm29h{6LlROuSTuHEcgUG;F{*vO+vo5$k zqxB~7*kTj)Njx62i9Mou%^FVkIM~PYZl6tDyeDs>;@ztJ8-g2}RcI2059KX8S6!Jwj}wvEHF-v3-kAU9cm#(yKP}969B0YWpsqx^HLj z{G52aq#|4qFDZ|fmPacJ<0U20c&Ml%UKXy3;9cu*!jn~SO`V*gP^>Hx373V!kvP6F zSQL-M!xeZ=IU0$VRh5-iC^T!HXfm{5nx|7?MZ6+j8mp=(50yuY%SuYB%8JTkp?GC6 zR{al^&dDlhkr>{n;2qCVovS|M3eG&b?`r(4>J%-ns>I8j;YvKAR8d}4QW2}Hh*V%{ z`tm3y-eQiUQ$;8ouc(MsRboY=Xt=1fw6HQBjue&0E234U@tE%0Gc5{Mc{+tdMQDSS zrNVf`I8;&|4^@^#B2~pD<(RmOx#hgwL9{%IXVv6LFqCr?$03Cvda9BC3wBYx&(3bG zjyNJ$7EzAX+Fm6VsqW08>B{bjI4V$6Zy#dSKx@NRsp z7)>flW6`pr%Cf3hA&xJF;qsDF#H$v3jiww~WqDN`9|H`PmWA*FSb1r@I9yaz6sn4s zmX#Jo%5)A8*-B5&QT&&4Xh(64kE~N@4;%?LRGkh48;1(%W77JPR+otr136vFqQxjU zJl|AQ9FA5XfC$1XEh$GlCB@~%aTz+wdu3rs9C{o#D=JE>%CXv2WqDz&yr?v!2SjZj zSkNf(ZEnFt&*Y1 zK`RYc;Ki2;?2c;w*TI&&1Lnk01*p~1vT$)6>tTjUvE!nKF}|@_Nu)}4R^A1V;=7P{ z!N2#7JINU0lANLndsNXFFYxyxU{&Uurd^mmSH^wOetj%nja(K%Cc}}JX99tU~)=g@i0QD3YEvp zqea+<3gH90VkKsuSfsL2>4{PAcsa31S!uKiVV5I-P`tbZlM&v~j+9rH#Eav&Yopt8 zJV$dc@f^*&v+FfFu`u`Q>rV)Ujt_+bIXU#<`jkDeifW{)1Rs_tDvnk}%MnCzVP$!= z3OiZ6sM3kGG9JTR9*b6na1e-9#L5ao#f5RCCWLiKL%4N7{ZHKok1~Gc=013|vNc;D zEt&2cghvV4qD$8ORqj+V!q_PZG=1MDYV8jOwwqzBIu9H((R90196s-yu zm1A2)RT&nWs0vqB#7g23d=OU#P#**&t)J{ZRVFkTgkl!xN+XuK*`ijQ}dmEz;3QLKAZQdmi4JGxG% z%2-83MLZJ5pC~^5U0PCB9;pmtR}JBK5ynCjbU5d#Ew6$ttma%%RE*E{!FsH?yaEM| zm4~Tp24Vs;nw3tf&Z8lonMM;v-Ti@nHTa#;}B9k+Qx*^&3cqq*mJj_Tdn3mdAhrxr8`hWI`+AN|7Nq8R4#ic%b>qvbe5 z!fsGl5h}yyvMNhMRS}8ssJ|mA!qk25Xv1diO-HL%v-QzZ=2+!|QBIpvn+1@TYKur-MEE3b>tVg|2B2xbF}@25pD4%+sIS4;EvpYk*DI%$jk6}>d3zI zuX|x-WIy`Xv#>O>KmDt)0seIw{flmtj~qb%qPwjlPp5zVpQk!8^O1rVJ>F4UlxI~z z$UAb2YC0>_*L(98H8j+-z=J{a*L{-*>jawZBd;s z=@~{#4KCTD`Yb32dS_`e>YcGgjhPc_=fK%b4S0vReOl<(goX^iHRyOVgZ@J3Plf&& z@^GiqHQ=Sq4Y*l?BR(#{9nVQ{$06HXf7QaEPY}99=+lLUY@f zaL6{- z&-)F!!&98Ic29A}{rGzuqJGK>9~(5_{sNyW@VVj|vd#720)rkc^wmO76dJOPp4HQ! z9};@D&`X7eY@_#u40@-~&j|hcQ|jQ|wT9iX(15=b_%nfj5!aAyuFE3^-F&OsJq?4s zl@s21D-TzbtyXw>)PPUi%EMJE^gy8@+gyJgGw4d8%Y?peD;@$y)ONVA*nsaBc$&bE zifhO=*W*eIIwABXp`RBTvW?zWnnJHe2lXs|K;Ul#hHQg9C#1luy!E#+owf1*Jb3f)ua-aTs=xI(lWE=g-sSZ7K z0m6Qo!|whxk5`evkZrK9p95D@*h7UrOX$mmhHRs+>2J_C2|Z5eyM=~qqc@&r(2Ing zFLbrgkZtrY101^Z@?_XA3jD6XkZtfu10A@U!v0BIe=l^#Gn{eAHu|!h zIOPGMA=~H|&M@fHgzhW!Frgva=!R!G^x?G#Ti{UwPZAii4IVn!fvYL(hlQRa^fI9# z+vqt%4EkB2w+p>XXvjADy`cvEmC&CH{j1QBZFJ5#4!v_T!rsmqZ@Qf`-eo(F7i1e; zd9DLjQ`jd7eZ0_vgobRRR}M4iDxu4TzFug^Hu~H14Eh0~?-lwnp&{Go=micvV_P!p z%>w^NV8}Lj!i5f8O<^At*Y6Actsb5eU~|KHHCeL(6>LPNIEmy|hl_$7qBlQaIOz>Rlu#v$9_1?3K0O=0_l&fUr5RV*}Q z8~tg8L7y%3V4;T#4cSKfs|@;Pp~nk7RcOdIddw9L?b)3Sdx5|k1cq#bH;-`OY6|;R zas86e?+FdrM*nuDLH|$aAB3*+ET^Vxk4+UmkSNqMxQgrpq~?ZhtRu)hHRrB z8tc#t-cN@8g}}cF4A}-BxYmKIDeRWdamJfHr!(&9syffa8F@1`WM69_QH6u|Fw>wn!gd;67}zvPBaN_9J0G5cWG}Kd`bl-;~OF8mOjodWOCA z{>>?Gs}4Whvw%d~crQk?iq>-}vlj__6|)d+?7&F| zdndEE3pnW)oLPuA_VYU&_TaCG zR`+;#0m7Rx(Pv(^3%j3Lh&DDc)nI>S_D5ms zs`y%D3Zjku;~rsWSBF-sq1EVchyQSj3mAlG1N+=-I6a-&{=%NmEJPc7=Y0lyEwiJA zy_H#rHumNF4fYXc9}*U;HBhh+ZETb24m%~wiFT)uZ!ihbMh=_dkkvG_U$fUQh5emb zh&Fcag9h75b$$X_ZvFyixtsEALysZa*binJY%gX{6!uJJA==n(vmJJ5V??XHRtk9| zlMrp>m2(`jnxdV-?ES*dV-})~U8@ZCDP|MG{+C&ZHui^y4EAGYKNR*bvk+};$y|r+ z+!E35d>%Qj|6k5=JGJ{+jgztfpx9vDZDqe#R_B8@p$L!Ftt< zSCHi+!ZuN3cOlCVZEX8R2J2_G$BR5dSZNytpq zXD{*u(MCSG(jluU+RiHcF2<+hOPu4L%tExWf2}gufy|yJ>;=q1w6UkIG1%*v9V6@% zW+B?xyVp8wJcMX%ma85N+hE>m0J0qJ5s(XN7%}S%@~aS+&7_!|YeW{=qCn z8+-l+gKe!m2a)9#FLRc=tAn4Q&k$|wqZ=I-ugt7w@+2Y8ViKZ_Jh;grt0~$mnXM9b z9J3H@Z0;6=eURA)gq_bUL>qfm!eDXHouYk0*cX|FXk*tu;jo^QooEjV`8|^mZRAf+ zI%G9P+ej_=240VSg>&3qReyyXL$tBSZ#7taOM=*luzi_@Xk#aDGuX?Sy+qhi%tExW z|9;wGclSlK+Up%c&S4UwjjX@jA*(6cYG&68yPa8xHukI?2Kz3vdxia+S%@}v=1zmn zP-A~WrjB`)v)oh-{S{e;Xk*`b)?pV6LbRIn33)t|5N%|Ke>-F~MLUeyvxO~Z7NU(U zd){CtF?+MH_c9C7#xDDh!D3lLigvNEo0)}ZWB>03haG#i6YZ-)zRx5?8ySAlA*(6c zU)k&bgw2}WIaJ_A!yc@1qJ2`xmzacTBS*dCkku6JA@=%_ zus<*h(Z+7rXRwXcl-9^{gI%2EY!z>hEJL)hKfi0R#mq*9?Z+%c8++n@mmP&@wbx69 zyoO1LHgd`Vm!xQ?GJB`6idl#@_CN0%>;`7n3A=+?h&HythX(r|v+oG|1+x%s?2v;F zJLP&r+qpY(?AgsZZl=OrkYk88a`s0KSxwOfnavj#tGf^j(Z;^}vB93l>^Z_#FbmPf zb~)Bop? z)fDXw%w8+(?aV^7vEFYC_Hkw(5f;nOQM3?k>}lT`>?dkV9?gdM^xL>qhYj|O`c zvm=C^z$`=?JO3w#-T45b)jggeuybI59n_GxCH682?gA==pdUkvtBWeClFhG=6q{bsNw%*KT6&n!e6`|Ixp8)x=1VMj9y z(Z-(qr@`LC>|JlEgL6aun1o;>Z~x06v2qDTyI#EF4je@b(Z>Gwh{5h>cAv0cG7Hhh zHuBJdUCx8ep1R6&7W{g#xIXSsdz!1JgWwmUjXm3Ium#Ne-&WNN5UnO5*hrOOkmoab zu6V6v7NU*aU&ml?Wp<*l_cII8#&*s$SS*=L(JmDh5BO5F5N&K#mchQk?CWoqfkLxa7M+3V1F9ir7A==o} zn;7h2X1@{k2(u7v?EOs*ww)S_SNgrJ_o~iY5be+^^caGTe6yKBp2}qJy*xfcnT2R$ z+q5v)tC_u0*qfMzXk#yJX|S`IeNb3@`-b`q(Z()pWw6gMyH!~Hd?yy7js2{(!G6Z< zC&K>3EJPa{Xlt-dRMRoYa-(-RR~=R7QSb}V#*S@gu%*lv340o|5N+(1_6A$V?B&9a zVHTo|{XN@Yr!jlCun#i}(Z=@fXt0}@trqrKW+B?xJ31Nc0cPJ7_A6!~+Sr$J3^r38 zyb*cM*vENpp?2PcJVUgx$8|B-p3DY>J&9R}Hul`E273Xs!-TD37NU)PxSPRFVRn+R z4=@YS#=hU(U{^A`OxP!wg=k~D<{9jp%{-kX67~{iA==pDfWeMq_IhFOU>2f{y(MU{^O=22 zSS%Y$@j|q*I|~f|SOe+StsH!G6!|x56Hy!VkbNL>oIOY_RRs&}pHtr;Tbd zE7Z^9(oUF2Ap0`ehsm><>|-V0ju_-9CPy-PGm|5&WV@I_&S7#UllY_; z0`<%^$aeCA+T}$;dXAahYT+^TpIWfIU?m>&)DdrE8?UmBZH5i!J+;NfhWF2zJjCSx zm^@@9zbHv1y-oM?GewQ}>vHyX+OIkn_bgBg9d{M>$Z_@r6_KBbp|zAxx| zg8rZQeb4ImuHFWmb$}CH2ge6`qO|1!&Q={Yc7DxNztYEmLjnf{K3U+P6>fT}0beNa zc>-T?K<(^{h;4q)>uaF52|8KO>Ed^?6@H|j0k1lss!ziZ3;U$7_$ZDg;1By7>|5e^ zx4<6>yxR(QA7H?L3jCYE4c=EX2GtVq$kPop_kA9vuJ7|GMc?O9>Z+QqtvO2T1{&~S zfzJ^5Qi0E~!aoi&;PC?AAn=_6-(ZDH&otl#0zWSBy7yK5Y(#A9^rW*4^d&)G5cD1K zi>E6r5kEKBfPcVEj$s&LVLcykw!X8n^@bX3_6IuExFU0STd1EmUs!xuV{6S!pLw>y z_7fHl)e(CRF40|xaBbv+=NRNQLgJA+B5x6|S6SJ;=Nhc~K)*`NLZ2=)WE&m2*q|$fjthOQ(2#BP4VM`7eL~+O^dlegE5vsAsY?xbi@+NN{ zY;%1CZ>T3Pt9U>7kY6Dd_-ldp+u^>$4Y=Mx&UoE}obgr%IpdIRuBXNgIxKX7(7g`w zE5vsAwK4;~NZ|7Y9wDwF+gvxVFzDNbzE$WMLPNIE7gQSbYN1yM{glv%&5OKjwr(wz+w1HJNa)!@FBKZHjox>ILGKj$8KGbQm|r2b!yU&N@RtIA zCh#xf8nVrG`FMkF{t3TA{0S$#^Cvu9O+K;0%O@D{iJ$Orl?pvjXvj9#U*BZVl|q*Z zecdPg3b7q7yv2a;7kHY$kBV!^HrL}O8Z=hm*RR8F68d?eA=~I}lTzr_9)S-C{Efhn zZLsIo6d11%A7a;;hdAS{4{^pJ+vxsN47yP0oO2L*;~gInI=z}2|bmcS769C_@oCMxSGQLN$Br|&iITo z4%tTEHr=2*e#R+p{~4z|AT(qf{lW}`K27MpLJt!fvW;#y)1mb%!~%~Jc#^=7ZSc@p z4qQ!PKP>bdp_d5_*+$QqZP3pOy4?a%lYu@#mcJ zrk``hyL`^$1=$8yKJ38N6!u9%A20MEp&{Gom2(ZcO6YQ-uNNA!jsEr#gML8hdxd^X zXvj7?`j|uOSBM4PEbxB>hHQf;Jnq2N6!t-(-xvB@p&{GoXXY97v0re?v%cVzxA}ro z4%tR$EHLPZ&>^Aw2o2dr4_N5X`W0esb5eTy8pn!>(A=-Y&zDKumo{l;R0 zUMut}p|=SQ*+#csYS4RyeoN>>LPNIEmn?H={R;7yobf*eZjAfswAL478@yn-16Nbn zKB05JT$9(5qtd bB{BJ)n1oCwb5lEcS}i8=?Y*5(hlcz=0|!0{ delta 107913 zcmaf62bh%A)&955(qY*OOrPD^*#(yAMWX@{fuII#u?r$nY@mtJ*ubt>AQ7&KM&Z|} zCC@ARD?aXh&Bwi~@K=q$8vNDbuMU46{MF;H7yd}55B~b%uOI&U<8J`|2I6lJ{u=N% z7=MlUYrZzw? za;KeoT587hQ{#E|`O)6X|9`2)$9S8oMzDs--bOax>uX^fkMXwf0}t~q?iB>PY(AII z7ZRtY(x*+&o?4hOV@5oeo}SE|S}3HGGKv3BiX(}ae_WkSu}%Gb-uh%V8ShCY+43s? z>Fi(kcpFO)|GnN|@kc)WUhnDERav&|EALQaWBpg&gW0J2y-mfyjQhQzqHp}Z`@MUr ziaxU6uk;3szVZ51-l3lAY?iJ4v)AWIrPJx2B%8M)GLx-(*gIGQ^%6+2mFv8|+EiT0 z>(9LV5$}xZnk+sq|H?Z=n^`^~FpfR5!P`(r8WPhgYy|fPjfVcp&*9$xR+W5aH$34D zlzio{K7q7qv+1~qc5Cm%h+ra?e9b$|QmM9Gj&*45*R>*i$I59slu$45WyVUg)9rMt;Z_-k($p)QT^m!4pBV?rU$e z0o_&){Ms8fP_flpzV?1vWl*=`-Mf`LMF|RbcJKD~^VFpCSwT|eC(2__jy22;&Lo`6wAYaG=i)|m#;M-nR9zQVXi{J54}vXfIf18 zua%v0ldrBeTPVcY;_;oc83;EOq4k9JA~#sNDC zK4YYBfQOwh+Sk7>pUWcrCcA3rU(;S2K8FoR`#kL1G9vX5DfA@bEHMUoR-~^%zBuhW zuDapIp#JaTV1h*1@{@ecZ1rMaokyBsRSg~E*wmb_p8fb>U;kRSkT%B_9E=PqkMZ|& zz8zKjO3GOI@DN|Hl9hw^^F=&$$vDPuY|R2+n=HM#cs9*8_UWE&;?b{Irk-Sa5(SD! zpc2S09OIi&t3Em}WEupfpnsvDEC)F|yDuoge&6Lh| zV_cL{ZI?J}yN;r0X&#&6`?Sh2X9dz4<)ffZBMzkhXI+AJ1XrB*wz${uIrz8?Vm^JkM7B6mGe(TEf`0GklFa zI?Fe)njQXgZC_>%!DEu>d|vpuuURU~>{K?t`?)Xdd=}<7%9)zT+fp#BwuUJNYG966hTU89BfckmuG=HM5!P+NQ2 zypfH(?q}4$O7m5IU!yIs`Z2HI*ks{F=0P=Np|-X#f8+(!#X9Eu+1{}+*X&#S@n86M z*Re%6qEsc*nUtG9h8tqI7{3X*YhaT=Hi7J)a}#pHV8%PBiXqwu3w%GUW}d~`fGYqH z5(CH451_@qZZWb)7$O;WB2O;%MI5Xok>pjrx2o7DztSX14Fqq|UKTqbykyr<2`J=~ zskkcwsT5`gf5Ctm5ookH+Vz=#Wrxqko6*oN* z5HYAIti6J8PbST}?xU7STXKW^m$#ueXD{E6>=q(Z2K$G2azc|W-ydriC=SgIR4<`4 zyYKx|LNOGwEcG-F#)o zY&Pc|lqCmO?i1dFc>L}ilz~bpAMh97k=1PUd&UAW^hjMM#u?AJv3hOy%lA+srCm|x z)OUX3Uwt1}vG#4oXB%ZFY%|{2-}(C2DF-nW#L}QeGMmig z9Bc)Lbv5(v-l2Y1!h)YvlLKVI&%x@oNx{$gUagHydY^h(2QUhPn)BT#tl8%4a@O{9_krrM7Y@ciNa{#Xtn zDG+VyZ7i^=Rgv*5KiH3PutxhClIh(gyt_K&=wE$(|U~7*8u>^#_WeFz=Z?- z$Yd#CIY9W-*l@wU$%2*d$~ee}EKspGwqG3VM~*wT-O3=YJu6CBI5wi0nCB9CEKtn9 z-0#JjbQ~+F@A&4h4+r>ZsYWC9g!H6EUZdSD`OYVJ{pchKV4E)VH!r=;U+0lJOzhVn zf1BK}F-Z)|Lwsq#j}Fsi)u<7-@(|w>^7rzvzo-2z*cQntYK3^5J@vHF69 zwXjK~vEXlanW?4ZnMmlW5&k!;*x3D*b0xYL?XMivh^6~UkN^8Rw(fA$0a}xhls&mZ zGOL&VPx!IF$->|fVR5!*Eb5j~(VuzmtpE6Gw%-xPpp|GcD_8x&x>=djsMcqn9N`aF z!1(b6|L0XKcyx(vqkYB%?NqU0zJ7oIyqexis{g0zf9OB9e4RhQk3YzNLv{cy?^NciMFLvN2Foz&Iy6>l+`WL zo(7FgaE`bksVB@He~ACnDwSf1CirS^G-j!;pWy#*9lLH8DkK&^FdZX`$lNUUfZ4Jt zG*4Z#k-4SVB`3lmqfrA5HhO7C6W{q`|H0L4*eR%y0=3f2qK-U>Ch5{Mk+;&KMs#XdgUxT=*AByu;yg6Dv$+pwd4-_iblXo=%_laC1$w)syZ9|c7R z!Q2Mr7mdxOCsOlRq%rNI5siHFiIkBN(r%!=fWci2e#Ov@8l#&|LFsj4Qd1a?O{J`K z!$wu`b7Pk3&8PamsbgpVj2aW#fSm1bQw@3o3ulvmj$!ZM^DR)d<^X$gX*T(MYCTHz zrd-g`$e*1}?bK%%_}gkBk}z!#W}c)?GtcqtoC{HUT`(M%##dbE?{Gu#8%_!11J9zi z>FtaBt!@#c-Fz_$h0Cy|ef~LAfKR>|g*2Z`<_f9+C(^VrNi)x-i~KDXL{n19xnSFDI!+ZPWTnPb%7KLO7hODLDhv=maBh3Mfl|< zs2na4t=#uIFm)l8@>v)A2VlIPD-<$4j8tgN~_OQTGC>Jc@d16&q8|4 zW6>u5zgPH=!_ZzJy6nOMQj+sdkZY5Q8a6hUUF~l#QgsaPzS_S7!+e)vquK8|gxifd znx|do?@yD_R1W>s;r_OMIk`ty$n_*MZ1L^>i)$-j$i=Xw*xM+w#UsOw{MU>8$I?WU z3@48EH(U7RQ&3SswZ($n>4I#;0xex(d*`qGpV8D*+jc91uXd~`VWE7&QYyBGuAmMC zHJXjt;&1IMoX;hZ6M44&3*St(V+C^7;4%S;XIaB0c$X{>^7+5@A63oPyaw|m!WQ=l zG`q};p~dJYVcy_w^A|sf(o-Jeo0s`NsbZ_2Mlmig!FH`iYoZf&8Rlc}^82yxjBUF? zzx5AMP9<_V^f#Lx=oXw?46IZITo9DYL;UCW`)6a<8CHXL`CDXG<)Fr%JIObm5m5uW zZ4%G&5Px-*e=l~Nl})!A2u8|7ys!oY>$33z+7rrFRc;E{&)XIa&8AF6nKQ7AKo&6S z-=IyXUk=tw7Uu$%`;Qvg#4qJkb0xfKHRd@Q&a=hYZb{RErN`28oDoqAEHeGZlT>#d z({5d2Yk@_&qo1L&9QefFi^aG2`(cG6i>aMOJ%^rOY&^fb1=Jl_B?6dsp1=RZ-^v2- zxeT}@_>32*RNwKLzc*X6)!(m{EQzA60zv7B-DvL)e_s~gW{apWi?rC(ZD^#8wmXrh zU!=l)%RgvJq3yer|NIYXS2g5T?tIzb$3vlL^kfUk6dEt5V$%sCWU)A?hCuXTfBFP7 zBuh-05@IO|N7zOcM>?W3ZxqIoXKtci3c+a7QdA_Ar!px_j>a?p4!49mm1*1jZEP;W zWg96@YQyW)Z7tmCu%e{ghF|G*ETqqks;A`5XG^98Jw zpTYjT1?32#>5rkClu!vlf|kb-m-g}yKk_~QNeIb*QH01mmfoF+2yHn~K}1^6zbV{p zUB{z;1p$8lHvhk?h-f7VrXx{FfH!|Y4MZ}P!I4X=mL!m~TaUu=3|%;|!EI!emyqef z@*ZMp%gk&J}Af}baZ>M%b;#LTRG7}42s35JDfZMu`fli-H6eqEE2elVY5^f7R z1pBh!-9@cN|Jnc@dqUg(Thr|)GI`bQ&tiA_1HIUqhCn~8wU?FptTuq2MnT%k3>rl0 z{-=CHb>xQnK#LFw-DO4qNP~$HK%ZWLHUp~KBOG8qXbyD9REzY4>HGFjotWDiz~MAX zo@8_or2os>1FdXbt9HGdk;c8K4})&dllzNF!*atCE~ZJSE> zl=7Xu0)MY!=d`6t`R)y)88-%1Vk>l;m-OlDHXJ<+qScl*X;R z93M3}aFRQ0Bz=5x}HFnm4p+fV02&{Sz2CV?rttH>j}=(wLRHLCf@&qXL+76yZksrb%cE$!lZR zQvE!EI>SDif(*g9IL@lZ1^hKhj8GcpU}XRq-iO_AgbjKC_FzQ=`5h@zshWpHf%XEL z56j?!34vk4;JUZN^q}B1oh~itJwp z2FCYZ@;`dnu4-Wa7(e--z`{EA>KOqnUg5AnlI_aF0t&jPI+~hofE(!mashLhQQDoU~KYotZx13oItAuXoG{MQ*T0! zkhn56XJTM`72EGz<0N5Pv$1fLj{KMOl4oGq?yMPn{F5BD9`R zS`;8&MVQnS$Igcx89;wY)T9h@Kvi0)FV_c%VG(ZZgJydXX4yaYm;gFW;#(wR^g&wr zXVSLxw;UV55=b_aNILn6gRN<_N@C%c8Rd z%ho!Xv~o(?1j+U?-}!;p2fnMatr;&s&v;>*;wx^ToV@uD7-FngiP2pWT~$V8XYY(y z(ktLt;F`YJ^xf}CbU25ta>?{FGCgP~7py`I9Rn_qzxON3(cl`iR3ySi-wJDwkwy zmj&9i7r1?pR~7mPPohGX#}R^7cJq@MYiL|^OeOhWmj!+zLeQH9pHU)J9|nd}xlXdF zcLgT0Wos}7TV{h)vPIGeK!>nuRCw3j7+etLUaa3b%b?K#71UqRP%5dp-zTwFL&JgYShtU#_k``P4Lo`Ug_yAQ^>Jeh>J+~R72;qYL znGbz7fCEGy{mVFLqip!w=#xv8u38tsNhz>u!C_!r2q03}X2BNF+Be&0Gf--EfO-OY zQaNJOUiz6o`Jy7EbjSgZ)R8?X7_~_~>6D%9V!=Dr*<(v%?A+)ZgN*BKp zz}Eb^pJ7Iiq*-E5z*nEmrZPQooK5~LaB1n+V|Jhx6wC6puLq8(W?$^2J|ctFb4f-R zk|Us>QDHQYN#mhifoSPx-s{c4M^)^D{~!RRI>9fHqa~mDd2cH!Sf)uPafnbBxlGbb z(OP$)h?HVSgOT+a`9>-^e&065sjZfj*y3FnX-ZIL5IB{A))FP7V61)rfue*4w%A&L z7@4m|WzL7x8lLxG8a89hp({})o6)-+EqiF>Y%pjNmSsopK^ZCi&i{7@^#NagN27S5 zCG$yI6dN2r-5Y4LFk^A;UIfX}(ck&EyU^$_`DakONCq{?0#!lnhW(w-{vr^-#&QZb zs6;N|sz^H5gVUxca7k2ENB$vN2^81e4P5d{$Ku_2=wRa7Z1RB2*gDB;?{a*gb6vn)2qb3xT~cH}H6~V-F6^)&WAX8hV5g&j7{CQ#uus1r zHj6*)4ASsT88lkmu^{T7{%mRed_WLeKGHI% zHv4H=NSJPl1~E_kF70?)qJ8pMgrUT+(7q}b9OUsN5}179h9^;^r7I>*K!75Oq6Xxe zSB@>57>qezrMNhouwhj2glcWd_@LF6(}8<199k#SG6Hf93#TfOp`FE`Wj>M$?yM>? zZ?vb3MZGFAZE4?<31YtZ=+QxHx3TI&RN)$3FPEc|m@&9X;=AJz(DE1`K01hzb?QXzcB%F`Cu#>v zFn;@3D#Rd-B?y|jRxJ$r;8r}NhhiW-#DU-uL4tI&^fP~ZVi0}E0ms1^VJ<#4*euI1 zDayeZhz>16jad-wtbp0XEL!93^MhVDj5P^@Q>=SIu&X@8kDW>RI`xX+ zkn#fT_A7$1@(_P%Hi|DOqY1`f9}kSEti=dVTucDf{_NZ9f&*$ah*%~vbSq)=^{`s} zmDkTxJo~Y}h@>`a@fGTHF<~47-vQ;tOe)|#Y~Lb$=1&#>zK*9RJ!1$#7`hLfzj=NT zGe=PEi+iHDxSLn)7tXizV4y%3L3J=(638Kv5b@}+RW-m{E)7ntCJqB|95(ODdSTlY ziXs_pgz{g+p#sj&Ul9DV%H_Tl0_C9&f$_gYgnxJiHD?3wM*EXZVOTEP@I)r1POq^? z?xqe)L-lwB1W=xRc{dG^^yeCUW>e4bHSx?s>Xg~NG(IBKq*zOubS-ou8+u;}YV7{x zKI#cwnvU@$H&M5I9UUFh#?y z0hpw7P`Gk&H?@)avy|Ufz|sGMZ&g&$bQ5fvP${#s--z+7?LKO{U8pe(s%W}hm}UL$ z+Z0#jtg&wN!BshCFiXGrj$j?`#XT3qIR?x{*A5Axn@V6i6`cw_m-5$V(K2bIQ6ll# zKOJ@6Nw>_Z$6o{6^lWgLkwB`X8|Od#9To14uLiM%0d?&7H-<3NmX^g8esCVZCcWhn z(CX}G&m(`0p8m}5x{pdTd0Psy4_`o_N_CnZpb88f9K=as2)PM`c*(L5)@&1W4PS1g zfhOHMv0!i|IA6?ls9OxK2{C@eLyB|v^MeWtSkM_A9_>~ z#&M-mEijIj`OYJcQ*E8}X0WX$kB3{fuGNfj^%m#XM5DFyO=PT%;E=rh&EQ6b# zr}F#Kd&*TZXcX(-SB^Nz2q(t=o+>ElVL~0pvszSY+t}1+gSBqwN_#>?_AI@r?^7OM@IBga?CIfB(%N9FsI^I4$DyMpID@&whtlUl>m^!Pa&oBCjbP&w zi%Ea*Ht{?Dg{)m#6B;4~L_JkT@vO!;wrEgjC{E{7qJ(LaY+X$#=BPOK_I^y6`Bhy= zc}hxHi^p}M0~(^kLxipEhO*jiRG;h|WUQ#^aOm>OU; zTry;HhlV_&pMCDNz-&P<>ju##qX~*5`!F0Y3q86rbY^um4DQ+|>c)!|EmD`?H8PgbwmQ}gL6GH3y=g}e5-aMWm#8n^^PC>33hbPvZIdTsB zQ73Y*2t+*b`c{@L>;$_aj1;HN!`azC^$($e9oZdfQz9r%Lu;VP#4{2PcB61gT>`Yp z&$>}2oX^JE@P-h|=8wiZuG(6sj5LnWXQOp{V+eIm5-j9XSl83FuO2-)ZVzNw=#t

    #h zq0f%eOZ$Z;*A7}zrB;G2xg|EMWzGQBFg7%TE$Zywn;m^nsK9K(?PIVdy` zXJQY-zh5~!)UOUl<}rg-LBWQvcu!zH;!zC4lN?^~N>NmXRstUz8^TN;k!e$gRa9VD z9Ju+<$%u+bQIV4-$DE0(D?PEl^Qq%PXmt^hzUOZP2)ot?+Sw1 zcn-U_>!T>i*iWYsg1EZiP;><9r2zKz3`Ga5C6Fx-2OD|d$03XmE|i!>r-!i-@-)cJ1NyzGb&#t2|(+cbKhiO#^-v-EZz6~caJ%jKcA8eBDH&qYIi z58jeX>bc9)m!q_3q+TL%_TA;7sQHSEA=xA!c4Ful9LT;(i4Qs@gacjDkeI3juSOe8 zh6pi+PPsbNX}(HB7o8IN6o>M!RUWy-H(jgJrLR)_Q&9E@0(fV!=vjEO2Z>eCHda7L)fbAxEW1du7ClMXhZQpmbfTHvq=!@&rVo{ zjK;xtB~UK~M8*s)264#}J;W3?ypbPzeh9CtfE`A+ze0r&2B_pqnQgzqp*Bz)P=p%u z$gW|wc}G>4UwL8Zttxic674&|Mi+TEl&xM;nyOIsU5wcz8+|)y;iNh4GRr0+snYYX`2+0PcY-ilbs(3i3%;gfNQ+U2R!9O_skOgsnEs*M^N{hp@CP8Odb%16PMI zlLn=-s+w;(kbAGA@z234sI87;!$Pv9eK_%q(#I<>!ZZLL6~T}e7k0bvr$$`M>(Bi7 zMbv8kc_qRwKuM5{;n}3|IC(=|32901m9ZOEq0cS(%%A)fwVBVa)}Fa^_O8|r*q{0E zrHT#4;^`b#nq{HQ;ZC2r=>BWqgcJ1{DvQ@D$2;nWR?95y6z_A(f5W20X{8O2QwTC^0MK<^hy z@Op_C*r6{Vyl&lE!r0o`-HrU(`$O0)-SLNz7e~11?oibmwX!*DXVwfnh zev*jw-b@28ZPMsX+#Kq1K3iI|o}q!;vMne?cv1t4>XH~-(S10GQ7@}88leCy5H;+A znC}?v;c}tqxmUhGBe#LCBd-K5>0xvxjEZ~%L2n)Dy0Jl@hq|rLmd(L`q+wg%%@`S5 zHjOjj*J%Tm<~1*e2Gi6H4}Y;!(3G&bfiM+NEJ2B;y%DN**)j@}oRf$K_|nbPqP+JtT8&f^ z4-T@aD==zEZXYIuh$R*?G-?KLqb7Qvt??0dtD@fxu zO(HKyW8o@?iG%1C1Z4;6B_Qe;1m!XS-@To>1|p1v$RyesjID)9(K!%X3vx^n)p7to z<#XyFh-EpL5yf%wk@Gq?3!<2uM8-dIo~mI#Q|_} zD=W4;bTVypl09lYB_u9-2~rMXQWBh;@0PKfz773{wl=jfqax@y-z}Az?VH9>@TO8UrBOdmuvaNxUhti!ZZ=Ndn8dh{3l@?T7f|poD{}| zBA{Xlvh%cX13U0X;l2*2Ehc85+H+I!=10j)@3uOQN4G8_RCiJV1Z6v@>I!xF;h`#^W^C%vV<_{W>}!DzZh+FiH_KjoNx{mPH-Bc1*9iJQyz^5uVFT5%${=@+D2uTw6JOjSA^LI z&!y4{dd62tMLG1(1&%{SnvtJTsT_TKxL*yfB(c$VA*h)I_K)YUK%)wZgWMo$3a&t5 zg&!n+Zm0$jTXPpqfX%!(j3ul~A440NAgiGjh`X>l<&xNV28Inqs4)wY{vyn=`^sfu zoJlp#l3Ak|xjoz^D9~3&W$fkD-2CEy(K)2>TrDm{idu*NPlu+(z%O!_3vA3t&~;=W z2(2;(`1#jS8SQls_>pnGu6w(PVpwn6Z3d6IhJJt*{Uv|gpb{(KLb^70se_XaAn zwJVU*=rz;^8mv)bxl-Pa4C0D6 zuVP(I{C7*KAQN$Ag36VEcdQRiV8q!1kV}+qPVlw9JNEkihDtDzwP2%0M6K_R+WgzY zjTqA7H$UQnU=8X7+jY2qj%4QmjR5d$TcVVmBSRGm16?{H@xoo2g8lz_}qH)a{`zBl|I{1l1Huu&EH>BcP8J6BLq-ux2cOiy1YJ_!5K%;VK( z%*|*7H2-A_flWfN1@v+_X5{r({@NNUw=-TrRUupJKE&V$8f@#~(FyFMSHfQNS*x(F zSE+(2Vf~dC9-%@ye+$MLMG(7lqe_{q8-)iSqjE_s=mI5P;+eNM+|n;0-to`i7l6P< z9K*cyWt2`wqQ5PHEgZ0_i1L3wquD8$ZC{8kQCP?HWU9DENlzrlH=qu}h0smeYD=LpY2*d(0Lw!`MX&TJa3M5+P4)XU)UGiPpgi29SHd*E&r}Mf+OWx1I1g}yyqQiYPQryl-Fd> zC=IKND0k?yqcrS2s(k16jbP0omBRQC#TG*u937BTD{vgd=J$>CwP3tij9==?W{9J& z7?iqVK6J`IB}q&gh3PSmg>gtpD$5ZZ7&fqh1C4c(=%pkw?1h05jJ1twodD!i>-Qfi zt^@4!-Rhw1@{Um3#(vus^`W(SdgE0vFXYj^iLF-698Y{`w4PAfY1PEbVEpWVqmm+P zhe*DqYrg!MNK|!;+CqkH7vURaIoIpj%c|vn>bmiQj~==)Srmg5fJR z>8awjviSGmI&?l*8fEMEU?b>`(UC!{$BW|VmgyyAdJ>pIjz&bwNTA}tN>75{@I5t9 z2XukFuz{*Y{T?MT?|bZkZOx)Y8^kdj%ArV`@5bD}t0SOY7@^%JbB@w;hq$~U&}h!A zi=YOBF!pEgD=KzloJ{7;H3vcY*^Wp*N2-sksU*eT8yyKUH>_&8G?L&e`$aG!1YxhV zKusvFY|y^;4`9<;8-+`jzD>sC87982^^&v9f?&$`JaX;wu9J%qfJ8Oi$^7a zqle=tmm4YxRCPxJ#aO*cohN*XzKe+9svSh8YX|M`{GLFh4R_{=eiEyNDUsuf9DXM> z*+WkSbVSboe?$a-$ABsfWPt7Jk4M4&8>I+5cqB@UNCiF&ts!(l9VP&hxC`{Cw2|Zf za(cq*)b0qz|CaM)R%;5z(j}9c(0XG;1Wk9#VW?s$+i#{>vK@#R<`UFpO5|VpvWl6 z80!GovjpSTzTz!-{5y{=Q4APov1bnh14lqU(JKYwf_(*yC&on3e2D-^5xCXFE?X7B z-jB2|4qS*h6bYcCB?sa%7!^Ry4yFc8#G`@;6G5o}@_yqZnAOhvX~c&Eh&W;(0wCWf z&ZIF$7e9aN{h13^^a0b)-%k5kq}$SUfqe4e5!}D5yCC9MB8ES9#HIe?*CU6pn=U{> zkPehe{N;kk@Jb+mYzme1`iqQ*rTP;uG9H$IeE3lmfMp9Je#{SXr;7@J;-Al|Gg6Z- zw^79qD0SS6E{_a%G*!_N7(e?2s@mzRB7tfg>i9kzX%RVJn<2xZ>wc;jt0#=i?!789 z!li}%RzmpeCsT`-y*A=^!A9|dYa_#5h*q39joNe&_0{1wCGqZs!xTS26qoN!fvF8k zssz)EQ=r;iURS&mb;qm-c9TKZuY^pn@f05t5bsZcaS4py#E}Vr^zib!B7xd7BiLI8 zb?u@_z*qo#?VcYZ>XQP2zdOJ00Y4qWU05&RV>p;)+!5?SG5(dS9NuW6*-(@4% zm;)mB(Kq~znz`&%kzrZ_iPP2{NrOyMl^4DS%uY4lAjxN|5 zpR5$c-u`_TQCmK01zPMRex4JL_n=_ci(n!8snk?Eeo5kH4(sq6Xx6$0a-!u!`}2LIHu26;w)lW%zHoFb1)eksh8pni>O&A z_IPXYI~I7X)i{mmq)H&6&c}1>b22Jenm|=F?I_yDgoDm%&w==s@O>zGhZ#C zfvU*(EH2gCv{Na1(pSD=Ei&H`P&Hi$WM$@80QuD*V~GT%0f`)u4OT??9h`C)j0d}9=Di-luw14ghUMViR3c&0KnOw=QQqe%%4Wm? zZJVS(=8ZCfFuYbUvp@4Io>7@A*!RJ)O8o4KB#%>}^azW%?4`+<6IiiHx@BY7BTV67 z-vIow<(3yzZVT>ONKjWPhy5~ss!EE;;x4=+DR|fx`L@lJ$rHap4Nm28VrE&eT|GyQ#x_G!ku%sA zE>ylQODHC#+1)fEE2AhT0{g#D`MYHgYO|1;w>hGIen1$uQ{ulAgbyVU*PYu}2}73#r%Qr!k|J4L!$D@T0-fQ?T_dX1WpIDvqsfxp3mnbqqJt{5I5|?n+wX_FhT7aLRz?aVOk6HQVEi%>!d)hq35-glM1p_$t*9LCMBGM9 zJSrMF`+KS@XO3^zq0NgE)&NNE4|ZoF@5K>02-=ILze zMnN`a7xi;SN@$zN%k4YK{&=-&*Vv;OB5qZ!}FD!I76J8Nz^`GHxVP#B(H3V8>5r z7j?%np_9t6jk`ik{Od+57)p%1b)_VZmm(M#dB~J(J~AbQquWM{l9}GB0)ihOtz-fr z>9Wxx6YmaDLGjhZaVv+yp~zwaNbekq4r9$ol%2UV+WX*1oAP3a$%yh6cuS}qOVg9u z{Q@VF@~!tYQlPgE@jC~Jc5K2p=B+>|FA#{(J|+0&?d=#Vpm4YxEwzMr1ov%ePqZD? z<+h{Rebu=XuEw{wv1Jq5u?L;TX@q&VV{h=_quT>63=0+bWlkLHyzc1s5oHlRt_M+I zqmD%waBCfBiP~|>LTJ$sbB<$=9NQi=h_UzevF#&EzVfvR;yQI!J675f+M3ascLK7a z_$%*DD^|m>8-b@2*p&TI#xuBnj_y!g<^wCAg<-XTusCtTaVDdqzw@8&uNcwt9}aYc z4sXX!k~D}Ft3%kM$D(~Tkk(`1G~D?-R3#&4E?3>M;1=gK=uZx8e~E3}_YD_$~9iYJG}-XW2$fM0tw{4}b)jVfz+ z0GGa=o`5P&`H3|tn8!Te-gew(glV?vUfhI7eque#ARa;x>93A$A7Oo#3c_IQP^!!# zQ%lw6p3sijkg;Z|EkB$paO`3yfc|a7m&4Bom-?{;TB@ zur!#ZDUW|0O)Q_j3_%hyk|Y_%!LRXb?u{TREfa!=lBLmx`>5S=0KAk;&q&aLvY#AB zG@rd(`|Hx%d%1STNl0jIJVCL<76pEFl}+Bi9S1r^X0j=VMa~38e~ktdL97@lg59M` zYoA?R8aIwq`&xQz(BwOHrj$uXJ&ixa!h}pBtp>Q=p4e-Ud~Ku?9f5r;wv`SWv6FKwg+j zl@=L_W&CcI2XXCO3CR8D zQMGvK#vUDE*6lYllNe5OW z0aH~6NwnByR7D%|H%7G`S&e&9xD^yUyd7)psO+`Ex@gacs2ju`6=|Eex*@42Opm>d zDm-!+=YDL{Mw>XhAxrzI-%^c7vBzo@N<0ho=$;BsNYG-9=$?tWgG=HP$4hX?T?dnm z1z~b=s_u81xRhD{8`aF=6k$3iR;Y-05s2erlsJCU2F!~vp(u^dyH8Uuk}>+ky$G}P zKe@jh7nbL~Nj(gvYOLxZ8kS`9=BnY)x8RzAaHEKz0z2g`>MDvfc;q1}$+holl?H!D z6WjSQjozRqZyR3!F6JLX)1b!cEAL|d;l`9R{N_igPVR6f7-p>`hzE4T=pOD-AHF^hTMYHuiu64zi^gdh1_JGPI&w~=uCvThz{ z6HV&cJWKd79J}FNnR-PjkPq$441ezVcI+!51cF6HJBWjDw~_$Q{~nFIi3WcCHjUGx z$oN*aXjn%byrvglGOnOh5;C!=B)~8Kvnxb0F@y*we(9M=F#$o5XcEjFRC~cpR7x?v z<1em&lu9rYi&Biw{3{iTz2CQct21%-{o3{+g1?8J_f@ri$-N!^a^RBf9V1-daY7cA zN32D!e~YU7PG1MM&2bb?ln0OnE~#<7$J(e-7}>)uHh1%W|zb|M&SId zrHYHVm>`YW59e(Tuj;@q_5I^I0+`Pxa;6HAz|$5TWRzn94TL`A5 zN@w>NXY7Rd5ltO3Lj!nCBaVTKVTrroxGp?sOLR8TEP+8A=Tq~O z!&H_ARRWZ}w7qMn%+Y|>CrH}`%aQhXsUl3a1yq*$Z2_$arp6&BEupwL)PV+Z(TQmA zlKC7~>m9PVQHi~|IUU!QN1mP2F{(TwjxKDAb)e<%o{ByLYupRI!b*VrSr)P?j#lhE zt0Sl}^?N43=-|dzQ#(d##L^OWj~vl~K48ry9lkOWYvy*0D)U(=ZtO8k(`ihc*|xDA zUffz}6FcY?Wz>wy!D^awuSdNW;WO%Dm zPbBfuH5S+xcU;UC%|Vw@N#dZZko^wWTfF6uH)V0~icUk`JDCc>hu5H0l0pr4p(+bp zoQFL7S`+~X!F!@I;ly1X?RLVBnlL-$C@Kh_UvFF|+)-X=d@9mgdJL6uP;O$&7GrFm zz;6x-+A2#Ds9)+l#Wz=Wv=j;H*pN_`fq7(K0{m|$QPzVydR>#4atL)?9IF8T)*=)Q zl<*>c7qw=%yFd?_53YzdZF=yJ`*`0uByTyJ7q??lGpZ5q6XM_DiP z4nHB3lfO(OB2XkFLqIY;shkYKz9e|_872lKS4*j}O_%68APvdeeRDkGUBlh5fod*oeYIU{5~UTyCD9Di%dlJp-=Is2=gCaO3~=E64fk~ zr}w>_VvKKNm0d~c6 zU&GgQ1kHEU?Se2kcMTY8Y5kSgT}NbBKGfkW!Pt(6FnTP}xO}0ah667zqa}cVq$l$L zKZKINLoOQ^<2O6`O4KyBkR&OEGDH$ltZ0RA`eg^6R07XtAtjwzsOx}AN<1e3&iE~3 zSTZv1l)%2-joa?>A1>|KF2W%FtzZNJk?tDYWn|s09XOJLOczFa(+|C1Gk8u%n`|Ev z1+2}8Uztb7w~#ZIi1e03=$GboTq+6hhGnV%h`?Z8f}}8{qAo%tBYtFF$Ha!~brL!t ziDyKUOw3$%?!bT^?-XhY z83QSiW>3713gCdfME?koZM$xG6Q8<@y2oW7bOdUk&z7(0Xm%v#T|FE(5;tRHK>7l7 z+aCEQ8bpIRio*0?*H9NZ`)v$sjEGzPfwwU>Fj$fLj~}L<66C$Ocpaw;GMieWUQarW z-|@-PBEW3+)7RZ#y#y1)dAO~m0e? zjTD1eO~ER^_#M3WUR2rJYzvVWH4tLcUheo2`(!hk1gdysz03ZS9*9dv%El+_+@WW#?Kh2eJAT~?Ry7m-%2q4 z?c0?7V2*8XlyJ5@9>p&QU{0!krV6BSN=ieRoDh^Ez9ULM^F#lxsABU4Iv7n0QX?#OUy0M(%m*U*2r)BoC-TK+m8ubmc9Q>M~fx0>jL~t1hF@u+c2UJPWs^+vaFwJ@UTjD-69mO<9Btf}v3E}rZ#AIR_gGc6pW_t~}UySd_T%@TKag4g!7NBKVnCTY z1j<$XV_Ty#`+fKsUvUtPyl|w%T0Xc3Y}lOw*pIMLM_DHE@=#R*ytb6v27)l$MvHBX z_fZ)*tbhq=84g;f!&r@o){ff9^$(@qiELq@)z@wWt( z1;nA*Eo+qsk`<3>ARMiwQtng{m-bSb;#4POsCXbmMKmc@w>`wFh((cS;uVnJ=TuRV z_LlxU>cQiZ^zixt7zN^j4IS+evm+5Q9Q{z3S7I6aa?6qf^l#l&EkG0K2xE_c3}sl| zLD3i4#=OtZ|8r3EoGK@LPQnY$k7D3LTQl@4>MVE&hE20iR8e+|8M7vK<#9fLtSVT= zEGaQ##YC)vmG2HNDPnclL#GGXAB*DU+DTEm9EznxwRC_g7AV4THP~xWYA)eRdXk@(xw=BO<#$e{-@IwZI`}r0pvw0q7;C9t8K_g znWPYc_I*n51Lja5&RdQ^2v19GAP_EhOCE5;3=5N*;ul1R{xpi$)lmpUG?a{S0FU^R5xMQ4gHbGGQqr*~ z7O;}L;pb7jwvJ$EA|@$gMMq;FR(k&;it{vkA3;bn^vm-y8n{D=m%bvi+5L~ANE-mh z@^HEdUB|9RQQpjF90i1Ys1KfQI&J~Q;MT{{1p{XD&qpvtJ&>C6>~iplXvhs4!!w>h zH|o-~jQ{CMV!Z4rbiytXqy3MkFoJhMmiB~es6YAs5p=Kk-Ct}~h>DO-;{GC5x9Qah zkPTQE&ZiNEal@k+*E%{i_|A6D3^(yxZ=#O&*N-C$By6&vmUP+NDcyKr{t4=EM2ZGB zrone)G3eOu^GoVdxBk(%TxtN6wQmM=3|w6F~&$!l%L#5*2#OB+g*ykShS~MbIlOUE)#E-m)<&%3#abxkv2-xR$DX5jskCJUah|g^8dkWKFbRnVOTR1w8{0qF79CYyS0r%lN+Ny1 zKa6800b}9We;Dr!Xt`Lo+R(-$E?B)31sf|#)ZK@2v03aFTTlcY3~NV(VTEWr!f90W zXFl$+D0caYGrbpst3J9GqspUv;L(`zj3^hOTAvZ)3K-{4M6umZbSp?OVp{>@>8GRE z_eTx~aeFvgXp+X{IYD?C(&!leIJC}wZGGO33T(L0*(BZ4Jvy>S|Id#6ubEl zfI-n~gQ*Kde??%5Xd1JmWtsK7s4~^~NdiU_6i3?WS(;b8M6J{lwVlCgY*U@GA&Qe4 zSSpb(y3b^%*L8+9fK!MBW4 z-5J-?`Xe9nIt{*N_LUxyAq}wy`pSgukNo++(O47=XsQQ{M!w7^(zBJ2XGi8CEt(pr0j>U|>3` z637>AQ;ao(QhhMj4witt;R6!^Z0FsXI7VW3~FQ15yDcYNoNvNBZ2&`4$3_Wh7hkpT_z$G)LReDBNWx@d#)ka;2Ay z1(KQjJvMX@ilHt;mb)q~1O#oH^u%pJBy(f$P7F*C4III>94fVgn7Dl|V{AabPBeKa zELfP$bPv2QEmC?O(|-sScAQH`Clkc5Ol)l1Q4mANW` z1;=)tPTTrvR*E4K@$zc?&n=y@Oo%AR)JqNM5LCeVVM97)T?y1Bakwhy6b#IwbGV`- z2d5|-p-KXak49@&q>Q&qu~o2ZX1I|*98`rOsDvmJRQ(_!F-+BkqL(G3q9nY?F+@VA zQe;4+GQ8a`6P3;Ac-Rt_Gs4!&C>4qA(>jCrjVjug*L4LW5bSJi?9)A)-Fj+gxCoV- zVz{ih?bJ>TY+RZerD5TW&XANKE~@vSEj6@DbicCc^v;Nbt3U|6z)m>5GhPAX za}rc0emzTjPS)MpTV`qBN-(}XMP&iJaU$npw421%E)W=(CiH4C_zx*7MdLGoZ+JaUXGPr_Dj z{O%PB)x7bYw2qjjAN5O|+Bu(mF9U5oRnoE`x{nf<1IQHcp1F}th<21|^m%Q*s6Ezgz9I_?)SrP>X<~$ci$3?Bw5(4CMxql zS-)}v`axlxbX^#~{U*wLB3?m)dH$e%E7kTbR{4#C1W9^%+GIE;9yl*9+6Ix`MKGon zc()x*12Hew)gV9bR!v=r>~gYP=*xxySsu0o6hV~$k*@^u?YAlRIPpU6lYO^3v9G9p z<{dQ6nO=;P=n`UP}(ve@Id z0kPyIpRED;+JXzkEGvPZ)<_8MMVQo__7R>V2t758gD`|_T(M9oAPzkhQU2xz zRRjzNs|+a%h(k}EBv=CS(c! z5y#t`wTmvDtOzeDB+ecbkx_j^~!X*V)|1F(a=?w>HLx+5$!CAOM|}VSfI5DiD&CN~FjJ z0wR4a3-hnH+JWhXb{LuLUcx1HryzGs8Iz5y*d#pV*nwsoh_B% zsTLC!ES#zer4yoCld}1l$>K-EFfXbkqN9SjoDu1z8eH7iIFBM_a=A*jcrFXC^Mfs+93`3FNnK7I#h~s}& ze~pu**zdyf<|kO-e)UX5+L4exDv1;Yp~pgHLoHAy-ucYsV;GpOJIB}{Pi!gi;|LQG z24%(Z)TDtpjIvN$Tcoji{}=|Rubyj|l(B(WjKWiipjqqynPBk)V|TThd$8C2Y*y!- zm#Y5fe`dAJ88V9PdMtK5JL90(&)E5QMdN(P=vZ4Vd;02FM-46TP{Cnm9UQB#OQvZL zO$>6*x~3TQ2(-W+zb2M+>nVg^HZF$k?NhIhMFmcNsuF{J8L}+abw0OoRbV7uVEKiy zl+kr#{ObuZY;d1{qw>oM5uQXK>jn1gjmoo9j9)M*h7Imvx5V0U{Rri$YIO{cykkO* zZT&Huv2FV5EhxwasuK`vSrSV+AC)|R^$6k_{9UXaZv~LCwfDt_Dvhawy2i7~x5lt2 zQG_hLHI{NdYFmdKL#*ETjrPkj<-JWOP9L?xi^nP=5juE)9cVD|(qtYdncr-m&Hj8# z%tq=7>A{Ji)+MpHrJ=ub-&92=T0_=C(_^@_BXn3*jpPzmdW2~`#%_%z%6#WbrYl0) z3zwGfHsgi;owuB>ScT~he;Q|W8=k?$B9p@UnYy$KVlEK-4g_Y2*{CvF{EV}x1w%GP zG>Rmf)bB+=mu~4!q`V5*xO`k)+Xl_5GnJ2%%v6#d1w5h1l$Hd*f>Y1%fM;p zQO}lt8kvu0wXq)s&Un}W7s7Te!bZ%;E&#Jc{4OwFzDPe4OE~iSGk@wAl#%Z}7weFq zm6}kLr}WQQXXDCOW%!YGC~(3Ni-*K`>Qc(qe?PBXEs<0TL5eAAA!XdA~(gbW37khVg-cl$Clv&H zM?kR`NvD}$UjgKw-5SFzT5zu*LOCACNd=v{%Q!#xHp=p!d=Lv)V}E4LY8r_P-g#X6 zK$XUmJIwRXSi1|Y&k7X3E%?t^qAbE+{a+&f-G{MA4IZ;(n~sh(tDr-b#h=6xs%t+& zAE80zm9o3(BXkjEA%5sRM0oBuG~?bL>s4Ng{bYMAQ6A!(?o*71;_=~FJ!%r#n6;}_ zhSz6v73D$ix_WqglA*s~{B$ zTfdL>!g)B%^h6Vv#V?`B)l!rIFLR?f zbc(eW4D&?@%47V7XAFBs!m0wogdA_6H2AC}tSYS15rJ@9QADKx@3US-BIwCsVF)Zr zjfi0E%gD_eC>pN~>B3=y6rTK4O(6Eza57%hhS8ZW5etmNi~tt3NFdH$8QK*u^PO*h znF4X4uPdxja!pkTsIqN`N5`{Te^q0k2KcOrh8E|-~42&Zxcr_MF?BI>gPHXAU{6}vp+7St^ z{V0arT{0=&7XV@Of}}-&)?%QF4zBn!|KmG~r1H41@ zE9kYdgMQdmM~{|d@v5M#@>dS++P4&_cJ0dyU-3^xdYB~!f7Em4GBv961Z$TYYTRHz%CK}!UM*HxF9kX%|#g@&?O-pIXQ_+o6CU4c*igmieZ)s za#phy>4*^`3I)1HnS*WyKlN$H z1eEePtB5=7G)aGPUlN1PKvPsfonINFh&+83`bjBbM}tz3KS@0PZ1j|lfX;vE!lJX$ zQ&s?Z^#}^Z#<_-q9R{i2GS4_z0`hBmbO>tF`P9;3T|-14g3YiDU1Jv`gx}BUij+kM zp3#+X0caRVEzbXu(Yy&~3;bOzvPO`A932p61IhxT621BCuB1U!yRYm{D`>h#;Q!h? z5C5o&u8*^ukWeM`7D8w#+t{82REQKo1&N3SX`4osqJp9zO+~CAWqd4jkfwm`s)&Gq z2nd3Jpojtrb^&`qd4Dr=?%kcuto#A5KF^2Ez2|(-nR90D+%|VcLF;2R1bdCEJDC~5q5}9nwdiP$T=&N`FUFPdq$H5@tVBhs@ts}Gv_v(Ovh%z| zMJn90J8uHL-pED&l2;JMy@J(8CgU47ykz4Kcosg-d&oF>Dwp%eJnq@Bud=4hSk;S1 z{?S}CB4|Vd$8?$;md|_2=f#L+#hJFBpNHmPl8VU4xt_=U{gb&Z^$P6VOSu@S#!D^y zs`T?Wn1N$iWGr9IHZRO=mg>h;_a028B98nop2)?>f(kN(>y7SC<_IgC*QTz~ct9?m z4j@)s({ZYBX>JoK-t+>dnJk@$>a_%xD@2Iwsrteki{#=-0OF%UaB~(VW7A>jrMY~_ zz#HfkFcJ(C18-TFo1Pl<;=z^Kr6I6PeAr)6iqP8X1jdlzRE@YX!@!HKWk&DAuO2inSxT z_1Mhaxs~z#0hWp@%<9Gvb~CL?3OUPpFW0G65H^IfmuFBil)x-!rllA5s>QYxqLvCC zQB#E3dHH*}Xo|34(Ycr+LJ+dt_FjYQT*oB}pYPj#7+qBup%5}J-Ibeuwr zr6>QFi`R3z&)|Y159=^uCQ<7^2?sDHMm+i(!X}(m6l89sLXf?476*!+Ha=g7USRG% zM=MgWY6%k^3G?FW?(d&)JtHkx3YhMQD+F2BpK+Ru6B2Dimhz6_{$H)qRm9)>)heAO zH1X5Rc{hRRaetnN=h-~?RJl$}K07`Iivr$rmiNG>jN-;beIBo$$Bk~-l*!hBr;Ny9 z89puS{X%Xh8F{|Yv79FhodIdN-Pk{fTUxNBc(y35BWyec;MOgfB!%_;>vQpT7J*aA zEgg$T+*CSC7Q^50GSxet%N00MD|^K^kw&gG8S>*P32uU|!z0gMkcY!V+zv)Flt63ySt@nqr~)NOnDH65 zov{fbHLK=Q$QwG3uDsPyeMn;!w7UF^PF7S$oIqa_AJ;@wbWc5Wki@(AOJK*v{b0(!EMqg7OB9zwVo4r7|lfWsS=MZv;Xan>3A zA&wySSW|Q!+%`trm?xYR7zZyeB$}i($edjNSuZy|n1(z%14HG>@+=H7ub@eXfG#rD7-H zd88{>_idI6HLpAiUv)`stZ?j zcC?O4Ewf_=!mMyAC@PTgr_F(ObD*oEjfQDc3-5>>|6 z@Sd76lx^loh!Z1EynW}(5aWcBEt-*0*Z8iw15+{ZC`}6k9hk_Q+g{%S%R+YRtVk@g zJj4_)*|iX1a#$?~CSTxT#+bA~9%sz{n4+Ai?Z8YEh_y9tnDC*pI4XD|Foaw_13{p% zGM;b9ygWu<48v;)1O6D69JsnMh1Z7UvbA$LCYk8YE3j3J#Pl|Lpd*+p$`I8T_I9RI zY-TxRTc>g$HnSXYT+ik_ww+@gS#}>Lx$5V@)UrOT-y)`59n2SYQsVoQH^p73y$mXKW0~}3FL*o1VOVd~dghi) z5&LL@^c=g>c-G~>0f!LUU?ECh9=^A?4!AsgE@ocWAe0IUsZznqL-Hq}jo$+f9B+s$ z%hce_ij(vr>uyD2*+g_feyxK70Z5UqjB$DVSVMGHVIZ^^1Zb5b2KuYO(LOom>C}ma z&D=)G<&K${FXlpeZ5cc!-QfeVqQPTYJoCYn2tG~$S>*~8d;*~{xX^*;Gk19zJ-5$(m z?;m%LV7um{Sc(Xrb9!-`h;=M^;ED*3d~reQZdT9OHk2wi2KJ4>G0R~lE+$047S4s1 zWf89;idyb=E7fyMi4|Ccn*iQFidT2pI}VHk!RTN_+K^=)!exP2Fbm(Ut;D3T4R$!P zRWXK?@opDS3s1_BQ!4vIiUE8kkEeKIhMT~hJoL$j(R{fQTffmktACIaG5CJ|E=P`? zq;iUG)5q7l93fLe%QINEjk|g9&OMGcriRKEeMRMqx{f!|aU!Ll6(+sJn5&p1g#CD} z7?P91A_?dnRRxT|;0kygXQd&5hVjIGywM{G7)pu}m|H$}G{FkH!n_!Lh48bIIV?n$ zVZ!Y&Dfw5IK26)%QJ^M8p%q>OL@QicxNbU zwBz4(4&n%`XaYAa+(dz4dxGN45L!4j`S6YVSNw8`H~3Bcn_bBeb7q{>D(aRvB8n`JF0i5_aF?`9BJOeYUI$Ne-RtcW)XrsqsmSMy%8vVM4&gQ&uDR}Us zXrbrjS^?JlZ=4nq2#wJTc>H@V;4~yvcv(Yudu9zkz!57h)wvH*&B8ptDn_8$(fy`L#2Jk4m4y+;ZePcbXatIT1=E-b@i?g* zQ6GXj{~|w#QLC-dq2kL9D@-g(fJe-j?s_%uZw{Wv{SD?B*J@;-Ix7fqX2myo`_Hwg zYYcdUqHJYq@iLh9`G{>q+D0RryVMzo-5q1|P$)Y z^D&c=HFO{+=X-HWBED-t-L{F7rgAC&tO2#^(&46pv2h1A;tZiynS1fdmS@`Fr|P-= zoCy_B&+bI9QMj8LwTwb%A2lw^s1X{w_VDICvNdWw916uW?v#8#-s)l{SbkSK(~pBD zpem$Fg%BIj1}#c2GhByw_)T(YQSB^MC0Ys`u>CpC z`f~bnvM)};k9BfpCz)c^I*&GrDl+4-pQu_}CxCg>iQtC6^6K4o4MNAmEiAPZ6M8-- z4aWrm9|1hJ2P!zKKm`yAI3jOBRuc$~@qhEsNB2T4N|nN}lcr_IYe_t+;R7H4?uD~a zRIHlsR)pr9K={hvPBiIXVPVwJ9f(0CxpX@-yIBeJ+}Mb6(8|<_CV_mINl-LY zAIO3~mRF?4(WaCJD~@QaW+{;etCSU_Mrj7m#N?^YW~^6VXXTV&z!$=6bDj=4(R+RX zUA$OVbKy)}o5d?pd7#AavTKb)ql;RoBG&kT1vV%Hlhl3K#)&JIjd!8ar4BDnROf6H z=T+>Q@rqP6KX*Lu;Y9&eRG9CZ>%=w8;d^*LZ|SH8noqFGr!nxk(}~L&G zip>IsYGMKfJguFHE+Hy5?PHx(%%6bxF`d;kXG)BQZ1(v9u3-cNPIUZ8K}M_^FN>LN z_z}}6Ts7XA8Ly){LpI#;8j7>m!cLqNkPy^uv`pNYY6w|TO3gJCLxly-fAG-BoV?5E zaJjRlO(qJ%fH1QPPn21acvX;(MLR{FqEgc%9(!Y`V>C}ujVPa1fHgcfcBIBanUadJ zwdQ5>+c)pVqKS&CsNSN9ifY7pE9^{dhf)<)R82)w71f9{wX3TWuZG@Rg?5}*;Kc~8 z*j9ugPtiN@~LXr&2+MtV;to}Iq#^lEr zCirgRw~WE;-qk2zRDlX86oNATsF02f2;~5rr*CoM^`OXrREo&}SHjZEl!2&Nbs#bj z6~;SgKG2D`gCYk}CDnq+K~xxTVMT=6Kn82R3B7?2>llS&8UjAjpkma49MYj@Drf3bC{*WAZyhgmg$3{?wl=v#z zLYkDa$CXHwz2PXHtHuY=;{2E;2`_byJJVD0!kCc;-&OO*vikrUOH`IBWkJ^HAR1!D z{l?I7{1Dmxp+))DqC@lZ8QjRM7<|(EFs{BN&J}9JCMwc{TFAY^=igr0QPmDxjOz)?vmm+(~$MZgvJ8%L&D0ZS=& zSyjfvjf%w#MYvHhg-e!2xCw+tzv))E2~?N}H-XSNHNy-SYmwudxb4oyR2vvejk^ro zFAibvp#fN8vv6D-5@B1SDioHVb)46xo^j(W-tu`}^RZ4|wq=pCz8N{r;22HWo%K14 zTUAS{+U9{rWpT!j&f(3R*K<@w#d+LOSsY%s3J1j zEq3Cy+m&`#P67=!tC=f+@pzVNmEXG5iPvz5n?HfV#bk>goLC7GADpu(>G*U25yuEp zxxj;kJrON`HbweL{AtmNq}+N&XpIxEe-UbqltybFw9L1 z1YP<%1({9q*aATb=d>#ssxwwhNtd=!pFuq;?B{Hxc+GNg`-%Zxr=cVsPMmAOuis?G z%%7hJ@rktTvI;QIyBPM(Lyi@t=0U_qe4|g(zGq?%EOy-zc}P&PbbPF ztfw5|)x5ilRVr>>5pax@`Y~a7Uf31JY{(i=7$19z;-&IN ztCtG>SiURtFZ@4W@;kn}uW@B3@z4ILP2+LU{^QP}48i7F`_Z8NA%1m^x(!#@Yus># z-|attg$oB5#(l=d$w77@t&NB?Cq`_xWN8-_8%iWJj{nGS^!IdewMnGHP_gI%EZ>T8 z`deJb)*0gg+6_Rxs#448^Z_^lsj{f`S4O#TE5Cb?StQH2 zh1ZXm<+5Z^+&FJ{p@>6=Fx&$c1#W9)0!^SKN6w@R6&m+ElQy) zXc)uOT(TvQB_D2NF+Bs?LvkKwHe|IQ$MR3n#6-oo?Dpn+@UA$Tn2JKOtm zmifX??R6t!sYhxafI0=m{!F_sR%bt!Lpq^9R-dPMm-D<^KL-| z9H(O$sLjwXsNSRe@A zm$X>E?@1+Niz3i`~X&0z_Za`R^$3I zey?$)2R}xZy?~YmSxlRe_Qa#m;98tURH9D{G+M+kz& zNLEmoq1ik_q*BquoGTfk&50LVrV(x^UKr!x+yH)nAYwdRQyo|q5OOeH7-Qky2tRY8 zelZ#q53T4*0Rz_Y00NJ!_?5zn)u{ZL2XI=|Xdw2siG;?7L#VP_#Hz$50gEOrI*cnN zB%zg72XV-vAQRqy)i4H)pz2pjYk9LQAtOqWD`*(skK|3^%yA^ekNI9@QZU&H?&<>a zLy(2%amig#cJ>6SE4mxAFQESvtK622<4qy+M>GW~x4cRvu}H7?6q-Vu*mOJL6wVBB zvKaek#`BiY@fWMemVMJewXdwQS+W=d6DIJ6AYu;seHehSewr&C<03HoD;ALB%O;AL zqq0;f!?KAd(84P2Hx5qYwa-JwDv6kAcK>V_<~|{dVvS}VZ&X%=WO;1jDSokMGS+@$ zz;s^2JV=d{RsV{grz%q4&M<2e6MUmlubbv-#5SKnw;IUDn|=9~2lW{zP32PFk@5Hv z$c)~zD8}q0Zn`kZ-4stU^5iQW5uR|#_v49yFeieG-)kJ3L!n{bJ2GSfBCZO+Fvg=A zQPqw20s)MI;Pur|goRZaag#>RQkz$EXU8jGnMJM;WFxD&gNcO32lIJo88zK}02Oy| zZXT}q&;IDbOGD{EoZg?W>CTB)upInZ(;Z4AH2N*(Azz+mMPNCw_y^Oh0#*hl9d=?7uGjdXVEH(g?drC7x(h%jz$AHNUF06pV(w`6HO+?C^X&@1O-gsqQ#>vy-+YG9-?*D&@Rbm4vW z(;;_@ST(C+NKGCbjAXP#*If@c$vK+-<|pIHXiMYv?j3e#m6oT zctTdPl6`(Wo3xUGg+If7TsnMr8nr(aw(>}>BKcdq@-#jNP%tgEX8vTz6Y`eGYfpYCbM z)(uC~Kau1Pvf($nYp@o{?s{zUJ?YKn{g7UbU5L1gk}+EzE^0@(FFfgPl9FFdE|@ zS7rO3*tkE-otn=zep}2Umu8Q**IB|At;*_<+KzS>zMY+G2Y&7@XbM{=7qf}CxZ6_^ zwxqc+ZykyzhmMadcROS}Tws-XR6ln(21rz9{}Nf|PTaX?37d5=Yli(w>_nMUI`EyH zSfsWaV~pBo){;9qiXHQI=T^6Q*rM9*x@_IE&6=hP3n=O4A@26}{4BO^fR!|*VATdH z`x6!HR#^snmn`qfY1+C$-aE3ga;s=rlqFP0ec6?iad1Zv+K z-3?`CTbWhgzK1e*Gk3fbnd7y6QkI&nt?sUD`&1-KWG=N2*E+gH*7&co##3$-JE?58 zRt;@CWAZ8NzO#hae3-j$g(ZV|f#i4AsP)!juT@M`xKHe{O4wkjtlL4{O`WB(Zk^bP zx=roJcV=UQw@0zjdMUGQ$jY@tQ#3t+p#Y*n`-ln^d1z(1L{-W?mdhe(-Cj(!=Bnc! zX&=6njaiZvvJY80cTu);?y;KHjN8Y$tJk*Qw^YIhzzDNBtH9&p=g+2=0h$3w>y z+SzoTd(tKLWnyOz`|hZ_LFxi2VpHDC^4srS%1)fix;$yfQX4BAmF_VQ@)R~{RCMxNo%|qJn&27Nk0RWx2a<*4z$7nD-q24XOP|%}Yn$R(5%{YL~XW>>>hUW99*BznNR-*V^JuUW=3lU-+6{xVx7KD&GCs$zC`?=ptj-9vWw zGTuIN*t#3jo7?wgvHqLfqwEjF_?{+x+b1uxDsI|l_l7F0eFJxo)H|}_altazI3h&Hfuy(1`8tW*etJb=S7p(%6^`x4Zt;C{fMjwn{^sLz0H% z49Okh=&?K7Xm{Lw7z^a4yVKZ$TAu3cvCrMjZCQetJu@@ep0S)wI_b`d(Rll$JI{vc zW?|FRaDVRZ8lxd>T%~B7_}o1;M&sTu+)i6RMdR2PZnxAJaYcGo>K>ktn#)#zS?98zx20FNRb_>3(c|-;-HudFY2~R9*ctLtL|%HDUMio3m$7kP z29uZ4ST8*Hoav21TSyId09hVR>pdneQ__g95!Zcvs-QC62&%Jcc^b1#X`T-D5z@Ih5+TU_$DJ;047?&ekXlc= zGp7FIUTnADM}=rWg%F2UT!GVbMm-r*NNiN6>m6Qj=dEVksStJyQltzMO<&m(rjGgI| zKK0^Svu;SQZ?Cjco+9?$klrB0#k2A^cP_4x@XFx&W=(8=%F+zFG^4sWrtDv=kR9;} zQ8V)VP$gSt)W&>0(c%+53tz zbV$8a?q$8Jd)C^AQNj3`A*GX$Fk4p?Eb~yaOnax5;-qeK%YCA?I^dH|SMt12)k|fn zG<$z`UhTM?ch4~%t?9Ab?ekaiw$#qP96Z{vXhzs~p_Zp1$r>|Xnx~chHC5rkG*7yv zAR6MXs6x{Gm8iE_>2<{)q9yi}rIFovTw$&kZLW{~91>)n*?(9mo7=ZMiFnvq$FtQ| zjTK&l9Ehftx{AxGsr>|Zys6o~6&Vpdx!Ky{BOgEw{8&9Sa7>2BEs6#n6c!8YzExHO zUr^t(&eki&YmZp31*^y_o?l%LE21|~1A@drz-oVsb@`{&*NMjB3B>8x_a~C zuEtAOwq(|#HxAd#tJ^fPucnyJXCS7W)oM&lR*RTy4JBY5QAsvn{Myu>AgHP2sk;P4 z$I#Vu)vzU8-5Td=Ai3%n?}}sp=IUW`^;nFnhfP=hHgNS~oU5heYEhgk`@^ecKan7) zIXUdtEYB+YzSZ)MFDNJu;OVM2Qe0YG?ky+|<&~5al;GLl{t{1JqvLI!hi#c5 zOn;MC94yBYG5JA%X-UL~i8J%VzF=vjEaVH7N!_zYJx6R8b#=?=Q>CL*>O~;nLDDFKk0&&^?~#Y?-CS{!p2>q##sUTpBDd3*|?6@P2OITTtqc z7|`8l%ekW=w9@@w)VeY*RZ=wakF8JRB?!U~=wKtiR(86qgiZhR#y_ z5C0F8hbgF%0OnNp2J*`yWhFtpra;AcgMs{Dpr9E4l!@9hg9?_E7kEqYA|+f<0@IO5 z8D>pGu8Kp!NO2@=26ZvdGN_9>HiN3cGWX)fVC`zpC0=}T;g>UIwG=gnSDO((hW(dD zFsK4!;Zc8>DzZFMP#!8P_m`VZG8_n$SxGU*@SryE zW@fmjhB4_E&qUj#i&bAsw3_a{ZXVd<+Rk0B8F;Z)tZH8@i!J-RSe-+j2ALNN4r_FJ zvRa`eW&R*4rPNnmUK|eMEqOtCu&f{tb428qmiqkVWmMIr_!t^%?fS|>0SxZK=K=*j zH020dYC%~jTu>|zHhEwM%X}Dx;0r|pe#FuaWvLw@5>r-M|-cgofk_wXZr9Q zRy=Q&2W7yEeBy;C7Kr2xCL9Tu2EwJ~m@K*+-Cx95l;atd+#F|vFjmgYFYw_sQCh+S zFDvur1xs*3D8M*ZQDu`K^*m&obdf3x#2sH3X}YTR#j?nc#utxy8aDs;pl}U_gOQsK zd9l`Km`@RupC2qQkKmv~uM;W``pZM1pwF0j2+?O^E}^`V{L=C~ACARhoO}GGA*`qw zK{G5X50-mlkHrE%z8femDaB*uvS4vAP>epepuF6R4&GayUoOr&bq#qeUc|ds9*YD2FH%}w43p)!m?#LAgwUS^Liw13gty?gY|Ss?ST^8` z`ZYtU!Nz^*aWv4WUEJ&+`?Oq2I(xMgG$K;)pMwstMD!@$c}_YV!j@tOSzp z#|1$tRt3#NnIi$w4N^4CLqVL~L%0y|q6S07`T5~M2p(_=6buH?TcO$4GdA`0tU~Yd z@6Is=AV2M2)Oj={afY08)|2K`j>Jf57)6O-h4m16od`-C^ag{WAi5H72^R4}|M}_~ z&n?Lpzh8|%L0+ut)Pw9|Em+mQNFsga39|XWhZkn(e%r7^zj^Yi4@vDmXGravjt#C< ziADOPyV)%>J&iAVMM+KizYE&`E@=PtQd%Ca|6R}~xGgY`*Z(ePTmJiH<$o8n|6S1X zdyxMwX!#SO|1N0%{X#l=_4nTe?fo zdmc-&=dUpaocEkcve#HMw@cf3_T)8lkG1WdS`F{xA90t=`^@c58rE_J>u+n@I`urB zF+b91FdOr`rx9CdYg>C#jWxDPGltEuSHi!WQu)8hVo#q-_}|>f4AA^v&SJ6p#`tV! z*geo0(rwrT{0tj_F&x7t^1mK|m0|btzutzWVUze@{_6N^GXLu)SR6Km|Ha>X4x7sV zYGYer`0Q?Q?ChoXCgCZ8Osrfx#QD!?h|^ z8e2SU@ftSzDer3gK0@~p`YEB<1{$>QTEhyTXxqf3(`(1lEPF5p2OMYK%JyF+Z%buk zM)B8#ZGE-)KAnw7omd;Tmh9YMciZF!!TSrfJD72es2hr_`#ALv(kd`x1?99lau`&|`_djp%7aV_QdmA5!S~L_baR8lthSqy2db zy@Tj&L?0p=+dBHre1$$s^!G&nLo~K^^qU0=-S|bB^9K0kInRDk))=;Rw5`2DUqN&S zqI(gIZ5`e9QiUE)^bn%Q6OC;h{qSW9J%{L7L@y>9+d6vR~${-TpYM~EIk z^eCdSt)p|hDD*=_Pbd0GqOq-`M|M@{mxx|R^cJGAt)pMMQlUQ~`Xi#hAsX8{`uA=M zUHN61b31-{&g;G`bB=8tec4qC?IGGp^rb{&TSrg5TA^#-f@jWPbPXI z(T@?0Z5>^sr$VnJdO6Vs(b(3}Mb|3y2SmS5^l_rGt)u7lQs}>k{+;NmugIKZTSp%) ziluF>*`jO@zjJ8uimWm};n>#UnY|UfhlyWB_$`EETZfljui)cM{C2|cBOKd0d{rL> zUtr?T5dJ*j*w*1^Zcy-dO?*4y9}^Vy^oYD`)|sVS!#rC|2Uqpo>Zrw3yI=0v%20KrMQ@R6!pm^g)6CkI)CTsIy!_ zUnX?DK;I^Gy%rrkSV4~w`msR2CG=x0`pOUmO?geW=Op~{_FV5Znd2lDX;?AGe-2gP zwgkHfzKmd(7Va=yfo~$X55eUG_tC=ljZokz1m8>W;{@NUg?HYnz^e#;j^Nh_eohNt zGD?9D5WJ7z69n(m!o5c;@Ogs&Ah_D=GTVP>;U~u^aGTdj*B? z!kh0=;9ChEM({lZ57WYxCo1qff@c%Fl;GJ~_^NvqcoV^I61<1tH?{ENlN9(Xf=?0r ztAIUP^x$L#t-V3!`V#!|TsPk!E9w$9rl4Z38&6f>b^`XFA0c=K!B1^qC;sR4Xwk3kk3rY)vht_aFA}+x+`gz~-P2>()%H&}u>H?? zt$4p9_NbP*nXKj?V)C#}6mVyMgVkdf3tfi-(P~d9`zJ}ob z1Ye_tKbx(j%j+uo9yKC6X)dQySY-;$Ybj9;E<$6Kt$D~NZ>Efw>e|CEAu zA@mADdz0TQwD82I6?i0+UqiseP9S!;mVNsfg=OS;4#CR^o}-0R=PU4Lf;SSp_bqmA zLxO;>S)ia_6MCA^-^lN2t>0M-6}ZkOndn;h#ihJ$ldPm#tf;tRraxSyu7i?#H zcY-k;lLl_OM1e~Qju3p?Cbs2m1gt{`Ej7_zThXG4e2B=W$?Zd0cG)tM6)pPJO>F&k zRPZKzyciAlB`x~Ras~a2{C+}yzbC(+XyLXi6u8P}ndi#*m(Uxve*ammpwr0jWb!+U;K^FJ)AI_v zhTxS1zpBbioxEH}a2p+J7`3@sq9s0~mCc61Bnlq8(h@4Jt$7$IU zFPp4r&Wj0Nu!R+7MdMwdWwTyY*xkgwOO8Jx$M0(4;f4bLOz=5^?Qb*NrwQU+_nLw> zgDStsYJy*$XXo3plA5r{eHHWk%j*i<^=)?UIO-RS8}Sl~$yGFHyA29Diu{fszY_@_ zp@k>CslZPXJeT0*Z?pYhAYPr{Z5vH=&?(d}k#7Mc*P^9eU(#1uY}A zn9$qFZ?P6`woQQ_BlzL1Y<;`7T^eo0m!ZXxAr1N5vW@%CvBuJ{!iH^|+aA`MEZ(k| zG|1%3RG#fro|m=obMGkdae|K#{KHl@=Enqi_-==SR^2A@Z%bk8=iwPy!)+q{_LObf zrER8#75F}ar%3pTZLIJQug9im zEA27aeSe^x6N;~ddAu9Q?mzC6p6)i=f!`tW9_IYgEwN+H_0|hN2w5LP|lHZ|NiQ?7Eg{(}Yfy=xp*kRnKnx&SXWKegWETP{ktNHwj&>N9{i-=wb4E zP{OAOKB$MUJfpyscFIiuE#XUcvU52J<9+0;!sZg2#e92EOL;qGEoH%mrsvszPJyr6 z$xb*Cus{b9daWL9@RNexLw@g)@C<_Q(!;m>tiVeNUL@fc30|a!7yhEadkEeo;iCla z(!-~IRp4I<{z<~gyJWh4(!-A56}b5>Sx@O~|HsI+o8a_a+FXzNLxH;y+(p7S5Zpx% zzx<~Hk0E%ZgeMU^QV;*}mjXXUFq7~Kf|(w^{BH%`O7Lb0?`ccf_LlT#SIkrH-dkbaOJ%++du2!FB>Xw=3ZG<&Di=R zZx_3V;AVTZ*>*Kn;O+!>mGF%Och$pVnkevX1do#NWP(TO;a8g~@Y4i8DdCj_KdFcR zN>|`*1aFb>2Lx}?!yPje_yxf1`)*Z?3=%-j~^~%cfLAwp+h1tE%q%+HCL2 zRNxK-Un=1q1YfF$YqeD1Aq1C6cpSlHdieTQ3OtM8$0WRf;K%gv|5_{X8w48?ewScF z4}aQ5fj=ksxP;FUd|VH=%2wbS`((DOvKEby?I!zVwyW;bW_w7E0*46pOSlukem(qr zt^yAr_!bF|AovzN{G&sGrxSdigy#}`pB~P0DeyXipO^4k1V68bC%6^(BZ5Da@RtOC zsE4Il-8Rn-}|Kf|uywCLslWpJ1F7Ied)Z_w?|w}iUq$eh626JxEA_CaodVxZ@MsB7 zA$YVNzP-HyKSS{UB)p2?|LNh^E>+;|1ivle0|dXVhyT7zfqx+QTM3^h_**@EMF$0L zctB>m9`m(Bw%Z(#RaNhRHrvxXDsV@FFOzUjf-lpdboBc1%86y z$0fXw;K%jw4V@Ku1HrFJcqhTH>EWllDDW2qpOEm61fS5u$Ga+U&4V)A)tIdi*=~AJ zX1m%!ZMNHVQ{XVc0SR{|IG~4zbywhl1oxBhtpxYe!)vcn;0Fo5U&8YUzF!aje6<3v zC-?;kZzA{wJzUU3fj=hru!O%N_^=+nx2FOp9g^9u#1{2Lwrd}f*{*a*o9(UFDzJ;- zTnV=$I9Cr>!Tj_wx4?Y}zD~j=1Yf6zdt9f$_Y!=MgdZXJ9zFa-Zv}piV9a~ZV}6C; zrF!`A^$NU?;5`!ll;AyjIQ<3%{)6COC7k-9%=WK(IC7%`xBO66RdY6`4~p$2xcP_L zs#<=N0$)vVHwoWNa5p{t?ac~&2f5A^1B9|4s0BdiVl9y^m?0jc_>eS0?pY?Gkv-IxMTI{$XvlI}cLe zLV_=s@U;YAu7_tt6nGfHgC%?y!Grbi-eLuwP4G+!FCuuR94P`S_y9^c(b%X*RCHRPhzb5#I z9&SHUfs;Ry*~UEYcOu($K9bqCeWcCyqeF^TahgXbO;IRbXCgEuW z-=>GZzgvOl6a2J<*AV=)9`;XA;2i{Slkg#ex9Q1qjJ?!mb%Vue_y&ijmquONKCM)a}#CDKuFUfY$vt6es>~La-NOrtrhv?adrz-3m zVrNNqv1DhdYzvy~W#2SnZIyEQnm{>oA9hs||FMoUy-VyH$=Dmx*lua;4b_-A_e=fz zm4cim_H)VpEZNWXY~KfBSzE1n^SnNLjZfrYsb-(ZLj>Ep``HE46*gb6A!54{i)|hI z#e)hP5$phBM-hu{9h>`*!agL}>BK%sEVgy*$cGj7CBd#Eb_=oC*0C==qOhL`_9J4y zAr{*@_V-6)S$pMUqJi7(_~paW>K>Ds#~V$m5bY%TQlhb~qo>YP=o^W?p6D{7 zv8|(b%u?vdL{B98F`}`pqif7o=#@k-C)ywy+d8^vjzWJx^!r2~CmP#2dL9PK#av1L zMfC4PSN&Ax9NRkj=sbmP{i&?67Wm~g<|i84Iy&=7h3-N0RYc!HG`4kg+5Z%J9MQKE zeIL=-*3qk;Qs@OlKST8ML}Ob=pLtrL-z9oG(H|0xZ5#9zS29 zn|vm7-Vnb$=Q*Fr8pF1Zerth3cOtqY(M3dKTSq4?Qs@yx4<-6;qOq-`yDe7exkNuf z^b(@6&1v_pHJGw2dBo6>WpjF5k@ZN*?W4xtR#G-+NG@NZip~)omnbIRB9j})qtv7{!^Gs2 U6jNj4H1p(S6T{8-IoIC@0PhPI00000 diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index 4c94f9734413122a7fcc7f3c482cf989edabc2cc..84c266ca8ceaf7b5d5c64fd9d42e29f2638049a8 100644 GIT binary patch delta 413 zcmbPtn|0o8)(tB-4Rb6rip*20QuQs(Q!SD#jLnmcQw=Q5O%jtWQw)+*lT(unOp*S99X3~`CgU7CD)RL0Sy!4p(;)2AY)R_3>#G(}SnA*vSd&DNs`^-N1L|r5m%#xq%(a=2kV}tB; yV+lsF$*BeeQt=FD> ztk!VylsZvnkb?bS1u?ag6ZeQsp7)u3@`<`gicFE8?9tGS?C|+bG7z5@HW>kZD#rqL zn4tut#N>YsQex?;B_)}8>G8z{iAAaL$%#cNV0lMXMv=)o8qKI<(&pPuhhG5zl5C>t diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 1dcd0190ebdae32dfd060d700748d5acf0559bbc..8c473daec4797e0c1b48e999ba41ef2c2c2dcac9 100644 GIT binary patch delta 11994 zcmcIq34B!5)z3XyX0p#DlbH#IWD-L5OeV{aOpuTW2oeU_ssY0i!q7NK*o4ZSXhl(= zz>U08khMZ_so+$Cs0a!Qq9XP~e|*|cP!Sb@pw?FFSHE-advE4tNWj{D`TgL%ch0$I z`=4{~c`x~)Bl>^W#e}tlKf?Be9gZx%%hfcye98h(k*nNOF}b3&ys^~daFv%eG`glZ z8a<7k$&Ru{M~SDR!85tcIiKnhvprQ&#bu@TlCm_|zpEt;mWA;vi>h3;Yn#m8*%U=tnc-+ z7jIe|1?$43)=1VbqILuM#Ty2i_~n)~zJJKQQcDyo<3-!!pmv*ds2J{oSHrk5GgYdd z3Kn=Jj60h0_}F#Py3sQ1+&JbJn)~4hL?nC|#wXR)M(jf6AB6EebtQ0GDB)Y?+t@2; zE|H&^Zs#}NG8ho4HMdppgSU+31MW@a{YDPunYE9DF`OT=78v8hLqeKznsS@+YWJhE z=x`o8>>kJq=U39o!k}I1xtVF7`U`)nP~oDg zh}u8VV!nGqFMS$mM1%B@85vMdUPK7>-YC5I>+Lm+!omwjjODwQQ53ac2qRZhTvgw|6){yLJZ5kz;%jg=YlENW{B@22C-!2?<93%NRTm zu0VW{q_shfqX(lVDDo&GoZH&6dW4}`d>S2!m;9#CrkvrJ`e!hi^}MKdGwc#x@%Jaj z@$a_{fZEqZi6ErKqtoOHIT)@~NG|(;PplgjeiGH4Mt&l{)M8`rk|dP@pkTwLL>_-j zA@_{EIi<|*DskUbG{=TNcQ)G`_L4bml#nLlis6`B6EB!zx5I!X#16*fn(Y#EPlDCg(y z=zW!z5`Ig4QWw-m>!ZOU+=+M(-ARn#pVV)H-hvW-nkf9x{6zltc!N<>za$!uGUMkn z7vDOqI{X77sFE>SNj`FmmH%x*Wx~}d;c-*a`ILzn*U8qca<_?XH2VUC=wPl%%Cz@W(iiH_&3^V9gu-eKD0 ze1yqK=7$?Au2opIN?~PQCrvAb7kw@Sr%BWQ_g^Oyp4Un$7k%vOxN|q-pUkacp}b+X$@kZ3 zX^iXUS4YG#VvFQXntu)~OjhAr&RuvA{W z*aUT3rL(21h}Yj8rwlU`)Xsk?pcQi_bZKSJO{r4HKbVgFzuL&=mlxGAJoFZuden_z zAt8l@T@>EWMXJ1u^dV9zME`MnT_$qFVz;h{YSOLav(B4%M@ydFiXLO13|P6hEvN)7ygqr6?>bEwFgQHK(UKzC?xlcC-QuGa!#Qw59O_54FI4 zJxz0kfg#Ah2?9Q)IBCf^3ZBmmfUF3i!zlxl(*3GwYU-G?F#G{wRFa3}*oyhcW!BhYSE=1uT8nd>tHjAKwT_Gy?ULhFOF|Kh>m*pq z|In7MaC&y;;8fTanDCyu3ZX3&!LG>b)DnAHAheN$4_t+iAU_`|=B{@!In}yNB#0CZ zIJ?A?wvdGB9kOXGq=q#a6vBvQ$-%)rxyC7%STEKk-@Y~@)K(lq3A|?X-%|92+WOo{ zety+m^y=$GbQCpG#C8(a@$@adG&84LP{W9-w#-)|(gaP*2s1k(=_R4-I^0NgcwJ~y zuLW(faFXp375t=J!K@bjQr<0wM5zS~Q=({-jPOxB4JaYMT}&WZQNAd8oo$MLxH3Jz z#L@eXe*OAo{qpX<^x~oY8IKR8_R_m7e$0SMw9AGWz~> zae5Kbl>F+b;O+ATihD)WbxIx{lTqJC(pw2%?d~b4o1&=X;W@nE0kfY3k))~l72-)- z^TPIW*|uEsIVFyIk;f`+0_i>|iTsH*edIRC_~~m3*YEx|jUHrS>jt2Z}FnqmLd2!P+ zpIong1_)5gdCzU?X8g3-;-0l0*_pYF+}}r}&61$!s;Bv@t2n<|?iyY%Ew@T>>*{BYvLk9+1^DXM3iE zOq@A;#^gEn=9vp9WBB93GwNDe_in6A>q=|j{C-{y_(u0%u7y!6nd=@S!=_69+@p@p z-y`n4mV9#%kcLea2$`NA-xM3fIk#y5JE^)E<32-fz9~cY$5BJrhbl|&{zzs8Lnc-n zi>5J9i_aN>&k9ZFbc>GMHksFInSVvkbujr(jVRIm*;SbE`mI;@KwVJETDM-S{&5F6 zEOsHC`vU3L@rGj=v0lw6e?e?c9ZWLXp`8C}dkWZNq~8><0gxZVM_zD2P7Ll*R(|Hi z7@zC+qeEeEjMOra-2wxN-Amg2CW{Pn#Ds)MTXGe!R z4`zm6f6_ytlKdvN} zF*}97^ru3$9oc0>So(DD#0UJE@N?;Ke5F|(!`q+EWY3b0JiiWVdi5PtG_SwO#ur$1%l{hy6iWtyH%X9*-jgoDpk;zc@X zVrl$_y;&?%W!$q@DBZocOs5CT)w~$Vn8W%RgVGxh+|^zRgJS8uHJ2Z3Nz$2QaX#ae z3x1)YTNQfgzGdKv6)7iIrVEQmD0(iLdH6%`*0H5XDx@rt+}U2adUuMlcIbP3fopW8 zD)bSRX5ZHR9SpX|;#Qi1} zcstb37<{-98PXvO0)3#j73%$*9!Jt>37Hs3CW>)+W)|4v_?fqR`1T!H#o%69cu5>z z{MvB93+ey-wQ^|lGj2axg^Ymy9ez&uF&ix*{ewvV0>A#$)GEDO*qj&Rd;8cC2Cv8Q z^f%J@!Z&-sJ3;|_olpEcS*E+-6Im%rt$E{^R`}b1aFQNvydD=4GKbsWC}4WY7|Y5? zw)U;zbRj|v=TlI4l6 zx?OP@yNYcHknd2)mrwl;o`}bt=5{ID#0-)x7Qc>C2O&{(&_qQLJBYm&Sl^(KM^q;H z&c3%<5AVhM8_1*Zuz}e5z>@oAa+iLuRQl(Gvndc^kozapAo?f7;NR*uebhe;(hPC~ zr4U{dg z2BG!DHKN#~L~-eh6nH?1;@5H%t$`?ZU+4+2MTz23O%%)hQJ{3gr6Q&O?U9dU$KuCb z{Naa|n1grH10erm_H}ez{lzSv7mg;U@6ctJ9zHgR8U8T&ea7G${`cK_{^8tk_{JcH z$B$%s`xwUZ^$=#1zaz3xAuZ;6{NxIM5z58XkGgT{*A2s8Uwh>fmHeC)#Rdd>mKM76 zNE8DoHmWHFmr-m`NTFO88wCPTt5T)Yv1}m8Q>HV?2ke1-Td(%TaqQM`XqM%?Mk%W& z%LKgox1|<8OER$vV&Ty=2-f<^?j$z0(~94#ES_$!L5}dT#hwOxRfcrj%<|PWlEuQT zaMaJ6YVqqUhyV7Ii>z#jvZNfo^pnq9*)i1y&I|BQ!HM!3mBYM-S37E?g*{j_Nm2A! z6#Z263b)ioBW7@*2mfr7=v8#e_k>DR>mywp8#q7kRXry^r%*yurc}KEX zZV2N)gM)VKQF&Z4T=JUnj^LP)CB;fG#Ge z2e>pgm(64`Qq7xeC`2X(_Mg9EFk;kX7bW8$mMG20V>)Ht1hh)0xG~7;kWlIKJa!mL z6U9eu_ca_GtvVPh%_v~0c#NP2CZ2Y|0dDfb1w#{6AKS|c+3y*r8M>L!WO zw7n>f1*c;oS(^?#F|ePkCiTwtHymsauqR2i^10YUUhhh5KUvDML)nXhBiR@$)J<17 z)#dClU~kGCLk<+^=E)rY-m*g&5_=2U3Eo@KN!nY2om|qM*O%1+e4i*+#rA&KonR8X z%lC<5cfkwpnf z$_@3i%r&f+h7}_<5~1GDf3b$yh)-R8-!)KP9zc2XO)M4eGs$JxViFK9Hu)i*GJy49 zu+bzRgzJefAB60FDZLo1fU?&Bn9BgaY6<}S3MqHCubK)s1m-_K#H2Xfi$=w28XxDAI7~23X^0^rB@MC zXOh6QFiBvlveI5d)?k$-P09lkE)yvp79QyIU=yRlrCBzXD&-$#4KOVU|2U+8ckBu? zG$nP~xay?0jg z4!L?cslE6jdnqpRk&1tcsUf5te--_FoH+GE%>qWBB8YqLKT;skEW`MXO!dR~r7$O8 zL~Fq?VoInp(}H|0i|F)rGFaN03suspT&Ra?vuHbg9;CA&Qq6hD#Xr=DMzRbbvZ+U0 z5rKRMC!&9Z^kW{}6O3z}g6ocaXvJAsXkJ|$M%Wr>nLA-SD5Bk404a>!D~lO6#OMZ- z#aU)~G7XY9ii(n^%eP$WhXNjc%yA`dw?ZL)Jrtgf zf)tC4-+q~@;>Z35Ya8My#~2;UOImptPf7}pa^Nr?Jy0-pc6{x zjI?yh?#1@1I`cOtl9k;-X*X(HgHh^wdoE>jpI zEixQI2EG+=R7$HF;0D-kkulj~5tuw`Q93TB{np7)3-E$P2Ie{9E5JO44$HuxI01u( z#PJ+t2y}AGeTtE&WA(>mK;0#OvdY#SX6l6 zJE2;%7itbh2K^Gq1o^dB%KHR7!N=i6Y4a!03eHe@f2%$R(_s?&qM$V1+6ko>q|4{v zQ)ssGS zg+E){|8@b+g~Cp&^goxOAIyo7dUk*l79>bxIv^9qS)~OXkgaRR_E?cMU5d+xtWfW8 zi*&LBZiG=*DgFv%z-FsddIf5h?nJkjd*|R6ujSqaIASgLjuRAGy&PB3|DyzDGyOle zDH;FV*K1D3V25}ucoCocy;i!TS3qwv-O(K8?Ll|6b9rx|J1T!~3f)n0HGU_r_$ zTm@u#3W6dO3dScWn}QV(M3DUz5D}H72q-=fzjMyLH%Y_l_k8)INoMBEne+S2%$^ z-_@N<@uGZx*Y8b!-68=mn(G;TIeYY&id>Z?J;j`nWVVp8%#_56giK2r z`IMPvNynOkWKS0(TwIWaj9AmB&)mN9|K3Y~7%#=^9xss1tTfoh;4W4zzEto}JgV?- zveNnJkw@^hfjYde$b@ec7DqoY*i4JcNM5+Om!(b2vwO9dGR3wY;dsvril&}L3Iy*+ z@wRp*&2s4@k5ooi##DAHSVDqWCdIE6KLcB(_)18!Y#xzpCSir((Gk+HkDR7dVJBb5 z53BTysco3j5M3!N4MALd5tu_C80a0S&hFJ+MAbv`7x?K92c@`XX|6{BM+3!W-L%*^ zRIS)ZPe2YS3Zj-ck3>(uh#kqcl)O1k^_0j%|B^xfe-4TZbRq{)xM$H2Z`%r&P4KDG z_W1FVPIzd)$KVOvb;fUGTTbwB)hzFeyy?7vvwAA)3rr)a#jz#v;rgTr6-?I_aJD$=BJ zp^0L#NQw(fBLfx?EXcRM67m*XDXEO^Ly~wNNy$NYUC|PhC*pzD;7RpGP_PbP`MDDw zy}Tvt?`pWusD4S4gTh%XnrQzSClQ179l!8z%;*+3a$J z@xv&Y9}Wui7P_A?I@O$-j86~R9<|AZ`MOsV6B3i-5)$JQ(v1o3w#oSR;6ZnINW^ap z(ceXSafl~+UyR1%6B5lT8BTs;G1?>wWm~C`GNW*e$p}c0-0g zbr+QGjonQ#B9CSg(XTT6R{2Mu^kDsSH&QY#J>U+Lv$fStzdsVU2dCkNCqw=W8j!*t{2ZT_H~q2hTR;j%-9Q%Y#q1ADJkn z+Kk{$Dq?NK<2sdkaQhD;9d0cMh6&VV2#)U^Lfqn_-Y=rt;&!;Ztr|*4;Hfp@n2?5R zpIO$)l4`c3Cz_KI&4~#aCSwYDC!)k;i#a1v_?l+6Bqf+rvGv&jUasc2s6g+V9Z#nV zp&$J9{_%;Y27y(E6RLHR(s%ibE`GI(k1*=cGjzv!U%`wnROIA;x(gmK>hE#`B6;|&GY|2JQJ>|0ZfBWkDMN5@%FI9@tVhovuE#+qlkpib;tuNQ~ou;)5^Sf~ptE}ojywD7t4 zhz_oJ=k%R;>XcG^XptGeG_}^>w$SCWAPxjerA_a?0ti+}@tS`ugL85^>BTt*3Tq$g z`HY+n0=9ch6kV2dgPU^F#gY`(9@P9-IY#rt{G5%97hjV%Ju$N*0$&BGz&wwh)btvO zxy`_JMijJnUdj0&TKFKAN^wHnX&Ug7Wns9q#6%_`1+JP^2=NN{;0MqxViorbo{U4# zO~D6WOwBth+=FN090k5QyBSJp?6iC671k1JPUNIhDTQ${mVNVc37v(|BBxV`VZmLd z5Ni*-c+T4}iG={xf!MO}Q8a{-4-E?1;ZQxEGd-0~9q_&a*G?&rSI~XmRp74{CBi$@ zhHqK*3evLj?nN_R_-1HaYEs0&9OoeWa94?Yy<%% zO+WcaYDq*c>>Xm?ToaG&et_SdBwo<6u$a`OL2W?H=kTWhFw(%kv36C5v0 zAVM+GgNb$jFqdhY-{k-)naaLwEjn4@H6G>sl~mXejxOseP0Xq=J`1nqF}JK3lYu5ZxcJ}aXFlhavEIEVNo z#}Mx@GTzO|ncE+*xU|-n=)P^o(c>${aWu^sO}*f~>oai9s=jT<(E)e4*16cXu8I%_ zFsGL^JZr5Ypy+-J)4W{@a1RSoVSSkf`MDDR=iLN2CdmFF$O!SSy`7nUs${iwiLb4h z)RKsZrMJsf;AKR|R%FE?v-J4Z>WKTHYQ@vu&wK!)QWZ^Et#$UDh#J?pBYJF2CVp{E zLR&SA10+x2c>%;E{ki+N!Aa!MNq+4IV10|I~#hQr?Ve>SU1 z1S}TN7>ekrT}FHB0#>L?NTJ5!)>~e9`-UKxsKTc=SJN4F#0fP9s8KbQZJa29 zIaHn8oxacvi)gO#pvXLvYsOeK+K=Udb)%fCBK=+!Bd(Eo!>)F9U+@G!B!# zfJCuHB|ZwE545ZsQB(1zs}k6+!acU+!7&wWqRJ!G$Y3MF&0A(sohB-fiw{O|a6yHa z1td|??yV8p{SIg3xk4W@DIHZ|$+mE~?e1pCwh+2z>b4xD#%1eG_(D4c6X z5bA(WZRiH=yd3$6^mypT2z+zjaKg!{4LUv{EzH0KL0&8&LGQ)iUQYX$OiW4GqT-5M zP&aoxFQBI9zapdf6J9K}26|!pfz2?GIG{va5dv-e`ZJj9g+oF!p_Vs%-V2{U7z^Z$ zqG~x53)rE+hlY!aB2x!g?of>QCWI(>*H@|QNo09=Buw{wrX%t$rdzmK3u`8B%T z4##%E!MO@63t@|@De(Ab2(;epB!8R;f)3sc3#~VoTZr0;ni(g9AWqcalP8-+1znQI z6dknQLToZ)S#`NlxWtj2iFZp&JQO?Db1i+ydLD{j94Lq59;e1bwKqXpj}M$mfwBC8 z(cU=s^b8m+EVw}zj3faQ?5eyOcHPh9A$Wtgp687>eLENC3D&<+>w1SZJ38|~D(uGD zPvB#3{zl}c5C*9__pC&?^SNYn5ZCX{lY0PhN0tiphR!mnN|0uKzW}azi`4|Tyh%$- zLf7z>{aUUy7PXW6IF|F(r1o)CvRY6TW$K&aepsRaBh@*pN#|Ia1qse&$%6PUac5(+ zFB5mV8UTepthM*{ag-AD^1)>rBbt7?nk$7$sutRN1+y_hu@7HOy?pLjP3}1L!##id z5nl6QsZ{iz2*lyq1Ia|dXA-Yqy&SC)G`PpjL~6k5?eTjbWhgsJ_N@Te&mU#4%Td1I zkMjGiK!6`yj&e>o$^qdhU-)pw78EZw1NZQsCVRxv2hgDPrK2mTeK(#))e12Avf*_s z4KK#m{+1FoD%A7dR+48S3WXcjMqcB5@D)k-;KyIJ zFBP|UX;!$lcfNbC`V!vJ1R{V*WT9|LL@(g7mSiH~0p>NBBHth?B0^9%YQO;gS^&85 z>yGy35L75bxTV=m@Sh3`KD2NaQJ4aT$>)1|1jI zzY&QBxURn_C~&B`izuIF4ncp23;d%|tmtZJH0l5vHSIgjEqicVji|@`80U^LF~qDR zGb1ax=VDM#(F0SZI8;fUP_w9Fv%}vUs^?=-30=(qIYa?jOHNH%$!cHPO6)}@^b>-o zdHX6g4@{L>1O}!ujjBp5AX9=zhv#yQCS;(^7+fst9X?LRqbG@m-}4CFvw}Dbk3_5S zy0e|-EQ-5d@c#{5js-mr8xdFi3j}k=Eod+_s~scNP7((H>k1pG&Vv29M08vNhgrbf zxKtDYEqok@$^NM*MpP9Q6V(-mYHS)Zi>fVYr~{I4r=w6Z5pkMyV#zzim zG>KX;EYHz%?NrmTMeP>WMOwYw*$fl_*&5b~GBnOkl&T?}D4csc6V*UJsunuYqs+zx zxf;F`rE2c%L_5{|b=_^lUx7=>MxUa|G*lDbx>6~>+4ZvA%Ml4=J(&KQ;s8`|*uMP>m}@p)lB?+Ea)&iK~_up(q&TP)UkOn-x~E zM5}eERu`j0QFV)&VTWqiqo|{c%8Oe|1q#=TChJ zoqPOPx;6Vb(`~08O*i}65|ZTb9n}l@c7_?5;7dO~-*)=lm(H$EI(@Z_PA@H^b4z~| z5DU>-MrThNXN1-s_aa&q0~uOI=V3t@{66|M5_(agK_H>5|kjJzc$&_x6{sG27aU8gp2a9YcAcT~%Bw@%CV2e(ZE z=_dS-&0$<|e{xqFqGR0Eo+Dl*qb)vMV-F;U_k7qtQP?MY!%IHu zd7ocoBLF`G^wu$QhY72!fp9Yr22mj+S8jcaX}Em{$$bp@?F*&Qt&Q}zFBC$h0gee^ z9Z4QC0k}o|t&E$U2`gcSjxk%31))%{qs+FOp}QM@Gju$E=kE>oB^g(c4bQk|kzAnl z=WM8jk9Cgg%|~P(7h12$>>uO+nM!t36GH4Sbf=GWj953@TRgE1c@PZeb*wDE(>crX zjE*r|+8GuiAOMNX!fj?`f**A}wP$oZwIAttYTdR`ke@MyE*q<7Wf`q!)Sl0WGoH{* zkBAaQol+k=bXs3-K(Gv=}cVcsBEtAYwD6w0!S*Eq{Em%8T5GFsoZEXnC3%YGi^-dd3Yp$Az?@1hjxFYC+vKZkw!gG81p0%peoDE+5kDe8cQ% zV9eNQl-&(N!yI5>%=D1+LcU>EQK7)hH@wElOjqifXU1e`%M3X?WyUS63U0!6sBph3 zF5-T=PE!9Y(DwE!tTH&bSz&0y%~M>~uW%0R2K@1k_FVQ2D1t2pa@!Y89vCUOPi{bl zzn!cg|M#M)Ytvlq+_o%8kw2{*f5(xCS=l>4hNubrh zbwZLH*sS8JkR%0msJW#`5-xv>>{Ayyp1XY=LM1l4j=PK`CgAj35J<9Np@AC+k}x=L z;HHA4%hXn4J;Sz{JVu*g+d;<288*6p23be{awG$1*cLL$dHQ#JWqa~}WVR>#$?1FA zhLSh-K;2eGKheiHwqf)WO>o%3Source code for cleanlab.datalab.internal.issue_finder

    3=;Uz@xCp9d^V6nm*0*VWjcx4UxSC81r*X?b{7FfG$_+mKrsexDWhQz zApzRN=qaG21~YpJD5b&8J_5>U@J&Af)C@Y zs^HY1=nMfa4Q?sWLxZa`#iEx6U(OQHM}xw%1@zNkF#}wG2WXO>C?iqv$lg=u^ZVm8lHdpHt2J$^MZyW{KZv)BlpdB+79~1Rq4LY9|a8!c= zX9OHmfY1N06*-|zlFo|BNeynC6L3m{onHtzqe1O21)S61umWFd(D=MqoY#Oq>*n+C zq9#2qiOFRK{5iM5`(V-7D>jhEUbSOJyKADpuED^Y0>0PamI6O&u;i9l{A2^SQ4KDH zQN~T1h)-dFUo;qeS1fL8(DPr;tB2@%l@^D-AwW z;I#%l{uYb38t|v;s8$Yq5UlFyej^~K2G#!&kXwTZa5s!3dB^ejCv9T~#30_YrsGz~8B?MFgaI3blLt+$Dg-!T7dfBE8P~8U7 z*qV0C_zkLk!SdgFcl6 zwAA28WdW@<7*j<+hz9I`7vvo;DD5Z#!mmsV}MfYEZqofd1on{VO@_Rb-$xVK>Dnaj*t|D=<`p&svGa za1DNMEntKO>)QwzsR8d2K&GQLSnP&tVvsSKu&-i(aT*NoB*4(%h5}I<+;xgYGy~p6 zV620WUgR;+2GSjIcFd^IOVkMr+>)U8U?G#W$qx!l)nNV*v6!wwg`omwYVd;sZVl!S z6N^L*s)q`gtAYOrb^guQ?gYa z0v>CS`K^H8HJE%&z*7xM{V2fFV8smq&op@ZvjC3P<0l76u`=5Zk8vOaE z0PlC;l>lE2Zu~94PlJEn2q<6!w^89AAq8z>6wHx}+gn%z_QniQRD(z#0mU_7|I4r_ zp~1HN0s=L7Q9wXx4cPHAlDNxi;$K)u5Ch&jBc4)VQo#mt@>a5AMpkjLucASpKmpY> z7+p$04GkKX7EntAZ+96Xbu?KXETA3(-gaZ;hRYSyqM;3>7L7T^yKW5j$O3gU8;H7v z9Ww@05p^pKeo>%JHo*0_WHm8qt4%g5&|ZTgEybdP2CF&<=%hh|P6E1U@Sw8*rv}x# z3UFyqw;Kbu(L<9gmzea@fW17UZG9NXE{QPsc?Rfj18M9)J7yf|C+fi(c=`(%szHr` z0)}hg=Iubpa)c&DqXmrAV5tJ5HDDLeNHRtPcKQr3PJ_r;0fq)+;siu#!25@gBwEft zX&Y}H0-2yq?oAR9s{wBxfynPn5> z>?{GZHDCwNC}xfZHxmWS)4*@8fCU;fnJ*wogWX927Hja~A_4BDnp9sRWVr_4t`Lx{ zLA#X#R%vh`MZjteYOWEmRs#nKSf{~;^#V3z1B`#(^n~VZ(k8Dq3D}}RiERS5X%O_G zfcG^hx=X+Z8l2oK;3EzG{8YeB4YnO*;5K$^vgeSP?0pB02-v3qZ=ym~_iJ$Qn1F*C z+&C`aum)e85O7q30jC5UQ-Gg8u*YcRdP1A9k7$6C8uYm+;FJa*UlMRegPLCpIH$q6 zZv=d)0dLbnrsp*{_&oqWf6%1u4`OmzgKG+Wqe1A8V)3m8&lI?(!ORKKMD9j zgN+K@5FqzIVLyw>&)VdU0=G1Xz{W3B{#OlnCm6sT4eHzya8H9>cLY4ppxZqGk2GLU z)%^bJu_k^G#pHJlZY%Iq1KvA^B$fueaSY&@2Bn_}@Mv%{LqMhm?3)@%UNCU;Rx83}jyY%Z?c%a^>a(e{1kwZUJvJsG3K>KN@^gRDc5;NF+z2Ul1F1zNJ0{!Mpsu2UyGlDr zP)(Dj?FH1(pkD_8wKRz8D4>o8k(~t8(|{dfqnHK^Wd9obK?8tO0tKX6O%Zb|{ZW_b zo7;NhL>~byHMrDQKx++nOB}Kc(cnpc0qr!XF;KvJ8gv^hprZ!A561b2Ogd|lG(cT$bpHl zW5(FIqK?$y*LecQYw+Fz0Wlh|^KIlfk-;G@V*)c zO(M7!>pv8*)CN+E<#x;{iPv+mPu3vruz*z>jKFvQu)q|Oo#R1lSpZn8f$!&d{|2&7 zlcZB(vO$CVs2nUdY2bfOz!nYInKvx9X^{VdfcG`vJ&3UQK!fI21bhVGR*hwE-Z0sz zO^$slV7CU7uL{_!!K7;f_GvKadjb13==P(4gBpBxL%?ATPW+_KzoVL1H^trv;#C{Sh`DaZ47Vlf?=?tzmRqjBKWbv8i^)$KT=xjLsR8f0L>a$m zF!69elv4N=kR%o%Hjo_J*)b#UY*D|* z0P{V3RKXiMGU#LjvG2mM6Rd_ebXos*vx(@t+cBf-Qc2!ZgMKLjdTVfFjex!y1Z)$~ zUxR_W1q{@n-w^?W8SF+a+{Q?_9YrmN*+gm)YR8NVCq*5mL5D8{jMCuHMFHU&Y`h|1 ztOj1!1Vm`C{W}4Xk-YxkY8X3y5HenyMBNb(qXD~BM?EJpn9NDoUn)Sn4W#0e?3nQk ze%GO%qJdYIfN2`+ew9b&zZsgapLL{}#Q+Nv<#iPx(FRh+Tsvk=^3Kcl^EIgJFJPet z8v_I^(qK}cfF;=g?XOf$$TDrRxx9cC8aOKoSjk`$SE~U$ucO@6Hjrwq<=A#suU6{y zHW2kjJ7z4eE~z&&a7%(VjfHI0CRaiPY}bJI^`gWb8dT{d;6n`pdJ6bhgFU?j?9$*^ zUjchGC@>(e%zvL~k}yC_KGopnKmi9d$Q&f#kOoOZ1RT+THw&YxsT%Bx5OACUmbuC& zE-X$0xP?duoznVl6C}YI2HQA6J$Q9Tf-h_!_FvgCqh5ljFEHS}!p3uDf7u3N{|(2m zp3Pyf=UilW6~HY-^w+ii!Yt8$uK_!UM}i+2U?j@?+>`n5G-t^kc|jhs2?NRUH#=th4p;I}KVcBb_M3JIcxnT&w>X9+I)2_o zsncyB>I^$(Y}+HLpG*0YfL+U@fGjpy%sIfBJcB=NAUV9UW5$S+qJFJG;jaX|)qq{g zBZC~+ENNg#k1OgA0&>{^IpXAfE=7n9C5kwUxLG2_P^qIPNUGN*u^8XV6hppOO*atr9M!BH;(gEVOE zD_|%Cw^SqDPe`aX8K9~)k^yd`;841vScKa^>N(bq@$PDFhM_^};sVBN&^1871P!_b zGH@GlntY|on4|$VVRNoiHNX~Z1~V9Z!qsX}Nr2l1QmsUeZDuugVzd1`8;E*=9W$^E zTjt+InqU_;Cs?Wh_Fywup#gSaGgzg;Tvf&z4W`!>i**`2swZHh1_f1;EdXv+(dmk8 zXOm>ExmRyV^MMVd<{#NH<6Kiw@6zB*I{|w&z}9W9=cgKA<2HkX8a(O(fb;)|Cd0ak z$uSM;_Z0A%1~XJ9r!@GV0%sY7bH%aKn~V9<22%0!cFefnN7R>W;5M+`n-hFv6JxQ; z;VJ_>$;n~#pD7mK*+8=V!HyX_!bSa)1_j0nxTQhg2m!Y>C~gS27scx@DdT0dkcZl& zRIGr<8eqpb*Yghz2E_}&#;!J?60RW8ju74=UoXO|a9PO$uv( zedY{`Y0&(-fD#%QKME+N0d|{nlCm27^^<_|8eprroPQNH!A^5dQ$>Ss6{xPk>^ovn zO9N~$=OlGC!1i(m4KygA>fV^a9_~SGFlUQq0B#}Dg)OwcsVOg*T zfMgAl-6e#iXp%2Lz*-HGl*M`tuuGkb*`&cU1-5F?G*B$wXMm@evR9pxd}sry_{SV` ziyk}ES-;!X8&`t_e4+uirL)C;4X`Pl!66OqC~%a)d@dB*(%Is;4W!V|?3jU#=uo?j zQ<_w*BMHuGfW7FP!^lco)2>doYe#R^oaEB6{hUqn*+5FqZ^sO5K4*174Y2i`fxCz%*m=&R zxCYpF&Y+|Qyz3mGv^kpqMn{WPh6Mob23fSu%= zW{3vGRiVQ*7FIZB=5K68n_E zdo9-C1q+Ji9wTgbA#OF$UrUWU$FWq3t@5LbSZifZGfPmn4 z2oU@bAA%p&L-6Bq2!0j~!4HEW_<1b^KXrvbl|*KWKsA=O++zmEeaRh@Dn~pF1GNj|(99Apr#6*}Eb6#uvD3h-MW{V;^5#18nS}mWB|BmA4G?Ld#bMTN+YPg53%G2AY3U|%M zAJVe`bnJ&zvqV~BpFY`iK1G&DtLcLWg_3qYZ7Y%1$RQ%QXv25C?fSPtFx4)Zmd^*z zEZ-#xMuqjU8LTxu1JiG>gZ%s+6)9ZanKk~oWQ97-tL-K-2Y1An6zxrX!hW(c<;WVRZTj{haJ~7#< zlXR_gS~Z`s|Bk{X(b==oLx#p9%BGd2&##=7VH@>dJmR{-asRxI_0yD;|OnxMkE zt>gd0=~S7UQY;=9OOKx<6dOd{%clAG;8)b%v3d@vcNzM$ESiaj#n~#frA$iqQ$F;x zEKZ_qn@t06N)Jx_j~TTYs&M3g@#J!81>J#hxXOMWi$8@pREGb2$kBcLCzb!KwPb-ZH zHh*wh9ZayTg4623;a^N}TIIYv%`YuY^}d@~oUYBc^5#`jK5f}Ev3yQr6x|C>3(U*Y z{?cM_q-7QJR)EZQmr8P&0IyNE2Ndf zn7&&ftvrsmqheZxynF>%8bBGBtNpO zt?3z%R)!}}-@t4wU)YeG8>fxxmPo6klXFA0=1gE(P@tNS?Ckj>sP)OE(uxsIZ=d3} zny-qsdTAN>s{Wu{k?f-RLTRhkmQ5=;v_bvQhH|FbiMa<+Iqo_LUTw}?ov^fE^vJjg z<07J`giekaJvKZ(ZZ%&-xgXSHAc{cjoQpY54+AfT>o<{T%Ev`%ISwxyoxlE;RQ&A-iP}i6}keyKPq&o9EVa(WOChy zb8-IW3czm+9sE1MS28W>a1F^xVF&*%l~3Zsa=IqxTu9fAJmvfhAyad@Qb5v||z5mTR4 z3eK*2bBAj%(*ogf@e$+0;=@CYn22aNgGJI0da10wMHZY@REUWcSFT=8P@ANh- z7xhkWT0lBtZZ22j+{mpaT_^9Fxh0o>dZ*X(6Yb92t|!n^p(lQU(oci>q?hLmX7ov~ ztTI@V$8{99S|3!L`Iz^s3TzN43w~s7XMh;iaFVo9%XLS2Ay$;Kn zU#8b)`N@~*fhyPDIbEZ3{yW#Gn6S~3>u+DCR~fQ|Pk}AJWpWC4$@O-3L_cwNE z=0A4mv;z)+Bt_|5cIa|$J5<4oL#boGNKwVAE&qOp)3Rm35KlGMw+QjnU^y=5QY zq@`DFJ#BK-sLIx|F;iHUE%V4Qkdq4dS(?LR#Te?zsrUaLp^i6vvo5m zaj>T-%^u-dozp)T6%X@NR}({|a|*^)St=jq2`n5H5tlsyIHx&hf){08wA|`(y`19& zc*lm1g%SV!lnnUU&M$Cw-2J#Mxv7r@^D%J*D)&e zHGIb4ry>JJdK%}f1poAN8taFs@VT6)l8Z-$rGGf zD$4W1ho(*S6w52UJCj0UJz1&SCV8smqK>hiA5-s7^$e@wt`O9r_So7%*)w2J*r-wA z6XN57Vxps_291~y8$LR8LTt>)xDhpjMkd4u#gB`L3l9p5#s9dth_TV(ql4mOK*N=7 z#Hjd)nCQ3>uo#;#K0G=;XiQ9O5c(V~ii4(BY0JyF6tnW~T@KVMjmr zO?|S3X6&u&5I4y8SzsmgvW)BMi;6|xNy#=(AS@MYN|ZfI9#{Z z?(-DQb;WfnHDI6TPg&U%y5vy{3ulD1uPKEMDH%u`b7z*I*_S-tJgqFg1c})h>Gu%d~g*gg^bxnZ)*fUjp~>)uBcTLi$On!b@vEuc%Q8(<7v#z4Rgd$& z**K#m%YY^sGPyTzl2KhXWrK4&GA>xYL@8MzENzleNmXKx^AIXglJ2`J%7yk;lMJ~& z{M{s@Mm2sOYjphzg-U2Y9Kop2U+@5Uwfcy^&-KBwaHY}qE z-5rtP!*zN(BBOPF)ylrku_&{I=zVb7g{x)k;INEps#3F^pTnRch21JwnbW3*WynS6 zSy+Y~?ZA;44Vd>BnNhDCKP@(T{fcTxXd8UKsL*OSdod=ZZXKC%s-(l0?mf;ZL0cYV zc+-`&=|0q9W=2)omfzz|Hxe=mQo@XkPg5t&%vd4I4zGh5a`mfw&^}mmogbk}WvI}> zjH3BbGMXa;h@wl^uElr!B$~j16!TgJYiYWpJI;lZP|5%Yh30Aw%vX z7X6@dKk-9G4LKW~6P*hdQnFWt^4Z;<1km-M3ITrEvq-Y@3dY6R&J~JK?;kS? zSLcWA#@vGVtwjkPffE%KYEUFQlwh3j$|*yycE$RsXMW6hC5=6qD^u1Df8@%PPNS_(CxLRE^Ep@NGmmrJdlH*;}CHH6wYoyfBao$Xnv zin_lst7powEng#3RzwqPWLD}Tr}WP*hkZ)B;c!Ix6*=D04msc*L@^H>c&N}{@Z2Gx z1Y>>!>5kdoR}D!mS2NRJj(OdPOj+s~5t+@^(MWObUr66}soEs_XdHB&M+F;DugI!0 zwyPSd!;631kR5{yf|xj9Rz{N-xpQzu4c?vh)`(u*@I ztNW^M&H<>4e{Z>!!A0lYJq?8|&XgfJXK|*ie?MNFDfgq_LKfq9G)BRxC`Uq}aH?UX zrg|^QyfaKqQDvQzFcb@|uCAu20)J#y3F5=!s_Jk};Pw|77akTBkKgD^7(YIYe*zng z@ApS$xkh4@<#74omPVGJk7prsehp-Fhvy9yss@)ED)f96hf;U_k-6Vr(mKmJ%OQWi z_T9Vxf3KnSoSmS_#~LgXCWpnUyQJlRWd;SMZ~-mgc0;*AD7hs&lwka}L54)3Aq^{} zX8e`;w@k**NBk%WsD!%^<1t~k9R$nF7es@yrx@@-qoBg zQ*KB@)$cHl8W%n)Qnk_bET`+OePmPNVL-Vr=mOUQDwGAE0xGl?&IDAbU>7?y5bgsM zTMoYgDzvS;9ctJsHwROX?S3B9gd1D!!E>3P#y)u7hT}UQJa3_9lzz_sH~>{>;)CZ^ zsQAO@a)D^`@VT6fp%0(Sc{1zabD8G$K71~>p_d;%50n-x|txO{|82#XCH zFE{%b;W-?xygb6aWSm9Vt1EAZt2<*Ee!R|oxA5xeaP?(XAx@F4l2tH%6;wL3zr&Tt z2D#dIr%{id7aPK_JPqFgXsv|82HK&O@MECZ1Z=ccp*7f~tU`b4&=BlXR?P3N9omMS z$wpG@_m7^p-lZO1b#YzeV$0A!1OF_eCf+v7U&s|IV)=_;?$Tw;U&vMc$nqC*UHoJD zi&hP!(%9AxexdO(q0tjU!(wB@mG9*Ja9XqN{+dv}a`;Y?9GRJ{a;QvH%&YzR>2W}vetPQ|vj-wQ0t zIXL?`=SzCyX<3+lkb39i7wejFE2i9kAtPY>{TFi6f8qX%T7i;ezVj67={qWB{DcH7 zohPW7s=$L6CFFABD(Y}`K_5w_o>oS#{KDBtu4adF)U-o|>)4?a_3cozW*kb5dGMl7 z_T!WC{G^LwDtD3v+#lt$s;Z`3asCgyw$(96PSV!FSyJJ#!C7)TFAdJBs4g%a9Ijz} z(27w|?oP$~ssS{@;fk?qxgZ2(^80Y3T{}C}yS*KX>0pNzbhJbBJK3RUojH_RwL+F_ zIQQG+#H=#qrJw3J>!Q#?p#x&WCQOjq7hFs1XLLsrv(&Sa#4MRwg63pZQq78Yu0*p| zPUu{OM$XBq93XkEcHTr@UU4yF;>W8gleW&ulB>~~Ia%^#!_1b&=Vr;|(=1yKotq`s z&y91ls;KF0w8OOt(_3fS zmldqK*U0ILVWVoa@>SOwYQBrj>Dpn>X_gB;#Ge@$Q3LGI@_}|}^H4jKI>HWJ!oz!& z;>I{TGyz`&D0U6YBo!)-7Xm7DAD?EZP(}WpLj?=ZutVSDa{*xq#@rscbHr1|o2R%8 zv~?CreLg?y?*iOv&+06h(h97}3RY8EbAE2O)EAGT>&HZgkBhM%Y;=|-g0Eurv!7Dq zTpH|*$R74{=AyiH+~k+|CP9UUFR()?n4yFv7+=5;7p9V24*=#HA09gvXDmNW$W|P7-iM;VsF{Il%BoXiTrvc^#UfRH$W-V%clV zADl0MN>SK6S1C0YZ*KZhy5mICms0s#O<&5%@TTcYd4yT6*-M$LyEIer$ZWZ+*-M#X z_cnW3qB&R5b=~3mktdD(aS0>&f+o+^>Ax=xug>LCs&vom{u( zsvc3zUrKXUHh)=yyJS!EmolqfZ?4MqG=CY?R?6Lz({+%~rowoW6`BwoF_C+SpTMX` z=cw6{oUXHSQewr1Hzoh78TD%MQdXo>TD(+a*!3i*>o5C6Y=DPnYFG6#e6OQI)9{i} zg}%YtF%_za30sABoU%hzFai{-cFqpH_oW@Ga={Mmx@3pk{jS)-qTkw~?{#S9RhuPW zvqN#;+o3T(+MyqB=+IAgDDN#h)csdGROz-IdaXhoFk=6{W5dSx?9k2ob|~wC9V+z5 z4%L2ahf*b!db{PzS90iXj*z}x8}_oiny42$mtmqVU#WMA>T2vJJ5S@l`Kyt_m-v5O z-<{{2cc3gug+hCm>Le$@edqJ+>0-TwLf7*t_Wm}AK= z>i(;$?7Cnp8QhoVLwZLS; z`ZVRu=CU+eqHLVN(qW}2EpNluX?L~hlZaRC1?n}Cp^uE9=Fx6hVTy|efPYQx3V>&w zykZ310;)BYH2|fW(25KfnZT;1vVD_X6rVDN!`(RtbS>wA@oObTbxYU=zMKn`?d@g0 zj&o(>Xf77V4YU?g+`zd0VBEmvH4ry&b^jSRFyc$s>F<2qz&t?KjVJgj|427*&IWY@ zUr-5#fkF5pgRXzsFmMhJ8U|W}euM7!hhfa6SV~G|9jQqzxdD`J;(q&p%T1{CaTi?y z_BNHx1J*X7e}Jwn_h=QS;l*ITX@QC3IJUqXiJ^W6;cV|*n~Opg7Mimt-AobKYM2rX z;?4kzo9NyK(6W5Z)Hqi^`G z)34p@HqYb!LjRD79^l%LIg5mRR=f%_&JHR|Cj`++%o#Q@f?7Fj=H;UC9V@U!ToEP) z;XDaA;$YQQGQQk9Dec21itoa(iQ>26`YCuFYz!ZvN0og*_Lh%obN@191GLCW#dnqc zz69F+6xG6Dtw^_u0&BD*c;gn;!mO)bwNRh#sut>9M#Rc3 z!2uMF3>>~<4IVYrSW{aMowyDwAh4zU!6pQ`TM2EJ8tW=IV&4rB%a3tATOqJjyiFRm zsSSm({&>X7rurQMYoU56Tn)SA*tc>cf=|*BwQx=fqZa0ua@4})=TMX$v_G00delO( zPmWo*L|Dv1o75De_MgWrjN*TcS-3RD^;xJM^ZKZ~yw6H5jkGaLg17jnp*6sWC+>U* zsPKe_+Feux+D z{vSM1L2sdZift6-&&4(_ULjy-asAH@*tB^YurcIl2-vtU_i4Z`cou~vde{!`z$XRk zxd*SSZIZa6Z3=CwtmAVIK7OZ%?cq(*Q5IEIp;y6~NR_TQ_jyLU3bU2;u^1om5|wtn2i!Q&d;eSh?l@F~i0Zdn&!*{NBUvLK~dXo51cT0)7x^ z{e;c~pPx_+i2Q{7z~Coz5~%xxP6K71&@SNW6S@N=efgL+RAT>tG2yu$8|6IQWBVz- zi;A~k>{&{$Qk?}~r{mKg{>G*$H+yaGgIsI>+fq=ZUYgSndTq>YuJqcdMX9QdS=Cb2 zewysqRe?R_K2zQu7{eCsX8pR0zH(gj#whrd^cL-uYWpQF$Lm=R%6Gii!A19^*TE=u zjn_fBZuL5-p`Upj)b#6Kr}%jk-lHD2#=U0?{15>BV!#Uc1pq=Zp#BqT$#&5a;QCXU z=68_RzKDG_8?kT)xjY31=Ydj->lNkTbD{Byrep4Chn_FawBV|hcP%gkx^7T zS(&@G7WK0(;@}E=FXCY4`E|rWCwDL6p!1p)b!M;PC$Q!I1#o{vK{!23XlJR5K7oV0 zRJI%rtP(1L^QVNSz;RPT0buUSUE0S{=S!Tw;Gly}X#b$|2qiardCU)5C$EDOld`N` z7<8uPQPp&w_wu|)3`5n2+TU?!FWQ-RdwXQ(BtK| zv>{)DEcflT3AFeRlqYa31?34J?WB|lY&}`+Fi5^Xz}vv+NSbES|$x` zh8U)yjqZl30j*_2Vmd0s7o9Y;i=By?*tux1T(|F&KyN1=d^6D65rySZCsM$Jb({_5 zYs(KMHltxYeVK-O?Q$ZAGLnS?t9HA24LI&ZhMx`Oc0%)k)s84E$4~PP!{Mqq{{m%_ B(8mA( delta 901599 zcmb?^XFya(+xEMC7uaR{vb}*K7C=SO*n982P!v#60mU8_>NhjzEciU{`{T=;{D7JJlxwcLOgl5@?4oO*WV<)Nm1P%3ju;R< zY~=VlBf@J(Ck;rbRXuS)QjLW8_{gM$sOTCAH4|#ZCq%{%Oh|~TQ6s7Lz=1U*7u`sZ z`)=CROi<4*PpKIjpD-b{_O98E5kgtby47pcjjX-cZO!mq_WzB&BukN=I(p>5#DpOu zmt-{$A2mD;|NUc}@PyQX>EX4D9IFs|xcr%n7u|n|YWip=RJ(HPOi2?_HH#*+~&( z7iM|EC4HL^W>J-@%;iwGS~YN3VtmT5_yOSqQ%9$aTEaXyQ3)K82Zb_6Jzjy8i9cl( zEy*%~DSo8}CN|V72m-=`KRsS_eWS2&rY!RYFc5RI}7ab$eT&?Q-B zaszWeM#gjs3ui`D)(K4DLAuZ+SOOOPKElB~7~o-k?Gpw@D1tmp=eP()Te%XGHb#NY z2jcTP`db;`buw!zRREWz3j}}3U=mxl~6`q(Ig<$%>VMfz`S`|0cqw2?&I-Z=5451fXuL@i-Boa(Z)0mslX`vL^7*;>zGU4VCGmzMP`5} zn#u0(5!3>2ZkVG54UtJgL27A`iMdxP1Q|}VS#91`rD|vxQ2#!{?#@z{xi&m0e#DZj za#x4Pk4_kp$}H#~tp4I4OA=`>s0;*aCYnI@QjH!l*a2^{pb%gOWw1dZuZtn~e}=dw(0F zuhN9o(ZYq|e_Ifn2U(r@>4cVqF=5`RL7@?cFB`MJhPgnoJgA~J>%XJu%di6#DuaUE z7KIL(>_2>+IC2S4CoQ*w*RMwyn1%iQnX|!K=4Ag`*yEhHQBU7K}ismAp(^46X$sIOxEF#N{D=T;TdDsD4S7sywDfC5{`lgsbnqnDk(t z7LchMC&$r_YGk!t%7j{?j7j4E`JcJ6qF!NDuB)ZVQ;9VDRb?Wj6X`clok$~y)L0o! zq)a01y4{#aLx}X9rwNf5BK;o8N^^(NU zyPEBYw1!B64IPNIm`EFrv(ii=`Ss()?#@i3EwHc)pHE#YAe=a6OTZ5~*~>1|n_3QijaA=o=#LB`5D)+(M*p zh}8BcRys(eryp44B4sQc zw3nQmO+;~3NTf6(t!Tzdg+%hY50G=yh}3-GaU$&_($GIo5GjjDqasfcX(^Fr#<5Zk zkv<+dN6yVBk|HDFJP{`n(XGBfq=7^_8OlnliPX#RJvq0QNCT&p5NRWkj(ldNEkx=R zbcviBMWik2%S2j2q~>?85a|GsEbTIWAmR)np3GvUL?R^)Pp*dBgd;?XiaJB2^+Xbn z3J%BTwi2m$7AuV>Qu{Y+$hi$fdQl-I0$*7`q!o$35GjF3;)8QDBJs%;L^RG9H^I^_ zB6Zn1bO7rt^p@ zjB!CNX7rl&Ow1Y;Q!z!!G+A5GKRX#WvkRAmW+mcl!E5P6GqX0^#%SlYXC|z+G0AH^ z%-zM6nNe#xd~sta^CY{fC_6cmnX=x*bQ-B)u8(ZMBrI#nq-S`UZRu5+h9hgD^Fx>p z=~05YCFs;Kd=GKhuA)KciXGoQWCjV1Aw4h$$Tv#w0FlBIu8(G($%f zOutcDOjD7aj2mY}li4<^5x$1`cB2}X3rfxyQ~^t}lW}v6)revqOsNJUnt5c*q;V08 z$00SRL<_TOlf%Wm+;|w$m=$`5=$NA!O&R^1)&g>fIW*RQMpGD|V6<7obemO=c{nKo z4PI2t&yyMm7BeY%thRl|8=1>vzY;_sWn9dP2^wbV)KyIXrD`T~yc_9#n7K6L5%YdR zV`O051z={qkXFr^*qJ?<;~9+wy@_k8Oble)QwJbx4@M<56pUo*j%mgWn%qP%9U-)0 z-cD{vv`xMTzTcGijI*cfD7BPe^}edjTWZQc$Huo zx$kU#1fnyC5V^a!stk91>{S(+F)1DN7h= z)$&VB89lsO+V~||RTxbU8iMX?iNih_ha9fq8fO2JK&}QuQdHJj^WsH%gv#nf;aI%w+GTAu^Os(A7sFF893^$S6ux1@VCBa@MEjJAvJ;;m$RTQ|t#25}H z6Bxn$Ctc*&7C#DWzQZg$Esu34-xY*2y&9jubmu_NSuQm&E7{4`FNHENp9W2ZmKpK*;wL!?C zW+r*Pp4q>4=oc}Gnop$Ld}j5!dxD7s5k5)M<%*oBeK)bbz70mW;QbEVZrKmY7 z8pb4U9S2JGF;ZsvmSN26qS4Hu&7;AE$L#gYt*xV(>felJI&Sk9>|!SE90p2X01a4J zvP{8Vk73Idh#DRcl<{RQ?kJMsK>^nK!S*C@e_p-@ z6g@>6igtZqChpB-Chd_i;@y8RANI{=rtSIze0qkcOxyhjC?1!O%G@)7`Frmt(D9d2 zIReKc3Jg9PL@Ejr!Q>9>G|a<;uNl#Sry%16LLGYW38);k4imv641DcaVxxJ@H(>M3 zVtOBX2deyeTfy`^{F*sfJP`ywIxc6<9Z3hnUZIjZ9!Y1a9h(SNVd3D>bfy8iq|r+x z^gKLY+-8em8_Rpc1_**74Qu5!muVj%x zFcrARB((y;PabKQwU^iYb2!3mSJo9Hg;t14!mip^{}li8Vt2*gvQv}@G-|=zU3GrE zD+RAtL}{4Nhd=!DvN6cwT}OUCDP%!%pHMtvWI+x-ZOek}GCjX6V&Oi#T1m^P_v=!Q zQ}4G)lpu`iL%^;DzqJ<-HoIQDyUpcp`~kUK!Jod|;J<$6Soi--@f;Z&VFuVHZ))6A zA~+)XFfpnQCJ6cl&=oWc#D%>yz*(~d$E~baV%G{pl&m>0{bs=$&d8^V1QDDUxAGrcfqtXg4vvRZRZ6qWvud+9|ZFiYCiG1V(Cw=^{SR5J7k26p=WDDo(v%kFX7w&8Q&!%;~hSif}C#C{1e!?{XJZj~1Sy z2x;65#OBr$hJq#86)f;v17T}UyFRTr?RvBpuBXw?hYWYM7k1(zMc-L?fXm+NCNy!} zWxa*roN_H=gm<`XRD!UCyTCX^7%Bhf21Y}HN#NZG;a>3Iz&$(I-aNK4Soh?S8g$s) zM+wyFLgt@ilA%dX+gDonce+p{qyU)mqp%T78zVG}1nF?@c;QP@k)%av?7wt2ZbB(eZ^;lW*JIvl?bol>vvoh{)p2BKL{Q8 zzM|{Gr8LgNBmpAn1Xphhzy9Z1LIhArEJz36+!y9h+&~LfQsz^!Y?JsLGN*u zbfCkB?tUP7sVEROdL|rTL3|>$LOq0H(Q;&E&_yQ7{^#V%3Q@sSx#$qhh|xz=1^4@j zT4P6vRH9Whj#{)=776kd$@O4Et!Ow6mofx^5F)`vyIfj_dVw7L2U-N|X%L;m>Uqtg zpK!cNLq&JhD18(y8j6p1t|wZ6!UW!LBx-@vip@opar}2}DH?|5;8LGmTry91M_yHMkPRfYUoAy05ZU z(A)M>k!Ubz6syw1bF)MYG7E@ZD9WP)ANYlAo>mKQgxFkpVl73H;WEp zj7mi`JRs5q;s~F!O>_{a&3B0QVzvI>E&7I*Qmeh9Fq*E8*j2Y*G!N^Oe^9iUmcX-b zMOid$8zEpiA{vef%s47qM@!)BF;M`u1;&2Ib~oD7^e%`wBicw!pzypXA6ua1MG?(Z zkytUeM0AYW1%F-^jm890uhP3<_chT8Y69k)qC!mI=xxy^+8FS^Bicpng4p|_v6#U1 zpXe=M`&o3J+5&SPvlfW_g+2%;JrgyhcsdB*yb(QiAms(e%?9{VEq;OkN74&zBO2U5O?dzVd5c5e7v^!jU1&X z8;QxVWN|a`bu1^h7dOH86?GH;gzwAlA?}0mp7#>h$7!X$;tTlrAN|C0X{OC(qax@` z5R-vU(qQpJJRoW_R$PD?KA$K)g9j{origPeleTlj0-UzbW;Lm}SX>J;jae?PiWz0C z6#tFWIr-uUoE}&$ZiiFZIB;@y7u^c(RTbht45tr*`G@lJdMpML#bd>PyG_y=(&F1^`jaXox| zicmtPL2bp7NBDfCRI(nQzwRelOfw8aEmt@AN+p?&O_^?#v=2b(QIBM>4W(fXB}!aq zbQ8&0nyE7a?+7w043dNV&Jr|xZ`4=^)GZvzP}N!@K&;7J13YRe(Sc6WL>Ab&z2qdN z5^OmTl`|4E)^?YW@P5%lG9Q~~LSKmyJ8e;%q!YC!*};QkV0%sUn5AG^R~eX-WYmLK z0S$-1w@DJ2PaPOIRATsdicrEMX_7>&PRJ-$ozJ6Lb>>fy*s(g_WJs#g)HdRn&n*Wp zfRATN!Z4C1OVXGRk`mrqELnxQPR?by_F5|Gh)ut7r6e7fU|SYy zxO!f?E;)kbML$aJ;KnKSxukUmU{+DCs^sa(T=%4OEe%{Gh`^Z zP+5A)r`4t^(yf%{ViBGFhAQE^8q#xEkE6Au&vEln6fI50&IxKDtxT~V1V|tiSA7`( zGMh=oVAl8{Ibd*8X%?mG07F3pRT+_EpF|Wlmx}x-;7EsZWX6!C@K7h|Hku0QLud{f zbZaby=AKdoHl4S(bUJFdfqK~xJ^Xf{bO=q0<-@K5wk9;r1oA;r9S9#Ib;88KQUOiy z{s*89s)tH{!T$X)Oqz$|b?FGH9+NLhm$sp_MKd^Ty!1IukRWc&;Q7hY9Nat%m?~X} znfy9knt~%Qey+3!#fYiwF-kM={aKk7rY@E~oJ1QY=;=@!_(?4z4_uP@@D*?>A)6=Qn20w`$6s_iHZu8J{n0 z%bwrbo;}~QBYWQ5S#|@T|FtK3en)Tie4oDTd0T(kc6|QAK=yoAB6~h+5PSZQ!Lo1h z`Q54P`ScO&d0RRLX?;oTJQ z?`rb*G*h(I!{pV#_EkzJ=(JuD23JPPPYMJh;J_Mkml&nfYs>54^zc{m8#o1x?sdZYQUBtPc=CclHrvUVHg+KV-7#Uh;($)^^so>S_#KzMG*zBUTlTkU^8VD;FHC2Z zcZ`uQpe0auto()qDWRJr&!EL{O_ryk8UeDW%D4Y>3^-z%JXVBmzcf=m@}J+1t3!Wq zcaA&&-kBwzjB9MaIr3K+uu2Qaku!o&0O+(0x}ZN2`A* zWH!^+o!#Hamtu_eTjdjJmFT&Rbx5aOazKkQdbhkf&AbVDvmvOa8R8G(w)9nlwf+h% zh~1p11h3E4l7Nl=3JXj-C|?zTR3s~=-qZ3>igpTDkcPm~Z>S2MIVUegZio9X;?8^o zoN`J209gG@$G<2rh65{FJbFQ^k7Jd&1A{74Ow3eIKJBRw<5C5UZ>is0f#$i2KwST?SmqkvfhLPj0uq&Z(`OT#D4X097g;3 zVGr&N@FNcVN##d$mFxVluJD1u?-0H$-|8nuEa18@KeQ?~0!CEz8-W91O>I9vRNG)t zQ@>}}c1zp&p(ooT;P4K9B{*%+$?p(O|L*L!1E*WN`W4YCkeebm!OMO8y5oXE2m0-= zPHSBfQF)vFRG@BDv_%A|@HQR^080FuEw&lca7l(Ovg1?DoA0%;x55@(D&hl@8 zE8xyK{-mFoJI_B8w>thg{+Dnh-O2U$!=8D%(%*$Gr&#ZQhav{BXPyY*r!D>)FzWiP z{)yN>{)haJVLN|+jP*~S@BGmk#Rz!synid4hW_A>7CzAV8~!_SI^_=Qw;uOczg2nQ z-yGjR^0EI>`Z$-qss@mY%<$GL|0ZT%e=tE7!1V_)@_;JT9(#?^k+TB8bzOiPHdh6F zg?q9o=76qP!>g`IH_eU+xI*uy^ymQM zCQID_QjG#y2bgg+s?aMS43q908$jH%JSl*et&;}>)HGRO$;^O>8lT%X1E1R#EDbPH*nn-WFgip{ zl>&!d_0_DiW^VjfoVBiqbynYPth4Iu3vghw_Bz6vciKtTyyq{l<{f!CpdY4j@mjz) z*lb__7;ukQzXCGFN+XzeN3Vk~9tSM;HBF%KiO+V$9|L;Q_N!!o1yK>-VX`g!l#g%& zQbnVj#w*Yv3iNk4#&bN**yD8>%ERE)7$X7=ItFJcoInXs9Fu>WJn_6653B zDM^ewJ1a>Obh*2d#CTy(C5iD#y_FTPp6gR0M$|Ew~P_JvKV!-`NN;@4A zM5NGDlS~kPO}T*%0_)WQL~IbrVaj#oLn%E#=Bffdl+=H=P{8Pxs>A%Pw6L|R4W@LfEkDN*ldIaRuJETcp`!|I0nG$Y zJFC|4u@a%=?W*$fcig@1sz#WStCwmSA4;9}Mk`>~-m31jEl1j)>bjuQbd?pNt>u0) zM5%2Obu9V7yl~ziRWhxW%29HXRcPB}CQuHij-_(2Rw=5Nw6RoslGPTdHU zgUuSHs?Og^y~nE1;3X53j#trkpXHRIzE;iUPbqe?YA~jBI#ZQL8Q$fTBvV!2^Kl$R z;e83S@yt?f<;^B-w(18yY;a}s!k_1=HepH&=BtW$Q@XuCrNZNyT1f)itW#a&8wC=$VuNaxijs?~ zhPn<=?Ng~i*iBD0ApTZmfbzYnxwNb>9z=NiX~%wq(5ho94fwdsPz@vudu#yn#qlzb zdRw0Y1CFYUyr>~$MF1aL72nbZfKGQ++_uWr7geSHD5%IlzWr_0*R*j;^v2*2fv?0P z=$DUGKPymr`L*gc9&vB|RaGGXrB^?x#%WO6K^^!KAFrnkT+|k&-}ethuWx3;^|68I zwa-l0D?SkI|Hy>Sfq^G5&dp9W6Ga?Z=ZLM+$+E$}G5@ALb>aUwp7g+JCv&^#!xgiq)Jg3|hPU_P&^ zfl!p7M4^^~4jJ95fxtg?61Z8W&f`l>2@&X6B_A`XEowh_!K6OLhYLg~7lP<$Kvap) zYav{1wAEI3>sL1_)C6pHGqr=VT~&ZwtuhlA^KV|6hOKBlSqh963Ybx`j><6Y?J zp&rSj_A~)$ZGP(g30o3UK{?wm{tjQ*OM3RYjGnu88GYE7a&kkj%Y#YSIp#TBUAA|_nCVy}^p>{kNyHTwJ8#k%RY!YXZNchPEm7aW>iGYleo8yU!o4X>y-DJO z)ui_wpC+B}st57v4iIhtZ1j_Q4`%uMBlUUA`uH>T-?;u1zfljTY~Ues{!$dU>|nzF zSuNrbMa|(xfo3jlp=tzZ-uclrsN_K}L=Sqm3Bc9y?d@Pe#(FInZ`SOlSeVC;o^wxW zr1<;fX1Kzl2^51kV+Rd9=+Gny*=%*UX15=k{iCu*U}dw4mYQJhf(ETMZZ4bFR@0S3 z_@Sfbypp|kM}N%>5u0rpuX)Q|&^Af)UceshHds@ILs*ooX{Ke5KAxz#YZWl;Q}%#m znqnRbGRs4au=aAzK_MuvTSWs!d7AkWHoJO_X1{>V4qc}S_6GwGq_zT+*P*8W-Zsrf z`a)&!&UVeWeuBAh`9aMnF-ilAHRz?lB37e6zSA6_1mAl~vri@{g8RSMj1i+W;)({n z%vS{8Ue)x+Y3Cc7nfUmPA2kvz-@U7e#;NH6dw%po%~C0nRnIiggwm4&EozmEV75qm z5vOqy?Jb;sCDWoc^CGBJXsar*Y}EQ=oR&e_Kk)H}7VSBl`rEW<>8J=kuxrr zsg1r}{>aKPs_G``~E&BQey6%bggFi|W-fF+X*B89g z?#1@(Dbo?&gB7|}*p4!_?j5$nM~7}A)@y=SHz^RM@2l(T_@T6VeVr5Au}c%(1MJ6| zophZPD4o$;R}t$|G)(s$)-OFxC&t&0o1lA&^@^XSTT@Yx{C})-8Nt|ZbTpe-QH$dO z9UZS^;M}Ax{;<;)U5rAI47cskZ5E=m&pus8%Kj3fFCtq7;Nh8Otw6^kI-2j|A#xSL z{oq$}(6(6jh_Zc7i_+JF+m7m@se1|p0P^=3oM2){LkwtjTc@j=1!zAn!mbVyQW@Xr z>WD$a+h!VY=8SGL5B)&HOF9QspVR$LJ6gnqSd_IFbd!WEtH=`FLLRIjV&%un>O`%_ zS9EhZLQ}5sBed|kZUkjG17xAbpybkHf4K0Dt}*Ag2M=`9=q<$J0fc8{msB+mb<__7 z%J_YOcl?nqjWb=dr@HC?4%4*a_6j)W7u{1HvG%_-_kW?wTZhIa6a_*Ujk;G_4YSiG4EgkcZGU6m}JwZ!u@~gri;LvpPCs!=-)c@j{9l71!jEK zb>!@FPoPiZYZr)$o6g^F2t@@yi}hx{Pyrw%`lTPRh3cz=pQZYjJoRJY;83~#9AD1_ zz>_MyopuuBtBmL~kTvu*z#gssGf&m5;6jvsC_Jp!SEQUf;TEht$n@yt5XD=(kPWrd zRy`MLE~nlXYME|6q1GOvLPqll4Z>0dk}Bvmz%@p%hP#9H7kG3e9Y9>D-VdTEbMaus zq5u?J$*^&leh`lc>i|@BUrJ%a2)&g@gbje7Yv`*{Y6MXa*yp`Io>X$QpI#6=Wsg1m+Q;k9DMSTFszoa+f7pHYF?1H{AH}IQSqGu>$fpp{; z86xCE9NzG&`o+BQ7GBdQ(5@bou>xNYG<1ZQ@8~`wF(Q_ju>4?3X_3o3WKWr-EVlzfq71 zRuCAP@@VT=&Jb~aE@3OlGr1v-t2%v^h6P;qgT^qNw(1~f(?-cFYgD)1)f`P}N1g}yIHDJ41hJ3!PSUfm6+Tf(52Jbg9WJ}qR;f&UX zBCc0%+RiYS&W}*t-f)~&FLZBrFtnqAc65f6X$exh8$4w-MK6G7I~zuDYPIWTpxs=G zp&^1+($*Irw=fvd%P@f>bg++MIh~yWA#|^=VHs^zVF?X1XmKs632wf9to>qp(#3cK z_4XvzRs#)BD1(yK?S6{k5p5t5-4K8dwB2lI3yVe=Zqjyf2&xIlUTly+^+ZE!uBxO= zEvqV3X3$m@tR@HDXr^Hz4_#RlfKXJR+iX77hajP!Q^+>BzpO*M=9bl=sQG;AP&s}j zICX*HAz!7X5K&#r)uwd}pW5^#wO^MQQhC%X4yt&b!5{PsHPnQammAjdRuvFDGLqc2 z(vZcYauI%7@G`|v7pgbX_l~{*)`CgVhR!f|vtceRE7V2SgJ|`}EdouxQ?>%76DrjN z_4XSm7t1OFSJhX6z+k+2+R#L9|l>1p6~R zqc-4le%~2vpoaXnV$^dK-+Rz_vhRQ;?<>Rfo@C7zVONgt4y;l_hM%t$1fRuVAy|J{y9$ zY?0h(<+3+5#uKzpkB|zblp*AEz8)?z8K1CZ!5q7h_8kY}{U061ziAsw1TYMAXm8ZR z6>eiFS9O2z8qtrbky^Ym#JHEs4yZYN6zy1W`#56~$Ukr7cDI*|G1BgChX`so<*P9e z8CTEte{jw`V-jtJKrn;Zt>gs@j5|4_4P0#8&KWIuiSe)>YrnUvjFY5ncFKC=TiV40 zRAMaXq<-rMU0aR&S>M4|JB;UfsK5dO1Sn3N<$v;-pk@6raud|S?O{Ryw+O+GjaT={} z%1VN$q!ygPTb3G6aL%#)W}Ly-_J-W|$o@S)7#S{@K7TakbCJAFV5-jpzbD9R`cebF z%Il?o1u|0&&J9oHrWQOb!lJ^P{-!M)&D=m!a~^|Z^fE|O^y8P4jiw;Z1mBoV)E@&t zV@DPcAV4XsZZmb^9GBxZE#e$kyMk#CSF1i&H0|WF#g$Bjw0fXf)DWnPG)Vpd*td>poDiiyd}Yd(qBOCIX*`zi zH8XX_X=F=NF~08CHm1##WdT&yB+##eiS~OE=>8ZuuA^xUA_A;kO&cl44;Tj^9Bx4+9y~HJm;Mri;AL)xQQQU|hawg#?*^yw|E;Z+gPZz8Df9NEzHz zXi{O8`@S)$aLqndWNM6UqS#?VUtC=SHG51uQMvHM0rvcrZ%s|{anntHo_r0I%3 zy-yNyYrHbT3ztpRa4lw)yJn)^$BTlIAcB>r&?`X?ZCJ z-R_yDVI6P$WTNegAu4G-raYpx!2tWdFco4!^x8!G!61Z}0UN(Dp*OJBz$b56qDAjm zqLF`^2GNEPZf0|O1#J;5W_R+p69ldM=lu&ryW_v5oIgO9EGR`FSPU1+gLcwi@o zNv;}HK2 z>k6>lqM(Xx=%b_;RQ(tPR!!W?DW5p@(VPTaHAt zTY;H&`N{|CfKrjU4Q&%jP+o_aS?HOxnN6IvT(Hq-VC<&nBJ+I*d3HSa6)3Er$~)i+arubKk*>84?`6#{pz67loXQqDt?>~&_fTn@w%N)NC ziTwFNnvQ~xMU9(TRzT(1=8ClQ3ts_&Aak`%3hJB)HGqcaJ)__O zrmU!YIb}s{2Ihvmib`#4R_8daw_x7dGW=uf&FF;&JlcSu(2N%DNj7#1py;0YJQt4lADAz4 zjw^m>PNB3gK-P%?joz5U;iu>3)jT?b7>H1oa~ePY&3uS6@BTl{KXOMmd^Bh9sO~Yq zWpH%bY#9K;##(6S0O{h)k<18;lxxlUgnAZL=fT(y}NwGu3!;V^*li!D0T z1zFM0jxm;NLc(-Vu7!3YhYNzJph2_^osX#s{DQvr1d;;WbwIo2mJ)i)5yc4{?aL0> zn=nmlYc7Nf^DTQ=BXwV6p&kApyyfuaTFVI@Mp_ORY_RNRsdU|BIY4J0h^Qp+s3gnb zq9V&>mc^*;7TVb@F^FcTg?es80K9uF7g#ESeHPkzEkVlLZ>d4sxV>&w{<-S1Qsn=h%9Qc>m!RwZjEV~7_EVNrD|I2t)f3$R_ZQBXd_TEnd!2P@Eo0&(h z*=NBU4=sAa5q^Ax6vvSWPd~AQ&`yU)8O4PbKk)j2T?+0!w9kPp-uTKG`qo!Qt#=kP z?JNP8u_w^_iRJAOSue1>{}x*zn>!)3a=I*(qhp|Com~ri`B^{GzHvm3`voiq<}~4KSha zgO;-E4Wq-Y8n9uiMhyxwZCNnCvbBzsxc`?(>r@^(ECL02ZXN6rZCxh7PQC~#>S9fy zja1Y}^d^%ffF?_=VR($SEA5QQ2Neao4zwn+hB%XCJw!SW2!>jJWRFcxwGN|gAV?Wy zbEaR%Sl7|cnaYsZIaB;>YZ^=Rrz~r{oP=4o9P1Mq$+gR~?q~gJ%(w1kb9V}?UiPeJ zqcxSichMGW5u59{!|ITbdnfO;-e46Ubimq@N7zmRafhvF`Dt7Q3!GnU1#BIUI_|64 zA5ZwGoj7Tw{zL@{I@CN$!1rMu8#}96bHVCmOS^W_I-ZXTFz}jnCku7?hIKJ*%|Om0 za~dZMePERe1S8qK7Gr+0QqQv@JT?>P*!q%&72GV2_ATG!rF@6bmI=1mLeTev!T?)Ovh|~#!Tbk4JA;84nYPDL zwlf(s%Qk^_%p%(Wt{;=;*k~s*pu9Y?MDr-u zhL&hZmw0TM4K2}-?3xueC++wRMZ|QF9q`l-xZ0s1Em|=g1V62{$!Vhmjkx-NlIP~J z(6ZgugSOB1p;RMpc!8G3Z7SGtj}0xb5ryGC8(IM(*%^myXa$I5M;^7M($+3gU}m)n ziSXfRTOsXC#)lFL8kGb}K}(fg1$y1mVXsBxMDiw@_Lu%MhN>Cb6 z$KFwd(#(4HH4?$}|1NY*6Z%3sb+cPxR#Q9m{;15=_GEDXn8OJ!WZPrF#TItj-M|QG zKD#1yv8BBbMc&O64Vcx|ewDJ9M0h!{W_vsJYa<9?EZCZD=a!^ybhBT_)<;YH2C%7z zT?^9M+b!@-AA4WajAF9=``c;1Y3D0T1sBKIr%({*_j_BDP2 zm7Z^>o!~$OfIn}G1LwgyJMCk7LL+s9{WOo5$$^2J?8Tf(?tf#a9hb6PitGineFXv- z3tR{69^4M-;pbiUb*Nv$7TUd!Ptc5o2(%*Y5YWde3|2m5Kf#(Qx7famK8T5uVGta( zQ*Y}oCpGMZ9Z%Y^m1>;g#R?Xjwo`v*t(?%1bN1aFp=#gTi+G#q$VGc~+HT*+DgaG) ztnBu+7T4`)ryRBy9D37^w&Ia&t=smywBueLHV(FRvD;VbK#gC<*ge*yrT&4hPy(M4)qAj%K`|^JZ1>vZ&sQ zWvD$XIc&TFyy1Sk5=3~c=r_i;^i_k>JZDWfJHk;F4_CXtPDyg$Nh{8F9O}T6R-CPu>S)g^j_!*s?cl;O4*x(O>1{I{b@`A6*+z>2?wjpE zTNeq(I`bWPwuuiBe^efgY;YBrjU9Q&o8EFc04bEk>@0u@X4^^Ef_z+19cT%r35h8=C zJNIBB_9*9ZK17OYIjJXzgh-P*&dHd_(XX7eHIm@8sP86jOBd>Dgkd3qrT*@vk5?GX>EZkV zdo8)Q^CYFU%fS?Voz$<75uFP9JD+1VS#eI<<{R@;D z3_*PWZ!=#W>fDMcO-Z4yA?5n%)0~mKy6S@QP8En4;+EoFn>vuD3+@7kk97{CeRfW$ z6&wmtg4iP=L-$T`_Mu()BS@~a5Ije$?6S!4qXAXP;oX2_DEbSgr z56#9ba7MoKf(-eR%)tf~I;md|CG32->>La>+w2TLBM{hmoAWjvQdHgHM8CAV5BOR`V}YH>wBJY_QUwQ zzjsceo%3Se@cs|Zxj3SU6*8_nsb`|Z3JA^0uH-$ri(<3rjiUwFE|=7V*4xepSl^F7 zI;lTmN=hhLf&Awj5G-dmls0_m9EH0YLjUw*=XfN*CeNIDUUl79hzh!1IL~AMynN-n zhxuQ4?flFu{!sP$uLnhg;QRN^6SOrg+vZ9GCH)-z;d!yEHtjO34@J*@XtPA&O2me& zrF31u17xw*^#aRp46c5Z+Cx-CQw?PUjP9LGR$AfmYOXZQ$iIebgdC-lzHlrU76dF=?E%n`S*Bf3?#j`_D1xc`2*#%X_XqSgar_cwYDQ>txkisr* zHq3Ap(7sxine@s8J7&59XlLA=Z0>%*^_9m78mZhdVC*y(<%}B;q|!MqZr^9W=`JaH z>2hvY4M?Buxb<}Spg&M2zVd+eIX-I1*{)OQ%}-3N$r9IUdTJ~(M960- zt1-43K?w%x4Jh*KMn&sj+dS89G5D)pR|C|qaYfTkmCK+Zf*!^C0_JRX9YQb5BHiJ@ zEoIrrt*#>OXz4cB9Q1}PzF^LtvI}~`vTVryvTGk6aJA#EZB*>K&Ds=JIpL~ByAcF& zP6dbXI(_(6m%o-6p|Il<7w4|HXReL(?n(uD7PAVTe(s8;?al~4i~_<{ZcXkfcMyp9 z(77`E69&UyxzKZ4V!C&4T)Q~S?Ek}sKCMiS&ivCgK+0zS{9I9lxYe9Yl0+Po_72 zDnu&V_!H~Z#f_HNNh@UU?xx*J3GQ*c`jX=gH4+F2AaRf)&_#q)|f6WpWuz`?i~?%!qX zsA%YXcWZvJHN&lEzdn2JjSp+$VYJ?`jpLd zj%D-LZu}J+%o4tL`aJG*gZ(1Lj`kkvX)r<=0wR(<+}oJ< z{o4D1RnO5z>$nV$1pWN1CszWt6!b7aOJC0?A@KmH6yu?t4El;w!FjPB>K({F6eoD` z)MJL|HOvAL8yu?>Jr8N8?LJgWw*qwkV!XoLQ3ziR_blU#wKUB`I|N36oQDHPdZ;II z0(2g|ASuq(N>KR@+%HpY> z9UQA}Gd#4j@N&G1GkLW)Bn}jCz#Pwbj@65Ko(;TPj(+n!N7$MJsx0DDskt~^wb*ll z!%NTgY~sT&?ruv3d;&aqw8NL}=RCeGMF&}~NZkO@4+(rEi%e(ZR2Y*@!kGSB2va+W> zEIZofk!L3#8o83E{`dz6*212zJ!i#0vaF{8wEWGZ1H~C03mo{)W27DCVek0h+20?4 z4c~jvbd#u4>$8V?^Dyyy+)&@!w6PLzKOtcbOJrX3qm-n8p8j6y`DS?mc=Is$L+@3= z2&ET2{v^ zMel3QF5N48_i=-GM}!y69f=z5&Aw;%OdV8mMQ4?>osVS|@) zuDG|*`;f9_Ld-J3ut#3hb#3x0c!Ep=cZUa4c62^F69?+yt1aH@64ow}JH3>z_W3X! z5bpBQ&I&OIM3HrjbCYPlmvZJ+PG|N3FYR=&93t}J;ZT}{oYIYE^RrdUoLuSABUBLOuy`% z$#Jq?^-?}xD2H2q&3le(>BijhQqGOa;r_VoE#cs9-1BbZ+i>=I;H6%g%q;aTVP~Ze zAA5I++0ZI{PTL{?gok!szVy;ANJ0dFzWqWX{Ozya-E_8LY0Ui1`{|&An71Z z6RgIctu;Wj$(nkvCV^^X59YqCG|n0PBjpGOtCkKvhXx0MvAt{tSi5p??*RJnONT9@ zgLm*Sb2>PZ_L6*}b|)OxC^%Y1hBk12%iwmjlTo6f50(2mZO@Lu8i2+o?AK|5qeF02 zkh;=V1>R~Ke4ia5z;m60<7fxr1@XbN*nP$FUcp<$tP*GX1!u689QKY2rk$Zegx#Bi z@k8}S`H-TZJTn+g z(TJv#rv;-a8p*bs9gJqNBwHsdxCf>Fq?ED+(1lEJHsu0n84&wf+NbM+(fhE3-H=Ve zXc3fTZ|?|3i=ZTXWq&YQ1trN3scrg3&4{$u2z+j8;KOHt0++S_LK9YZrpi zDk#ZHt^}i1P?CLhEjW@kTuBwlycaBGS3z6e3I4zfs^Br&R*!zJBN-0)IaomH7Sc39 z*Yn_f$`%*7BL&#uj3=1`peG@U$jmDtbE{6Y6UWq1^4c(hn{<<}=U#O4`dxVD6SAxIRnGA4aREQtv zz2ng#lurYIuMib%RX1cH?Fh3B1+1(aq5+*sLb$K^s_KWdU`fKnMj->y`~JwF@MiOn zljw^9IJ>=N$Qmv?uyqLj3J5+L);0t^p(oic9YXH0F#(%&4GE@gb^eQCdvQn%*t{b| zS2ycP_^9D&_;193=wTzr*BKFBJ347VLapkF1CnYa#K%V_B}7HnNT``mD?TAIeqcgE zRE-)*wFeHY2}bB%>97Gw^y(qI*?4kHhz#0eLW;TIc@-COg1%;LhWP_RXrD%4Zku7J z#E_F5mx_Z!Xx~I8P}hfq&_0S_xh(j9tbKKSQ_1)Cr={)=6e!xJX`5=ACe>7vO478& zwLpR5?(Pmn2d6kJEVjVll*JZX+}*vvB8x8XxpOD!?!Lc&_T>A=Zid@?pZgq{GjeCn zbn$=4xs2}af7~3ssCxQiryxWw&HDJ?;asx&`~PMJmmLHBv7>yE%J#wjYdMu}!~FM| zL4{Ts;s1(91)nkg*lYmI+P{wV|ARvvndpz*^~<1oP4-8R>H%O1G40f*-ZT8S^ETqf z9CNA`0}Z0{i2nt%!X8iyqD2e*;hbV2U=hP&|08${a#k)&{hyl8>h&`J>zvi~mHz`) z^H%$#2mVGg2GN{#{;=ee=_-1IIWEd|_3CH;c4jpT|JOe01>60fAv>r-ot{F3ebN;6 zNz1SabQ#J&_eeiK>3Q|~Zr4QcwzqJtQKl|uEkJF#|#UDHV=0@YYhh6B1 zZ~j7hDWNmc;)lPGUP>q?SOg@S)t&plw)dW}4{$NVNecfqD1YZ2P>39q3kqOR(KNVP z0F26+z{~ssgj`jE?A_}Iz^I%Rn@a*lm{H>jD~{NF6dJGvIV=|m3j=&{TwbgW5b{(B zRG*~<2zjc6Vl!O;jLTWEph19;r%Je5qfvmdtNE~TfRLw3xLTz!K*&=i6z3HM2zjc6 zV#AIBLY^w2IJR4Wkf%y0cIy>@&Qr%~wy-gn!p7jA%upnYGJH?)q!9t=iBLw!v?rKC zlI2Qf#J-;7?9_l7{L%o}1R(%T%sl4}9Asmqyw zFR&#;h~G6X2OKa*u@nG>BW(n?F1Zyjlq=Hjet?22vfVQ?6$x*sN)lh0r$_;Wwki+! zohvf&ZNL;Cydrzhp>~osjuyq@F*@YuR3w)klM>dl5O`ycX6HLPLbySX*xK@IH zNRlMTFV+O`R*Q0muK z^1y5@HE1V6&pA|RXWq-=6)4>qCAnfYrLAKm77%mEwh5AJW`j+f zB(V{|N~TG!n+?{!M6wJ$hzOJ{BqNqc`0ns(b0w>U7#J0zZh%5=N_2b2=_NK(-Kag!CtACPznlotIed1AJfCLfl3z{aWyUzl)A zVk=N8If0H<%*_p_BvSKjHu8+5TnJM=&YQ<3{GtRu2Wc`_tt*n30vqS+lAC6m>+KE6 zF!Xp?pj4}Y#MyL^HBX6n^nt`5xe!(8UoIqWLtt%-kP?w5mrK0RQ#k@u;U|fwc&^&7 zUnHZ=f=aXwtV-i;19zH*(yfoACh66qM@iK1jr;<^M5z+SHjED~x9dsDrvzy)ThM|cB;HwYn| z9x?<%YRO_cCtv*SP(N^=@NfTyfi}+O)Xb9BfnKymQQ&+N@ssTXe={r43y=gLZRwQG zfsO+EdEG?ToqCAB@x4U$UwQ{NLQf!qfoa&-z+j<^!ZhA}vY8GEXukBuw7|ol3tBoO z5RwiS(@wJj4-3Cxa{?#2nxpAA8vQarL17iiZY`jH$X`NpJ zA=6fa1bAf%Z-B%-2H0^LX5K>$g)6>@iA;o1eU3fbXQd}0(3HJlnVOt=EZd#F+^gQqg z)^klr;?(zzuYr*DvUq!rbdVizJZ2|_q?g6?fSZ*0-$V~7a|MH!6p~&R(=pYgko2;c zTGf(5(#vA{Ydt9>y)340rBX$&9)^kOsV>PoYwe|Cqw z3(~rltaPBY)D;`G%Wg^4WN5LpCh1WmMNTIY0fcU7C)JzF0-Lb`2xO8C-K2b(*{P1w zMNCO#U{~oHWc(8_DPYzX)qT6C^a<8Q89mQ&ko>e{Te<_;{m2E@zkPJIrPBsTFSwDc z6&BuPZGWjJIXg+pPfA}gQJT)IYx%X$oGo?aBy5UQVTL4dNUYR_{+J?d#!yM;>Czr% zz)^t9vu56Re2#R9=!XO5Nh^z`(go577VNLH7fE09(h})SQI#W?OKXbHZdoH;X-$53 zTX@h8KTG|vePX6xK|oTIN~hq($|9S0OKoW4PU%I_ed_L&&Ndg00Gtnn2}X1RdJs=! z#-PM0Z`(5IDAAG&ewEJqpKug`9~_e2G{et1(JVL>h}66-ok?Gxkd|367pI3$N!`te z5FGla34SiL-x=u~(V41WkS?}ju6E*zv>e+91QjS32knNVDsFUtW z_lqvxyQ7m)>_IRu)xikRHk59;EwL_sitWH)-{m&)i9?{GO2{{+sjz z?%R+b9r0bd)rM^CpRXWywaq<<>vXj{IXkD3H7T(QnuA02B|WTz&i?mjX-}IVODl`6 zw2wnjh9&&&aSBpf{&yS#I7(9TI=Cts>KZf{0Z=VG5N_mz>|)N49f5V0&EO+CnM-!rT-2`0qzWd&}FTH zPE~^6Zf%32oZ)wQkD#q}{yQE4v7*SE%^#}Jv$KLO`WWf$`YFiH${aWXaCW4oF3*N$ zZwhja0E*4-1|742-@5mMwh5H4z7E>r1izEM1r2t9UmM%tH8$|O(K&dpa9?NFU?)fT z9pD>WMYwN9KyV*>__YZSrow&u6~Qrf@cS__c!>v=t9naMU!q#vxEht^2ZtNYLw2Lf)^lPO!oW$ld`0RVFvO|p8q$&$`G%x8 ziLiSDLRMIcCg?5=8H1CYy}*Tz3kn&Fs%nKH^(jznE1G~>g@=sg#RX9zvw1NoCS)Wp zo{J4xVogqD1bNdj>X2iI#)Ci=s87zOg&@7Slh~K3nh{dTQ`DZUNeH4X6?pWbt(u11 zKq{^mz12LV7q?(xtB{iaZb1qhf>C`5f&1$=A^rI4`?U+1`QKkJs$hNlkn3m_1a=I` z=Nu+?4w;JOu%}DNQKT>RqV;-)wBj6Q_r{n()WfkpAs5lMNE{H-j&s;H2=9)M2Zvlh z+oJg}lO9fu!0X}1$dLPJ4r9iIbme-m9FNz7d_u@x4r4Jnq!-q$e5QoJ%5v7qy_*&? z84FXpB;+<)Bgw^f zw;ZDfdT)71B>MF`R)uuruMb~~50>rLh5U{-!{zlM2F@X7BR*Jm*c5USt%plnL%MSg z4YuR;Flk4~Lo^5X-63%32dkDV_l6LxJKo+G@)2!|{$(M1xWVO2?_qba*KM3iLb?urDL#)LfH;I0NZ$>*jHKQqi`8;GM7iIb@ymuZe4{49~ zjI(b;hH?%q--pb_s*`*ODMoWx{wZWJ=V17X*TaNwArlZBX!4H`PwoosEM@bsDk!Za z8;N+mSi29~$og;Axi?QLdHCPU3B4qavwxIW-WQ}-e$c&Nwgnj*7rR)hh zG}MZhP3I~oOT<@+FG;c?9A8abUIL(VYuq7GWwA%sE1VA&(fR5`Rd z8FFg17oDz`H9$^b_M+n(n5-gcEJL@Og-vAD(4OJfTsEGYbVp0PXS``8yU$@Bw2}3} zI{BBjvM<~-tczu{5il_P>`fCo%8Z?&yPajj5iro6_okJ)${ui`{_Ku#P(ymkqR{rS z>?5nsIdteJn}iUB&7jWiFMEWpE7b?d25=6mhR6^zsA847I#d>p*2DS{vc{Z)*Jv4f z3Nvkt>{qlN){QgS!eyciJxP=>Nw$)U^2ZceSFA}br^zmJm}ez2^t4&!nKJy8Rq1S5 zU(O+b$Yx+gX*y4qWsP`v&>C!We`3u|YP6!>rnjs&@?L?iSf~%$G5ExH;8Onaq-XN?J2<+Me1;~Ul1;!w0C=vLOnt5zPVfCL z%dtavD!RH5ZJWm81gpp);)!X1%xX#7i=H&Po00uMXVTd!ni zZCI6|``^n}b5eaj$^Nt!uMYi7w!<08k93QObt4^vZHj21b10mdF7)E*EBDaK7*AyC z14JLX&?~eSrrX94UaMlANp_X^P}09z=u50*fU=MduMui*D+)EgUg!x6vDhadG{YT% z3pK3)RVzcspuKZ%%h*12S8`}ow0Z%-jkZk-y6GjwI;?o(#=JoUffSF z6`SLy6Jy=!u+E_pw92Lo2z3(b4y;ZZ9M+fa?j4$k6^#Pcey*)%LqdnSV68B1ORNhy zur9WUo|+uGmg{M3i5YqVL@ydKD>N0OC!xlWGY6kKQ`?21P0`h6>5*6`TD~GQ7hP=t z!GoS%9a_%)@XWeUSeDFOvUGjuCw_I^#?Y$V3KzD7Ug7H7vm^8vn!4ZpSP#$C zlzQdSfn}kNXdwWr3axP{G@cXdbS(51*5k;J7qLC5>U8LG4)*e#8BPLV&UD7b&?@G zViATJej8D%Qm0B`HoQ%$>k!rg;aL>G91(pp0?)Oh`BlQad5j+57uLoHsUq4cI*g)? z1rNK^4Y6TMs)?1bS;Me+jImg|aJqLG3&cfqLYJ^b+@GU+hM_w#6cFVYS7vnV7sbt@ z-b2Fl80{Dl97)NtI2-z5MA!x%k+zNryMt~Qv`fP(lk59kJ!$;xFh>WbbkcZ97-o)9 zphy950uP|~O2d}$09vvl%!wC&UKIv8{aA#pyDkh80t>}8U)F=E*hR;kVLv!PwcTN` z6@pz&yAt+0zgqWN*hRDkT`l6BiFQPIDEZ}f*jN*bDAcqaTIcRF-~z%pozFFC>+vY zG8vph!mS<5(ss3`;1EfT<3s61MR*OfR89bED-BYG@2YMVrMLm{iF9qlaH)B00LG2D zu8j94ZlA*l^=cAc&a0Sbdy`sUbTFxPNk@~H4DTGS^uo&UV+Fi7djJg6`i%(xUu2zPZt zxPuYFm)80e{($>{*O%~hyt4!!thb2`7oFu4vDZZuv#?skIWA^O&4|~$@kyx@k?SGe zuv{KdgcXREBt-1C$I1c^S0OE>i8kb7{RnrWZW#)>ggYlpBmJ`?s*|(bD!I=oi;$8( zwGkIZsy8zu9&)kHHI5k0qk8N15!bkc*_|SOa0#1rjabhuU3p+cW2}Uv)~bZ1bl#|l zg_!;%GZ`TGGBN3`2@zr3ST#x_j1m3AjEMD|^p@EX#>%~PZbT%%dVgNTW^V2k3nGkt z)8nNPmANwBZj89VHE?Nb#CQJKgY6NIc>TM!C!z;h18bnGd7a>6LG4dRxbxZ-d@h17(xwY9M7-cqlS?M4_uYsH}fHtZc>1Qu`@3=aVj#wkmYQd59MPrf? z;gOhLDf2~uaUne#B-+ra5s}Zhql}kF1|kJ+0<|`A8a);p>4WKtGERWtP6s4KmT(JJ zO^y7Shu|x@k<rS)2k;Z;_qd}2f(4Fs+lE}&whW26H z-xf}f#0==!CiMY^Cl z0m69t?n&eXPG^co)Kl(jW4)q$xG^{QME$|9ZmJUXo)@?IM%ClN?pfWa58N+b2S%OY zo!2uFQBK%d4BA{1rAN;>RPUSQLz8o(_yy)}iQ8p+M-$h|QiNcHXY03MjiI4@vFTkAyeTmwLj@54Fm>?=Qs^;S|kP;N_|hsZOWMFEQ^$`7Ko zC4dnCv!%Ny%S*YlcAhSu%8T~1 z#Tgq+j@@~qd<}Qux|`*b_znBFnQoZ3!{qtBcbYsuXt&AppY4$k;*a$yllQ~S&$3F; zy{g=v_B$reuohj|?$keA_^(s)9Hf1El9%V@WfqIY1d;DA$T$4=xJIF$atqawC=97g zKi-nJu&`K6>)(;Lvms?Wy|tv?V{pRCkL9cXI~T(GOocnjs}SiE`F8|BL`rmfQdksi z!#YXCt=%MRdh@A#w@VUWt_!@cig&i)c8tR)8WI*3qMoSQN0Ftworjj?tLq{YDY}=uxNWo*2Id zgbwtKM|2fYHRO{|G$zZL07C#Kni%qH+tUtJqK{x|uo0#veNZ#{GG=(q5Nd5Nccq1a z(RrBBDnnSbz1)*FS4FQx)Kv-yV27aM-VhUn(J*zA|+8lv0Li94eqiw?v6 zz9(8CGNox{(P{kZ{6o=;_`Mm&qn+)9yjV9gQq^Nr|O?8D^Yt>{@u)+F#w^l|L7%kM^G5(YAX%kM>7+ltnB@3+R^)>pnvG_eYK)iQ*wgT3Uu)jC6R6OKGgOvih#q4U3 zjRJ;qBX&WX@zzeUl{Fvkbep3BzC^JbdblX|^J0>_LdN}csJEguXY;y>;xB%~U)2=f zIj)nRB8*?nsio-6?>$>r0eyFddrhL)#BZ1%q?p8ua+$)L-_SJNM7>j_iFzx!;v|1X zoI>%OKc-MAj`N~hyy7V@+9xS4@#5=b#SUKFk*0v9i;TlvjiL)Lw#Zie$!}<MzqsM5omq2xChnky_gLYtO~)BIj_q2ekg93On7=u7u^P#kn; z(TtFe3RpdRI@*^W9H__@-$QB-QFK9gsDMoX+m6N!Rpg1Gi7Xzi7-tsNxiN~sdZL0H z)+vtg&~ocnCVSnZTN3*#iW)c}SBh!GT(2r-iglB0y`$KH!`eX8?OfNJr8Q^u}m^^NPyp}QR(ZtWnpE;3G_l{ji&2}+2 zMBc9LV;VEw9%Nvrn6Wr#9z+vYUej8JT#DZ3HlPJFw|J!zARF)mi3P(!Z9pthU|h!hYH z^Ddy}?U=*d2v_dJ>_d`dQ#@=g#+_z8iP`9ELBuIA^@kWtyT+!S-W)1-C)Qzht;x2J zG1Cy$XPI8vn4bJICJj?3gonwz?=hHU8|=k<{)%}4M`F8Wx)W-t#B{+J1%UAp4|4Fb zQXa(&F#iQJ(nk3k9DgnFYHF{z(cRJind4;R0gO_qD&eR-h zy0`KnQcEHN0R%r9QbjqCYiWnCa=bZ|M8J>Ll#Ma93zW@xdD0hkl)jZn&W0>+>KmX$ z|tF`CCvXY6+G>& zT!gR(gNg2|L?xzX50~{^G6$C^G0Sb3Otz&;RO&qT@Z9A}*ww@8r`sweX1NW6X|!62 z%J0J-E?;ZnP`qA=SOi5QHYoL&-A(NE;hUAP9f7H!bSqv3PkvFBp~Gb39ZE=U$~ZjU zi4T)eyOpRVMobS|_bQ7x2gw0^nCxDrM5Ux=99|q!j^-SOAI0n8)G;L{B{jWwLJ14T znHlVUS1!X=?51awm~7N^jXp?WEemIUIAr>!Grn3X_Lg?AaSURq%D0xr2|7YB^R99V@E_peyN2 zUl2g#5L`or9$gIZQ=yVkGh0~JRzVVGriZh2RhUKg3`Xj&!Z+P(C8}+lL)Rb`y4^Yu ztU@KDW&*^As?Ko^ei5oQSbyjjsX`^AW*lsyRW~??KVnqtu^jX&6~0G(D^3N8pqW3M zPgMPk~P#LM2 z0Q>V)D>#Q<_3`!Ma069q4x?zSLN}ldo2cMBAhXJn=Bkxgjl652LS>|88tG7Isv!k! zRhaJ#3}$PQ3YC$XJ-oBC$tqpCsY7x!H8bg; zfhx=nTE=GSAQgP1VlexMsW9Ic7>x4>Rd>#2>L?Xv?<|AaH`)|Ej*i2(s-6>6sEpK% z!=IC&dn9V4$5a(&5if(;K23$nNX;J3o}rq;IXs=ELeHN@%~7E;QZo)-^Hg0phZzf0 z=()>l3stC$)Qm&U5|b^Cl&a8kL{7_9kdc}>`N5Sc%q~^N=FTb=EDdBZ*Vn4hvu3q^ zQsHN;=myn9&LMA;3bPuNiL!XJ3YC!>zLK;dn|@c>k*0f8d>uaIrY_=*ORe3gA%O{% z0_t;))!+asIGV5ohJJKYnF==WGMf!OjEZmn0=#%c1-Y*o;I!kYs`)R#dnZ(Nksrg_ zkULjYZX}n=Jm{{os%}bFwU51T27n`hMAqHu8;98bHX@|~?y;*myD;xq$Y#xm##D78k8MErwTxYksqDhT1Ri#!?_0-0Hftu( z)uLEPu*ix>+Q<5!RycN#ZB4s&i^ZhDp+KrSS95v4*w5TOKMjh7{MC%rsiCoPnEJ@1 z?LINqfk6K1BKmby>`@MWejLs{neqWK51}OZk{Fwdh^(~d+*l7@t!6KXo#%q^JytV> zG}RQ+RM+9P{*R3~C9paQU_B8^AgmUYQeaZLD;Aa0oyj63rzVh`x`X7kZ7h8X zSoJxl(T`(M35Q0$gPQB~GPXK*3e{VbQ&7M;i17!ele>{|RxBB{khFU!ZTKxV98=#- zSQHXlf9C?#u#KCHNe^TKBNb_>4U0SG({(lCY(%A#vf6Q&F}Mku0yHdvWlr@_8rL7| zR1_3=&K!+-(`;oNBmrbhdM3sV@xcZeW=cpjJ&js5j7u_ylNDk4s&6%ogM8JD*pz;8 z4bi5o$X9)3O59dnYZlCiLw8dMAi_})v*Y41ejl+ct`(U&IBWu4v?#6!p(hFmkl~Oi zreIavXLPe*%2G`rOZ8kjV|(0WNE9I~B9k46!%RLh_XgA&G_fqMGY_h}55_^hYR0zX z;W)@w&5GlW#zDSnR{VB64)RqC#WfdB#W{%=A6|`vJ%{Y?@2|%}zG_yi@hJ}SRf|u3 zj(dtw9$_3S@>N4W+mUSg5qAUW_7HI5`|yA>+a~@IXE(_%UW!SXcd$u(Qwpi7TO$TR zM0l7$g6duLfp0wIon?ADA&H07pscuD8V^~jS+PNIJZ$-7#k#V1EhbAfdz-FSxCBenq2d;LKgglgcqPJhce{d!Qmm9r?m)dZ7%Zca4mXZqxL$V|@k z(_?CUju+yUteRBhoF2YB{worN0?Ktek$3D|JS3TB^zvWCLy~D$y!qNx*$;h-ha}U&)$N4|kYk$t{k2uXB251Rc(f!V z3KMLJdfh7HM zSX<1dA6_qUIHs2aQnsJ~vs>I1K}Vk4xM8&W{{#_PrB z*@=)UnknYx{6yGb%!*H!B#y)Mds%lwNEI!d0yU71-jsNXdsyMNMD$1-0Bg{G+Y^l~ zz2nZr9~jpc*ilIIZ2azJbtDn<&6^3y@tMXf zh~P#cY4p(`(SS?8COV=GDCCPKkS{uvv~x^)jOZpXMFUDvu*fD|nFQ&gnP(-&CPBJr zR%{oa1nHt#u{bda(nYgkS9KDki)O{;nMsf?nibdTlOSC*D^6&X6o8&YfOOF%^ibEN zi}tmaNk3y!aWT0ear6ydm&b2T!hDTqOaaD;j@^=UfSbF)FG&_? z#r-R1bhol3%tVYhmjGDqwD?HU2Cgjs<4H%cQ!*5iJ+~AmGHhW*|HPR*yi)E5K5Kos0>AjMHD6)isHmUxFKbi)dw7pq>yix(5r!*~U2t5#ok7fqqhSC?|D{Ai*+%!?OWtEcc{ z&yMP?yeRLf{)rb~4^YqH#W^F?pLlV}1k)>IlhwPu#H9h>ma1=Ai^cL)>L?plBv*e@ z^Buo!H>h1OvBRi0%u*$IcBr^(wdq#13wQQ`JJp!wK7cir9@(Wnj5PjOnzUCvTr>?i zvmei)TABJRn!~bR)x9`}dPmgLag|^!?RZq3gZZGul-T*Wi9`8GH74C1gNZq|AgxY8*C#kBIS@@pKp>N}*1lwHzvTXOP;zpS z*tipgI+?fVwKU1UVVt06@05n5v;&;3{$gy$F0@>iyx44*sx+~F@*4{aLclXj$m^_t_7#DX-w&I<& ztv!-!V6?z$6j;la9JmYrD;-^6%TB1FV7Gg`KQ?$sGU}K#kYP409+kWy8WCIJ;gKYK zVJ91UYG-n19!<1+lb>-lr0h?=Q(4qV-ie=*xAJ>)ewglcv`8^> z*k+kxz1)eFfh>v@uLbp>QQjEH_i%v1>)-om~tcs|` zl-v|ZZ_gAuzkZ5Qw~ZT`o&r~(bz93voYg65uti&I9Xzs>P|{; zc~+%ee+W)oIH#vOIc$|W4K1DtwWOqyGks*8ipo%GVn~7EF*qel;MLDDb;AFM*9@oB zbWEdV;w5U%(6q>fc5+Mo#u@haOvUt1|Aoplx6UhdE5_#qELvJU^)_a~x{*jt;vz}) zp`QX%7h@*nj4*I4{he~?$+&lfga0-(Gtjn*)NX#{`mmmkB+kRqfeeUF^(2N4slL>+ zL8?7wgz&Fd)oR|^i7sxG`Vh`W2bZBUTc!qxwxP!hQyap0dcxK4qSPEXbWkWx?UG92 z*gB!upj)a24h0s9KMzc;0|y8T#k=ED&+>Z@PEQ>VC$|b$o2*EM<@c=UwkCCOfLL5~ zI`zC*hv@JNsb4sUN!L>+dWkpGd!5?cO)Sp%ks8f$uh^z_1qCqfU3 zk)n<#+_aHg4YeDj ztrLrDZZu7UBklwtU$#!`#Q)x*L)vMqmlN=E@UTaA?xe&cwI->$Bi)zY?VdKw;cp&R zxqBM-u+l+kSIiT+;#CWewRWaH!_#`e>4}0wWOQ03F46i4X-4NOou0N3&fFGm$XSp! znET~iy*4~}=)?%30&gEEC2_?3B(=hFv#kK63 z^z`1eQHb_sR`M**SxpBz(j^DevMhkjnfE;_?>Ln9z=l|E$kUSUH}BaJ`}fb_;OG-+ zs}K=gAV>6P(!5CK$+V9MfY!2fZ(=x;rX$~vXL!-ar_$J{3~r4wX(;f5(M>}0d~c$>54GrxCDgB|2WhBu6DC+e z+?w>~M`@#-nYc9hT^g)i6eOpvAJVSE5sO0c)0Z?zY{iP>zNf)DM^;q*NGs-#ZFNeA z{SWNwBlq+p{DwWA=_fG_pOIdB5?L#K9yvJVehsoYy;U&rsGW{UUC%sJZAf?h+xeGn zG1>N{v`#wan;G!qM_>L_H+>vtg%cpW#CcUdJsX<7(#B#U=^LGX8i_#)>!&AB%b0W@ zObiC{`69yA*z^;YKxIWj`UbP8xF)4rBI`V-axOW&OrSC|Egh51r$VN$>FJ*4QTbh) z{zRa%BRhSoSy~CyrK9phRtU4#kUmzRl2VY4nX(puDEP_?#E73%uyAaaK2cyXr$ss@ zyH5qs+m`8dFoQIP0QIIOnO2r=M{4az_oQb#re|0IsR$2CFB;q}JqBGBjKD6`qgVQ? zN){7$^h^I{YcY|2ADaG2`29FG{h|f@o*bWkN%&nhF@3-ATR1uWC$whO$_z)cXKuRt z-()&GBRyP@sb`eIn>x%*N1dC>l=TmE7kX}9It9V##6{_+1&JE1Og|<3*4rRT_W5T~ zvNM~~e@06LdbB5Q=^)YcvUFPtRwD2Y(Lks6r3avEr3sh<@KHgIhKJKn3l^w%G~Ln~ zekCW7^(NU786Kh>>d1_tSd&w5GfRPbYEs4@0(C`3Mub4USf6o5 zu#eJ^aX|R}l$Wtp_+4L+u|xQ6(;y?$8Gbjk$v7hXyH`<$4LCj>Sey|c;FNaDxGUg} z?3YnXP{H!S8O<@hc%up&>69@U^8rcp#@I<2C$KUTR3i^!0)?d z87~Ft@BWlA!UcX?@5)HSjQD|dPog=RQD)Iu9DC#*%h-!(iCDj>G4~}Cj`Jq zD@{xK=kbgXjH3$=6LKcag_NDjn1Xvd5f?)Q{+^L<3(6RLDdQFnXekZ6l5rXHbqT~+ zN`JqWal{e`%)Xhi5lg`1c1BI49+y&!dl_d00_PrN{DLJ=|51h;VgO2*2IS8(&Itr; zUS({<5|~t;(GIPF18*~a6$p%apMgrHCYZ6($Bc9|fhwOx0yn;9U^>f8i;cc#9L5sZ z{z9`;P{7Jc8pQjlP#rOoL-5>4(rQaISP0!N(ypoo=GUw>zO=Qk z<`S}YF?1LDvAU)$h)0{&)OaGjv+tSD+%>zM&J}H`q7V!Hu zRdZSRJ)f@GW&^+Db2Njj;MX!wgPJFN+euSM3!7+c0F1bMw(_P!T4`ot{8>OEfK-pv z)aBXG<84IS%i3vXArwpj&dJ)S){HJjwI=n@psG8-jiid+n%;skf9k8bh~OkdO|Z?E z3~vg@s7oA-KGbTQ<`PC@6>!%kY6c6$8cfmjLldiIrST!m!za(w1c6hC9itO-HM`L4 z1WYPjpqU}C+p|cs5Hn*2a#r*j+=$kVZETz@^WwT_*Du! zlF5U>?2*^pLM^O8SgmRO-!W<48Vx43If3U|l7>e#lS%G+4QAr0=K)POu}|cYJ({05hYkBR zvk}Gwn1L8qbw8^aF4|(_QO!|nQ4eEJX)u{10c$+Haav=IsC{eT;Y#A$>s-)G{_h$f z?CtF?YEb!?*~1?%Yv61y=8b2rX)v=y45sc4%~XsA?%gtK;E%hS8CVU(-PhDbyj@hE z&m#>Sj>$9-`Bd{WmIHaFvBPxJKz$uaiG$XTR2%0DpBJuYwWqt^YV178={N9sM*0Ud ziX-y1zSPQEtLK(#YpcaiO?w1tb9pp9E7LARC?X3 zHrIivh2CweMeXed*iOW)gVuu#@1?b+`i|Pi95KC*wj47UWr)-Fzp6oB4AjE64Z&(O zWvsS4=EDpFD{J)0frL3`MbZfqwN99Z#souEleKWBE!_ugVgE^5-WIMX(K^_OMEB3t zqH+?jH*{OBbs_z2-9l;2QtdV@Q3^29N{l1juu6MDjDfUdz1D&kmv7cOicJ;WzfF4+ z^KBkRAkjMxYHbj;Q5d~M&poKEMW-CnUd2qua{xDb{gn0(jGBx91OQygd|k3PZGT2< zz;u|5P&DL<_NiH10KiG)vi_R3E2ix;ahY~Ui^_*>1Rwz5C~|SQukDP9H_(VTp+BB# zXJd3CJWSx>S~TH>wwnX%d(yHGTDb!Z;`9E@j@urd+0IU^ajWez_i?}OcU4DbNU*;vT9iU%pXU1ZDkI8i)D6=DHl@OhI6)PfL8j}g>j9G-MAD6kD z*GXG-<~&~9oMz(wFf;QvjDs>=Za(JI_vG}FQYU2VS|IHI3Vaj&rHgM1U1Z- zXQpPtid9x5(@hpGo{{-0zZy3ya|17anw>cVTZP59Z&E&YAj-)woK0Sm`H;7nvCA_j zVVboHB?+*!&8ke;oya7yS(mwiSLj1OXWH@N%`KUY&=q=VInYZgzU%t-t5*rla{vmT2wu+ko z2>|jV?t6dCoPqYe{|oTQ=giGKypQ{qx%_|0_1X8#LH|>(^(?Z!a<1W4S@eIym6lp( zJx2#oqe>lUsAE=JbE*RK9Ug3QowF|5iXC*Nch(T@CndSgHtg1vkzsQ#S{;^YQx^;Qh0()_GcFy`NJ|dmAA*&DCaK;xnlSaR1 zxzMsrS^IgQp1w1ym`h`~KWjJl%L@mxC^zK7V_AQ4^R76VwSqs^=wj9i%y>qy>D>3_ zuEc9b)ku2edR7grAq5mV_+}O)g@j(O4=uTq<-|?+^P?J2Xd7ZTe z-M0V*T9KtsH31aX5RAZbCKWL7g|)e@*t~~WX5RuI7lMGVXZAxrKjK<5yFNEepL*E` zF}aao?8m+-R;9P1vI{LND5>4Ay_SrN&c>`1626wsoZ(IuD6-!m939B`5x2r@CAl4& zZ6j_7307vK7Lfe|3zJR92#`tL;3dh|O{%udhR=4* zU{_0czNI@o+b(;(=&^K4=j=UJOmf<|M|N#YbThtIMM{snszR#{%wBBGUQ167%dTUN z*KowCBeO4y)}ejIWFLkGW{uQ?W{u0cS)09*&@0OeGNTQ;ZzO>r3?Dt%2 zO=fVdQT5F1bn{<8tIW%WL(&8{qmLJ6|H9e-v^aYOFScBo?aZw)WJNY);$-(WS(_be z-rLnjUpZ09#%u|fY~JR7_(RE-Y$>KUT%kYq0^N@6Xij<7?(7|0rlxzdVQkI>sk}d1 z$NjGFp=?Mf$gZXz$zH;X?~i6j@*84KWy5AOc7yfrg3(#=`kCzAn7IWbQ`U6UB(Ybr zH;{&PbF?J%YWDK~9)>8iWY&l(D(tr;wXS8`kr8!r!boLhwilgqJsYzX;~!93vg1rz zOY-bmwpZ->us&UT2>3B1L4oHtnN|TDOj9Ulgs3Dv}o|S{FsM zZd+6o9Tn9+rfpk!#6KXVr0j0CANlP;HlM>9bUXW7CE_+N$DNG7pN&|l{C~hxfX5ur z^nXG9^enrJxh4^Xrt4m0549%y>g&8|+}mt#8;de3%rDz8>FMI{+3&2y;<8FP&;=88 zLR}nlrt=#%y65=t8!q|ev_g!-{vqFGi-Y1y{UvpCe*5pfO4u4Tw@>AM#5&BbHF=y? zhpkbwCkFqVu^7C5Ih|nbYK{^U+AZK=0uS4e#b?s&$ZDO=g|w3948!s0Og3wC>WE+V zHwESN0+2GKncIjFS`ARVI=MCZwKezp|ZG>pl?tXZnS+NsPzoika1 zFfA@;F=rE>n1ku=R$whk%DIWCXQTolF(n7K*fUF=NXtR2s{0#Oy^NeUST+=#X9p+J zKRX9A*(t8~t} z18t3P)vkNaZ-^G30*^nD_838?86foUACNP_no+0ChUL8Ggqw{q5w1NhN5Zc*nVj<* z7b9|N4t$Pc+`moB*~E)`OLA`Wd)Lp+fvyj`Veq^h==!i?(1INJ#=(kzEX*n8#TAQl z9Qb4Vm*@^UpcP+DS37>s z@#ObTwa}$whFMIu5l%W#l!LAvRyGOkHL)bWT#kJr{+M^kl9Xr~yV)49@adR-5!;s`^SXwb>IQ=G4_tIQ?-(o{Ewlbqg4XU(s! zYNxBiuU_q_8;zNM1DpSUy(N!$eGt7R z_jS5N+F%G+3i&YEwIZ*kIB>Z$T!&g`yH3|d?EL*aLiej1sa2!7I~g%UhZxZj5T_44 zHdFTk;~?zeMssw7EJY6YiEcbjD}AWTd>v|ODdSLMkq#!!lc(T&1#IJ#8#0Idi8 za@|PI;qFS^XeZ1I17>ECJ-l^`ZYftmn{B#D zSQX6Jt~-S0@OhVRBIht`uWmAy!=ZgT)Zl~ZVL+K~8|RR4NH-J9q0eER1mOx|omL;y z!Q3wMhoi@Jm;tXK%9=MPbO;Kx_G#Tq{&v5!_@Iz=PUnDly{LiD7j*MEhZUFc-gy3s z4zHPcd~lW(?^dvdV`6wuCiW( z;6Q8p>hJT{d)3gR`-^Hn{S$;22rkr>=yg6`^ja69G;J+Avt3&WUXZ(ZjK;jF=)qkEpO>m1!QSM}3iGhOQf}U&{@4Ge(d3dJQmr zsjEtV8sRUZ03+k|<2Z*ZNqThfOjYYq*$bE+WU2ZR&f)iTeBJ$)p^ri9;cBLd!@wLo zhc!BVG@8RmgT9FC;bT5NjMuEMN2ShTwz$|>Ka+Fl-%O9$B@aE+zI1(aJ?dZw#-V2` z{V2}Cs*N5!(vY{+>oM~?z@Z_v@1`GWMLcOUZ@RFT{upx9)Q~>wr!NxY3~f1B5A(D_ z$f2P_^)UU#isi%fkmHmUmyOV`=EcUN^k4X6ZO7}YSc^AInWC?TnT22W!JsC?kH2!K z(wX|Ym6%v$`D{I8hkL8@rPJo%DsKgBgL(RF&T-3PlawQunxsr#W|H##a+8$nSL$o> z$8N0C*TITLyKU0fa1f1Ex=UXPQvsPQfa5^}_UhqiIA)Na59nd}1S_6Aq_4$`-;U}1 zcro~t{t++MKBvFJi}siGsMQ_dcu8dV_i`6{>V_U>)0p?2eW?EpBTxmH&r`iK*RuST z{vP+RfY1Bj)J&vqtW4ZjAADav!6y_ixjAk=KE+!&^Hd zJe1axnOUJl6)3RRy%FCU5ovvA@!CZOOCe_MT+>9-R-(O3a0+ z0p>K>$+@9Op+#&8*v+|nbk53!B+JY_l5=u3T(9#Dxi5J&nOi^iB)_3o!(6QE!;Aka zuTImN=cbDhiY{rDyAbL69PDVD+(n#Z@AkQ{l$c48Se$E&zJGPhZOsMh(Jj}5OFXN0 zE_{7s_jc)<>yP&RT_baSn1N`};9M)QIU#)p8Qs3e@Lb$ZHi#1xun%+5rj5-#&gmA9 z&mGL=c|X~7_4lc{2VF#YN*Cq2W8`7+aqwB4o0x1rXL;@?-i|C-Wt3;!>fH4hdsSew z?D_}R1{AEq9Eo z7?3(#F-lT!HFqYuq6@GDU~OrS>$$zTjo#nNh0O;{D7*W)9=sU*IM;y}GoI&0@ZyB> z+(=$L`A6>Wn3Z%)zQW=2;kbbj&z*%Fx7Nhh$`DF(Kjqd%OZE>yTQRk<>zCXy)}sEN z{bkhOr60N5k?|*K&gR$ENl96{6$Qerv0RNP;4(r2=2|v}eVk>Kqk%U&HJuFmuq+Aa z!h^PSGoa3aH=4(T0D=wi+W|ZML6Np(kcYvU951tWhVS9vK=4n9!Yrh}sBBPSJe^gp z>D3G#bWIIIdme*qYZ!HqTgQM}W>NurvYugv*juMvB?cLWBU8uZ3D4cAuguWUM)anm zkw%VNqYQVken1$khr+O#*Qg7zhCMu3E{!+rG{((D!zy0%QyXBl1goiMl1*2~rW%ZW zq}+7F34TM6#&Cug9WqUi?a4Ad)-%WSSe)MUn2*7rL+Po1o|=?)2ahS4^xTScZ(*<% z(ubP$TI5nX)7k?JZd|~W!3J0~!=!Q; zY7+3uFq0_DMi_AY8>3EXi*W{6mBLJQe5}z_rIQS}PXI<(0#}varUKJ-!H{3yf2_N*nt1fZ-JPgR6%O-?<+=K4Q4ci>HqnVBZ<@j!P#EIcW95E34C= z&lvbuZJKo6aDl&~?nOf~a!`;&deqRnljn6{)4`8hhCAX=fM{+R)l}=AA&}E=^3dRe zs)mAX-#jt+kn#ftTl(#p0T$!2=E?b$p(zI+@W${7(PyF1q$tIjLCZfIR%0v*5P8(+ zyQvnG{s0d|`WiWF^|}hlb%WJcvC&FT+TS`ak$dwAhrI6y356NgBnC?X7EUW?u5`yE zFB8qt`7BK8tgDiDNgPy?i*@sO=ccS)o)_9f1y};xWSnU0z`S;x=#`+nx@e+?v#-49 zu<*R8T!pn1d0uE03Sb1l_-Oxdtchc6f*BlJWyAE(os_)kB1dvqV^rp5ZQdiaG6h%y zuyz#k2lMZAbYX6uB}SR|TIAIywRXCA(&z?xe7H~gH!>1!+c*!?v!DPAdwG~YR&AXJ zyJJ|fyiK05gG7t+9`e!ghE91ccr5qrp7$Lig?s z1{$T`HYhI(LkFZ!Asfc$RVAk{6?)ReBl4c`=y`pV5&P)qyxtfW5U?p=!@0Ulr(LJz z8D~>cOY&fwI=h-RJ1>^2ch3AgW1q6`!n{kEU4IZ~5-F^P%e1rDAujC8+K{&v5eL~; z5A~fqN22>V@8N$3m}OB~i-d2@3!)n~=3zeWn*hk=o|Z18U`rn28=?S0frZot)X{Wj z-fp}g^~q*gZF~CbuDtq)=w+0qJ_%o4$&Mb{pSQ&lDD^#cuEl_HB+blN{4Y%%2-eeoR`4j1($9XX>z=j=l z<@zD7nHlvYk$(Q1*Arx;oxkM`Mnra_rj)e1Wqu1G8nUAxj$7n=&OMap3!CinL(K3A zB>`A3dc`Hbqd+p*JwM(Il94+q=U1s@RGrK>|Fju3C~|J)d>=Ziy2$LiUw#8~n30p` zU%Amo_3|&<8u^_K$^RX(?Z9Y}ND(qZk>6cV-7;lCh@7l^_Rq(hhQN+o-#tFxmA)I0KfjX29@;F(mg}-RS4gu{^Ro7SXk_#6UOJm=BxMP>uSlysrgI(d$=S_vW3pC-NZe# z`hA@}NVUKMCt7EE{wU~NZ>{T2w$DOIXrV2Lr+a7TuZK=Nz|aA6^HZRgDHKo6&)?`R z7AI}W_jE@P7tjfyyO3r}^4*E_VE$knik=)jmCv?C(&3G$Qd|{+w@(O?y0H4BWNAS4fcll3X zTq6_5ZX8wJC=JBE+Eo$la zzbN&rQ_zT0x>m1Xy7{Vd3n=&r(E$>w%HK8KCa_>3=j9SyfXQ0)FTmW80@T49|AO%i zE9k*_EsQ9@EEfJ3;N{2y)LyfH!E}r+=)!qDj`?5ks;w$mju-=&?C3;u6AL2E@dPL8 ztS*>QiA7FQlvLnJHowgGrFT;c-XJ>v6cjcENv9P#Tf6=cIzOwRjingK-E;*3h^`~k z4&9Mo5Mv{XRW;uzR#=mQHAs57v|+P?`@FM|*{a|W??TjQU9goG@BTmb-UK{~Vv8TW zlY}IMH9!Ic$b?;F>)B^yjesD6EZLJuGQCV^-%trVfdo;6kN}|+R2ET00pThXE@)6d z6hUwS5fpG&R6y~%0`FJdJrh80^1sb{-+S--;%Aten(9-hPMxYcRrNckg}5kfZf}+o z$6zOHLjN*1j-l^aazR1dLOnMaiW**+6W5ZgEsqN!IemlMk^>Xsr_p}X;!dfJq+RC5 z{i37CR8?ZMDQHjE+IQaSODi<=ij&d9eJd&oEGU zSoC`wukrBLpK&^3#ZZtLtYbq?lC~9*1Uy%w1vemvpPb_s!#{YCPQ2NOyh~>TG6)_HW{Y_Q z*>ZV!8?xo2Vc{$_mPU7o2bzSOj`|Xh1<~pdYbV6d z3sI$GPl~^)$L3I^13D4(-L&{AT3aS(`rFcr_qXL+A%2q1l_9>SHa>*Ff45zC|{N3%;=o-nK z7vuGu;(@VJ)w>}#($_)-~OX`Jw~2FMmQ0#%N1RD zc={>72+XJB^_&AKWJ=D&i@Lj^;`8{enjA)a6|cj{BMJ`-zmAu+;dbS_c&DBT4s>|s zh4l2u#rQclmaKG`g4n> zCp@R+4xHE$txiCEFr^CHV+k-2 zl;m%ZCp?O?U^Z7ixh0`|yuSH>UwI(DDShM5grN~i-_gkM#1(pbOrbTZUE**}(knY9 z`Z_4TOCloBE8HIFo(Ok6CHd7YiHIGoB+vCr^a*<2z{KrZff2SupP-LB61Ql%HADQl zeTFBl)N+rE@>7tyNi~U_Y@9Lz8A`1qO~vx>cJVaz`gM)9Btm&Y!#I?xa*rtRMn>5DM^|(z2`~Ng9~8m!YHDUT_q+V(7mDna<;#fgL9Lf(uDJKNzy}_Oqb3` zdQ!_BH9zT2ExG2wB%ztUX(^Vh{VKi-t*S}7FHoJAq8>@ws?%;zi4hPBQGxK%V@WP; zNNnAd)Lvuv*tVpZO-QXtXhX%FNzHXCv|`DgHq29R@>?w(9!`$bBsC#bLASObcP|~@ zlvws8P1PY4*c+&C$mRKJ^aP=`Q#1nukJL?#!{ygbDjgfo5O4^{8k!@cmy`#stR2bRT z?tBy}`y&ZKLhU2k($VLWqC&~Ol~M$q`fF0M?)EXV6l8A=R=R!1%gJ{KDk*qnCg%sK zNfMfjSNt+1rO!7{eosrT3{Q54s=0wt$=_PmaQyL)c@#^h@4j)G0Tz z?Th4Yw0L}Sc`K#Cs?F;787iK&ZLBpSIl`W5p_5;kr)jr zdhTJWHzxOBq~N{Twy-133P|ayXOX#%3Qyso1YuA_P@eY9nYOOK-X$xtxY5hss~rB&@x^i1`BTCAbB(x#Cqi}ake z){*g?|Dh$}!gHDu&*rp=v?e-bW*2hX*D(=fYL}F@(C3sWI(cx)5k1z}4YkC$^P1D+ z!&6Feg$NPQ%sWyd5R-)^7fec#nybk_(o^=p8K338<4rND;-Y_Lr*u*~lipI0@|2c) zx;W)1;=8c2duF6~v;yY2DJiz~S)52moFqpU#U;uIEIg(bhL zN|~kQ-m^TVsrJ~Cl_@Q75y}cY`)JDCFf}=7V+tbLD7k~SrF7AfIlEG3YZQKcDdmtx z;lo!`#%onr-bfjtm0fr+<%4!Qb&_K2B}6N|M5C^ztkN?n`uZk^P6xE5 z!&0Yd6h@6qy`qULespTGmb?3|R9`oYy*u?Yt-z2;sZ+HAdlOQ3XtgcMOg-;Q=A<$| zFV;_)d8v5KwUXotQlHk6-xj8B(UKdBQ}<}e=~GfSXvqQhrm}cdjKY`q`O7|0ntEE3 z!}9s5&3ozWGXHd0H_wHWxJ{`K8`h}vyXBeG{W@qX`-I`orgqb-1IvHh*lhW(BkhUj zBP@`QM})TA`R~*L2E!UU@cGoDV8c|Ey$f;fUZnX;sW-R$lpRQILcU*BD3Nh5r>@k| z+>(`PGM)ZPYCk>e4IZ9L685C(*w0YI>#2BIWbp^l;Y5Bjb)OE_L1C%tl=Aa|)M0wo zkva;098CQMuY3bHE8k7kvy9Y{nsOv{jvf=O>#@{AJ&nL~bLp@Xsh_nVxyOwW)c$qq zqfM2j(9bWV!YXI2qPJg4g;lO3U;8aJSW6!JEA`u!YVMI{X}#6{prPSuI7?K@KHfGB z8#^VrH8Smy7HTrNN7}JaH94$*8hdRTtD?m~fAS=kh6qYZ?rL)yUf-Z3)2(TEeS?y0 z?nwJftF7aZvwmy)yti}I61SkezdxPNtzd^h9f2Tp#J)Cw($72_tO`A-@q6%A*tB<6; zt&;#9w>s@@JxYIF?crqC<7qnPAOb29$p}s9LocpL+Y?B(J?;!AZ#r35>TG4ojS_*RIXds zeSU>|0WHaMFVW4w3x)3Y83PZLxHs#Sz;{#Jf9cR$)(;ElqxZRAV+^>bx%K$(D>Po3 z?%t|f0@1VGI~W5W%ymDdR|4ET_XQmcP;h@|AnIPdP=Dipf55Hp#mN=!EaJImY%_A^ z^SlfiRqcMfIapD=nh!nZHt5;iqdf{uY-l$i%2~(;jM=J9?$)$so%>9VMA7u2W z|L#7bXM2PO0t6p^t}Q8;k{?12|0lQYN-6(#>NKQhu{k%qZDs^{+K}Fc6wh-<(X%1x z`fw)KR?~uh6PErNrs6Kg@7TP@!! zBYih3|3zkcDC_SZbKYw2OtE^mX zdHQTKK406BuISGSn!bujXy7a9JM_Thsy|9ERweZCzVteSJ<9)5;%IF{PYW#gy}lDy9X0sO6LYQpFT`MHQ2=Nrob(USSy@vgZHQ zEMqnk(~LG5ir7ZC%cx;u`lL&S(kh#;0cN*CQr$ ze-fEkhJpU9m@%o1CMGiWz6``_Vgq65)QrJ81V;RX$sZr3x1h!u86ix5y&qKD^T(nL zMa`aHoS~?hP?@2qSi0G~GMX@Xc6d2MnRYhs&X~yLd3nD|@5ljFo=e|W<=Nu0D$mcZWK3uBbO&a7 z^~h71W@3!zJ5hJ@%oi93m{=V6BzJbq)N?uMCrD;*%4|*_i^_bT=}SrH%=v6Oy%e4K zBdg`}o|%e1?CPCa%!Xl~ftiXP{fEmu%!cDWduA`zuJ3Qlyi?DP7i|2^rh9*6X04%I zwN?k3di5hAcVy~0Qc_IT+HskogXd#|>?#v7(SI1>`B%{U;pG1yyL}dEX zF`1GM%Yf0Npr%k5!S{hc0x8SN?5|q7sdr~i!m;RM`QhZ1q|9CVnxhc3(Sa$M z{dFu7#K)42ws&Wqz$q@{#*nGEvovnpp3K=d$IS{c^JR@2kDRIJ_KUTQLfEh093z)= zGvCq}IbM*dXWv#Q;sHgOMK{My@|4VvHEu@Sm$~MqROYd%nY!M_R@WY3dgehW@}qcv}Krmh`R9fh~bGTEyFnF5RDnR;C8>S%4M$kYY6tfTPT!put=H>e)us z(efX7uvR$8Jh*)~v|ft;e$UanqipHqY!t7R>Qm^)eqnSvqr5rlp^v0Q9vFGrPv9$&0^aeu0}os0ID%uT1tX6qek1CG%A^ zxnqInH{5ix%*tR7yKrJjPpBtekCmWs^KN=(G))fo%xJ}$7D2y`@jRw`+$+Rx>ET(e zHR6L?J$*HPTXUYfwcH}R=YYDF&@sb3MlE;R9UfnU$Bgl?8#LCo%XfNM6lIot`!0Wh zRpb2yCQR@=sTF84$+KUp?Np)%7)|A|eRSJmCn0 zI85~X*jy1D$q_tlN$o?PC|XqPnW0mJi4?S-(InD$hF^MFbN$lWzreEuw}(t3Qk7pK z)@6Q)e7oGUQ)}?H8V`%f&C1Ro{sIFZ@vPBuPp|Uy(`xIy&hw_0duhFgIh3)-4s7rz zAAQO*S@&2v^CI3N(W2+M_H^kMPePEYYrk*zEYK;a1X4%QxWglBjad1zUu5sqdKPK9 z1#kMbVZ>XW!&=k29rWk^_KxRP-6M$WeJ+~r|Im}rRBaV^+S5aKs}y3to%PgctUvyZ zzd;}W;3;UMcQypwW@OE*%oZdi+!M9qD*x|bmD~Lx{Mwu0R-@Xdho=P%Z^kdw_}&!G z`$qnkk$k)!6t6Np9hsNel?M6LWdr zc)BH@AKXFBy|04z&1bjY&nIirdUi4Yvo>=*x6EI~{1v=!8g#7WS)5r^vGZZRBd{#2 zvRl{qGU?B2`Q}<~>!wUDHL`-&u`Fk%fh;bVgSz2RKDm9 zey;9CA9Mzg)^kS&)2H9$-$t+i*0%Cvyl*v#`^evlfRFu>-glB8ptU0CGaeX9<*_SY z@wmNFlJ9@R_tr$x>;iuUxDrM;>JpF386{c!yI)Yt|MW|G%w@k&!>{t9Mqxp);A1Bt zRPc3tP?+Eo>Yio-1BkFHmbLH~h;1c2qUD}zEgaS=emhc-bs(%Lq`p-ZI7#g-Xp7CH zTZ9oh$HFu^q_0q}3Gt}O-@-+zyD$Bx=WGktuz@VTC$!yYDhIG7ByN*&c3DTh^RNs7t@JwdrZ zZzOqffuO|WYD+uM6Bgnccj<_5@v(|%~akSME!QO-%jUN#~Q zu0zNd#hgxTpnCOLmBGsZt~qJy_J+VScL7^sXVIE*D`%kr;Cn%&pKm?Zex}MK{~f zX!_R(@h6?#S0}G%`p_L>fyP(UJ4HR1UVj@|2SiizSh1fTvri#Yd;jI;^z>x$`(~=D zpUDtQ^-RQmVg$s3$?0b8gXtH%xVn|9qE#iLv8kG@ogsb*2muBYeX3j>pe4V2NW{Cv zmE75t;#)u-umVXd#4;`U%_CxdnC?y-AvU3hH;7+rt$cf%s4H-VDtQniAQnQ0J}>TW zsdC!v^s!5NT&4__-hSlqTx_?1m~2P$9MZRer1D~iaOxc-T{5W2+#wRqLzP_n zaOuquHQ92E)GbI&#*ULFX$79RTe9jIH9kg+>I!@fcJ@Er>Ao!j~GV1Ju zI-&KT3qXaoRP!Q82GB{TfZ=RqfPfE~q^pSk&OO5u@VyW!rX+KdS z=?gA-t>*Qh-R_n4XhOU+RnlV)+|aolrb*5IZ|Gb)LprGOwS2auBW?$|fv*?mNV;64 zZXn~CC*kN?(GhQjr02@x27)yUq&xL2F?D2W|C3upcQ2Mg!!TQySSCi$lPjekZ*Jgw z*0~V``Vr}Hs5*o8TQA{UM44hAeO8KWp(fwhC5`K&CSyL64rv9hoReaksJRm_N_T2= z@H4+iA*$f$>%U6DTJps2Qi`5k4QoBc{P{}++N?l;Rz-NZo6);I3IvEIb?~-psWLyS zmlv@Gls3QJ&zq&?-ag2Cvb~x+AkK>yhA9PV6TDApZ7xmo=Qhpo;*HKqfs3N|15Fag zvb_iutmF!LUIZgllGYNhPips1^={Hux#2UsL-iOAkk3ff{WN&4HzU|5r0EO1NjeNr z3UZyaWwn2ece%#$(N*5gTJp*oZ(pr>w{7s=ucJ%p#ZBI$&3qdC(GKs&dNdeBMyqgK zZkIPkV~*eLy-(}Nuix;#sO4^d%L^R6BKx@q{k>;D>aEaPdhjFfPg?Tu8Si-Qv3_59 z@41=r8bsFIan49%e(;VD@^#Dni{36bqq{zum%K&V7+ibVyHaC#bfDZ@YyI4&@>nhR zi@|`!=EQMy+SQ%R=Mc?k6 z>~F?}B!4q*$?!L0hA6+OQ^^!_`Deq!s@;AfPkvg5t)ZCgn@{96BWrIt-;92mFTbE? zH13%$M=bwyo$8!b7LgT3gNo$-hE@*;{p(-3?*;$sU+F7uxqER3!ha;UBW3@|4Wh}# z@_{B~@5A9^NcL3ug_~lX>jT!Om&)yRbRGrkI8m%xA0AGR%$9rh)4>Tyh-7WMtPHYg zhuoI@@r1}eXjw4~BP#Abr z4kanm`m`lQeR~GeCA;LMZ45Q)i+sksD7Rf{%8H^H2j!vwMS$efL$V%&*H>3ddj7Dy zTaW%R3LC+#o|dBb@UEHM;I8Dz{+#ag-H&9vI9$<(xKr|{1~qy6r*bjk*Dx)4b~=x zh^&NAg&Sgy&eF5L1Fd_hY|NUW<4%U+;U6?bY1J!BPuP8>`q90!zR{^8_tFpgWKGd{ zNa~kWtz)n&JS^#-^|}rbuu*j{y=2PTsqyf#HA@c+MIm$9mSxq=!!cJDqO~%`BvS`x z>Dk>VJkTLo@9UU!RXGfd#ltEOZAWH3skblEM`h^=$V|77&Kj)EvRB6HuYSz9th2h+ z@$lVQC7K8(PRi2bWUO?+XiZ30ZI*RaD_zl74mUpOW>oZXRa1v!2j+7?7Ez z2P3P<;T})c>$>~mV<8J~@K)p?dG+_j8aZpPZXQB&vQ}z5JeQZXTJMlJpP#i(M_z=H4bc>*1YSyzF4}GTVSI4{=S^v>vSVNBz$-5Cjq4dJMtlwH| z)(*YAEbD+C! zy>DfWR;5fkzmqkhnVMUCJnNuVcHD_9Acd5&Kb_73N>EAeIhz%w8AsoLku^?h&z;}; z3v@V_m8uy>z2UKK>6lxy3!C^l^Webj?mAb_I>IgJLQ8g@CX7HwHsYWw z4fw>FU9QQcWJvZGT2j6}J3^=R7e}v-&VI?y{NeH0dS1t=N(Gc!s5eY!;<9^cyhSEw ztLoT>UP#IIsnChE>|KZr$nGy?c;1^HPly!=BpE=-jIU;igt)E-OwGkaKs zzLh9$A>(DtHIYbtHN{Cu6eRe&I*+qGPYxmp4V}(an33rMt5Edx+p4VlGcvz zyX2hIgz}LwCqvWX(LHl?ofs+8iKkVQAX?lv=a_#SrkQd&=$=FvIRbKBXa`%4@A#p& zE9X~@*MY-wY+6^{H!8Q(-tx%xR~!Xj)FrNG*A&C?{BJ#uxYIw9<0` zu5?dr{~wx@vXQ|-bm8=zt~zaxIN~FdOJ>Z7vIr@lzn6(2)#{j}4}Dan5%bTy%Y9PC*zxTR)OBPmfyqXip^XW(7;+ z-bbMgFFcmhO^*WjXeH7I*5-V!jl@~&bCzhj5VbKUNSi|kZps;|M|qVh%8GJ3k^Jew z%jneSa`e3HTI~~s%sX>}J5bLHIkUAnojxXG$u`lgVRVOl zm-`l&A|XHOlG$}6qv_=HxfgYf3^a{GeEQy2r^#hBnXrDWNC*C!n;3!?v77&mtFGiW zgUDAm&3iBypFLaWwP#&2q+MR?Fnrz}o!7PrK85aizc#fr4(fbzilR3|;gVnCCys@N9NJ>j`#*(*RF9Add zi=u;UdAi(mu45sb+~>^GaXCRj<(VKz`JEwodR)Kp_!Kox;lN>e-|LxkK*5c>&%!hs zcxT>cEx?KbGWjDhkLb~TAGuH!o6yglw-q$$$(+27t?~KG^gK^9d?qf)J7B=4abaFT z2tJoos^1f<@Q(ED(ukO#=sb_*_4--5bO#XT;zat5ITaSJdP`OXNd>eK!4^bkw zP02!>gLm_u)z_TaG~#I9x4QN>$Ma^>&F|;ocv;~g?pWTE|D6Yl_JpdfptqjPV}a?= zAiDdLya)8yHlUWNM0%o#^z?FT()pkqLAPDX)Ae#oA2BV&)2~Pz z{GzWvcT4~LEClppxjn71llR(Hwjf`8I_-Zi`oVfSCX&m#@9!mg8o{-=~)}Q z%*w}Wkd)- ztMyE~*D)1K&mGC%6aao|-p|*w3%G&WnGf>Y{olaUzk#W;llkNI zoGDyKraSrblcEH=^|So1T7fgghS~H}{-m33ZFlmuCAcMB@k{=RCWa?y;h*^(Lh-pU zupkX0pr1D>*v|56niU*3;Ip7b!CCfwLfe84{&ClWie~uC>|cPm zUr$i;zyid_dV-$i3SwD)_rV1)jGmz14=Jc&&(9yBmP;6=mJ1qPP|orn7*|lKXT`Zr zXc1)K1LxY2VsAl+0-+@vh2oJkIIiGXpA5oV=sfsM;>w*?6zw~=mWXCTQ zEMZOZ{!-A6ea`s3U?cnNcBSAMR_;(>;Xyqy1FmbTGJP9~wRPcoGHP(QF+|xPjtMW+ zy{M$!RTOdK3r`lbDb(YpG3l-%BO?_aoNB3sq$TilcwtQh2!;c{!we1Z`m}^x!Pi+pP_qJE(9cj^Q92dPi*G@3^94$%%Ir zejA}C$MS`_T7i9XVKk26Sb<9gg$OO6B=;5-BD8>#yr-lPp#_vAcTXXMFS4@v(+l?j zM!=G{&o4Zy$K3jR%Yyy7(vcimQdmi9`gR#ZfRW`pn67wR~iA?VR0GJJn(2mcXcJ34Sf;rBr`wbpRbZ&TsR z`kGWnG@3s7OyL$?%fz+3Mbp+>3%3R+Y`wd!u;%93>h|x#?SYIQ{bEPqdWAA2y9$GJ zP9$235!4uC;#lecTC}@xgHEljqooB%?p#|awj!^*V~rqh9WKOckUlAlqI=#gENZGW zAofJzCu(Zo=Y^wMD|rikE_}(Lq$d7S_)||M71yb#J5DCihYI~ zbej~NT<2rRnL9F@sjpAla&TlD(k!*OGa2zpk)&gUguBl7CavEsvXR6$U=QEDyXdf< zfm=srQ*Du+ZL5z!s=8xs`g+mxL53A%_x_?cZ=zKK9eSWB<7OHp(8Pm9y8^&UtHVW` zbh1Jr;CpY5i=pooJ;t~=^+C~-I=NuoEYLy6iaymd-}yRdB;9ec=ovl3yN&{OwPV83 z7`CA$i+;r5E<08fMHieeIv!#`4DDZwK4zcJt3@->X8MAm_#~8pRs|O$n)?a_Ff7LQ zas_P_Rva9P&&W2#Z?o@b+ZLBL$7f26`n^ZDVq05$PqnGf-Re-EJK-#Tg_U1=S+#%K4W;#@tq5WWW6{X0_4%oIGu58jLf>j@#EDj!`wC?3V=izkbdn3!KaTik(t|KOYAR;_PB$L(azZ^f-in?60PbjR<- z_M4M5qeUP5vv@d~qR4m0rzP81vz7*zVDGtt-qyTC(aNxvC6sB=>#a%@?V1~2f)Ls( zC~aS|fNAlNsFH`cyuqGpW-ZCk zu^JPf7TO4=W+RChS+d^n64|qCWi&lDvLrxfC@_%m$akj=ajVaeIfYLpAMf_av)GG*>OS1k3nk5 zSbFE8lHMpu@mQhuL@ddBz2r8UwzQ;)M!Td2PpA(UuPO=Ga+j?wNeuJVc=?$U_#h~p zY~NBcMoWfmD~Z>VMgK0@tTE7UXG!-^--FVtCHn$>UxvP3a(`3bmlFp|#&rX0y?!j2 zY{2LA^CbyQ@cHhgl85mG&HkZ~wbW(|sXRhP5;-piLsD z`~X_?=WbJe3&Q93y{DWE!RLX2Q(8B}=ZV{_?&vzlu%ZF z?u03KvCo5XQ+BX&^HQdqW4{-qPYGc8#r%}Nl<(dtm)Lh9cgk<|-m zXvm*B#U4fO+f`v){@j@m`fAmb4tnCUpFT3X{le%~Q}A~W{_dsGtM2>pY(U$E#NfTB zE$upM>X-ck$~TkYZ!aEW(>9Fulr^_O9f-DG>KRWesLyXB};v_+~y1b%fwV7Rl#5;Mf zjd#i>NpiYuG~9IRoFS%xdU=wbSvtXJt-nsPC%J|re`c08Gn%{{XSbSArQL32+>5f= zCdiUY@=7kAr$>9%6a^VMm)ByoNnSHASgl^WmFHcO#9Pg>#b%X7@b=P**9=D4#d$f= zZgSd8HY+3}Sj|?K&E}OQli;+P2!9)7()z*DXVBXEtM!uDEu~yT)spS~YI>5Y?xoGi z`Rvlp(KeBnZC;yfvWuwLYj>F(oE?I;S{<@YCPyb!M9`|uE8IcR7E!cwF3x6>Wh>Zo z@siDie;mAQaS9evGU8MRdg1j`PaC3bk{PW)i(QCsXEyVk*Jid@INl;TEiQr1Yq#=M zgR%aKEo6Jh5|h!-S6GN=-_*|iZ6;IR?E~*g?>2jOznE@T&g7L%veV+Uh*p!$ zA-HT_mn3*ajKi^*ygyjF>K@eZ>jaAuc@<7`f+Nuc4M zmOf^f+dwyo-B9VB6H_wBPZ&9BTxLUhd3|ZIetGfT()*G4cc!*C*54=>Ir?aMpDs?> zWp#+WXp&^;orS|F6DO-Y5Mwe)JS;3JBY+EgM%uce?>gCP6mA6@(W;!pdluZ+o zi*t!Kr_IWPDVOBLd}hbsw^${s0KfG~>6id&hs=D|5Y2HItY(>ah+dbKH;KFnV^7AY zbc&enNbI1Rj`TuE=~IS=swO2z%S|y2)NCTv-_AFY!(UG|_T$FajV;ORwA<{G*DGSi zaF}_Q4Z7g8Tg^_FC_7A;*ydEAT^6UqD?9C8hXvD^Rp!0CVBsZ;i?gB;oNrtS_4bb4 zbp1#%+v-(C>H5<3i_2kU()-ymW*QreTOz4cTRBbF-}a~WDJnyeg;b;T># z?K~RA+eFDi_hhX=%O!^$Q=-j=@n*MrogxO5jbnoao#nMyNbLEk?I_ow{2|Q#4l{ms z3ZjUWfj4=12j{eMUeSw*%PCn&waiw;y`>)+Vj8I1K?ZIpoe*7r-Q-BGie9Al`26Mw z##b6b6CVyGRf@_sc7$;sE1*d3_*$%~(IL<8CF-3Z19$Y$1Ca;&b z$($?^{x`IzHoayuCUujQw+I}^n*^&1Q;NfD;%pAlg$a>&*=1^YW9n`!Wc638j<%Qv zs)ca2lunMec%7J;1P2DZ7weZxfCb=?u}}#vvt*{j&rdB5GCG~S+01m$1~HqUb6^J( zqgRkPEYUI(a|e2)pcHEtFGwbfS%$sASxqvAnAdK{+9g?KFNjmDa<3X<>aUcu6T_t% zQ|J0BB{AJk*~sCYrJV;j&DXA67P~_*J9(1}qsMAOGwiUIFzCS#rZkI8tLK*%1{ocQ zistf~u(UxF9T9~` zW+`h|jLG402og*`$q7xf!uXS2Ue4viBA?Zu0Q{(l}%NRh!Ah z4>p*{pf^if8bzCc!WOFl=CR5;P_@^|aTd{H!xE(p?J`4YT96SohgY(34s^L}by{V? zCYw3g;gkfdQk|V(U!dTNJt3-LtlCmlGhwwyJ4LU}f|=eW!Vq@tWhSrB$`E&+2v5D^DZtJ zxhB!fj8_;SiU}{tR%~NrvtXlZCofrRm@C!aFE=bq4QQqH`Z3m!sQhEBf#x{WF(%4R zuPjCrX0g^4cW33@h4Z!;*LH64p@Fq+oFAq!<`L_0_Ft=0MV7NNEeq zf|6{5k#2&?j*S(b#A51jnP8MiCWoM{$1+wU!348OvSS(-Yyxj`V1|K7g5{gH&`BRH zt~Eqsy|sAR)(q>PQxbU#&shW;n=rgE%hZt-(?Ep|)lO`nLShJAVj_?HRN5uR?BFGl z*>Ywqt!A&t+s&c_`&&C!D+kZne6zh-a+;x{E{7S5g5Bkmcp2-di*sUsDGJ&O%xpxX z4ZoXUXJC#Kt>{k3!-5`xF#+?#!4Z>jrf)ylP~}QvqOl*Ur*2a6RE?Re`4j7y$v(h! z&EPW2FspbQZsPhLLl5nwrSZ_C@zCSCBdNwikH$lf|8~~Wc<9l1=+SuS(Rk>=H6D5> zcVdw-jfWnMhaQcG9_qF8|Eq@{6BCvM(LRCGo(Lw#S{HU9pMG|48~SI{Y5jG=N{pm+ zi)oPyE89+^m2Id0GPixsJ()%K-J74|osyYz&pr2fdv&+C2H{+0&hqK)>GtK*=LR%b zc^)WVs7O5np%`fC@RSg_&+N4nSplNFulpN7+^U8n>XOMpr^T)rzOKt2Fy z!9Av(_gbB}tMs~XS1CJi8-PjD z2j{qrcDQg6j!Qa=MLQsFpjJCs*L8_0x`9e3^{g?GZ(?Wmjd96NTqEHE(jnp|$>9=g zUSI>P4j@JVj>2u=q`>l`plIA?IdS@Kwgd8kb7LnC(7?X<4X|P)L-o;XXwc5SQ<*_q6Im~v;0L~QSoyHdw=X>w* z<8*M5hbu8$*xDQb;8@K#wKfAy1#RI0nE(QTZ3Wd!vIf+ihHtIFAu(5fFWqoT+<>0i zuRpSCKz2TyPNcD+R)s%wswXM@al=SL2F@JYIQ|;PU*q`ur*-20(ed|Vz_dYh>ExNo zA%-UzhI#;vOr2@cZLHKDo!y2^yz_kU!so=9_?tza6K5Op4O_|fcV}Pz-vPq}$l4mi zR(jvj*_)aermGx|KR&yYZVqGKIvu*O_RMTrduGmWmkm#8BnNG55lF{X0NkT(M$Y*4VGe-U%>N&$=SbVrI90YSs0x%ugo46W5psY z0BVGbbe9$OgWzxg=f(>zz{Bh=vuapI*I$a9-C7n!A6Q)W5YT0u0P_P^^gvfyVKupI zz!+N`0D3SKjEM~EJmbNb1`0U|qzIkRQ7II3{Wu)ItkPyhwcG5 z0C+B-s3lG`$z~I0A~9Q*EQ)TR3}bL%|NUk7n@9WapT8*72*kP_uqm(XumD8Givl32 zUe4|Xgx$t7l(vFSg}?z1G&9sHFfRgx3;1Eps87YSG^lLi5?icTO$OaL_lC*pE2 zsF)<$MHxB);HJ83QK0w@)(r5vxq&)W6v(S*=0_O?K+x>~YXkG?fIk8DbpSL=5$?N$zB9-u{hTHq}pT4lI9m@O{S^+TZEVtOyx44g3VGhPdjr50=& zpg10tvYR-&4T?J1`!Zh z8h}#)2}gS|cY3Wn_Rs*t2-vX#dB!GYE4F)PnQVUuE*jWOp8)K;-kK%y>UZT68mw8_ zOkc=^gGlP1y8e()D76umSbyV1P>}VCyvYRlwMz?IxRO!KM^*9FV^j zp#OlDvtp)zY6AskimFle(Hjj)b1y&&I}x~kD6$|rEE*ucp;}e#gk0;Z z)uDnICtfO#fbS7zC8ZK2l~ z=0e;4d-vRUIbFYQdT)R-;@qk}p^3_1`?92_eRO>-!mPtQU83Rm0k<5N1E(n>Rvoy1 zSzuu>Co3%HI2uVV2lSiyz2I!b4uCyIqvXJO3e*jLE_TfCRu|p#{fad}%t~-KkwlSW z>jQ6xj|(PXcsYmwvM)V078Q3lR4u~^bA9Y~n|4?Q&@Yx&IDv^k zqKcT;ElAlhGnqL+Xze?>nI%D;(XsG{5^NY(c0lNz;M5A-vuJghp>I=a5R6H269E7c zYq^~RXww2zBoKEv)U&}zvcro9vSTh?M^0|QLQ!v}n1h%<8BS>Gsn@Bx#chhL=wK8% zKxai*Q8tV%3*6VtCJ}gaV6W{qIE-B5bQKNsHjD}kDKy4}(PM|Z67pOYIJ0nO>M@qW zHO?jizi7eM7=A8R%#b`_&NxE^?ip>vu_WdcVDTHMRlx|G8mN%Dc$mmD#)?k;%=T+W zmV|>r8E|F?C&NL^WOquE3-C&&M{t4QC_Enkm95vzC8p99k(8TO4kUiP{bISnhpYjW zv|PW8H6Sa8GO~7Dm>+4Zze!eQXcmIo~$N`8fx;Rxe z)bZ6o)f^c*v^)+gUHw&`jjiCwnW5$3oh^VOTg+II;IU(33mJ!FU<)i$crDVS0;ipw!#W??DApGX8is)z&Vg;O*gIQsPZS6FPP7(i`u)~r8 z{D&rD`GOlQbCrdQixmwK>^vOJu)H||c82w*9H(kNnnuiq4!AK{oen3C`FYqB7=UIh z@w@{Lx;8rR?($a+4b;loU}~^Z*z0C;dLouB99&-m5ava%39h^FOa$Z_<|2<4N^k*y zvyIa!k=R>HBYa1{_3!AI_C!#RrTjs|+y?sRMpLnVwRBxS#$dtKD>IBS=BF7MQ-8~3 zb@_tUVO};lOq^MASvj-Ah0V8%`HA2*0Ue@_F?ea>V#m$~7PdA}PNxkAwhHHAg<3R58g|f7LMKnM3rP z$rUY(@DVWC;4A{KxRZB}5}v4Mn@VS_;c`%1#T zR#{{_?7X@HS1rKAdmWrt0tOr|Pq5X@*uRaSiM?Bn9xZpbr;}g<``QdQzyny+F zz~(@J&B;j{>If(!nb*lgmogzXr2_Qx&^7HWN`AllW6 zTz{|Jupl*{jr{dP3w}=ZNsD7ct7ljZhE}~z(kw%x%O%SgU0ASS#=}K~x4@r3!YU=p z@N0Bv#=eNz2k!1pQD8?%&{>>LSp^RM67bjMuf5QWw%8mNIA@AD&k=B{gRPJ#z)x4i zr5Q3vNfIU?b@^(bYA0z~UOwK~P}OyNu+#Tegfe^s_Fq^t;dlk-DADC~KtCOV9Zsl- zkD!{T>NS}YJ1R3gjbS%pZG|U=8SdY(ByARKHSJc_Riw3a3L0v`cy+*pwmO-|g;#)Q zE1co6T);T9L6@21u^M@xf%+|qzoW7Knic3GM~=*{=xT&L2(uh+=}r-r9cBU(b}u+A zlM&&-;pH{I9qfalxNwffCK~ev+{sXuhfg?mY2f?XWf?{$%w|sHFetG(a={%)7SLbt z=y9R>+O=i_)jG(!@fdCO*9yn@)ho>8)cqAv18f7#*Y3k$2bei0&TiOo9pWN@Rn7$a z$%Rcl4q?;@Sc#Dpu^ChZq$7Q=nB z-k!OB;549?-1Vh#I8l$VoG!L6>qZjanc5C#5cRc5*=YA9xV3bUhh8i9G@jo#p5NDZ zY0!9nuUvLCp5HfglHPcJ-*|ri-|m(g&+q@swL#p5G55 z@Hz^m2e(x`6Jl7adf^PsTLmwiX0;W=H7}eiuT&h+>4npYw5qLWt$5)q2jv*L;8WfyGa&-`Vr;8AzYSi@W+Cea}E+Di>!D#uc6wSD7xrq=CmpkZjzP znIIWlU`l|Ki3~{s&>1k@xG+RKQFe8WYibJut0Mlo3vsPEMg<(0>#tk|bsFoh*GVpRT~Zjs!LuFEau+-%sT*iK@Pwm z2r{6`cD$$ILv}G=e`Qt$V1Sp1)LR{Q&6^IEoLbzK#Ju`Ocn|f>8+aK2XBWV}gs842 zpro7<;@UEFpaZacYWQj~<~|@g0LgU#P=Oi63@iu&Jh;3FX~EF>=oSTfq>eVsi3sNl zUlAx9VtBjYjKv|?GUvq{==7>{iw07vw`LLkTL9C>G*Gn$ro(WH09oJ!w3W;0>=XqLfCsL>R*vGJe^Q)cbRT*oiNw0pEs0dOG!Oq zV*zaysH(An_KXn;KTD+v4ENB_X=E#e=2u&8R1PNgEel+2$3^Kml9rfK}r43D`x+k_~UG zM1eA;@@Xmt@1Ma+u2>91xUX01cE; zsGZreWGjLT0DO;04X#BZ_I75tHR4562=EVw2`xfJgQXM>kL_LZTh|y7ZzaM@mSngv!BrUMp#)z% zV8AWBU4Sc$7NMcRQVPYbUoZI)2=pnBN6_sZDklwTVjY0jf{}~srbdt-cUN^J7m_Pu zw9Gv(&uvEv6Dxn#zE7Gyr#o?f_F4axuT`}n!;>nzYCo8Q@99QbCs)3teP35w)%6-e zG$N%kClJ3`?5MhGX&*9YZ&h!S>8>=^W!gx;bfqR%Xt<{`nq0`hKc0-r0OgQB@r!ib4TV;m)43K3lmc#`oW>7{Z&Dwhb}$!`mhXI0)Z;e?c2l1BJqWUEl7% z6>6eTB3+NX7fDlRR!$1+<8RPbdB(>r1D*f+ zKccU)w0dskI{~-+t$qKEBUVH20sm*k)e6qcuiO`Es33-uZ?z|TZeQAwtj~L|(BQZx zqs_yIBCg9QS$imgzPY$^VxYl8*1hvq2hugFs$HOI0EciEPuyj&)nyt?B>dq+k;p1L zt(8Mo@!CU?G`zaTPS%3hzPly$EFmw^vh&3K>vp$-8i2br{|GBVIP0I!r> zyT2fC&<(#BoMhY6$0GkJzhuL)NILm(#=Jx>_FdnWY&&)+R3VAbj0(wh_wBpO;QITI z8r2}|^8QuF2%f?Z3fX7Zqe+2?<#OY%3N!zZ&z{=(6zhS-B=+g`9Z1=8l|g~CVsLyU zRYe9N&YY8kpW0XW4?hOjv5oI>G}18aAAVGy-0oi5js|RFP0c3NcfHq9As+Hw^hNKPu#hklKvDJsHRtQ^;q%zDgWs7eeLKwd(hl~T%258`lvIhI&dtA(PXVv zXtJ&i81~tG{j9A+{T%tJDjfYozVg(=Z&kJrBx^g(2q&J` zDtiY+SCiQ3l~c&OM=L`EI#rYE&U3qw+RDWP$%s>xcaRIGE8CFOrz*P;lSrMdl z+0r!uZI`J+=%%rJm9f*A)Sg%#qV!9^U)AJd<>ExcSL}x_WZS}}dkuX_wRIl}7`aTX zB^ER~&l*FP_NbZ{kgir0X4VL%E>mkO9<;1KInuLge?XyHWtg+BgdweZR=}KPWZwNt zyTLA>@vD%L8Z|UaC8~DIJGh<;P5gs z>F%mr_Bn4@)m>quHF^iZ3BNQc;G$OUM{w$>E(r)+uBc1c7_Hn@)F&>D4Z!cp^S*pM z&v!xooA|uHYOtX@ne=_-Jz?Xt$B^Cip~|}I_Tu|})dR`ZBUOI}#4cC$wDZsCfFa9O zJx$aqo}^Kjyqv5%0SdnF6YzUh)q|{>&ZPLICt}HwAD4uM#c9Ryvnd?>fE-_3c^6S= z--c(H##UOZ-Va!$)*9y4p16Oxs*h{5ij%ec)mp{A?+-6mbd&73#O#;7mY&3O$I>uA z8Pu_-b5(5fy~{%WmHPxn*!W4Bww~XxR1VmuQP0q*Ll8vfUTeHn8cd1g*!cV-8fTv&JcLr3l+ z#<`W2=?g=jIxg9twf zWM28ODA0amZr7vlME*T@9XS$7D_bs|7#Ns|Ck$KGMPNOhw_aH(V*-zj4}{b74cQ7M zmd)Su)-|OSQt!3_$g;QE-SfWf3f%8@lh6A{IJi2 zmaqW=As{6QNKt{Xy?|6jK>^8CY>2Q`2{m+t00AsWNp?5vL_`Epihu+uOOX#@x_$&P ze-^ubJ*{@@RD$B8y40-hw6Aw&JbkriRwXiXHaDxvB3jrpD~&9e&8=zl9Z7T^o&Q4C zRI+ilaCl025gg2;y63W_*PkhV4>=t|Ic>Ju|Lf`2+owYQU$P|pzhvo5n5CE)iT}iG zZgZ6)R_CBCdV$kxf;I7QdA0}yPK1dUHwJwk4cv){1|(?_4G7XC;REi(h^9Q9-x}=m zSYYdGS-A=Vy1`j`n*H_g2T2PgMVO~FNHj97fcCYkyxM2Dy}x@czWD`pgj#+N&VS#yv4Rt2GPl zssa`k3M$_U+3=-JTVTP`CT4JW#Nq-5&>EIx{9FRG#*sSjN2dp_qnmOL&y?un_22SQs5b-;<_}hQ_kM5Ni<8 zdqzG>wwn)pSga@;1o>&Qcx@#4=ur78UQUayw~Qlb%19NX>Is$*AXYvYu<}QH&;aZDRadj z<1Zf`Dp59@DqzP!XonsR+Ppxb9R;^=5t9ALg#wZ0E5Vuhm|qdY+3PGAZuTR$Pm7q(VAjnxuk)S z;kqbS=)U;U%6W=MnOjOAk3^Y?X18BfGy&2o7I$SM(lk78%tSw^_folnCCCf^;5Bctu3;EXmg(c0od9DexwbK3pp} zZ|gn7ch<1|fr4%YJZ7! zpks(MLlkNeQ5Yuu;nm0m$j(ni^!9WG5k_sJx}URDSuXnUKcPj)#D9txAv&g({~QY~ zLU0bl^SeX&M;+BY57oR$J6wWIdQRf~`BUM-E7G_>5nT-Vi}}3Ui1?!xasw_N9$3h& zw^EndZ-I;A%noh)J3vv(Y`F3>&HM+o?bozwBGNA*B3D0EFG|43OS?mh63L=ilt>m^ zGhWiLE|0sNl}L}|d*4xd6th>4bQPS%ydb;KWuY+KmW9G_zaq;)l`Tc+uD`Qt%B-ZM zCe|U6+Q?$m@#NJCs)SL&%SL@mM}>Si+NqrTDUNr zp+r0qDW#Z!VJH^vlLZTThLX%!D5ArW2y~`Xa#hm06sE-!l;su)XPzO^u=OHKhlUfB zH5Uo5Iynr%6O@e?@!&i9y-+zVsG9u@`DdYUK$j%_EJ45LA`yH4XOWCfN7I#2+1+W; zYfo1OO_rimM$nbzv#m6{O?G^YPhuSkevqbAas@b#P-lT>q$-uqSeYZnFF_YB;_-_z zD~u*OREJxy80xLVs>YB(i$ol=Pjo$+%Jzd8OxI${{THbs)Ju{)Ld58K68?L7qhj`0 z<-dZ9IkNPRMItx}J>Om=f|Iz#T#V6kCERVnQQmvr$~3MD=!Vc1LQ=&!OWk6TDLv32 zyAo-!SVS97E*2U61rk+9s;iM*k80`8COjyP4pp?173-tw(Z1idsZ8zlvb$1-ODPoO z`~KY|rgHy9q3B}{)eW2@0#h6$c3nLEs;vp0_w0 zy~>D7xMOuLmN{Z|F1Eqw!wICt5;0c)G{IOsvP5LHJ1!AH_IgRN?Gm9Lq3701g!OxY zF{ZM9(Hmuh)-*o_65{(XkBHwqBg3gQ0rpTNTaG1wX}bdj-PM6C=Tw#b<(!TboW|^s zG=_o+7RFAK%x;zC??`4t&r_C&OgMcQBVU{ej}D<}BG_X(6_vNRBK6LiQ%{{^=DetK z%$%2%f@btCNi&ZP2@L(%@hy?M;0o3Lqlv8*D$8qS9S)9pBzs>4)lPM-C@q45xUL@$ zRBcYzLat|i-9rf_irTk5oDgiQ%Z4*n?^tsLrmV;vYl%R;V~y7s7y`Q~8%|igJuP7) zi#V*$nqA6{HGFoD4|WeOZC`rGyxpblS8qXia7ahSdg=SsW~y6%^j`bb3~Q9WV8iuWufVLQEem~Y7RqR^KLWwfYLc&0Vuc{4b z%?j@QX}1w@3DGov7-nAaW+(Md$devzSxEi@xvp&5I>UyKlH*_nC0=H#Vj2K4z?+tDrsR4PqI~9l+BB{;bqMj3jzn| z^VrWYK3m3qA-X*F3(?&qNYFMDvei4%$0layDkm6j9p8c?N5RtaF=o}M6p2xZc1Y%a zV$iCAQLc#Q7oM9JFY>y;fmEQ2PHf-$QMzSVRvWQrFh4d+gzMt5kR_eiSc%65d$Qt5 z{X8*R{Uxmj^TcTB>5-|}HBNy!{xiF4w5)BGCx+_DJTX-L!sUFZ(3%fb2wOs4c&G%? zOmgfQK3FQ2*l?*>@(7mbmoqS64p78^(QZ?+pA{>JgELV)Do?B+_`~o#5u^i_j}mVP z(rlEJ*Qq@(ySs`S8zdFA`Ct*6K!#UTh3D&i*|}sRYS?Q7>(E)bP4GH7nkVAr@v`Ry zd6D}9HRzbt+3%Adq=4Qk0mgR&maWOQl3&qFw!c3k48apPhcEyvfdi^MyNm7P7N1ah zY-Tn#T(D(H8m<(Z0c}?bPCk$bTCWT*6UehG`2f)spJ8IRrb@0_e~5LZc#EMStB`Lo ze8%aJi7Q2?GggZ2fN@*1lgk-XaF|2k$Po$bZ9-cV9%){^oCNZ|V1cZxNZT+($p5#a zXc3X?x3Fzh)k}sfvCqnQ{{J(@bl*E4_=1V~sPlsjiCD5_{tma!VS5W{8x7JqN|rtGWHS`=kqwbuf#(t4m!fR26LCp!K}8+1o6&|bNV#h} zvR_LN*CfqXixH2NNFH7-M!dsnv0#dpLsQ=LHbsKCL5w$nw!E0le=o&~ zZiM79UbamKZ5BPeCwZ(U%ims2bv@xF<>TblTrHGz6$?kc^H#1DVnLM8yV#;hr`{cE+b01YH`;u>KA3~Ts!(6fgC)N+kb5L7Y+ z;f2ayvOE6vO~`Mng@!ywJM3XD=e?OPMmLaL|0dvy(-ea4FAx?p1LL=3HK#4#UND6A zc*oleOREl93u@8cTTvP}eL*df4wCHM#@=6nkAdKWz1#S<43uub!}1??)+7Idds*)tyr@o_}_=A3Mh zoJ>3pPS%0~Q;EZCXsRdM5mJHul93jYu{~>qr2sgm$J>G)GZO?N*nbl4^Q?d7!y$t8 za`9MK zTA>DyQ||?tdZB&Kp)2jz3Jvf`K<8Sa0i%Hl5fUOz01aO&l5F_IxVSZ|P};MCj^wem z!usc;F*XUK+e)4ve-Axz&e|TAb)2(1lCvWh!P#G+$P^+zNR`oHg{T%3j6E$Ghz$xG z@t2A`Yp<*j1uTgIlT_yl2KCufSt((upV!Dwm%aA&u z%dbH<-asQ}BHTf#8`FY9H{J~j-FTPA{TR}Xwztr$w}L`9mP)|IL7^L)1bKSx27uNF zg>E2ESKOLaC~t`Zo{7suT8@PW-v9$skY1AUOb){pgi{<30WrI9W<<8JoLQTq7aB5g zWVVsL0o?u2CD0eBfLd#)=xo1zyJmLGd0| zOn-^C{W=j+yv*txblIN}Nl)7M&+O;Pf7S`R01##uqC-u75fbBCFrH@r1uf`2K3iAZ zbFX~hG$(Mp(E}y9@vN;>fw7PSQvtUuV=C~-KTv_?>x2q?woZlsTZ!yjCxVG072r?ngc^|b!bBV)0Q_g2a1yBGt$86@^LIpcG07*0*WVki7t!@- z$@ne^1Mdt|PHsCM*!X|+PPUDGo$$7IFzx&<|2^dGuM=pl_`UTVy!YOIy@(|;C8EdH z3+vERvNfn8*h*c`b%64R?(2nJ=(nD00Nqr{TS@6o)1$mH)%uwD&CEhf2(1n1m?~JO zXIsEh>NLFmzDfM%ELEPt%Q;I^1xxfo3`oBPYRo3g75v0Zk$lb;EEPY~^};B;6(-IR zzz}fGm^u&$rdh1FK5dkpZ3Y*dvi!{{?~p{^lSBZYKIPqK6#QYa!e{G5tZ=ZZH<#R8 zPrV7VpHbFJJ5Y0jumjaM2nE1jK7_9&pchp)2peFMK>7`0@SoZs247PXK#y+_HUNv& zc<=M94UZfv<1d@_ucHlncVw1i4&{8vIe|)eU_(COptlWO`RJZOG-Y;nYj{N6*bQ>k! zF&o7g`M?Q#>nJG8XKobY2t7{&hwOWlg&W1pY~LIMj6yzGK*9#A80knLW8;M{QXT{0 z4n<$_Od$Ks8A4`>{pJkqk_>H=gtvhZCMB)j*efziF`H%03CU9E`RGP5LTJIMhcJLT zPcgxhvB(`Cr?d_cMv{sB=7bfj)L4dTMxORvbq^A=UO)vWSaS2L^pWG>bGJJ?5yjIfp5N)1}18g zFfb2n5`o48)Nb{5jrmhz{4aQ6X^4je7$TSU7Vl7E+9Y)5FA1jGB#aEc0A;O1#c0iq z%^j7`r?LY{YIGnDgnYKYoxJTrU4zeyRkN$6{(Xt5R^3>wU)yeny!ljT!334IMc zXKoVuI%g9fpXdq_E|c*loylPFn>mx{5dHx)zb%%V{L7RtCGD!R?KS6h!d<|%GEzWaGmM=VF^5t4_Lre0W;q%+!22foO`s)l(R7*3`w-u2Be%X3 z{^1+w6H7b9)3}{`C~3S|j9|mfas)eX79-ecvv3jk%UncEEy+~J&3p*y&Muf%e7oMg zS@?-Jfr`!i+7fc)W)UZ#o?{4=0|Ot%w)o42aW>jBpHWY?LpdMD5XIJbmhT%r9A#l| z2gPO$qG#U30t$yrEj`9}Y9FCR{{6McI?#euif$}%Vd4I?cPu$5S!*DR_ih%09D3fh zSqyUFW-$pLl5i;Jc4;+OWp*iqb|vsJyM#9ko6>n%`}vk^(-1q@j>XwCj2&f*V5hmn zhj$6Odp{)!Tezg6AC|?{X@eKMx`d`UH2o+f1IjGi~L!*xuu`yu_S4sn9b*d~IL#{|ik6iE_7O<(!eGt}@D^CQ@RB@Hp~Pz*Y>w>MWwW0Yl*@%1fI zHD+w#s)7B$fL1dv1qgl~>6p{am;fv`gnf+snuo>023Qcb-%d2b^>J)me zyj7@EldZzX9eLebiMkwKn@C;#A^TJOsaXjBZ3qWyrP{czA$aC5k%hmtt`XunymQTp zIL}XRPVFArKjOh;!9Y!$k8QvzMz%8ijyj;4~Qc9!2+(JoKP(qrFo} z|9s(kdKVX`riWZlTgrd)^ae-SI$!7zE}~66RDWB8sxeb%;P|lrOh+YhynP!!KD1aVsCG&TlOaJnpRr8mhORHwz*s&Lv$va?? zMe5@u3zNY*i+tvYF45$v7{AqXwED}bO_xZM6y3wvVQ=~F`M>-9FYmKyioKYCiHv`l4a{I zz;oXnYCjR3V(YFLdT^#UvGnr{!mK@3>Tw5xHGHMfU^?bAfARHD7G#9cC(7Pc<{l)V`_P6aY%yRdFE zRfJ;$ApG8T5iyTpZM#xdro6y@i+3XNHs6f^4ifkr?O9STTgvP|9E2z3GID_C+3i9b zBR066pZ}%vNqjj$6+B6A8FR6`lzEdl>>}BN6h<@$R6;A(jd_RV&# za_l$W?*o7Muyo$cVdU5C!rW2W{4&g!T&jpilJA}49x`WSun(`3}o9qyig+DyBL+BYGxd&y< zl%0Z8Zs?xf9x`;ZgrN(6L|V*>QlgB@u?MX--# z@I~*-Wb95cDtjfDqj!p2z=%uU=f$U|_|=z8M;n$EI9vkk)yv*?WDa_Y^*XJ(9sL0U zZhA)S6mAgI_-g$OU+2-Ac?jqE`z3n;$WF=lL2~e|ME$MgfPZXyThhH0uH@N>^E-vU z012FIUz$AM_Xh1@fE~RlMAWXxdyO>OMU^*a^d`-BQM=-Mkv$iVnUN^Vo6)}6W;1CU zuFSkNwl1q|5HqtGjlSjmjP%&Wq}h!o52+BNG@|+I+4>jX7m(jn;>D}kg)86hLI)>K zXiSD7EU5LSoebGUZ?wdTBLjEQ^vR=B=##g-3&?aZba>qBWa=)OUt#7GWW+9-*(0OA zGLT`$)ap80Pm65XA1alCpZxC4P{?LU|AHwlhHTtL3r@|bN2$f^zqq)o9~;Nr>`qkKm4Xt?snDBtX2jE{xOt>t|#RvuTwZ;z=SBQhXh z+xx+cfuZivKYxIbi~bo_gSNagt`TwW76R?NTL`rGZXwWX6@Bx`xZOgaV|ELHx_5Jd z5&#vf9@~xKTuEnSgm9CGVrb!!@->35#`vNLSpd#7J||f!ImB~Ptk28Jx!!CFmvg-l zKh`FrO>pEqfMkRTsg9uFNI?q0x1?$^DQB_P-)5OPUkeKQj?yK^JTE= z*Q)y-lQ^8D(jGntQ44lgq(`b&OlB2aW)GJxGbM$3uX-)CDC;8&X}L!Ttoa@xut)X? zf$gv9%Oaik2!VClBLt?~BLv2Pu8)4Iq`=r}GkFXkTB|Go# z;Z`F!xQ?%eLgoO98H-Mlwe(=pxD2uk1X*&gTeye34r zhxSpRA=j{RjXqLxR`POc4=#rG)mO-`l9^W|#+!l}x@F_`7PN2TI3%_k_+A&rY(oRz zVp3tR;Ll#7!R3a&jU-{OFlKkk`zjHj;>=x_%$+KoIW{Ym!GgUf_X<%x4k9cUy1R*Q z1?jU_#5*G;#aHS4a|ko8pU&kRM$_c6)01eQ%<<7QJ9B((I^kj8dNM??8J!W?Xv-tM zS!AN%GUlyN-Cn`y%X@_sLA^97az>{KM)M@2%LSvsQ7wEnh3u7_`Xu6AoYUarEqz-Q za$0iqeq`lToeu{AU6Cx!4^>K*wo8^k=Uyz4MKLsUK?d@8ESp?^pO9dkee?!>Z*8*O z?6$aYhQCX%a~drMt<_?78(dBk4sSHzFmIhW1F}pgc7h=>@1uo(kLx9l^jRS}HSDA5 z_1}D&X!lWN^4nbr2s2KVT2yK5L*}7nVHf)OXESP4?zTj>fLZCVamGsGk*qrRiNWsP z3R7&tJ~25qNZ@gxDL-|(MX~|O=El|%l`{*ntJAzzJ`HW###fo`G zzU&S+;3_!=Otbj{(wy18#mpjI_S>-9lH*ljj#Kp+&X6HQY|JOq3E6?8q65M2+xxmH zq)7JQE7|xb(SzWQj=rEml>MR$r%Tk5PCkP|;`R%EzYEuLey>P=K`A|d0=LZS`OP)+ zD!tKSb_(s&*=IyRZzsO)lsmq*`-S7X5kqw~r^nOeF23CeM>zoV#xb`fF#vK`A{!{k za51x}ojbuo2J9DRvEP1S7CrlgS+sP8l;7Gf%;F^UjXCB)=mi`zVL;3*0wMP!A;g3> z=iQ1WO`5vl6E=yr<4cBsEZUb9v@IjXkep{MZ&R37w%GVgHT$pvJ?sKsC z-~qv6!U3AT+P{@{UEu3TpXlpvN?IPE9rAp=Nb>_i?E!I5WDf~sy(O|&4sd-B4q50M zrI3+8#BvLdYD5o*9T48&&Bea+3V8>xOyi9uYA<}|>!lESK&VT*a4qlQ5U|U72uk;4 zse8@{R1~Y1vH%1_i`Q=Wdy$(yv$gUMrp?H-tWp z|H5Y`H4chMkSk=hgF?nH()l3N=1A zceqy>B>;;0ecP1`Kgd+MlX6gKGJ|8947^;EC4SOh!%Xkn_%Ae(t>j)JoACFuVL2_JMXwn`}A!i(YM{?VS-gpu^j<18-;Oi;;#vnC0 z%oU0q6*JG5NZZrlT2lA0RI1;@-Q-G@wS0I}GF%c)mxKo$77F$0FTU1MB>S*XsLrv% zV9huz6l&P-zU5J5J}@(b^<0VCMSuGmM3I$;xk5$v3Dq*5p1~%RV09#_*@|wEiq-yy zg-&&lO)wB@og!(m2z2}%$qy=d#0(Atx34@iiMHE2yCwNm4KXYX!PRDGlz$H?e}t`G z2b0(%s)cKLYX8JnpZ1*<)j04v4zn2*ZVB8yNP{EcfruFsu2eKLlY%oV_~R-P-4See z`iI11glo|h2RGYCr;rZn_PJpQwc3$+u{3?s*c3{u`iGI;l09xsUpXSI=|b9J>!a~B zP|ZJ^^gkjdPVYE>6Ef_Gm{lk|7w2zZT=`6ORK69iJW$>LIIHC9zgY4C?3@q$O|R## zkC|UkYkC*j{qXQcWZ4m+pG%Gi{akni0fs-H>;!eD^xKXIrT-jnt+7#ECn~a!O<#M^Z=)wx`kN}{Y5P3itArGAmy4s5 zFfjFK-i6_MhA$Kly~ZAx6DM0^>2r1cA2O@WpBKi`e}2jA6Y@~xMGf`79M^)*GfZej zSAPL-jK~y13{I-=U#8IEYp}ZA6H9eJ`r_$NYkbv%>y!NNDD>$djs+dqz~7cG5Bl7+ zT0{RGR)%S}x>6gaB6Loa|3TV*y>A>jf^o~6G>|si;JX~`)7bA+f}d{mtyajHSmrtG zbjzIg8wU$F`G~UiQU8M#sb-Jw^_cIa^ot6(ZwMaS<9kq1zM*lqd;>&_iTltZm}T_G z5W4S>Z#ZdCg|D`@n;a4@U`y^(wrC73$|?KFTw#Y$9=CyTdRmU+nyGlfGxN% zU_^`HTPJ*t6jG-OU3$_tl{{WW$Yfnxe-CyZ{Wpl=^SVrHLr0$V)u0z{&Zw+(2~KS1 z4=6YRf!AJmKKm*1OcgrhEX4HT2Q%zpP?B1OPfi7UcKa}giZ;+B+9P`AqvQn%-?cIh zUSqQpnot7d6$t{#*P!zs_aDM3Oq^iWzS%vMOZ<1hHna_j(V2RIti&cv_~f-P>L>7B zMhUEaMQyP6lm6`L>`1M@eL6bvKrCKeYYe_z;l@a0V|ps}7)WcHU1?@BvQXBBdzrk- zr@@yNsp%uS&?DcEXoSr%fY+y63x;*VR#%6MzMjPNweSeBuloJfXSt4uPwhj;qdm_X z1Ue7LE0q_0Z32xlqH%gm>JPp|-Vk0w$g}Fe)E zhpj<`n)9`YP`zJ^2$ew~bYnQ`^I$iO4dZj;)+04&b%+0TT2$AcsB{qpW7|whEuJpB zVufmSar!%xuRxdO_P7l?{I!^1yQ=U65zQOcyF7Y>}1puD^T*5_L>?^v6roE}iL5 zEl+A36CVAAP_1B&f8=*fGJf)?Z~*WJ#f&3TWFra2BUapxN;Hrm_wpfGzEM@^-mHM% zfzOjWG(cNsmdI1bgz62dN;8iPwTGUS;k1atpV^P81Up6|N1Jd|kgkTv2t)9wVAA{k z(=;Us(&k2IDksd1PA2s>^{b+S%y3H{6?~{hJ2_m*qk`UZ`~zdi@?#<@cqd#NjtVxZ z+b;`4aK#OEdNn&KWA;FD_LxwvQ^$nT9zP~5&XpzpHRM+mR>*uq!7#EA^c)6^dE?`( z1D%Lis`tpEBfQYt^k5BGM{3?k;~{1 zwp|jNQ)25Yu|50a^$K+EN;vkJ3w%w<7>RPELm)IDJRyYE`~)|~IJEsPq2a^v^n}qhsBLY=KgtkV_ykn_ z`XANfXwt`%Mk}LP!Be#Tmvbu7=Ib(ECqsbwtvBn0AVV=o%=LTd%&%4H<$V7%X03Rp zV-WRk^A8OhdFlWEv)ymRXD%Qn(nvTy#ybcB;9s1%VB8LW98orjdY(o4ucWu^gfQ*P zclq-bWV<;3)#~Wu>D)bV1u*7REwhU`B0$3$p2?pb(&J(Z%i~N`NY5**qMX%Y&kl0DJYQmm#%snOM{|L;_o)qT1=U4t$6}tax ze=VA)OsYUve(gubt))MORy*pi8EBW0K${-*SEC<}LWJlF6^&&@e>a}dcf^8!qrPo<pw_vtrm*a&xWGXFiyIe4f$#(>K~t<-yZbd4(bEJ=$SHT5wjt=^*L zWg1pyG+C`NxcZjH%^6>_GD>s?To@a}&WY%jk-$Khz|ApMExzm+kXf@5N|?BDwJW=` zXZkn)YX&Mx259D`g*8e3N$$1jfA{+Z->UxIv4(LGx88#?Dap!KPQc`OT~hi*lt48o$`L7|4aIl`K>?Uf2+H- zLb@AqLc_N(dTcv!U|2jnf4osn)J4)LV$Si2I_IRw#XK9Hrz}bf8OYJqsG^Kdp@0A2 z?@b;&C37eTCRC=W6s}`DE%*`9TLOO~xFnqCZM3IU7GtVJoN!7Np|w{-%m_n-@;1q| z+-3h_(&Lm!-n5lmCM24P{pV3*CFu4l2)&6{cj}?_@%Afweq}*u{!r-MWzAeW9 z*v=6oTbw8f4aK2q;*|*V-~LuexSwVNXOH>1^nRfiTl&Y-jDP&YLvDAxC~9=a|8#L2 z@s|wPH?qQ)IZC-$eBrc+*v|{9YrHwv6!N+xS}2JEh%XQ;Mdf^}kP+wvTOigdpVO9P zoE8g26y}xB8C_i2vqDZ+l2u$8{JTO<7v7Yw4!;W{<{`A?LbWPt_a*4Ogn=B+;aw#zoWa@%Z&v`AI4GJTIpvy&RuYom!6iThM87cx+QM^msll zC!SWU9(vqZ6ScjHAFC$d(V8G?p*k!)xL*B#K#2zeb@8oxaUgI<3cvOl5eU@8Uls`9 zgLuBz0YPx(ybY=Hy^i0*qs0S(HdU|}_3RljGF{Jzk?C@VFJkF$59Y+thIP=}L3MNL z(2wfk*P*&OmFTU8Idv+;7_sMVqBHB{)S}<@d9x<%Q*liB3Ng6M+?Y&T)I+J`Y$m>S ztvIG!pdnfgNzN%3h3l26y$XC8E2bTiMR_Iqv1^h5rK7$M zfkbyfwv9V`n#?rdf2bjY8sFSlvVEOH)-$PDCJj0a0M?2$AW zP$>oyUykU;AEYGutngzM&hj*-f754pnWtHfjn>XXejw?raAx(+3TMWkm@@-o#m5zN=-3@At51Uu}#wAp(n4Iq=wviH*Fv%>!7oL-TYw74?3bl;@KN^$MP1C#oa zWxTdK&Ay!eB&*>O%VfziD07x22jsmtdgJD>8gy6doTroAW{bt*akyQ2m@}QtXtO)5 zc7w}mHrd@SD?U5;Ehj!WqpsUshVVTIP5x;+vBpioJO-n%pN*+WCArEVo7#Amj*f3Pt6q}XVaCWfjksyoZnU~A zHiN}x*6J9`ZoAbLwEsSGaJgi=$D%ixUEt2(HoD9nhslBaX5D5t8&rqRgSYfXZB~-> z2EEzray#uNr{3r=8Lf7c!RgXjTpp*^sk76#4LP;fuF6@YB;B7XJ}>K*qf07-DD_^R zq^A$Rm{W~*J~c{{V$!9UyLD_itarnVjONJ=T}Fr2VzIjQdbi8ywu4QJL66G=3>J&q zYKG%vgH$wqGL-KA7Z9^Ssu}ESm^@XPP}U$d1mP|{UhdQF*(W-6?Nf$|S|Xv#ke<6? z@8)!M(WF|5Wpu2t!<5E!-lJ#BCs|Eeqeo}dne`r*(PXgO^jbS+jlqc#HhJtq1Y7Gt z1W9_k#pE>zT!w5n>a>6`I&=6~mp>?XUx;Wn8K4opv**~TSZ zJD6QKeTh=vVALBhOh%K(Xx787+O#g0&ZD;(JZ_yOm>D0~tR&x`FuvaEuzZv@xeTH( zftM%g=+9}h>bJm2y9U){b9xL0kIjVH?{OMk7OmCgbl?(itH*7&TJg~<>sZm4oZjW? z-}l~a^;9ckkgSoDrwq+BL_*v3_Z6C*O||C_j7&(nf4|K5T;!~nYl&vF&FXYn3^tQa zZ)6_GU@_bApUZ<=zKt|)>a3b;Ta0?OTz!kj4r{1)8F7oa#|Sa$pvurdqyqIuT5Us4 zP3hnqu(EI}HW)IG(Scd%G{M-~oKRp+=MzDm?jph)djMcO?ImlDr>P>To$X&ptA;bL(UE^mt@mw;kaBnvl&Wl zu-P0Ihuds78jW_n-eLDpxRCg@31^oni53S$V|HoT1U5LV4y)E`a2cU52Fz}Un8$tV zPg#l?dSAjiI==zD-2LeqnZwr7%f6hXM61bVH@dYpEli;iSIS!*9*-5{<#yZ6E?clc z`M{8Ji8h^1YjL|=TBBQUbh$isofY#GJ+Qj;R-BRY{U;9wi?*FztR%whc+6I~aHqkD z(X@FixN#j$+YG;Lg!@N_gGbJMf_~hWu9o-1Q13oeO;kBDN=LiTm{m)w$4%IVe#46$ zoZIDbyIp37#py8{Z6251V0LSD2D=eI?G}$G=$$lbP`N~l#brc*f;6(li7K-@8~!qXHXf+X^(_<-d|!y%(vu*^o0W>_W zlHwSCgk8Ato&_VYcNV+eskhjicDp&4@0#K%N45KMDkp1QPK(Y8a}S$uwCOR`+%BCB zk(NJPakJI{ zm2>Mo4uj5Vv%o*I04!Or)p}fR3%s5iX4qr1Y8_Vi1B+Adh9z-(L=0IbQSJ?r%Am=7 zvzD$nkrPW-ESyz6$!xb-4Q3~77L1btlbZ!vm=q?R)$O+0f{4dqEX)`lIAg8ZV70;g z*=#1K&FY5pLR9Iod4dQLw;*`18a+^MvjJhK(TYfvSw4r!=75cH>ddkqiT5W-Gdqpa zmqkz*y{&6U#nKB2feQ5b%{lRvEP6;V#cZQP@RVqG!&rOl9)r!OMObU|*b$8A4Q_+g z#3avWS+d)1Fj!28i!jrSPN&7Lg?YEa9B4gSml;|XcW%^&%7n58D014Ap_8si=(2>y zoZ6a;ISEM~&wabZ29`Uu3W;WzKZjduH$$ah5gmw;5K6i%ZuX^yJJ{j+NIA=rY_R`s ztiGU=n2-j8!|8G(nADj}u;fOwSdEE=o7rJ>Iow9Q)9tij^<=Y}weW8q>|#N+tvGFo zE!>1(^W2{SvzTsW(8j?nY~{wLTaw8Pb<#O>I=j<_$j@X$5Qv4D2@VU+%gF4;;Btw2 zm=S{;HWJPWcGGNw{z0uxMz~>Y#1%X{rDkwz?^*C@HmwO^j=^FuSdCa9Sq%VmJFp5g zIh_u3P*-ObW@Q;fae4wARnq;58Yseg9nCwDlZbfOh$WTXY&AKJm^?PfTyHR#Jn*K_ zIB7DHJj@>;=(oE)CT91oES$Hwv{v*3RWcMtB~I*&Mx)v4u$!?IgpY6`hIBf# zYqyU?2Rvm^6dfpoAPa-7bkl{Lcq9Pehf_?3WcO(Mz##+N!-{>H&FM7jwN|~=0d@?C zj?w^#I}>gU+PIa>(jJ$YXFq-`zR~T!dDv z*F=uw{-iB*T2W4q0B^0=K>uR5m@_77|V{a#|;}jD_D~ z)rnqu;9}8D9z%E>E{DtD(Q07^;E?SUYp_t32Z4&#rqk=;N!&(wOFN8(%Yh}fNe7>4 zm!7Rm;wul2(j}Ee_Qugqv~=Pxvy!Y9tqJ$TS?`{27LN(bMvu|uM(~Fo*gR&~JEupl zcWP}O*hB8Loo=%Y`5uqUif9XigwVsIGa+cPLmtRX#eF_yt};P;|4}O8t;$f%5(~Dn z#1`^x$z^oN!o$a8r`6#`sAqP<9T?4Ki``_i!NZ~NZn$?7ocbwdXOKTY;th)v%t)IP z=>iK&D!|-gn(3V)Z7F;jc4Ev{02nMxqhbH`$fdx$A+*Q6lQ>BCJ1hx=Pb-Tyn`x;@ z_a_a6%%!o3maKy_#{7b(#@w(W;6vc&Lf#Z#O`1K3aYcZVWHB0G`=MoKEK}eTkm0eq zO>T?cgVn0Z#d98fl~y0Ix|umXC-P>{W4qPvc6$tnG)-tv3novl$#Nr~DP>X?Nrf^9 z&fssVQ2e~e-9dEoCpqwHZnS`986_X#_8L(7C0@&_x zv1E|mgyotWqVbHX9Xv8{6ibaDZ1z~uS(6a~q}66XstTbq45|+ABc=An4CY-ai!!dF z$9yY`Fp>d!7DdLjF*g}7ytP)_N~^^^T4tL*#jIB?+>jiA&$jBcFa<1^=fH{>ro!ZK z>R}nBUP;ShzVCOjq6VmG-4ytDQy{!` z^Y5m>zncQ3>_+^%De(WdO@UstN6#4=a^S4$d#vp6w*`4UaBbNuE2r=?WBKvo~w37YlG)fTjWqrig|E;ER_G}Cjv z{v)vm@w@WKe(q5%hPsCg9y&ZHtxW-nGz0Lu%YYXAJMCdPX{G{tq)|Xu`@q+zt1@`R z@B#hYLyK#7;AEG^fh4lz1f6gwqfVu?`6mF@a3uXF-`}uK+H&fpuVN+V2zCzb)Qo|JHto{kw+$%X%|4jdfva z8e@Jc=XWYNWWO1IQ`2_vf0uxXshpLmoQ0{J>eMt3Z(GRz9g()M!UGRvEH*{`{oj*npTzl%KZxeRAavmgW=!;S(Vd&nmk!!Frw;AgG4L5_`VB2;AHcca-{39dKo4U2hIVKdc!oWv zHw%oWpFa}VOL|D4ZW8D<3DoVIAb>h3WQ+i)J`zN5@m{a$xOi_|6u)>+*CEh_ydxWo zlvrD&0PDvR>qio6o&>@(C;f&NK>H=o9tm_x0^ykhEzkq#7YTGj0+DmP6V&({PF$GK zERaUe83TKj`ZWE&{^w}5p-OpD=bY$oGXct;f$znrZdJI;y96Fz>5;_cL|7R4%ne10Bg{~S~)mcLU z&LpAX*X3N2(ugfXBVP0m+WB+Sne<{R0wPo9OkL|+g(U*Ur2 zeyt0l`*`NvKc5O9y##70f!a$TJaeEr&jYBJ1bRsV^^-t&=0H7P0MHZ(lqrFH5(v)# zf)HP>z=eq8xV$d~_K@Wg{xb=`QNrVyAtmh=bD5Ci67FjW_q~L}Gl!e9M8MsVaDPj< z*h0}=JaZ;H_5qU*7jl^>jcLK7fmC7^FnAo&47!+M2S};}=`KL}NRaLVWStWrZ%U9+ z0_0r@GD?8lasy<61eqs5R!We04CJM#ZqHW~3YCphX)yiB0SS(ivKe2eCHP(mo-VniJj|iCNvJIX>WF~a zBB5|0Er+@)p)LuiKLpez356R>85FJz%zP^Fk`hN#yP}H?>5We4V%&GEi%_`yN@e(@L-o5=_g$pmbkGb9t1jyR+g0w8Q?yhbm3W;ErrnFy9yWp%QuR zdlpx{(t5h5PLa=u>mziV8NV*w8gx@i<-Hr zVwzqs;R!nYsr08v;CotsexSWZ-HP6@j_X!`5Nogi>^>vU;8v5SnWLt)q~znkG_v`7 zn)PuYOS4r?Ahjr?Ta7RVc_!wU-_w;v866VVt3bn@poI$pgUB(A<|p9ygbIe1KqrsM z`?^eYb?Mum2D+1L-_zrt2L7Y@`93)1sZ>|~4{$C!eLjX(TNLO=qJE%b7X?OX%Kw0F zgoeEYv+_6uoQ+jR-|GgCEDlUpH1+O-Oa}k81+rSD3$h}$->ld}HGoq55d&y%@m|f~ z$4djLQ5v(F;GNF{UQJtd30Ia2D*`VN^AFUT7g!LhZUEK$qk1x}v@$SW^W0s{j;~~H z=LeeaA6vIXv;09(Np#2;0juVX63yDsJJZsm>7QQ&CMv6F`t36C(KYG18{2D^ zDCeBqS``?n$t;2L3A%nY;$U#X4qS`uaS3g&Ax>q86xNurHEG_OzyZxXHR2l^GrEyE zKhP6v15Gq@B5ERMP{KWM2Hy<^Iw_hj)lIp$>#v9LT=xSl*bqpFe^|6$r-G7FU$Z_i zMpK|F7c+bO21s4BuE+jf-w>Ft`SC8W{Tnf+46Id72bH$eE`?ckmOz49B&uoq=a+#w zn&=-@Gk{sDqzbB%Ff@K~o6?A8KKO|v@xCyR@}q6&yc1J4Xp&Ws+#IMFZYda66ATt? z2~;B_Kq~pmsL-vJPNYA5<|(;|>Pgnq%q`J{=E2nvweaMkzQOOna*~JyPDELN4FM zLs}{DSVhMNzds!~Ryla`bl|7T(M#*omEKHS^qul!qB&abB^e@x}0{iQ_mLUKEEPUAP>0T*0j(43-^LtZAzT z<(l~DMWKnT2@d*5P>+-fEz`t%)g8VT_=xnsC`i8nJgafiWu?w@htccTXdHd#=RgPA zuG#FSnoKqIf)is?$@q)nWDwR0Cxd9z)M*FvxWV_J8GN%SkfmsrF@z!C8@Fd%18Tk* zXsB7OF4p~lE3uYcq^oWQUMi)5^;Y0f&92fKY`O)@9zmgmxA>`)VdM%s=$F8r*mEkJ z(qub-4Gh%$s45pGJNY)!Gv_YSfwu#_HR@(e&l}L+ZU@?G{!+K%%8mxvzXh5_HYma2 z^-?(G=3Fgj)hK`VdtlzZOnu)!0^2psE~y00*=Tx+j{h_8gr;dkjdk4P{D|pChrw0qPASN;{S5KUKALvHjFi$lt86%^4gHF9pm?}3t@{3kGi^t&W%w})Ylu-(o} z+;*=q(>_sT64qfj2}d(Q4aTQR|4U-3FmPtH)#OzuxzR4Y4p7Vkc1xtG$A`sJS9y9> zvqas|g7mQs=(q~>G0jSKv3<#;Ze+Jm<8?_<|mELiBK|@E7-{lDW%4kN6z|BkIETXnm=qVC+S&TrH z%PKHF0)NU8VBpMH-GkWw!3daWgD&GO{O&EB{obL=`|`eZ>t%LK>3Q-z4w!2>?v41c z(mf`-oO)S(?VI~DP1lcmRR#BWB%HVaZp3AJW81i1;bl>`XF^~!)iGOKFsgKCjI^Td z8;q-uL+DXnpXP0UtC>dKO>PyF)Fojdh14rm)wxeqo%@(~u5++=ZTcIoS-h)@FG`*^ zVgT4d;uq`C4+%MZR~MaOI2_A)B6u*7)>X*)yZSgJ1gGlbI#nM(7Uk?Fh`alEufg?p z9bb?B)_^Y7Xs)2cA?wd)&VhzBMH8oJq0yO=SG8nCV5ly+Th{L| zS$7HC8Tt@ueMJ};D`Ox+y-i5wvZJ>6wOh|$5$c_)2IK18=87;d4E+C{dS{0wsrcI`s?&X!*OriTVzo9He^L|{4%bJ(;wf&Uv~PV=c+jU5t#Tm z_F^!7Y(HW2XVbTp)haGmmgG|ToCz^0c;o{bTMk!@fU|mm z^255Rw5wf|(5{15rMAwaFP6hK*8pveJ7qH(s$icE!={d#kPv+KQ@SS#_k#oWvA`?C zlQm&0|3VbKdNuG66$Q39U0yTiNn!HJJ#r77#C)QD|LcRb8kv3^s3E;oh(-UOdwUQ>u9|rSI8UGBfBH|VaoN!H6 zbImPM8KW>eN?fe_?U%HjqPeabG0GPs-8WOM<~MaQUyNW?bZRs0R7!(qw$O()(Lbql zA=Kc|7J4(XK?(o$k?dMTAGqGBOH^Z@mrsNDGIJT*=)rqg+`ilCQB4Omk9-}_<|mr9 zgFdfm6HybgwaKki#bGA!i`%cIQl0M)wUVjx)3i_3%tp!^)LWg_ql5ok_*7+vIzpoz zKM8lcV>g{b+hk|PQvAwRaQ6pm!!8Qcj8`|}>YetJP;b_lIp5NG5$aufU0@%GtQ17p zb%mPG)kL_?Fa1eaU*CR8E8&(x!4NJNtci_*kTiD5q1^YAFuc3*ml@twKMBJNBwSq= zt7J;=X?V9tY^~6W-9I?Qd!Z>&eiqi?pSw8x>n9N<%sW9_Mv?kI^J%GyTdS56cDD{K zs6!LzsA&tc=)6VrA-d%h{V(+w4Qog{&nQ_|Qyli1@-v^eDr|Kkv3-=a@U>!We+MfT z(p-hK{kh~cZW3zsvxqEe{VW6&^|Kg4^nnZLceQ}-X{RemY!DEiFQpGIMH2rv&4`~d zNFiUx?etJpNmvgd`%N`h z)#P~+=Mos3j4Om$1D3>5li+6bo<#4w{B1oNcb(qWBwSYsmhGab7PUR)07c+siI$+h zh(;-zM(VbF9kBJ{g~v3_)x~@r(C9jS_lX z-=dFddZ-(4D+mgSztAp`4N6$*7fb67)4U{g2gAA$(xu+?#*g%AIwWyIBQol`n7_jr z2N61xeqHEH@HP(hC)wA9&dgB5ah(}+UCb2*Uxv<yMl^@V9!4(5@w-eI5sAMQow}P;Fj}(bmvwV7PQWR-ZR5A)_ zS^{qA@Z70{bSo-pzl>oxzA|c3#QUmLr}ot}k;DKon@1HHpCMy&PxBQokqw0zDO-u! z(}F!2@pRRg+~fE1a38&y`%UtF_Y=CoU-J!xy<>CdXmZtT@>!5mM7NI1eNK}TQBxcX zcvZ#Wk-#q=3p`nYDziJbpzAYoUngsdXv6Wj{WU>V6P^uJX-;P;fK^3emo-lX8%9r4 zC*;l`2a4#03Av*+hg2{n@pX~-_T3*JcC70LEt$D5E1DnfgY9XFtx#aARXTTK+g4@s zLY-2}it^<0$;r9jYVMSzsA}3(QjBQIJ)62jC7I9O${j`O-4K)G!5gX?K64Xp2#XT) zPHt5~OjtIt^r&79$7gEd4Pj9jJhLeGpvIGPrPqa2pbw5c&2-Y1cg8g$ZpoKJO^@@{ z=Z3H-FHX}ashOj7OZ_v0=(_3TR$1g8Hb3V&nWr#zw?4Ab2UMy5$ zP@a7p7w)c+ynPYDTl4pyQEmj&Kgi9jKniY@jGuN%M7Uvi9jzIh@^S9g3glbxf(4B# zFghIxwr@#pas_e|cXK0)sM7uGA+Q@F655ZxGOHPsW3fVZa+$i5_cSG2!kxU2z685| zky}yGG`XpkTcpRXR8bgA^)L(VJ-;ekCV`42}0 zn*Div%~D{&oPEelT!hw7iP3aaldt;5`wfB#U*--{Gz-+_y#F8Fq~|x~PS<=CQ4`t! zYLcA~1Um_8?5YXhW5;`rdrjO$TXKKX>{HWV0dT@@RY@3AFg8E;IYo0`RY`fIHDeph z??rVnkF?I;CBT}J<1>QeS|?R)!gMOqxLU1DVX3O@U7NWD z3AcnntZ^$0A_C)Tw?x9^`CYk7E0LDBgh6bshU1g4_AOx$0nZI$>14%<@*Z_dkL1oH zFW(Y$U%15+Cc(mj+*pMSy;U+yX)7f*_?FnA$ox8Yj6x=ZdStSsQzRVCJeGTl_-~c8 zE#1OkJW3e=L@a*`HrTC-8a2xzf2%H03C(^Io!Blru~l?}(o?xR$=SR5@UkR&O7`LU z>D-nI`RT4c^ofL{pPtQKO8$FSA3R|&-iPC|58#3ue>KNqsiH0k_n{&k+vAgZ!M^8n zcPW}je?djD$B49i>5`xt4dokfUliu15RFycmQRS-?{kN1+N+ECgs}c1cKae4lvqg& zD~%Yp+-maSUeF(Z$h~o|>HX7>xo7T`^Er1h_k?D&n#cc#wC4_tqWGGf3lPWz5=fz? zL6Dk8521t}N&+ao_Yy>Ukq(L)qzeq!FNmN>74#IONfA^8R1`%J>~v6i{oc&%W#4Z0 zz#kuf9GjWf=e;*|XGP)}e}jdbU)i0G*VXvOc@bk!F%shB`IRFg&Fc!YFMEDo&O7nK z%0mjZB6Q;p@H|y>Oa>+P-!82jsswLD1k}Vn>B`E!^dnR*ci^A9x-x@oR4tCt#BoTJ zspqSF*WD0VJ#sA~rK$LYq~s%@6I_hjaS0-&CZ(n9+zLoamu|?Ube{9o&HMhmA(PUI ze^x4#6uc>u61j=sL{hqPLnbAF7fH#Stw>5S=5;_(4Ai%>(1g{DB;AzRsrpTCiejx` zAsIJ~iRly7YArx2v9B0lZEGRjZyFQRX9l=W05F_G0+!sHh1rG?m-?`TL&XbI_zTtN z1%e9|Yuvprhgh=|x)W8(W#b#6)&}$dE*7i6J8!Z#OIR!F5eymOv}zg5QLbv?5={o? zDQTTVF5OhUiu2Ta6<8Ejpgsz>Dufh-B?Uh8C$|uobgG-GQvo<1`ukxfwg&vvZ75~+ zkfd9xFWr(o-EXC>-4&8?%ji(Id=79+_H;+fTK6fW`z@nGJv6|Tj<%*LWcV%NP-wJW zFi;NTS}#R&KV z58e_@s_f$Gmt&jGjH@2uhofj#KXs$3L9-UVEt@sqwp?3&r@Hk+LSkb*hsb|gc=i+DUS?~MnMX#q?zoc_-12vy#h+cH|Z5EkkZAxeBYVwlD3{=5u{i_TJla7RMr+SO<}_x7qY2)?xHlOp`DBqQ17Dig`u~ZaD=M z_J$M+W9yn)Ptdzh!0fML-jtZ+)NMYmN@nRFSF29E;tzF_g^j`c`Ua*m37-jZQ?MrG zat4JXA&@N(wXjZN_r8Nnvgi1?7PQ(OR40P4@*TOPQn{7&9R)rn-tqKGc|Nl_1{HCb zd`G5MKY%p~q@2O_TU@6OeT<96fc-Yu>*WQ}CI}sRITLBs^U9oQBT^(=FuGT<>G{4IRceB=_E%Q-tdY6s)cP3uF zu&T5g-9@A7N!_i52Qfit`}B(HJ|KGRft(w_I7=(Qwd##(G9Y@RWz3>yZs5W`(S~^6J%%22U;(Y zLw8w?LDnYp3(Q-HelVZtxvC7GVbMDdwhmC}?-<=6`r9hnSylAYPY~S)3oOh<_k!7r zE0&`7U=}m3T6IeA867w9p3z<2Q3VLNhuo!Fw)H$L6Jm6O+-p^|^7o{>#N6}mE%9 z_s*NvqXm^r4%r()UDrcpEwwf&sPyJgY3$m8adF5Mf{MuLNhbohcId$A@Bo~C{hZ>GJtvQOaN5F~$k~=Y|82h|;UygkMMI5;I!}JMl=MBuYHdG?8 zhidY8d#tgoA1G#8WZ>x21A#&q^%(d4soCw&{4`jdsyhyfw_=lLDQj+M0 zMoG#(WU$Kky!Xhb*5iaUd}v%k7_Hi%{zJKh@a(6u{ zSJ;<~dA}L+CMwB~yPRDQpFH3xKz2BwV{OBZ{XQX{ysujJ-F%jP2gK)jIs7Y_?~(mr zKfczt7sH7*-k_?>;dzH@E}&dMHm~z3zM6#|IK;@6hq7nA2n6wYvrx9^n6)WudYM(C z0gp7@nK*Q&Jd%gbI2K>?#jK>&afycQW4?if=32v;=Ns!k5$5gVefL|KVaAwu4?Z&K zvhnVH2aA49xsblb+k0=`aM}i!h(HDy7JO?>oE|v$duwOf%M`fL7o>t7IIok5ZHzGT zYq+%tn>{|Nnz!^xYd3{XMX<&tq7PNip7coWYK%v)h_3&wRv!T@kQ^uA5{(p#It5X_ z`jL$CT+S{p-`rT*7TQ+4OFjK(>xLk*6IzUorwIaE!3U&c=6bmJUER#KJj9L%`hlT}m>WV$?-8S}dbR;NYD zma2^|av&WIM7!%@KfGfrVo|2#S)nlk9jt-!Y^l7UDc=}`x<4ygc`PHh7MI!=Hh#~h zv{LDT-l9u0Z))$rLN<%PA)R+xVOs;(aKZeGI$9^f&+kloAqY)n=G_7^KN|0?Up?{%D6Fyr3w2pWRlSr8CnyANl*3$T>Z?qNX~ zOoUmX0&K~vjwlW;GQK%~d5*zP-TUFTNu-S`NGr@igjMqb>>Raccq>NQ{vc#X0hW8t zgWtV$skRshHDjG&UPl>QmW50LfyX-W(&D=YxY5zJuZZ$GTgu+ZtwMDNh&Y$fnzBfSi_b~ zSKvA^by}pbD>ZDXdMrNdN166_Rh~EhqdeY1wQNlZ{TMUT(%c?gEYchRvMqxGOY1QV zLj0i$u?-0kX>OE!lO&%(al^y=*w}`)=V_p>#y9PcEr^OWf#FG{=Id&VKN;#ait)tb5aTt8OyJ3! zc-}aPC-4NQ$#y4tKWt%JR?z!y3)_Z*q#cow-Wo%TNUsfViSj%SSfS3TR4z{Iw1nzlg z6|%B=MH$vcdJitq8iP%H-u9!vE!q(;*iQMonl1TpP80Id@7^sx&TOl|!}2}z&XXO4 z{m{kMmMn&=WR!VTN!;J8LswgMa^V7-(bbkl>Rx6$y4sqNq{}P1+3J#o*H~&dTiZgf z!TIg^9azk$s~rNCWxsTTo#|$4Lx$X7RlD0ViTx&fng2iaHapba)|HIA&Ek64k_aK} z`5v}Z%MDnATG+$Z$8rfCuJ*7^u{3~b#fv>{y)3oh;me-30hX;WI7#kh>q+h@Y(X!Z zwNP&e?D;L(*F9}z+0j=nMX_U3t`-Yimi-SeZ^(L1y&A);y=}2%D`7i&+n%4f1DYcz zdokRylan0>H#X#CUw{{;bF%BgTU9yPN#b`Q=#i7nwaEc3`0o($Ylo90IoVTTD=#N| zocJYz8b}T$AU6Dh%*|y_FMiWUV;3MKZ%#SPVgu3vd#DWNt{ytfj^03b0_)Jm>V;} zWq#z3;+)4%{7IY+IK`jDr0{3{B$gIW^Cz)7d4@lU`Q$JBNz6gd@+UD~J;$HK7~)s{ zBs#g@_>)L+~7c#FzuaS<{4n4;IwQ>`xPZ)pFF1>6v&#K%&ri~ zU*m?me}}TYABVSMFARhpD&FFgB-+Aqr#R$lXI304Rz;ZK{r`Ef;`wP;gV>Sj&lh2x z2iXQFL%kmlvVE+yPUoze@}K7XrzQW%;6H8nPdomT#eX{RpXd2cC;rog|8(O&J@`*A zOCWpyo9VULwIZcLOVr>+JVUotUmL2)#@vF5U2@S<)gnxE%dTNz*GsQ0!*Yh&T17^4 zY|%R6N!TAKvc2|_=@xkK_MZ~lT;We_3@!Cnr4bx{82pUOZd90GJDtr-a>l8bP>ZVU zI18JZZOaMdB%uwqF}Sue(c5T*ZEGM|0&m|i*d+-0#u3Z1#@mXdJmcM!?(w$r!3()K zLVS2)WB#7`W`wRt^{8A6+cM6R?XNCnyr&MUIMKF??m+aUi^L9@8We#_fuAr^F7RtI zWNNm*y1hfDmi1nlWa~qMzrpA%?vvW(+0-evMEVmdXSrRRndBRbH(;u5yh1Swi|gmg zj0S#cGl$73@5cx`kj*Yt8174-Zu^bgwlL=$TO7TM>e=jhwm8;dhAo{I2+%C1YB;)3 zQF0fq4wzv}3C37~u*6j~mbIQ~YeY-v&_LE=91ro9dsh1pf|Bo_x zOXb*lEA%zY5QKS)F2p682(JaOQE%F&=n)Jel$K_h^B+WjMAH$uuG;*1*G*X+9?p^% z*fK2J0s`5r6Th^fADIjHf#BE#5iILB7B(!j4JKa)u&_n8;q;h+9&Y3)N#ZN4&0z$u z_sO!X=VIG3@&`aKwymUpAwV8Ym~gZt{M&yeJann;L-HViMZX1o)gw$eZjURDO?}HY zixw=1qBkzUl}R22urAANV+{y;KaP=--20D`c-JhqwIs9>=4H?=R#L1`5JiR`qZwR4 zHMiac_S#C6^4781wiDXIz_l6U(M*~YWNjU`>$C~37Ev|a3F)aTF4nxcNkK1h*`_Ia zH15vGhssM`^b&>sQ80`Z@!0kUk3ytHMl8=Bcp$zfp>mnMM-^nRIk?A#jY(R2tMn{Vq%Pnf|TS!+9{ zhc&2MC%<%j?JS(_R?fXeE*F$Th}bPtmuN}ECvFxSGiPcpO)7)}S~%|6 z+Mz`ws-t2Jmu=c;%l227w8>_rEfF3&-gj+lnuSYv#;^bkTe4t5S3R(y1^P;@upDyG z-gArXghGZCGPP!Z6D;ATm=4k>d7JGsIulFC^9*X9asMO1b06Bq6GtJjUd*ON))Xw)+bC5MJ1ZrNy8R^ss5f1&z(u8#p*$Z}6kRxxudC{^~Anx2<`K z7j)uYkjT#Lu#KaC8SJ1Q#`ql-=jmf%dp-qMFt78b@3gg1=p%$Equ0C37EcQm1}f^1 znaM5$RNUn%Yl1-CBjRZ(BZ37ezZH5f$^;=}4{)ezh9GmCUM77Ww#v5F>BM**_P)5+ zwpgJ}FD2Ln4aCtiOzP`_Plh6(r_j>g;@ofD;TW#767Ykc-D9jpsZmX|HFvNy4 zKQkHeI?;WumzSX4me&lw4DaOd36MT}y=y{KWW2_QVeKRb;Y8&TT%R8YIw;<8iA#sA zSUJ&EdcLqVXMOtFijsxu1X%Q~R`@=_eNSEHX%J8p#op%pIku+NV{lEmg z|9MBackEZT*GrHCg-tWYMM`}b;TdvYL&EFyRRG`KqkxccSooeGmmMY!HQ!!)>H^(sQ3C$|3zz&<|T z{=1|$((kIm=kh7Mc-?|%Q-x1!3X9I#ybam4YWDYN&m#U^^*L2Ej4$Fc5|;qJ&){%V z#<=z@Iha)>lZ!|{oxthi=v@5m_|jx-5$UIYCE6>IB}HU(F4Tjjkttv-?x!63DSqnD zhqou&Cy-sLEIafJRLA@n8uBA&hPOry`*MZ+l&`@Xs8;wvG)S6Xw0cq0kfQ6WT$C+u zVE>p_*46N-=ah!_MA}GK%m?=(W7B#kapaYBu za8vxbRkpGQc-^oev!6e&drB@ELRj3djs)gxJfjDF4RhuhI7W-OQ7VI15RB|+z5Sco z%PDjjst}6+2ziVtvKW~ZX>Nam&@~uYw8N^R-b*d*O%%FHSC!WgAM1*FLjWM_I5D`K z2}VL|dv*GS5reEM%C@z(+e{Fqwz0oUe>Ng0t7JpyMS_Mvs*W>NRSe+b+u2(x^oEWq z*GIJa16?ub6U+g9OLy69Njv)p_HmXy*g!z<1`|!VGd`1}|1~gJnGW`~{wCB@yRWIk zf;-xOr-?x*aKKg6VR|)GoR`8Ztl#tY5fSEf-gD2}$H0OILKNPk4Qn%(s7hf1a;S+* zG4%dQt58|Dq`Vb2JltBlGce_CUrJPc8upHa$tsgM0nLN^%bqLH;k6+r%x`THZx`1exy(y+LZQbjQ3hinN|Lc98vbMfuZbzIH|Rz-i>DYQ4{& zZaqJi^>!a>k5ryKo6LNT?JWkMP2D-nzM7VzU~n|1RNXWj73VpGg&i9XZfaiV?U-#} zrO+gVC>OP2U$l3kb#bwX1~H{bqU`94_Q85AK8-@{dsJ;A9a}l!+cVPML!s>rw9$kw z^SBAJoCD~{`CQ(@ijKBVP+nwP4*3FNIH!&RV#Rld%P3Ta!>}>-6UtlxEW%-q9yX1< zL}fS(0R$cnewd2Y0Y7zD$Jvk4^;ku*!gg`I{Z+b6R}3kUtf%aY3HHtg1bqtp^MAC7 zxA-LcE<(@dWA-!kR-R%nrqG{tRlp4mM6avdPEu_RIPwHS$TKhOl!<$e_#4cz=GFjM zk+`lCd64YMQ1BA;MD;FRQZiT$97BTh_@Tv~;9%LHFU+v_B-MlEz_E%RG>wD@%hu%3 zeBfx#T_iVubvGa52h{869u0Te!^=>mWA1AZ@XE-1pEFr^_X-EhjMG=sz~#ALlH?R!RP`H)*# z17E$cxAqoWXs;PS4h0*hHP5RQ4?qo{)_l9vzCVEc7;K!@3^Kq)t+ba3Am@elcv>?_ zgA=3N&s3#1s!g*-Rr>9GO8cGGwAGXr(;D+u^;%u_g$k`)3>lLT!-C_X#5V|m#ag$$ zJ^R@MgAiVxXLg>_P)saTS;iJaF%g9j@_ZDRrX1wS1}m? z-8mbS&!p28ll~vF+CGv@C?@@XtR6B=>BBmv+M`Jq0DeaIud)W*{~cA5ReJjByvbcm z`u~o#_KRi6-eP9{zecs+u42glcZfggleK^X{;#;%=u~?abs)3yanlpr-*>&ZbpJQV zO;yl;Oa;AKOrGbBI%vOKii8$7x_%e+oJBFH5$Ab-v9BmY$`?1f{sIHs$M@{tl_E8Y z8)x(fG&te{cYc63X2yJGBd8ArH3XRlh;;cpni-Y@Hbw=RlH zXV2xVu(OM00#|YA?LkqFfn;ZK>FwL~plM_cv;bcw;Ly+L?qy;ei^*kGmJ50Ys=NPH zT)O-ESjXvLQY6I8-Ak)hEEIy=-6H;|Pp*QPJlz8!Ilo8NeTu)AQ0e;8y|{I`VTd$c z{SXt=DRtSHuJ#zVIcj{>k7_uo1(NO|M!%n{QtbjY-0yeRckBuz*&#;1&o#g)%^f8I z$rND$obq>RaKi6jP!(?ski32B!r#1~tHlM@^>cnbe}<+w_xu?1ln>;@VB;s2`}v|U zwlvFOqZ=`k*_%(rvwp`rmuA_e9P#ucTqmaJ8$;NQ_KpU6tk4as0jq8q|Y9Pa3NSD|MyS-wbt<~!$1ke?L&tbZqmos}77*Y*O$#^Y_oBhODP zY(!@WOh0v(Iy(;0&`?cix!LsPmd<6^tZ|O=w6v~{r zNL-@H7|3S)KA|H^d<@?UNrx{@!&@Uk4LRq0X`+6pOcQsyJG`WOs7w=G^q^^^X{dBV z4$X)7=3M2V(7evuzn5b!p|i01hGq*^FRjG{gpx71Bu|OFfnrH^E@Da>mVRV*JaMYZ z+VmQzc?iB?C{9_|>F*dy$VaNSTlKJM#I0%z;36rSvwxDdto2~%PtF3Ja*j6Sbf{b< zojJr2sgS$y7k?>6TU2{aRs0szz{b9}$}q=Fg%mAeOeP6>IF^*{cu2~W;Mp{h^%~)* zgJ{;)U`0at7j$tuyKq@VBEdSz6;fQH8QEKTq~lwKwkiQdDDU8KYvQln{JF`+Q4Z#> z*IPN-ahVP`aFg@(*deG`lMtRn2FolYr%O+UdV!^kbU>aP>sU)?A$rC*eM48r<8&6h zg~j7kkEM^(ZmKD;3^McJ5>0j%H32&EO(kT6uID`SMd*7aWQ0zi2oZXy1dq^RMfH$r zWD9r!?2i5 z*8I>&0p;mYCKP1AKUu^HGT^VV>G7mYNol*tk|wrO!r*h{_C)X4nU0qNNX?QmyCv&E z(@43J!gv6^cb{FoAtqnOM>o_VZQs z$3YDb`%Z5-hAQOslE$!qOAp6BoaY$A-ks-|Nf5Hay-o?uu{S{g;%)es0RK+j>8OOK;u{*~gj?0HhUyR|D z^TlyFsO7KtthPD2C|+iBj8aHim~_c{dWDc1Wo-2##Q0P3n}HY(23!{Qy`cD!MsQ&A;*yvi|!zJg2S)bmr=a6bIDqZOGN#!9SqJQs|y z;M6aCYTi3|wPU(MSDGW&SmU^B0VH`&24jo!-zW*4Q5#Apv^cxx{dTS6ZxXx}ae(Z^ z&v5^}&e4eOK;`np;?^)W`+Y|@iZNub@YMi#ug~7tUW~=AcZ{Y-Fsc{=1M0=~j!6b) zT+g+OHaOsJJB*>(=$DO-9Ts3G)ztHaeg&y{&cB*XH#>%r;CqOJv@rYO1IG|b!u3uL z3j@4$7HoC2CHKPEPg@-gDaMrwi+k=OF{)4#5RPnf4EKjn#SG!nhmI@*g1*cA-9$A$ zL-m#7dboid9(gDX_dXN|Sdb=&vPG^#R z;e0(Jg(df>5<}qKnb{TIDfyIzdpJ;b?r?N3_?Br5TpVl)h~`3^xgjgTZ%0>>!?Jx8(}RVCrjBDQd+N}I0s5OFrR(3Ro~sk zO)4`TEA0we3$u;VCx8&Fj4F?m4;=dKp`6(*wt3dJ~sG zL#X4r_TM>MlFN~7PYY*-V2q`Xx{E(@#3{6BDbPuDaxxvO$g>_h4q5<74o5Mz7W&H06TI4cKi-*Xp>G@1NBJzXpnB|8*9=b}$?8>cP9S?q$qDaHPB~wYY=>GNBrB>q z9}@CoDLK{sUJqN}lKmMd$=9v`UM#m_8S>~x$fXxQb&Zpp9%3mims<;zmiN_+Pj=p< zrAs3cxpz->BoU?M1vLOBRzfjJu^tkGOEheF66=g{tm98kn3mUcF7ul)ul)iU(^=j% znYQQrQLL#$pLVENW8pnn%lUzY_C}TRc#*fBGno#?#d+>)0cdu-R-VWsG#b8j)K1CZj-{felk+Y(nnHUmx}~(O`IJG{Rz_*cK8*S2u?qhX35Q+gj=6M-`XV!e4Q~xGTeFOe*<{W>U(6;z zEsxpH+c}QNN71#J*Lmx`;2cfpBy0s?=y7G3rHiv! z@HkY1-8l!9%dtOTTUj_(Yu`rHuDbS0~(Xt-}(HzX2oo zWZK=`>D0sW=0IN7-lRET^2Fb}`n!j7g+dSKBYU6>`>~fZE%*ScQB@W9lb=H6QdPj% z)!W&_FUDmfhJf@uv!+>5F;{z4FhSDlgu@ zdfd;sn?{yJ&Mu4`gG&S>fDv!f>0m|hi}k1!BLaym%Q_5%kj#&;Ic!QYZDxkh@n=^V z1A<E?lgzX-?E!e;j+*KP1 zXWCR#VTq;7;S!|7xvAhs)5=MgdzlN8&*dhT^TL~OZiOr_$8wiDhZWUBLHeIjPCD8| z_~<)7Hsp^N-=6SO*J~CG*>(dR?pvP%BY2O9HQu_oFuO8hd_Qs$O7#BqiK^)dsNt`_ zpE)r3N7jQlq2Fvby*%=s-3Gu$pHI#tcY%}M$qs5@Vu$=2(8cZSs+3!P&eMuwspY5; zm*iQEFEogN`BDbV=xzu4D^XIZ=c1%iyvLS?-#E%U<_%|0Af z3;e@6uHN?|IUXfl`)kfTpKE^!rr~#KhAeX~QpklUnN9!F!-9i<3r6O15)S{24&Ii5 zgNH>+UkHts$#eEfCw$2@0shiELqYWbc~z+4d%+8A&T|TB6m9ef-y4rUxSI}VU$_b# zxaeIXLZc^KqEfVU36R6wC7xp3Xz`*7o3+1mfOnY3xdpDFjz(T0mOERoa@MA=;9@a$ zni|c1T;*J#M=%U!EBM64iBU{H&D)$^@Z_em+TIu7GHZTkYN2(`ThtPhCt3s(bI<}Y zat;b$&(s`g^5vFY>zyrW3a9Q1*Ssz)CJ_~D?BPkIt0wZrqs1GX)Iu90P_ZY5`j=*E z%V2V{f59ah12%t)6V74B$VTa|X)agK#Nq!K8H1NTaF$ibgc#W-WA&iWCVgULn{)wq z-X?w+iZd2i*awUSOD@lgb2Yxv8>)+r!@~&glqPW$+c;$8SIkJob~fy z1>NLkFSnyL%wXO7obh^CAwzRB*s1%Sodv9gZ!3w#fQS2?(`XkAtWBT~A8>XJE(CSH zfzc$kWw&!OyE@nzDKysi8x#C_>Qh2t8dEAQ3}d@LclPo(R!KSJ{E^NzNU5&m%t6Jd zab7;`{F2bOP^B@lURCAA1Y|#lOEi-3Btmx{f8pmPvN=|U*aptRnD>-*tp7+S96x$A zE`)6=KfDmLeeJwT4#&z^JE+HjSo;8Kesn`Nn&5fkug&*#k=GGDAFfE@dS)1_x==vr+4%I&OAJco%xn=%y!z@s90W!C|V%x^r59XaW&1Yb*VmLJ*@N^-I} zk(}&G(1qq?HxeZrFGs+m4fXEapkhwcgFlJI&Yt{9%%OVmC(-Hl=1(H^^x;p?=6s)g zW*}D)B66`8F0xFsc<=w}Tvt#T%eKsLs(W4hHp}`${-2kI0$EtFI`1qNJc@G{4ggO~ zTx+Q-QoVmpoZO7|Qztf~PhD`%q7Fn4ZAM#BF)$Pn1vL3)G`n1(Xc6z#i_Vt`U5CJA zM9<+RJTiTIpgKx&0qEZ=&RZn-V}z^bzleXFZ_qucoYPcS0Yzoi&g zUV^Fd4VK#hdcI=q<Sw(-ZyRgA6zc7W>Hg zDs8N*oqz^SISxUHfOC~+1dR+vi1%kuA&N^qa)96CU9C{BV(Sfm~)+D&Q-mXbH;z*%CAF= z$!98EvlQSLQ}m@9Fn4g)%qR^_y<2h}2I*JGb)4?NC8GVrLgGGMF=%1|K(SJzLlA?c zN1I)>=?No3FbDLFN(QssLarg~QIEi214kI2ATiZzB6VVlF{Zr7uRI?oriri5Af)or z{dGuUQ}J3+*HuCu!p%m(t|18FITHkNho8=>>K%R+OnIu82Vw*RL$~qB?m#pam`wviD6ZaF%0K@ayCV-3G6FNZBQTv&3)rpuWGLNV2q`9x*Mvw z-k{UWapzWdO(B4*B)FFAIcmvq2}Tvc2MFyFU6l<8eD0;GH_M-TETlw0fY*}b+O5zH zn6zfT_u^Spifc~rd#GAf=BpIf2Xr?oM^lRhI>Z62 zk+oa{^;m{scen$XCcsCHe5;e=hMRFrn*@O&-FoUPm$Gq3ZBw4OC7KWzos0R+XaSVb=^ z^ihS?obRqgk7LGSrSI#Ca;5L%igI-a6PK$yxJ0vncV-*c9fdy7nVS#B#1JOnIe_#v zERRwP0E%3vL(p${0h-KMmTu+N;bW)DPGJ1^9B_ z3V3^}y=xe4XpZ-C2UjP~^JoXxeuGx}RI)vP;HkUl(a*d7CA1f&FA`L@=h%y#VYJ*$ zSF^_z&o-qFNTDz3iosR{5GHhS)z62Z8h4f%!r-p1{w4_jc6BAvrDh1zy19m$AcS;x zWzf||1PjQ{LVNVDYJyRHLjMNzBO^vI*VZ=#O=2&-;7VdY_iz<6ArP~tZ!$e(B*3k( zc!#TNWwrU1RAbjG?*B!QQT(oFhN@Y=%3ckLx|E zR6<^@;STESS{A_7g(caRr491xo##_C=MghuPd^xYl*0@lr>PziuPf#rQmzvF@PMni z0YRVAcIW5yUsBou*1s2|w6>LGO3UE9bzMb^N+PAP#!EUEV#5cy+LA$)WOvaY!-}+) zSxKffj`NhX<}c;-8v-5I5>=Xon1je~Z&s2Qfc!AjRU(3Hs3aE5(e(C&w8A>5;G6za zX1K~ku)@V%>aJ|w5FvA$x~=DfEVJCTIGlV93h?D|4Q`pbUdQ25_qSCli3>o;TdJlY zkJvH6S@Vf`)U)38RsemRuZizhVhgvp2GIMu8lGWCuj`N2qKCkXo4$};3acho&>pifA4lB+wCV=kvkF zG0|`(%@B_6bu}_UsQ;O(I<07iu$R|hP2_y6%sy8)TGxmmy^nu?P>%s=Ra*qgoUC4Z zgabT~oxAaCI2*s;HI=s4kn}2=nJ|0eF#r5P*90=7ip7ai0dnkD<=BfEh^)PQv-JDfxXkebrB0usv0x* zdm5bB*!-!Ayu0b3)D~ni&)l)Prp~h{*jDU!ZG&&3De$87TPIzg(Zs6Q&-2E^b#%pi zJPd$hJgh^|#={v#1d>>lo&O2kUxy&({+&*_R?!|90YX}xN&=QRQK-Yx&;2t$`Cpx^ z=V{mb5#}o@tlSxwgT9te7{1IF`wA-7Jkw{#1MpVjv4SPN&3|#d0{8SHShR@Z&=qq- z0-!LY4nZ^IMk4}QR+aVq)wN#FK^U^uZ?KH82P0^P1T61wu8;Lt+>j_We6AW&r>DH+ z|Nif;iS(p_G{!w_iYwOqBmZ=bAQ!8$SO0X4qL+;{(9q;dmB#t1+C^UxeNol9B&` zq<%3z)2FQ7*y5`=$3C1I;5~ZL)kUGTF>|ev8{%TEk!x3DCoa1#=&=mZa@3@uWJ=aa zl9wjfrmK(&2UU|Pxj$#DOUZqz$rXa&>#oxZnO;riT2@n*H<@P=M}OC{^Cc!wDkJ7s_;&z;X~;8(e7@99Is|f z!&ma)yrK79zboV%Fwl>kZ{~r>bFQ}6~&~JGU_ehcq&wA|?_5QsCsNn}{dMNG_q)Bz7a)l8XaStOM zs|($6nluc2~z`hG@r)}gR_GQ}7&d43(_?n75%1Tkj-gpGmjodyJbRx7P4rjt>w z#N969j#ub5OjZk~&DGh&Aa^yo8CQ$Ju@L5yDKXej!#yQo-eHFy%^f=U6bf6q0M-pCO5 zVI{a|f}s)1v*IP()oBS-E*r6E0$WkS-8w%;ETbjem1(>g#-ft$REl}Xi%7I6uAbxt6PiBtY(5NbDoZzmf2{edjjd6AVabXr>x6)FC@reXm%<00Wvm0 zro2%YOr*S?2{PqzaGvt~FcXW-e(Fw@aeD}SI6!1NYXZ)6AHrYyT+mci^8={SGTp%h zV=~CdgHtoz_rO4(>3r9E0x2=p+ypA{OlM6HnGQ=UGaW9`%;oc?PVD-htQAWy1^49@ zNt9+Sl&Hb6CLiu=3vXp#k6+u3ZFsHs-La97~@%BZa}1{ENv8F|H+gL+iSyE2Kn{(JAJs8W)Ee?i6vUZl^*jBpIDzsR6D z)=V<`y0^;vQg zcYW5qnY)+?fvlVRYE!$B0GXY{Dm8bv)+2~c)7jjeOgESzRBi!Xluks$koA4FQLv`M ztz&Qr(p@$97M^upBHty+gmauT*X8lAp@ttPIMB+S5I`;`N&mip;e>yG4}QYW69BwO zEYOb=iL`c$7G{h|Db_!w}!O^5Tq*!OBUH2i!8@;xC9xkerHf(wx$G`kt~nl zpKa@TmHper-ISf`;;BSgGD70pbjmW0)PT)eFe{WJiG>QxM6iv;B^m{I5(5(W4lbWy zvr$VY7xEVE?%qb|XPl95pN>!W&}{aCiPxw*U2S@~(-e9PBa6A!2fbl@auOHk4F`ic zv@bNS!5(Os^wp@Zw7*^04%)Ya+Z~_I1M*pw|q1u`X9k zaA8A>f3L9W0C#!#{^ApmubCnrpA46p{yXn#Dyufg{Q@nXqPL`a`kJC*twp?-2f5!+ zXcVfHz16BAFeI#~E9Pq)04UZtj0lzCVk~z8t!qReQ7Oza3`pq_^dsY&s#;h?+1cR| zO=uP~9D12PDKZ)KeVsp~Zg z26VYVhfiHyDPlm!DliyqY#!}CPqsseeo*JTU)u{ce1f-grMm_DbiBJGqc(R0J2}?< zHTg2dm={W^7aIGp62`kPlT*M}Kg^5Kz(jYq4HV1`R8T=QPFx2JuYFC&FRykaxQZRpd zp0?wBa9%)zq#CNuI!@wD8ZJR{ZeH?sIzQ=Ok|jN!7EgxPU@0l~0YO+5(V7Em@ZO}O z_wVWMViq!|hV-JD7*2T62rv)tO#oi>CVtq8l@RkfpS?4rz1OSuey@g{ADn!}ZBfVp z_)G6f?N!Y`gBsqcyfoK6QX$`iK4YD|(27ZCJscbGI(X)vz(nsny)-c4Ji9?3?mX|+ zcqZrRFO`X?DV?WeP2@aT=dTuF_uh1;veaEL!>(QvHIFz3Ql%z$qfDjdvw2ar^dhp* zy^D6`#QpfrsQ=k_7P%*}nzbOj`E5tcQOjMFz^QlPFE7=U{_@pQ_i%;9Hg{3hd!{?y z3x7{glm)DR19uevA`qR2)fFx@5sbuL2uM85g(A#dh+SUp_OP-I-8Gr`oWZu5(sv*g z6;_mEoO!tw1;^p_)A_3MM*x(&4`iY-igJ#Frpb4Nwdwj&JuHL#Q;Hq2xlbt9Ieag) z@MQIYvSSV0ZOIp)68EBQHO;-qpFWG6kXYktNz+ExLe7)nhH=T9Q}|Mib;G zc5wIKaqo^WA49QYYuvBUr3P-znCDYlP&6vlw1X#+)3?je_+_p82=yRHG>>=}7mIZ{ zPc8Q1d+rbP2!`E;PgV66A?!dlJGWQ3_x*M5#tPkoD){gso|ReePN9c%#eCsyPc61) zz59d#K|fmXeEu`+vk@C%uyD1O94uVoFuK9Qd8pwthc7p|>sm-)ZJFx} z)<$q5P_KhS@_FNV?q3-Zm^%U$0|q~J8@GX9*QhQ1I;plCFeDs?jIz_~ZqH(Wb{A%C z+Pj0Ho9_Cq^9EpSb@bFMc}XD?W*v_u_8%IE9|(^l;3gu)A&ImrwGPtk1wx?$wr_avKXOviuFG;hwT_pW8{4 zl5ERJ_b?h#2N^&($^$R}&*%UyGP)mQi9vyR9Z(bj3m=r7JfD$TT(S4zga17S?h&u~jkb}{scqupWV;Ecc%E~K4If*DXy2ycaG-im+v`Y&0t8csdJ0?EPU7D^NNQ{?$hv$Bx%O|)!HTyu0%+5U73r@Vld%ih3iTedkhBV%h8xSBFSAW z(!4H^ExEkNO)`KGpT4xHi?UINQ|{kLe<;x>oz|+Ved>B4>C95d*t*7i(>@PG&Tt^# zlw!xuxQ~)Kz(}8Tx@fS%S$fu$&eEc;xwH6Fa{f6;Iv=QdY^sZVq{VMAPdS8*C*0#e zUFjYGYw8~U7^VK1a6eqG~-I0lAFO?t(i@q2-OpC@;Qbf-Hw4I&xY^Iqwp9ZR2{QM*}27# z7tddI2NKe)p7h$z7>s+Z0yilvb4QcZdh)=&A6_Can%4nekr!W;U$w|OIzFDvRi&DP z*(oF6Zp&p#@>>3NCs~L~mC25QgiNmsnUt9wbZpt7nWStJ(@@paurvE24f&V7pp+O0zHTyGybK_uMY> zPd#IVxizG?qqz}mVL?wMXVsICRAYp#(O^Y{odU!2@%VvyBEqmja(<3Wv^Mrx{e78^ zYXBdfGLlkJsP(!4v${$@?n`C+O2VpPMyiG`7YACT%F%feJH8b4m?CEg{ zqVS30@sNos-*KrjRb3^X1!NKYq0dq~RHf%bjnArAzTjynz*ANBf}8I_F9?6uA)ZvD zefMhUKKqU(o26;dOy`gfjP2bHGo74NVOiMAc?Rt+7Y6Ols@k2#R$WuX)0E9~Lnn7D zpF#gs4SM=XEMv?K>TA*OWsAnwmn|AsKhLtUY(p_mN%oL>dXR=tthe!LRr~r-qqA{R zG0z7itG>~wziIG3qn73jO0Z?cJ*`L|;IHo+E@%kCbL-ZZo*P&HnLPKZ)N`S#=bQDB z=guzaX}UZZe0FtxJ9(WeMDk-|-}jSxK5k zOKyr?0n_j?D+lKT3Uj_sOoY}baO0#j=}OhpFI{)|}lCc{8`BGK1sD9Z_W%m&4!q<|$_VMw)dKGV6LUBERiX^Vm(j zkjGYMn|pc6a|aG1hw|C`N7Xh58cN?y@98;4e#~d{UoAbi7Mc4q zVQyvplQj3+ku4egx|@`4B;zxp5wiI4eqix6?ZDzmjSLni)f-9w1qAb)?yrqM8{m1x z-#o47K+o1l^E+|WTZv#%T)mYDp2V$0LmM&o5Kmo8;duC7&`*EVBD1Q>`-ny+iTj8w zgOdW;j$KDv~NhmZQ*0<)@Wt(BYw(uR8oX(FN#eVT#iVV!|3wq8kJ(!&v z;3++GLUyCV1q$%(=%G-YlMNi;cNQF>&dDAL#~O07fi(OUfGJH*HYb{s&B^5mGUyVc zDcpMEi2PLkBrZvq#-GHy1k?GGI8Ql)KZ#>6GvTRxwpe|h#S6un`E33q))MCMC+JG# z9Y@??u$jI@erG3VxMyvkvVtjvJPjDX-H0t1>nZZA-`Y7d))P{m6;KNBe`4y_R^2In zi_0MTVR(`^9qEeH3F?|g@}?s{b#T+s*K`jerJcoz*olgPmzeJYIq}7vc@sR81b>Yo z7?sNPXTW_dEn*Nxbo$(}0|YJVv+QST?@f=T@0ReUzN@|*gO3f-YMsFF!BTC3G z_)84lZm)P2D8bV(g!GFt%fK&QMde7}J##%B1di`WN&?&SiYI~fE&`{uFfHLHNV<|z zy2<}lx;n3WS}XKDEQMy#Ex1@%^u5NcVGfv1hrl;}kO<*Ygm<1Uf)@<5P@&)I*zk=Y z(LASg#oX7vZOo?5_e?h+=(($xHXVIBckzyi_xlB&Soq8;=EV;hA$>|qeeV7Tiu@fA z6a=cP=z~DSScAo$aWpa=#hAR*9hV4$N2arpOFT98u;S#A=8@{Bp7d-)thHF`c~=Q; zgs7^qCVa0YDmVBZX_U^&EceW%7}w})>PMXFr^`r44(lBhjz}5?ycU2u5D>XCR8A_bE3^OIv;akPQY@Ed5B8{q2ez4xI~qr4Ys$4XK@rwCvDRa?kV;LA z)@W~nAjZ0T)_baux=l=N-sg!(t;~@Im>`K0NmxJRoUqw`k`VC z1)jt(VKh^Aj9pB}ARu`u*vq&?v>U+4kA~@h4ec;iN{*RI7c05NQxQI=AdK3Q#RktR zkGy%j2^QD)DZH-OCfv$jEh6Vm_JnL zrs9nsSUUt!YOvV4uu}X{Q?ay!C6`OtxI{Cc&)qJFtDF?L`tEa3Dz=&T+_Y7&X4tYB z0Qg+@`t$>tv>7k)S%2^1RsED^EVTMNDJ>wziX=B4wqragD>6=oDg!mP`Qg$<<%*%LLX`&WxYHBC`t4p=Nm&WYQTf{E zA4wXP=0J@V$zPgik=l%nS)QBZb^q!KQRqil&L!s#;9<{wN$dkqyM68y`XvT6sB~L` zelAr4zDNzVZoia0#Itam@(Y(;9^ONMcO{Yi(iqpSCWR^=$mbBH64pc&Y*RC)Ow0{u z_x|+!O&??FxFTVBUYkkOJ8JGXW7qAut7%wsw-lc z^Bf8*s@yjdFpuFTS=-P0eJBCDFTCJcOzRt&YmSx~pb82*bk*Nc7YN}X$#zeD7IN!2 ze8Yg3@)yINCDKDL!;;}JE_({w)8x%EWN>peGTy`@iO6_^m*B`CZ!~B9E9N#qRxPRu zJGZ$Ei}&+Uc^6X=VX+g#aLXg*gH(E-Nb`26U#KW~Hy>9Y6mU(6IM9U5ZqCL8@dsSF?(-eQSDW=Whb{veL_pxydE?i1g<~A6c2V+PJgA1dE2~%Nd z3#RB1WY2@}px( z7Mq@1Fj#NH{(miM8L^oXemMJr=Q+p^V!`@Za?R;Su*tKbg{rsfav7TKW%<$|}7_&{FI6HzAkvar8j|N0DO=wvaid zd`n}F@qMciAPhOiC-pwSh3>Y@(s~uA{kmcv&NDUZ)<~_J3NN7a%Pk#Lqk3%Jx+!&2 zQ)<;?i_>yPm1*%mAdDHZDB^!YIQIL22%3(KWQdU3s*xJBl=-GJhBZV;iVEAYr7_?5 zYO-3&d@~$w4Ce2AX!)k5iVF}T-vB>D`1mAA1qjGDWnZcX`NoeWa|h){=q#C>o|{>= z+5dt8rYuz&a?O9`AS{`Ktz)oc169MhEoH88VOWDD>#4A|e3tapFrXrG&4k<_C7-Q) zyuemkssRrSDwZ2nrm262%4av>Q2z^pFvI>QsMbhT4Wtp<$9o`}`S$TTh>uiz=CdT3 zEg`uc@=r^VWR$Dy+((`mZ#r9~C^Wnk3V)GkO7Ie0qAAhJm}r`-A{K8Y6HV=WRBB)< zBGI(MFoxD_q0(#CN+y~b`8fI@fTKt>L9Jw>844JDYhR0#)+#N4FeDnE)PaDzJU5y3 z8E7jnqR0At*Mc^pOZQ zBp-}{((#uMga=^*7+l}?_0ZX1P(Em}VOWE)vQ!0EfP(r#i?8ObRx*if1Y_xwNCy=c zAVd-YeugCClVk=!Ow3L2XG2ueN;VfL~A^0={mB997iHP)8L# zun;2HyYdoUuy@Tc277;1yiOT1*r(*9G6_==!9E|u7}Oo0(t9IA2K%IZ9DNYLQ3QL3 z3=!;b7Qu7QGaSYG5S0`F7-HQgbS9v}paRwajy-ocqEOAcDXA%S#FV8tch{8UTFJGO z>!j97tjG3R7mrlh=7S5?!Lhjd-$dqv$ww4AG{A7j<_kY1$`fwkqVgiH+ci?6Scb^>l00PDg%6K-q)Zs{ECpo&N z*j8*yv4EQV=<{e{g+wnlMcu-Qaao8qlyKB$ag4Nf*zg^h1* zOp?BuIH2O2izvle|9?F7So*7pMUjDh48b^gNg*hcx0E=qK7w`peq0zFgEY97naPA9 z{6Lx-BI^mtO;(iy=N1X04LA``7`4FJpK*jRyA~vjX{}|#c)7KjFx*%OkuV&*1Sbr| zp_;B|IyT)5RYYrRnKX9iqx31JB$CE)3}a}|nJT>_twqvMKGnFQNbx~gd2Lg&ytN!8 zTn8i=Bp|?7RC3D&8NPUhn%yV+Qb32?VOa@hBIB&hWwQJR^ z&5~Ywd$gtP)1aCxdOPyzP@(hRj-Y45s^~#&Wafy+um-EWp~A+tF-C!}CaR6h z9rfB6bH_Xt7a&CL0Dgwt;gci~ARu=HjIWW}OJ^uCSjL7b_U7AJ0j-}3CM*SDZ1eHl zNT1d75fhf`hP5~3i?>t_I<=AcVkCw&SZa|9J3ODId^JOWiZ5RfAZaj$j~N&vFIN!o zpd-z4qbwN)-^izn(DuC5s>eAvq{7%d%%(6P?}?62#s% zGC}NWqb7*ou`nV*oZ}@pL6CE8j3WxWD&`q*VZKce&=$G-@y_351@QtO5s@1rFo>b; z94fgIZDnpym=ci-$y}e2d{DrY4=R+O*y#Ub@4MrxD7MGlO@Kf)N+2ZkgpLRyH$4av z5CMSzp?63F4K4IuLhmHBp_6ipq6ld8J`^b?Q4oayq5>9*f+7l7o?_#7rflxnxqB1z zeSZIa-{&QUnbYT-GiPRJXT5XVsnLLBTtMUqa+kmrjJu(_+@EygMa6a!9Q{Gf3ejQF zQ4w(7JGVN?shR8ZSXdYo78XlXT%08)Dm08FHF|fvl3)t!XMiOK-Z>HYaFF*BKMBMcXys9p2x6~0c`>{t-G8i^q%DIJWb5&&e8;OIfuYa=0;~*{k_Ei7-v&m zq6FYVOO5HILHGx?u=Pr&=T_9P@knN`GYL?Wl@G`)*L_Pwc?6l=c41pcb~_;S+18yW zjaM?>||(|cY5DtgjTwzqef{&Te-eXf9tD?ZC zifhArdi43CItQ?g<;B~AE__27Fr@NASE6nYo<(*NOS8PX-jSA=aIr99ArKK68x<8D z8w#({)BMq^JgDqmpVlZ3=6JoV0BsvKh~)k63c)vnf$6g36$~pG?;QcVw+G7_$Y6Sp zgBoe2`c4lyX%q=mhp_kl)4t*_W6IFQ*#InP%9u&+J&{+h)Kt9CepEIWJU4+P`Vf%W zUC!4aS6=zBPQ{pT-TdY>nc=QsV@QVkP-yf;51uxD#juj$P72tcxZzOcsrTFkDl~13 ziu)KD23c5Vw}G0iqYAEcaSY@OFf?{0b6x18k%xn1TGvZJ(MmNzVw@40)TLsGdZQM& z4y`x5c-z0NH`b=-=0N6GTEbOa>=|s=1d%=_V1Zcr7)x6W>0>Mz)g%|Ml`jZMpG)AG zW1Sn3)tCs&961<9()?pVZzq*7me5DA%4(UZ4g^fuK1ON+UymG1kZX=hf*e3dHHR*E z65!H}jGZLA+nL%vv61ljBU~&-cmza7$3|FUqhN2&KX`pVb@St7-nQZpNF446RanR{ z1k!VNeoa##nQHdgq5$m+Y!ey-$Q!N;B`%Td*17db#*ewfwVyD&WWz57{2gjTJXm_i z?F3$RRO%@&POb`6fMAQ0OJGss!&hCHPXL0ajx)W^)N$F3mf+Y72Y2Q7f~-+C5VI8! zd`hNdYO7{FQRGOrx+N57MEu)!MOzR9~1dnp|B(*EJc{#O4 z*+=LS?vMu0&WF_bV9qEtt0!NttnDds$7@(DmOBp67DMhhAZ%w`KKv+z-q({Skn?Vo zN-!msK)%K>(t!RX=w0o}OOFy4R}@k@)IQqVQGKx|PaqX~$rZ=1g4~OYj8t*xvfBZj z=8)Y)S(8^|%bcuA-f>Z}G33}5c>Y0`E@C+n6&V#C7Xeq9KAt~ONqk7)2Dd*7^b9N( zMS^l@I5{|MeSp@em*)t1M0^G-m{jeRJ4cJfpi(0FQz#!v?sar4xAaa+FP=<#KqY0| zCH-5V0|ZMZ!C+luGSOwJ3lKD!%qCaAEUAZ#N6T^^2QCdW2SFXu%M6mQadaz#;etr6 z_t`*cK+I?|tBu2^km`_1!fMa;;&n(ShLz0bC1B^3nhklL-Z`6gc2t3$WD}he*rYU> z_}Zz*v(3>z`Q|93D|c6OEn<)j0u_(2vSpbS9A#)$S!iab(ID!QdA7S5}z((2M7lZh&Rn3<(hQ075EEbjiO1T$)sJ ziT}8B^($M#Vxlc!77N^9xj45L_w?v6Xo!g+9aa`iRQi<i^f3c7+Lqc(?E`me^(?7Dj$Qqzq80)N z^hyWAjV?3ZL2MAoc#VZp`+D3G5I2rG1aM?|BO;OKjrD+G%o`R#3m~Mtp-UYGxIAxIj<2gp;(tD0 zv9iSy7ZGU*i-H^RT*<={6B`p9O%fyDr^&+;FrOo$IWW{0nOD~ZlmRZBM$pb~eI`)b zhfN~|LmQ#ai(qQHFY*qCmCP6|V2^<6#!RC3yp_l^$;V(uV<{3VZ~=mqBEV0Yc6CYY z0KqfJ!RvXoWb@IukS*dL1@%ZD^0464fNGx@62C9YZFErBVGI5jTSc;92cg-Ii9DV7 z_CYQ$S+Jdet<*=hpx)!%ho_T;htK&!v`aS9d4Y{eOA{6RZO8#w=YY*k{LRc@9jbi- zJ8B+)O&rKlhDuKhl|Tx%x7rFEiSDfiK@^meO3GR9bS9Z6XA*T}AD&Z&^$|H`5tb&~ zda)<7I8G^WJzCN%_u}ALA?n;dJgwwmLaZd&LtAu8EUgq^7-=-S33>-$7K2ly${rV2 zl>c?8xxANdvZ^!t@bvN#U>Y}AdkUH}8ML(A(G{2m=rqIRlias2gjBXfSS%4SQ4xmZ z5)ByxT9W2Mav5L-$M*=LDI5v8Qc|;gsC(B-YHB}XgGiw;Pze767?>uLN_{Jekz#D<_lw0v8}?GEsh@#_EV{t_$+rmg%{H>Vg=O**CuqsakTO0x}kj z3~Yq#FH3r<{T>dM8qBL7t^D?7)h>@Pv)hx{7LwgY2z_Gu@)Xh=!%9v!M8NiNvzy-Y zEKt!O&8R?<<`85Xo!NKXA6Y#zjSecSNBZ)51h9;rB^!%*Ou0}@^XalSNSIMVn`u-S zv7VU>-b2?j!+2YH>zQ)0ND9v)*1kN8JY$@RVHuu<*B1qKe;j)D`)|PRGH{f zzX`ZBZ`k0Xw@(`SSR%t?qhsN)x&K?awME*G4T}x8M3H+bA52sRl?#@wy%+cpU?JaM z2-ITwp=2Nhz*Hf61gxQG;^={4C6i?c*slFp;y})%_rPKPP4EbdzGkM5g2DNG3^)&u>yunC$pFxj{ygWmbJJ0di>BK+IqO zwDglkF7vz7Vg_4?jUX9pj!(NDf+mRHiM4Z;$)TkimB%p^mK>hK zFm&LM&6fyza9QG3usM4h?r}G+Iuvka2}1496U2!Aa)MYP=m7*x5Qvj5`2&&x=f@#G zWY)Xbu(Bm85{`OA!m}8B#tR>2eKVgoc<;4x&R$h7GDRJ!m77|D30G>FW z7$6cyA{K@vj-IpyCl1&RKE9t$H^#>>IYQL#19y=-yPWdKhg`G9F$oY(}-E(}^)oahR40(4qrI3T_*HLhrhj*fsQ zF8(d^s*{CZ=2q6zNL*N0ObmS$g`NQ!Vh$@N*f<7Dj(0m5_;8Sue$5Nij$`9UndB9r z$lG9Snn^y!u#zG73fOZ4!`bWz>}^0drY zOqAXE&AeSk8?{0|I~FYr;lCBmjtwdwju~tad9eRd6T>jLQ)C9KG7trlWU$wTA{7Vn zdLtOaN(MV9VCxK&4W{?h1S+)N$f|JOmspM%mTo$yH-*XQc4;R%JZyQgmoHBSy8DZ} zQcV4af@JDHBddhM#3@wjM1>N0qyzX4%_C3nw({~wIm?tc`7&k7K%P)C29m4Vj%boo zXSP2-i?wE;Je|KIgjzX}-icg?9J{!&5;?YRO>1@8K$2DqazOQwO<=32jfYB`yRCll(6*fhS!<< zp|q(B^C~c);kbk(y`0sQ+sNf&x{dDooKAo%pvwYbHX2M4_vN=Ilz?m=WyF~pzJokR z-Z>%l-y-sYFsx*q(*m|SBnRULt=?005UTY5X3D#+7E921y=oW%{e|^91{dO!T2CI9 z@A0r4guKPwSkw}v_dfU*ZKtd28oEp>TZB1GJ6TO6=0`$JEKiwt?o`Rx5zo&}3>?Jc ztKT4g%}vi<%VN|F_=j`Uh(XD$yD{?m!AMRww+r%h%d4Bd(ftwv{s2U=(&t2 zbxG!V{kU7L!QAxg8)sD_?;go-MegTL_ai0ZpK)pw02u3zM}<(~MEM*R_8X4of2(#L zEXQ|%5lTItKSmuem|wu`Qm{@bREJ9 zEVNxyl)q8kodcaM+Rz}d+_wr|{$K2G5Dur^Xw+*Sc zn5rkfHs_{Z2yQ{HDJI{xUL6#5;_X(E5va19aozCy9bufb^{?oi_l>)QR{N}vBy_41# z12fZwohkGJ<*&G0gviz}HMhxRM zqY0}$NfV5n#N8jWiE_=}g@pN$ChD0X{PMjIs0jLk&9WPInTD`WQjm{7&!4D%GlXBg z_cexMSFxQ1L&4R1%1JtqkU+ke@J`gLipK^lsi z+1+}5hmw|G=Z`faxNb8ZZ-&tKMt%zk0dCeqj`_mB9Mo6%pjI6?zlpkOC?C{pY$$f4 z;<}-HR8M`AKVIE8l#l9O48}%v3k(3gP?3Vu4~<}ZBHOc%K$-Ue6kEDD`G|fZM)V^* zqML8Sh<1djL%yS&+zy#}$esMvo-Tg;<4*o1?TKN? z9b75DIcj#9L|6M=FMji5(!KlxsuqV}`E890Zq2Mfp8h$%mDa(~M=w=|w=PfpoZrk3 zV~JaWgMZ2IsP)AdAW&Npe|V=4fg7qd^7b$J&4GaP<}dj(6^XCW&rS(H!+NlCG8nhG zYj%$NS=NXvP1JeAxS!3Y66wi<`PmHUp*MH#yPyA}m%3#bceITdjyc+bVLW}z*nBk) zR+v4uhX*mhRhEVu~f+uZ$VTXP8xi-tur}LXZEDvw3N887)xwg za+)PFGAbrEGCFN^Y(zv-#AvwDASRB)*PXqxT%e3K3u~$khr4PBw4nDA_wol*3HX8@ zic}^IRDr%^;o61%YQ^FFvnInqcs&bpFUy%;uRgn@UktUb-Cw1yL=snBPUKqlL0a}2 z&Wqn$epaVC7XD#ecRVV@dJcN%y5n{G+E(PwW7dBBLty$pN2zm%%WIJU7wYk<)|b^a zOmSS=*KtA6(q2g`)wikIi>unhP1UTuYwMe;T1ilAKI~y)C4^*0789iqnc|o*1$-9` zJ|kPh8bRLdS>Q+h9Cyu!bgyB3O8v~uJk12pi^4p01FgTP-@BQjl?#l0zH3{MwIw+- zc{dyx4YIaT|8lcTqzi#r=3``;W85;>tNBs@x4`&Io&cXmqYAeo2ZMAEZ!v<8eP|u) zYPB=`!??(4FNA;#Dx2g5l8h%ev?6zpUa3Il*R>v32ab@JJI@&5->qkzq>dROFL!#B zLRlK=jvmj2V#}QtgtgP%D-CPJYX#imu45l>p4z*Fz-VckMxZe9-)BwJcH$ORCu|x) z5*t|?8DUu!%|7AqiV1?VV`FPu#fZU5>6e;V!?a@?<+qP0-`jZAsc!l)WL{Uxgl;?js(zKCY^djO6M5FAT?$ z>bEdbv|7AM?O%RYEoUm4z`RXuF_Kq{%|>!hdn(krM|~RpVazhqgy!+kL%(E}(c0>- zsQpIDDP@ikj`&!tOUc<5d2QMKy=c>5kqeM*8nhe9Hw~JNWC;}8^I>9VIoD>B&?b9i zY3+N2OzQw;@7|Hf?5s#~jO1l6z_KFAjb%C0QkFL>d!21#tZNnR0;R8K{LBNFo030b ztxsy7<7Vd17eK@~>n0y? ztv8BTYVCQ>7lSc3t2m06uN0h?uh=e#Br9Ld`v8iSuQs00;1;S5dP3_os&ruHk;o3# z4rF{3jLvW@1^eI>teGfM>CCFYO_S{)8~v-S^NPqiou0O)s@e+5Odl$ib+T{^8>JPa z$kfi(!$w$Xl-}?(O65e}VRG*V=|(c@FKDbf#b^~^1F+FLIEs(f!e^~7Dr(6no)tdC zaBR2^@!?VqQv3YRS>Xg9vft5={fdWdc~2{R4?GF^0gENSBo<4`um8g!ofYv!dRwb0 z+LM%rK1i-*;nRj@DER#-pnl2wE97`@>wXg4*Xkz`FqZEhdm6cNLjE)Gqf?du(x#vF zJ1x~9O6hlA#u=LFk|Z^WTlP~U)7cv$R69>fHWO! z?We6VG*fO%lE{U@)`Jp)k=qSZZtPPo)rMLxX;w@XrbxWR{>B9NVamB5xYxISFt@RK zJc;M1Bb1L}E_@4m=v>%#gmq;_^->b|`cE(%^ZLRhJ{P`4?mhdzd%ZU~K4Lvly_5M| zs3fB#wcz$0AM(U=);RLXZCGsAPDUa#-w#UW^9W#>&m-le13!}c-ueI%k#5b`o}tu{ z*Eb+uW37F(1Vb|&+~cvC)*~eKIhek_$IO{i z+!9U!u>Z;_!iX|@O#q2c_x5(?%(f0wwVEl&HE2wt>=A2Xda+TxVxD!m+8n+VFyET0 zwUB6t&5z>w)=af&3VqDi0a0yZN|oiL!wanNrK@;Mj+NvyGJ#81Lo@ZC_!JVo$lBBo zBY=FxRYJ(hMb?(u5R8#KU>C!vy4X5Q!nkt3S_s*;*m_7CXTT`k#>rb^-A=hZwG^mg zZiLPAnHY=B^8kBxpEbk?E6ww5P3-V6j@^;?*K1#$BrmtV6=MEr92iknD8YsodrFeN z!a7;ohlONcDS92ZFtPWgknJn2(MDJhTYOh#FG6qylFkioHw52u4qIhys%jr1Q1$^U zP_XQ{e@KZ#chBVcCaU24hf` z(4I-CJY`|h#s^HTC$BJRPU zOvKef#KlxZQH+|4@h~F7r%vd!{6Q*V&s0ES`kmOGZ8lUQ-`cDzl&`5M>{~NvVL4k2 z*);&C`(fS=>wV?F6mmF%S|~v+dBHkOt(Ycng)G;>gvsI4yXu#z{1DGc-o_RrSVz8G z#VxKe*NwlH&-q7Z`$HOh$$C_aNP{kY;%CnOByM5O9+5`Yy=t=H3MDA zxi|bv=ibUar)U2~jn%1Xe8QeYB``SlgfzZ>>2Sd6r>JYw_%yu=!!ehc4o0WbG=-@INjJxD%0!V0YUY6<+qxTEoc(Eh_TXX5MDmWp~6HaCrDHC`zN z5w7I4u2k=FCqcgSx(keLWxNlX(AU{O05u0gR=53HCkJTtYinkl52k9o1toC7>y^Md^67>wq2Arir0Or*s^BnrOEn(#k( z(n?FOzX9ng5ZsU%8CWHeJ$$ zWHp-MO9Fqh`qvMSv%pPGqmxD_M@GUsib>&?lvGPnTx4WQSVU5|6T}2%Vp76JhsQ*Q z$Ba&miHwR(iw%ny4NrW+(;`yBlVg&d+1IBZRf40UK6(UBl@_-JSLq8SssgTcJv(QzqoyG#mPa5p+7E+!4`&<&4_NsWt&i%KI0 z|F+h2=3JWYP=aHV!bhh>$Bm9ki5MN377>=5nidw82HydRj02UToS6Yzjwt2wC6jh+ zveYk!Yhshl;Uut%txl`(@UVoAt)~ocIB#CdkcLTN;i+Kan3yOSnyB#Dq{y@s%joEs zs1!?7G^`NMHrWhA6I=FkICA{gP2fEdi&rWO${C-?hQRdM-h)Rb^y>6XkCA12Wvm2U zj=ho^4sS{NeK0*RxE!s>!Iqnck@W*+_>otC_`hKLzhL{nU>hCv|2Nor_g|~2-@`nv zeCpSDph=l<-y8$FE|0{%;~qi zn?nEEe0$0HA7@tR0rc?ZtfJc8*td$IUB|!N+vRQpZd4&FN z<+OBr#YY~Qx2bu0J!ns7TGgk2vCppt)4$lM%Mkh(J3-Wd{>AqB8q&XL^)M~HXC+D` zy*K?2SvWtWHp}Vy{8R#qcKF#7%OND@kj$cewLg3`3YY)5{m_iO@hQ?k0jum zMof(TZZuvNG~O08UiL@>zJtPOeCkHyf}n9j(751{27Eh#(NLa~P5QT>@z`_RqEAxz5 z0)3T0pXCu9u3cmz*xW?O6Et2EH1f=79DMnU08-M#c0xPtM&Ohn@R=ZR%8USWPqoD(#T zOEeN5OE{~psW@fgw8<%Ho8bHAJcYnJB|xw>sXE)%Tl?OP>McgKhLcRTRZ`SH1npZA z?KpBQ*UyKvnrriW^n{lilX9Nro%AA;UZ~!Rix8MD4|Mf(I?y%9+-bJ&)W+%DVX9Lw zG}>5#f!_aAfXWPmw(OpVO66gH(Scv{TSF6R25tviE2kUGR4o=NBGi+D3S5 z7ZE7ivajy~tSDZ^K_KEW@;A$D+f~1th7R^TW&cXsTsu^wiG~L;5o9&XKjl#He53jDvPSxCS$=Q;;8YFjzZDEiH zry%v-_KzatciKj1vn0~|0Z`y{)av+o{T zk(b{VOo%_RTNAgdp|%^f6ZXVz%UE(e-`2(qqq)`ALOUR1cmZvao&02NGZe<;9T|l| z>W4k-M9Hz)>ug%ODRUF8m2)6a(oN(YVYju_K9WhPTgEznvD?NfX581lV2jjln4pll zFWQ!Cn2GFXb-5hV5wZxt(7m?4UVeWYI*w293L&rTvo-Se8Rzo|dHv3+Mp_m4i2)e^Te3J{)}FDw(jGJX&Pys-74} z*ZyH7e%Tg(wV3%mTrWK2@nB|(%&#LYKGevN2jH%CRMWe`lNbL<-6f{mPxNff@5PllS8T*y3wW1ZF4sOVd z24h-k9~hdcA&bV7IyY>s%@E#7Y^;4@hVb7TwipwHkkz9bYj@2MF5ZOs*@H;x1W;Q< zAz=@}L8O!4*xH#OFb)A`2(Nx?vq%Ww3}`4?x*Lo?@ja?s-Ke&Nqw@M*Bti-`L841W zXV!PNuNAfJ1UA7Sgm4ptvw1lQeue=jA?e;B&Z$4x1}j=0gEsWg=dqht+G;}#&2*sp zfQWZ(DMkeLTJqlqc1LOB%n%Ch+13~l*r^;aV-sI9_}f3)LL_*j72~;nSQ});E#_A2 zXoAG7c<5(aEk(7vS+TPT0z2q&?B$%t)i=z!^ehwUU2~*9CP?&k?L>l!;P=cmWK_ zUb}Xn5tuGnkS~tqx?zrNzr%Uw51XQ@wI)*M?My=a7B)m!<4v%bMKB$gdgSWs+o!6r z6Zr{)C@QI#;P?rR@QLi1{_6?$i;9{!ksmYYiNV-2{WcT%F#`%tpXqyImbUwOPkrCL zxxFr#s9c%qY3$~E+t+A|u`Nr-E^r}gMk*XTygl7h-~9^qscMc;d>7V;9cI|h6?YD( zWS^+0hlJ*DU^u3Ep3t1a)3Y%iBw+_EJoHVfVqdF%DU5_2P*;VJ&`<{^ ziLF5IcsTn7UoZh1SV+dN8>^^K0tS5@D}wj4b6{aqaDBc44{A&3%aEq}|F=|s8bQJ4 z!w1yZfsaUX@b;}`y&EXix3_KsSS z8N!R9_ID)&$Q-WXA|Xzg1q;mT77yO(92sVxt!Q6kX6$9WisAOg+V{Abg&f^>@d9Xa zFx97)5shuTxJI+nKa_;5kFfVpAD!fKa->!-Gh%FBVK;=-M_9ow5&D{7@luPdeRIxS zEp!s{2iI*L(YU!(Yc+Hdzx_g`5U)3IF780edoW$dO8MTLDYFIppANSha!M=s8 z=wRQk=1t=B!yXLFlF(`pjGiE*IOSx?a>6Xj^|>tN19C46LY;kX@8l%s*-rLQMZ1QX zv-i}#xUSW zH5UzAxGSD49C0N|%@DGU$86YylrF^C+S~rTqOKI;EW>bY&?gIVD115MgqVv8LbKd@ zM4>CHR%BQE`9rkVC?k}>6Hu_fCx+nwf)T-9($D^pb{w^fWfff|oisGlYW?_R(tCit ztqB5K!(28)h#hF}B_SB|vi`YDEFGcC3k|DZmM4V<+a<0&L`xIIs6Z0MnjA!e;M zhGuGBK$ttizCc0%YoW3HN{ppJD*ilR`AGZwu=FyJbuGON&1~s4h15v4PctIGsqDt2 z?fI)6v~eZ~&H*X*hB6D|XzCv_#Pac37Pq*JO`c1Gkl#3khkO=gs)sxatF=>jK7Dtz zeUJL`6dvR+VlWm}o2T%aW-U25fYvFGDkB z*<~vEWQskfM(HCD512`2m{HU05fUq--}#sbTc+O)nr@$=u9(XGZYkwy@ViA*x!+Cv z?CR5M?o{q~yD=CW*Hu&bzu#_X0?7iz2n7Xt&^aC zHLVH+!K%wE)CSW?BC#g>PLs`5XBu1Qkep9Qs`Ib)_F#pStb#R4{7So3QQJ-9FEO|T zeqIb$8|a}6pXsaZd0uMIY4XBH|1g0Lw|l)k&`TXLjap$SGQdI?J$9=}3^_Y5zl~RV zBY>nO7RbkRuSq4>Lx<_kE`2f6J-O7Q#O@{yYJuufAO2#K@oIJ}sB`}Pt8*1?gTw{b zL|LU|UF6Di)I9_obw3!MUc&LRo8@1e<~+OAK1WecOruWvoMCL3j~)~@cySu9I6U}a zSw8yr4v^s&A;XVuGTZ^m^n!*FyX?yq_0j1(T70Lw%*0pSzY0kx{J)Hr>>PWJ5=)dh zdWjn~oxLsNd@t9Y2AeVPFZ#NS%hO&H_U;Ki^a7Bh`SuSLHF>)1X>Unz)$R7~iaL3^ z>}f?VIOb{ab!#dMy1!qYO9|6!uAy({O47Q%kxHF`a&Qv+M;kQ(1cn@} zJVX3fL4CsZTsl%VXxQOtwx>LNuha`@9!}-&XYN2EZ*>!S^9-JmVdu$@d^Z0|YqFp& zB;=BJ?LR5b1@GE>tBR8n;IARN;zhr4v|t9$%t>L6hi1pH zEH`eL$+C~Kid@ZsY{qUs^}v};svi0--hip>JW1S;-(4-4$=~^W>>HRtZ&U8iqhLEC z6#f>V=&Qkxe`~*^{KaL=cr(8P0xgn2_uR6NSNzC98>oKw?9PxaL#BqH(A4jP{FY40 z&#zCejGNX9J{AHZg_Dq&ZB3LC+TK&c8t@4Xw;)?SxNSeHwV4GidSYYSw(RL&M?*7R z6115`HvM3ak`RoA{l_MQ?To);@1kfUWP)BpX2DDJ!>?V_;148%F+x8zp(u_zCH`pt zLeZuhkV}`)^9{{Z{^_&GPe0pJOc4IA8y~7=nIUNZg=LpJhoS$4{q8(7guDN>zh#2J zOj=-uF!4A0TnWKw(n}@=C^LR8--r0Q%$|ZL% z&%)_w4Bf-FI~#mq@o=`oqS`FdF{J~W*SIGW|OUtId*wM_|y#H zepSaj6NG$!#}e(9jNnH_(WmsMN#^GJwMogaXZ_*HR6n>xx0<8AM9P>l8Vkc4wB<*V z(yKe3)6_ZAprPrmsVOcyeKa$`k?2)pjt?9_y;hIp6eT{P)y9oEvle9N z0r^nYZ!UOLpTj?Sarb$pN?=ulfQF5pPjYSwbnJ$Ea1aFFvurzutgY$D(b^h%jLaSv z%wivc89h3LW^P?hY)77Xa0?Q4Sm$E#nmv2zf65%buF0U{;ryeHpTp4`V1DLmNgXd}lA^?{J)Pt1i$bAOKWUSmfEMXdv0 zJ~SrAo?=vMLJv)hcbe^qCP$k(?x-#2%89X`1iRz$Jyl5i=8kP@+qrUf9O{B)*|El4 zzJyZ%l0JpL&j%u&ObyepQZ!R$m}eg6=@t%~sy#o~bI^?zTrov4$3JN0IHqVbFtV#g zSzu^})Z_(#q`p?Uz6r*eFvl=0TgFgl%q7b#j*EVng}B>iO}OJNEgxg>{Wp5I4~cM0 zr?~7ha?+F3=S>3gKG8Wiu5!e8_~(uyS@^P1-5 z?>GlU|GbGlWX*?H8hTZl0#Ca?yi#B7I+HvX=jc@_7qaY{C#I74lUJVbNUcR zGln9sq*(A9P~dl0sHs<`Q|Ofd1;1Tqa<5bCuqo>+`WHJh^ELg8Jq^0Sdg&tXCjE;| zd*9H%V4%sQ`5_B@sA7=lm-7?02~Rrq`>201ujD6e+a&+%7h(7*TW!moYUFSy$D@At zDPvaW!e9KTt)WSzC~Y1;YU`no9kmVZ46|0#c`kacqqc#KP%{9qw5QE;Ht6Db%R6}U zoLKhmEqm*hy-5&>!3jG&U#*9ur`8s=iz6=7?GE&Cv{NJJkvlyclQfLWjE`= zy8H5TA6Odhg1E&cAL-Q-CdL$rX+nJ$!8)AaC# zRu7Zrk+yvtM@4bWdtwa$Pbbjtw0NTmj&yYS&$u+UNO+ISG$O* z(ozzQX0SUd&-?7;=*@XFjl&jK;gk@B)W8IZoq7Cnu)|kXf1Srqj=BVFVuHX!)LLFNT8{G6fzn4ME}Y5p`98}s7tWe!SmbWsP+C%H+E?#Q%VOyJr1Donv8 zE&RoTG65{Uuq!#A>}W&={6!0zvs0cSNB_#NqC(nXbN+<+&VwlqU%1L@J}-(^QH?|v z;dAkHFg@MuoiLwo_L}qL1(Aoo38NiT$C_m<*Xns8MTwgf zhlLaroNhUL;KY`M=6$+VQn*#BM(=J!PFE2!X@6mk%rw8xcV>@u5I8ovfSV?8fovLe z0XNO>5Z)w)yO?%vuJHM@j!?wjQ3?L`(p+9-h3p5|z% z4Mt!nStc2psrLflM*rXI84+04nj*uhgBOs~(;c4}VO?2ksTso1nT~!&1V)^g!H%Eh z*y@KR7iCiTY{xs=ix|UICUu(Qa8SX%pW~Qe!siIaV(TY>Z8*=-&In7D*fQ;UMY3U@ zqp?LRqb~JUApsh z<>i4bHFY6!4W`uZ3!L*7IpCzd5d*lPoHEy)8(ElHP-A)05(oUe06#Cn&tCX>34UIN zpMCK23jFMcp9Ao75Pn{DCM|ib^#QMD3;FApfd=tise}e*ka?dEN%X&3hYXA=aA@HM zWvGs93T$I&rk)Cb%u@{r%$a(~uxj{1k`+_XSt4#U$0`$Zu-Pjqw%{>EO#+Ia_-53Fb1sNpG%kmYcLocP!iwR z>Pt?xEof*$m0Si!6jvv>xm`h%QiAMs=FN5m@TMxJ3K8=($;rL$t1Kkro+_AJ3J6v`5WeO#%mkVs#%*f<>ExWoEz?&}XGx^-P2E(yE zjhUHzi4TX{!>!^uiMhVKwD8c^`rRDytAgH&EP#1a^Jfr>u3}AD&nu}JEfTAk!v-Ii*pg#Q=@*BL3 zJ}zk;zQ2nlVwJf*cULpa~Rpsfi) z+W`e(S`Qh)3q;}T45LiO%z5S?`cKKgg1Oox%*z!m;};Rfpn|5_c-$@d>!p9l@9<#o z*R6}Vziy_4vA-%CNaC~B)}+?Zg74LXi@3MGf}xnVZePSJy$y@_6A2Fk$jVRiKH$rW z^6yB8hI6;5mw_O7D?Ahj_Q526&w>`@=7@rU>d%X0kG;ngz6TxDV@pOB991hUmOb`Y zBUFu~f_7?+#mr-oU;kYS#rE5N0Cni4uAeUAPb0AC%u~xwK?&aQ{Ci4(GbyE@K+!rb zMve<(nh;zXDG8Ou$yCe$u4JfLsg?81v;w%3tp8%X(LDr{V!3_bVzPHk!Dre)Ll2D( zwu~QVXr|Et2y7Yej=+}j^UV-Oq!&a;9KhEDTx$3VHTo__Tj{+KDdb&jD?MXu!BdK6 zMG$-|J!dgr^5+XAx$W>^C1+X z+x2Kjbz2yRlx;9{%P1J9-Nh2QLj3k(;y3Y4JlVX;CpZCyrXJ!HMu%SnG&MMfcWk_m^lj`G9vrBsTi#-Bu&fcTV`mc;WK{;*)*@9xgSOlwd}X^3R-GgF$OC=0V896!4oDd zKKv6{?8OKyqyeGJ0w|3z3%0L_JfVdcOoNL2*;>1W1s`bdV5&6dAV+9vg1a1+IPmj2 z{Ja4_PWbr`{2YRxH{s_k_&E$eZ^O?K_&Ewc$KdBU{Ji5_m|6I0kk{u+_(~_pAXBN+ zu#0ADlUdseKhwU%(zy!Jn}%j;?Jt)Q-yMZ5jR>p|y)VQ1QKI^GV?Wa2*Xzy6m2HJB z$y>43M~ws+$C3-%x@x{lQM^#&djSPMW1m+gTnIN#zqn(W41(eCbQPo0BFsgRfT4=pw49enCUg3NR0TeWDIiei`Y)N=zbc9-(aE4!`mqPl*msC6+IuXUI5+>im_^hBZuW-K>& z=zHRY!b9p|phHXCLrY6P5t0qM#4XRdH##K|7@#_7neTDax`b5dM@-v98Ik>-&rVc<;TUpQQW zFV_QTJ(5wmI37tp)Cf!Z9W1=4wCA9A-z4o3XtE2Gl}0s}@zO|L#`JsOrXM?YXr^CJ zK?(Guo3tV3BdS|tjN+RAK|ad$JM5;P$3dRr(vO|7F&|{|_OZeoHDWpU?XczCw|_bgvD^dx0V`890viO$ zXQ78WcKgD@28ud-Ie)}h&N%^oaK-IoOpzP=>nq2k^?wA~(TyTqv0o+KJ8&AS&&W%!iR`407 z!V1*QQoXu@&oISj3;U}LR`407J_chmOqCUUhN0kehVj6W?ZTS(L2=jTir7l&4%Fy8 z({%;^WL&R5FE88}`c7rCbMLM=^3ykk&9o#e0{b}Fh!s3nbX~y`Cg#GO3%4LOpZ^3x zWWC_H25}_u-`}ZBnq4f6BX3^-mNqw*d4eTivBPwj17E)478g(Wiw$iF8(Px(a^W7W zgi_a^u&~nWQ{2LwwgjwuWOp4StgEiOB_ntNQMg+nzP=HIoi6YBOJS7ur;MQji?&}B zb~YkVH%E?k!IPr}m#yw)^yXrtmE7Y(R=Ui>2fZGAH;F!wJ9nkk9EbDdjDxSkz>fwx)YVdeQJ39a2z52`=+}kMYjZJA=3%o|at}*c`OiG; z&l|vKuVCcBj1GQN*pZwszT8YZ=Em)9!Oigxx$U_H+5V4~3s7T5C$s;J`7sg*kBRRosCMur3FFRz~mw zK<>Z>43`5Bl`&LcvG&KpwnlMWEXKpf4L!z1nEs}%Q9QQKa`}(KYuaUuD=mTb7hf@MnN!lfzY3RnTApV{UjLIpUI*s)=4 zBfK#a28yA>?74op#U&6~rxwjn+K{W!Hu0ia4CQNB(?zc4`R@m>qKisj2FhME>y05< z4s5%c=Rk@)m3xcw$7ts;4D}*J?{Puz^lFm3x2S{q zwi`zs0ytU%i#w=WR+CBIxowpnsrlpuTq{8ifD}ibncy1%eRFPW=QDmqRTQo28ssq9 zSBtS|(Snw?hWPi&ovk&&u#y_#0=B^#qI{i$`RYCO*N_Hha#yHvYvh_cQs4rFQY){6 z3jE+GCZ?fFQW+qo=hh&5{EMz>gRwZ0=f0Ywl%u}0hI{(aHNw-s#zHVpzeZd1$Yh>=ZH?^d&j|6pgyE;2USTbA6-Gs+ zEjktE=|LDqvU6uauR46nkb1hhR_3Tf07vHOm)CGlk0IGZ+&sOTAO}E_r|W`$3h3bJ zB(r`|bu~JIbg&c!lOx-*GD!1BbE{UcM1_k+1#XTF&JH9Q!7e~(Tezz@Q0tF1lDw?1 z5Fv3b50G>WD{0?Lz>Z!k2Z-L2vX%vi0*A4N*eqKr_q+^LN<#}sN=oU>Kq(elqyB7KMTK!a)wC!KDaS@HteLwa7t0WCm=F%g@%;+$ za~gg}!EOF!_>FxW!mrXg9)8~IMEJE>CkIY5+M)*z3%_RTsa`ya{VO34JZEJygQ!k>S)@Rn71x~w6qje^OCWS=e!r7ZO1xFzL_E9 z+5$GCGuD0#E7@b5fPD#cFwR(d&kO7Lj8zEspr844?GjB8xB$VT5%@`tt4p#GAZRqU zA5`Qo?9iZ5Q7zpLmO~$PCr8cum>sgBimEd^U@T^b>sU9*4l{&&U#{aZ`WuFo>@Y>Z z{_JK4z2_cKDUDGeDXFS616507)VChx$m-K^tUe{9x|I$#R)r~fJ5~%f?qN#SUynjZ z5`2~r99)gXZ*3TK8o%D)dga7#aM=~(TwXEuSWg4FyRu%y@kA^Pn*hhr7DF75TQA4) z0wLz}>v*C4d>k;0alAyx1`tvl z>ry8Ju83oQ@94-dHj4)NT3Uu!;A4yt5uwrK__iz-%c#F{X+H^B|85|S=BgDUOVLrc z^4Fh?l{9G^BsVu##z33fQ}#jxnV5p6}Q5koL)vLwdEq1qc?>z)$jX zU6M}$qBNwrQsB1%2AlY=&KGg*0zg_bqd;i;3!_kc)Xj|2JPWzLWRy)p*v45rzT06~ z$te1@H*s0AQS_c@pi&y&KvL3MX9jw^;yalR1B-9i$qAeqK;v6DfTRr56(U@B0I8el zno@@RTZFFQi7d=Vf+Nr{e-=FRe+%<%Jj}DR_8rmWIXoLE2)7^MhG(obMEJ zzLLe`{3ACiXE7BP=Ql8nG;X^Dy=yQav|K*x#!-g=jx5giX7M<$m@UV7uAl`FQk?5j zI{;Uouf3zg!(z$7jzu+vPsc{bg~G>g8;LpFL%;v8d2HUU>Y@L5y{rJOakgi#-YcXG z$>yORhhZh_*ad7$o!g+8Mv_MwnFsK=w1i@SWa|%S_AJH0Y&)7 z**vJvXN#b|kA+}C{a@N*2%{%YU`nW+v0Oj%st$>z&oxbW(<+cNlwpa?)xXzQ}y26P(Q?Pe5J z^NxX!F_XkFJ+!0YL(DLRPnz-GcoH-kN=?0+&qlPHWOjc)kc7>|$f!5I*ZYCm^H^oc zgWnSZrfuL+Js-nL<|!1ga76?)PuMAcWIMfc2Fd)%7D%e*teZlgxu3Q@3AawpYlzD8 zVnJpGbkhwbU@dvNE>to=&;b8%PEqv=)HYGXHJ1zHBz;)Yo%EV(06+#{<~f~S6acmr z=%|;O=T)q-WS-MP)>k(00Dlj|O6GZAz!sXBNAEnwI?3HTt^HLXDk-kB1I0^2-1jz( z1U8u$^2z+bf}(2397rFgZRmue>YlazUe*AOOo`9{e3FIxw-8q}+|PrL{>yM5n*rfo zXCn{ynj1y9KebT~)F)|+9;j^1{p3bD@;(;g#ct%`J_1v@y6XL&zL*G$_6!UnCFD;8 zxp5o$6h73Ap$-8IS*S;DHmF%Yqg_NO7(UZ2?>n=heLlfyT8yr%2nWv)V-HcSyM~FX;bn;by$~NfkVSPUI0237n&6S;M0GhU z@w>c4AGL{x_wY?3ycc6>*gU+Dwiv>D;U+n}e-d)e+r+~=-;GKRro!U;bqpg7+s}gD z!A(5AbKE%U5Wtbe_pD8PD!)MP{pB{5>-QJ}kQCy&;L`z}hIr+bMFC!MmPkC4N5zJN zOZ)f88&3}4ZsF0;O>*m;4kUkj=!}2rOrZ7?)>d+8MO?~s2dqa!+-I|AhyF`g#(Oh! zXf%uKJql5R?KQ~4pscA%U1Di$AC9Jp2Lc@~CuC6$EG386g}J?nWS%aD8=}@i6oW+! z^S3Zb6hwLOx}qAce%U5tJ@qo9w8e@_M)46wiQUYjJQ2f6?&2+A6Sz^3zIsnLphD~O zsxQ3n3%W}>>%2f`SCCJqBgTUKFCOG0^C4q}m6}3U^}}pzDAdbTol%DPRfPE9ge=OZ zfFIB(9}Z4gPLz8p)qOX?+-=*;gFA1t2<{VD2o~JMw8aqI#hc~et}4WP2QIXvrTRB+ zRKCVkSaAQ2VWiRW7xexM<3QKnU$gNDAccDn)b=9BUnz#I zILH9r=0;(D0V%+vQJBt$%h02l&;y*5Wr6=dxX~<-2Tof~7AR+~Z^5q!pbC-GK`S9=CBoA|D>o`FFcp>#+G7}L{6Yo2CkamnE!;Tj5Wtbm z^Q zS29gUA?`bb2mfUZE1Bjg0sD!YY4o0tfQlacDv*>k*O`IlZ0bMo!TY|xlpzcJ7!mlN zeF_ykcNJFPm)e7S!u;0_)^PU(Wh;s_Nrg^A1#n9i_kY2}0CBI}q^XGCtLy5ta28{H_EM#ZNjoJclCKwJkp@#T%h(2R#9@|K|-t}U@{utpI}(Y9Q_3B zc~HR^-+E8UR=#Zi4$NU(whs`v0KsA#_(>kFOY+uM6x&=MOKNc~-42PNFsrk$cJE_$ zfS9hq%}3FY8GN@P=a$T%->F_{8;|7>3@e#os8FTuHrWh%Pc5KQ8p}XZ(o|;#nzC4C zXIfzNZ@pV&aY?Q#%#>o0>rxnL)wv8wlZ2!|n}uvg7-TwCw**fsXR7uT%2_8NT&Hg1 z;W}xX2v>rIVBxxnwiv>7(>6I=#|ZJVxAAawx=|^>R9Lv4#4yspJSXTCgT-mVUf{-2 zhX9T&T-R>n;rcCL7{hg(pal?8xav}`0^HK+ImQxK8n3aIXn0u09*VP>+12MA4SnR` zfh;j8yLu|p9>DT%og1K4+V0s=rwO^dw)1$ci(w^uOcJm)w=+jYWu)FygCwmMYj8De zyBxDq1bz*`r@QFDQ}Se8nn$*ynB`jWm=#*lhv6j$VXk%cAzQFn*wtgOMQ^O16tr`N zd_A`FpiRTDk}YNm*d%TXw4~5`MgSEWv>|t4>FuVe&I>ek#VokMkxz@l%(Y@6>p`p4 zWk@<-ND9PR&@PAQpg}tc{H>gzEvLTDx=v9G_YtZPu@5WJw0FG>>eU5uCU1_VKfMtwe z{c8~CV8o5fY+dp*+j#_kQK7h61xsv9bPPE*vbbKw=$P2JPz&)7UOyi0)id;Y(>^k3 zO>Q80@G~s3N|AVnQn4gZ>w%S&Ty}#{vg-~WzDXEXGRQgsJA8*c&*(ivcJS$T+73B% zvji?cu+Rm5Qt0ZEJhOv`?(W}ob;44MYYRPBEc8{cq8`n@8{8J9zZ|u|q^} zgPka*SoGGXEr#f=zf+FhTp?$jojiIwxKViuQ(@8D7sJq@LNki~WszQ_!*N&*RINR{ zsrr-~R~-ttviUb?C!c?(?3AO|F609UDSCCu0|1xKzYx8!-3iA^<5<1y9TOHENwUJ$ zPo%Ny-g9+ianP1uiu@~v%Q#`%KMvHgv5u1K?iVtx1)I@Y*^Xf)d%PrI^SC|2NO4m% z=jgqAcJcsz6YOEEm-h*LfM5X(JSE@OrCGJJG=Qt=O0mk98RFRHk68#;cki-T*0UfE z5Y}@cF-u&++DVppLrC}WP9DT}Fsx*WR|PCw%|tzeS_1iv-usQ{J>*rFT={i`ui~b! z&J*-yv3xAxl&>%4%T~ZIi52jHTSXOUO#8Vh#ngqEHZc;@x5h3MM^YmCkI(^pjz+cO z&!vsuv+zmvj~(Skwx?oRdjQ4s)4O;;$L|sWJsJzb0y>4Z7y>$FmmJVXgovYd@qk|D zMrARk!UB3LhLKc0D(G$6#i!%NZX9(8;K+h`*e)K-{{al+R9q-%0fZFHy3~UKR|GRW z#R-qG@U?GDq{X7|azQksE^pe!cQs%lhB39cVPyxOs^N<@l$`hjA=Nps7!Bv|Fsx*a z69V=oXkc9W>OEiW;-UNitYHl0_XRFMuuukmQYh<^oZ00H z>z69U@c1u0hIR8zEtfrDUanEvX~1P$TEV-KpGzh=FGQ`go5yt|hLucmM!<&cmQAAf zv;r!nlQWQ%wAPt{)-0geG8i18&7;MZQu$@&XaIXM4O4GO86sa0A_EgPIS+u5r;~F$ zcwae_v!@WgQnffoU9p>o@Y3BPgkQo!un>NMwirVAh23%pUl!uocJmNE1Q>^R<9&xkvV1z31^gJfJ)6VF8WiteXP&aky>H0W%t%v*??FN)T^|f4vQ! z>~*mM_VDQbp*`pr5?ZPwTPX_zWvUmtlZ^P{O5{vkQ-IvScWaPuLrX1)k(q%~vC>j_ z-xY$7+QY+p7KW7!bX&kqb2E_MGa0Dp;jN5vsg5kAGYsIpIX7E1Rl!dl4Ji&29)RU% z9#Fp%Sf_Wmsq#$0J!J^}qYxT+umIlykwgQ0DfnhN0bb79`4?V&f4GN7`ulrCq~FET zut@)&w%|xtz8AKc`95}w--N8Uz+371xoQsbY(~kCw&;{tv^T^sbik0U?+beMNrON~ zEa}~*VinadhvgU(s9R!0HpVwqZ|vbw-!X?pJ%avA(7eH+r7Bj};5y)o$gl1l6$T6B z20z33Qa)?NhQ+|C6t;W)aYAu5SHH;Y&`%DkCj)8d2YBhoJ~}dKF!^+lHVW%4Idw(x zftF!8JnE-mSjk4JfStr_v?XI5ezvT4PRQYbzcNRj$-M@rsFsU3_YT7qMQF4g7>)wj3VVM=-2p zgUSN-%~Bhn0oOa7!il<_@>SfF)VYC@r4zUBb?Wx46j#ZySBh(F2`{cd_VtH2b}8cx z%81d1Fh_=QY57$dl0POSzfQf8e=$+L0?`8zuDnm%dU~3r%X$E{A`)isYPmeFAIlYS z9hECbV>oTmqmdmS4bPQl@EStG*10^U`@2!;gQ>8X9)n?|BpfK{rR4G%ypJ149RfJA z8T^S{7RzuKRbm~7eDb8WAO}FwB(4kI9MJVpt^jXe!ddYKXNv;0@HqO=8O}#X(<5e| z6;B{Em=Q!37X(cDbEsbeivut?0Y_v`0p!Ge-Gksuw=GLPSZnj}D zZr;yq^8?mbvP}yi@2y-O>Rx%sQ6<~x-@kj{W*fcdPoSdD;VO`nRM(k->ZOscf{(yA z2J4c)El{Sg2sc-SxdFtvCsQz0A1_1vmO@ov$Y%2<;0|;)e+-KO1dY5BK{LpwjZ-fgmr{?jX-|j|k;muq5Ax)>JVubsV9?Usr|U2t z&}saCoKXyG>e%qes0d>Mh_>iwOy^B9f|PnWoKs=vO!q8?O75?b#gD=fHbDl%u;Yfe zupJ~%j~4>p0K3vG@BqU~Hft+j|KK)*_eRieo8I|b9!~_-N#bCK+aa{41c~3cHCaJ_ zL)hJT2u&C4dLB;*Pb~*UGo}@5y2T7>fm@6oK|Qt{0wy?BH;5rM=thg3UJP4x-0(60 zvsgqvig(FkU4#m)^LcLQieaVP@U(#KlrQH^y{7|Ep}8SrXIoz-pQQ%md^)e|)I=Rs zaGX{Bi|do#vx;GB)m(n&6%$s2v2tb^jpgPS6J*H|=VyiF<0)tUVE`qaj(Zyt-(YS% zr5|sn9|!Q12Fj`j!UjP-urr_61KaXNdN_&&V(H;9ZNce5J)AGs1HFW(hw^!9_|lEa zXP6304fimNG-$mAz3*W-=!*U`H;y_4aAfts>-oGM@FxeKbE^mRk4XZMR1fHazY6HC zd=M8K9s$)T6a@N!MZf|-yWzQsgl7X6fIce%0Id5J@_qo(^MPLl7Z|3KyY_=Xt+my& zdk+`dKVjtwp%aFcEHzlb##?3g)_dAnc{UhCE#p=e=-9Fc#J>L5fI?Qlt|IX|#kcJs=3u1*9nO zy}LVm@0>X)&%?)G;mqvp%)9gM?4Enh9#I>eH|G!W%>p()J_}eFusGkne9UzPN?l2}pARJ`c^6hf3j~-HAh^x|LU@6Iq`B`= z?C`?@RFVyB9ti9C0{yib=N}>G(VbZyj0MT`^584vYz@nU8aDfntDLmCDp)bZP6F$O z&?FE!lqF~RZHqg_=nI}XATU(U0Z);e$B?yppMN$tVrG&S+=`h4GPsTyv+iUsWvHD4 zTKIZ&8tBo?0Y`?|IpB8SGG6WpdXYIOi8;VIeh|&|9Psm-*s`T&<5BCbrxiAd&P>M6 z9xsI-Th?85d8;x}i+hS1s6lVd#VbdyRitjEa!3CdANw4SQRMI|qj6W75Ey@(9^!hf|2(_ z!Hp{aJ>1BsT;A=DAM2~w_i=yT$z8^WV42QC6|nRrUndW>)LzVW1uU^<91PrQ&0r3TVsG1<& zq9BlhhT{9dAx-ghNXh>n#c@`)rueyd61fS^1UzdPQT+O0jN*o!*XS!Aj$boOa=ah; zdF3$6@yC5u9^qCD$9r=fF?b)4y%&dBjz8k-(P^MZ!|}Gm?7IIOwD8`!?@zX%Aqeig zz6@y`0w4|J4w+n!|&imVB!7g?F(uP4MT49C(_(`^2;zw z?%h9!BI<&rcx|G0y4o{r$xZ6JuW)nDBIK1CG^UUANF5UxCc)t>y96fRlds2yS#l?E zU4hBhq2{ftCLK@aU>Z;cBqdvx(9iJ05Tz+ggak)Qt!f^RReZ|A&4~I)G4Fd#Hphv^yw})FUZ$Jw#mq(HOZ`t@#`89B)2?C^B|Dd2<9v zX%?UU6U%Oa!Z^}B^(UFJP7?c*t^HX{Iv2U^+&VZs zL}>~OoNZ{4=#sr8E%-$(_1af+)1oXGVW9y7WNu)=2n#eAvDfk_1tL?)%PW7f9KMI^ z3PdK6?wvkFoa8oGacl3ul{Rqk+oJ0bv4(lvS7)Q)@i@)n^JN$&K2X?)iiz*dYJ8qf zJ|oKvbzjHGYwA9RtUE#K_WJ?U9ru%^?&zP0x=XkdhPq|?3a4(Mj1ckutTu;ST=0{n z?>?WUJ=~I^Z`6pY6Ssiu1x6V92KIz|W$Ed(7Fg*Z{j*xhPnO2#pe1O`w2R4RiPaWA ztGNgY(VnPWKQcKbovLzL7GC?Vc-J!7C+PX^5<_I%bQMizy_XXodnJ!lByTx+)pmrX z^POB*B<}*!y>*17vy*fgVT&14H2q98l3W6)N!c;rspE>F$O$WBYL ztLyYMJipaGa$yhk`WmdJq$K$v9Mv#rm$y;0ZiG#@c@W}#9;3+GUF6r>z)Y9s@3^kO z<1fXW|D{4wCL3d`|F|k(SwG(b8L^gHiTl zuD4k24YPA9i=Z>wJ9bB<;)zVWwE5=T1gcOODe0N^QFKteeuR_KrZOW%b-i&}q9HkJ z8>|Bpoz^F>JL^vA%h(-}0=jIYr08ok{rFYG4e$h&f8PKV>@&(z{?$=L`N7;P zL-`-{6;Ao!52IuOZ$$onJId01w$I8;ZpF}jDc2FB)|l*-VL0@!U^9I^It}!w3wQvp z6i=Un69fO5cfN|7K1bdIZ$<{cL>hQs6?3kCF)GA!yi$^tk(_OBf}@bf5A8<0Oy6N{HbwDPnh>A$C*AHM?WJ(AjBr*k`L;{oHcrKWd1%z5?NE zhE)g5%EXRcK4KT%V4UMjP(v%+&PILob%&VPT{e+Q(fC!==PLvT+9w zQB5fZo*w%O$ePR1SFv0_6pEP zb2}diSp&DL+M16(gcW<8v6j`*V~N!ljg@@7Kwoiu3?$6&78oljb}M;z?pRCe8+}Hu z=SB>v@8ddRz-}XZca62AzTVfP(?E}g)Mt*hq<$SOyrljg*@A{3wez|e+G^D`hz43&nnbMEjficAq7=YfUg+rNv}$rHy&Rx z_?Aa4Qu+b%^h=5fKJ-VM2v{5;n3d@d03Zpgb*TWA=bqd&oO=gAji zRe6KLmXRh}OVMz+<;8^^Rh#n*_320&4JkKp+no1g=5h6>$4P4UBKMvg zXQ`dzv(leiG1UH%>xgilA$vcJv()bI>(ObTM?>vL$60F6K?^UnUm#o15Y%>FKZLfN z+NVY&;m$ZCc6xT2e)U8@paNny2#JZ-5UW|IuOwQhXSmi(oS(QdKDL5KEYi3SdASw{ zYFhupbp<-TN%wC=>g)m9XMI_tyjR0Lw${!Lcy>a-H8-;j;tD|S$zQxiPGWl zgw^48n}OSGpmn^#LP`x7hSZg}HfXfWW9cr?c$eHfH_wu~E!P!jyh*y3=1DZ1Bnws? zsRQS#z4Z$4=(YDrT-PC@4ig)BF}7i0QWX%GAPuLh3G(4;9Dko2M>mGk-7xf;(;bkG zHE_CyUH6A}*Zo@tkgV~J}S@hy!J2hKHFzx6Zcs#z~ZrV=l=*a=TxtY z=g6{9v*#8zjn2$W(kCH?>UUU#6Y7&vRNi8o4vflOKf*P!*OTVq<9_GfaKalPlzTlnYHCS;}4#K2}&vl0Q zLNtyUp%c-p!EsEQ-eV8Cun->|(1RF`1B08OW}!k?7T?d(XO^Tx$!Gi?SFeEXp$!8| zz~lhFhNQ36bPuhnwf6j{c!lU4uuI$M%xpH$S&Rd@*68{ zZcrJ|BNeF3B5%i`ROm0_mT+Bx$~4lQ>qEs!X2VK|(J(0jcby^dFr#V)% zro#BDqy3sm8BQk9-PJfho1EW;*%F7f1h<1bxqpvtJcDWzh>G6_Z#pK;3<1M4R`i$JmjTlBh!*#?^m5{xs$6H3<>+8{Jphv^# zjPaJypQ44A(F@2HG{lOz~1O-lW0r;Mx-zd!~FQ^|ojz=kycR6`B3aIII_FS$j5LryR`G~^1&UTU+<1M9s z2O{3>^HORH4MS=4r!$+)ZO)SsDle@dUNai+aRUQGXGd8Rl=-;G+Fu~IJ z{s~0mceoR#roO4KI2xP1^P3YSk2jNheI{5Q5A|6Y%&iz6PvSaakhYM$Uoki8AGHSi zdUP7-(eSwU1k2+UXyN7YUt|j!g2&G5m(Z5;_!Jzvl$L4=G&qT`dM4QgHA*zTn&CvK zzo}5_hC{_cWS<~8VrhKr0Uo1HTE?AyD(8-ZD}sB0k@t)8&X--lh)Q$3jWlm)VSQI`5N`WDi#saN zxIq+-m;y#ZY|sFcD{pKdxtxb6czlHXykw%~@hx0eq{u&{dy@|iC%F+;TvZNSqC@v> znO%p7J5-s2NQb)J3X`je5JawDx!8pGay4%MM{c7NL*(bd7)|8+k%Ki5xrPn%al2t2 zKG8CI$V6gvDfh-Ox=3H)j1CkLI^GR)Fxo!#Q83Z6`Y)fQKe;8t>i@Wo7_tbmcW9#B zG5;Cvl_jgwDzH+sW1cn9vb)J7xnn+wY|b*;V#n+Pn2zR};BEV3+;G@Z8XiostM7~? z)wlg8JygtVU~ou)5}lzoJcAN_m;ZX+3uOthmrPzQXw&jQvek=w{?*o!=~%Tl=hB#H|=Ex92)yteTU(How^l zeUYz6r-2?#g^v2oa=05>cq{bTWD6RiLOZX6Xd5Chj?f8J=VUA{v+PM~ps+bBh-A1q zf(3Z{1319-+wGi^;3rKuoW)Kj*pvjSEQk6GY%$Wjo2ozgZgp1T?&> z>B+UVjidfC5@ad z_|4LJE!P#GB$4j#K2V%wIjn@}43i>m*BRmt(K#lldo=sz3siFVZ|kcW14E~qi>jO z89fXwyo_#7wxA&x?YzErvZ}}{OjhR(!n~W2juSt0MaFy7Y03H#GV?Rlpu&W(2z*XU zRxJ*$h*!;W{etpNIBdLtho>`_&C@rKOS4p$*W7aZcdjqsxQ6tXAp|d_on-N3OX;0} z!%OMws4X-MrDp*k?}FQTGaVY5(zAvXCfZnek|N-WZ}CdUHAAbA8aTeFN@_5vJB1~< zU~?Dpv(6OD<}=feiSKJ*#!-4t=Cv#w+2FG`F(*MZW&!$*HPxe`w$SoyLo&Q)2R}lkt7nv)X zVprP}!<{l(I4yiyR=Z?Y+XJRpUT;TB@S17gM>Yo-ZL!*R{(m$@Q~TITS=En%bi#7A8t}j$ZzwCMVKE;*IBPU$@PzP zM$+=T9|)wE-_P1>C%XK;d?af1)Tx%=zfC26uj9@bey`S7Jp5iw0C~65FOaJ%k*WIU zt7AS(|8h&FVAq?*GGC7x3;jj17pvk1BPBa8oF5bJw-UXTR;no;SgP|pUUi+>|GZ$* zG)eQ`WO=D>!6$JSLiton@$Ag(Y<%6vQamNCRfg*IqN8|NrkCPr%6u!`P+UsPSK&MH zNJTEcP5#_4&2s!ft}9S^gLLoLsBqt%;GSu=Y`-{7mhCsGDKt#kMt7oYJ4ddCMu^)s z9G%vomAFQt+k&zVn%;@HQ3#ND+B-DB?#iVG5yhhvhPzO=ko%bZ)M%a5@K@PnT=&&&b23 z(=C;+^jT@gtr#lb#&yI5{5jd{GTpAd+xdEQ8tBoiy&F!qHTrq9@UFeTBwNrBYj5Xu z{B+IUtD-ZKQ!|sYG<_3dGVOOXvompGiR19;T%%4%L-i`07q7tN235!dZx+VKe#XNU z*_%r)4gh?5YyA_~70`S~x_sI1|U3RHd~Z&yyYoZicI1u8>Gcc%{(C;1CjT*VH; zqzK$~hQPzDMq)fMzc8f=08D_Ob!gZHKqkP18H`WD>7U7IbYoWIr(^i_YW(Q58du{r z-1{D_y1ev}3SK?Kviph|#O}wqH-_C0>nohyfrnL>Ld<^R9Mf^+>jN_^!{7H=dWTyw z4F8(zh}iSU-oP1lHU3VxS2iO%tp}{M-oE)U_=I+^$lS|yLx>qc3&a6CAyZYZfD~lltmt?ohYbv-aYsT z!Ac&rNa-2m;!>cfiN2HT3WTPR?lycg+)H#P*)qcrJrGdc7GbT|bIOnWx9Dlqev8G< ztk9S0zxg7-IaH2LG~avfKm|6TciV{{x(wS*=oK$x-@UM2Q34?+#0HtBaUQWBniew| z88kF(sOOTqO;y}tRJF4FocCfgxW0ym>F1Mvib^gmNFInoT`Li`HbS*$ck8%d)0u|z zOv`myZV@ssZ{4j&#N1AsVsEG2zsDs*Wg(CDNc|DtQ%wX#6v5r9?Nn(#;=(rH{-uk(+gEzh1-lbw111uxN|5T zoeaKuqcYO>Pl?TIcn+|&4ciClEH!Lj5n_8h!^0bHf*P|2zZ6s#Zf-Rp z{6Qfg9d)@6;9F3o1u3d|=2z!{pf#5Ks&2sT`Wx%`MfklJ>-fO@NnO?yG!Ml7&HXSu z->t83o(FalOx|7jU*zQuq^#bRpO(+k+gLhPUvZX9p+B4J2(oV{d(Bn1Z8|sO7sLee z%>={7#wqQvE}1R)R-Ns%CBG_P7W>^~cB^i|E1L6vGZ4{*J|ig`H;;6ow}Y9HotdRh zZH6xZqRhuvE-wER=bCBSS1xWo6DNH=z+)DPeTba9FW=JsMXoFG*-yI9YJ7MgPS7*o zF6TeYm&^Hos3|neavt4@RjqU6ZfH2VM`}b=uUCs2FhKg8h388(*DIA8JT%oSl^Qrk z@(=|a$H~v(`IhIixUPWXU(%gs;9x1@1o#!koB>PCnW|g-cb#^02qs#Yv{ofPcny-p18WgNQ+b-VYW>f9XoGqD{ zrmr|Ann%&nX3N@r5_yc)XWOm$t-c~J2fNZkhH;g3L1FW9GXU4cv->HdajybE?GnK0W@xeUm7cjl*4 zTWA<6qd$?^&XYmV&{S@ohQ+o;BwV=(k#2vYa=(6OQH;7UErgp-t0JxFLS{k2vWJH% zU}-|`?wD;E9W{rgrhp}pbOUoFEKYI^Rzh2Im=uw_&JcN+(@2a)^^2ORqt_SJR{fHy zj?!eny;-3Q2(RKbST+MLtj7H_$bEEZHtFXf6Z9rM4q08pPi8eN(Oamvi-)M-|K?bp z-#&+U{wnuoZ{~tdG5P|hdEjL{;xX5^M?affePNEJ`nMiKug&ck`xUojs6K}4h><&o z?EO5)?$N&r_sS+_r}cuBcD)n@evW1QLNxU5(JvsA&lqK~M|b}Bn4?LL`*GPRsVV8a zcBf#^-uauNUMeXG!(Q*!qL?a_dJZazSK$50>Xr6YD$Rsa><$iqNb?l(b}InY><<)F zo#w4b_oy$;o#e{|Wcjbr1W<`;(Va#0tB@Ov(s|q(BR2fmtD) z{dCg5M)i%GEBEbAc%>1VeS08TmA3#~`fO8X#&x@yvJStl#q`iaX;$;CR8DeIeRXOU z5}@rpUU+Dpqu}Ee=7wsO3<5o?iRe;_sE2liesX&X8KV~hx7%wq{p41|OmVrHDFWYX zR5}E|DWHiWpF3ri<}>sa&rC6c(DR;y+MZmVT3~023ZJEQ+){Z5Z0Na)7}G1r+-^Ij z*w6>oh5Kcr<`kz|sW}OCQh}W;PM<3$i)+a2B&#h>LUl2WFVM5aHTYEtubPB!=wX$c z2osEn=gRs?gF$@4M*&?~giDlq)c0KTD82mrVd-vbc%7y?CyjEUw|YVrK0? zx>wAVdwnNqt9o5Dw_otCxpJ@Hk(#zufeTOqx^8R}WB(F6edkU~bit>J*hr0m%1n0YdF1I3(R@VS9Zi zc^_8vieba2sVsVyXs)}Kgc7EQlgH}}Hq(QOyXCS5q1mA-MDT?Q9Dw1#lEF@p0kGch zqyX@8N(;=1`p#Y;PjkcW_5($=ft7^0V{Uz8LY?^B~`x_?Zo;4Sn{pdoLm1Z7@ z&{z085R5348-x4E$y$YW4mj6mx807GF^niwk_7pr@AXtcSDx2j!Q;_Ir+E*?%z|7>q3SgckkEa$|-Y@04 z0+=48TV{Y^d~$*XHnq$T^DrnvcU>X$@ICEu>DTEi9;RPcB$?iu zJiNNdGW|)PmB+Xh!}Qm3>zAw z)*Ga>LGhGD%;uN*C!Q$6FL@d*AvK6hu1abEi7aMmCII<_9IaJs3EhzE3P3(0-3G-H z5GOeeR@~M}hTeVucVzNi zqb&CQ&i}WN4DX|ur>E&JLF-~(+dgiRl%~eEEPh69co9S1vLEJwunLhm33mpQ-&$RXSB1gn1R^&9~`9WVq&llxbzysmEhe;?Nuh>alqyF!RDV@`O7 z5!&tl)fN}A{de6Sw#jFH%zI0xv{~N|w%h-ieX#A*=~5{~CVtEiQpF$t+ttJ~mg0F! zJ3^cPH;_4c3Gjry_W#`cCJf-biaW8q7+XTq#WL=cnJyOVE1v0MF=6N3{7)d4 z7nRuQ;sCeQ;^@jwh8@mO^5@w5momDD$zmc|izu~|#oysR*~mJrMOJDy{_{%gY;hi1 zdS{C%WOJU?78`%(e{qSOE;5tSvOPQhRCDH2ZruUh)w&mHe50z+s?diAVSPYzMipA- zT>Yy#3Zg2`A&=Xa+DYRst}76mNxHX}%Btujx8Q^I`W@G&OXcoApW5D{y7WXLFn0;t z+rP#B-+6R7dg1d$-3Y+NxBnI`^PXII!q7PQl?+(nDWh^FgH?YXzrd=LV)&rct{{Ho zx&o_0(*41Qm6Lo6E1?y{2Vp2!^0^K#w^B1%6zilnlLa0Q(f10&lSSoWnb^bAMdeB+ z_7WKnb7eloQ>-)l3^gm`t5%xV=DxtW`q~NI73lOPHVX$!?OlQWllDHL?+P@U$4F}? zhy;Db@!I@cm@rT76&90&_2=2i;S!&fOm4-jC2r(8V!mHO_O4Tbm)u=}Okb}~3%#1V z0`*k>v+l0IQ}g7WVFlT&H&5;vocDF-*|+I-&nP-QIx{OHH5vDcHWoFB&dAEpYXEa! zVD#uBym%9mML?#;MGQ_*^}fZjF)WDGja1jMxCQV5k5r`f2J-4%Ag9+2KX6@v${N!B zMx(+XL3e^LH30pBzXA{MK4BfT{1UM@9Na#L-o!q^`SBJsH1WU7!#z74jmjN_PpqB|Jm{$DicrqIs6(Te+@)V-xBAA>nX>3Y$G< z;}3%(V%HTS4sR2X0{wHaP3S+NsJ;k49N(@Vi{gclg?Gw)#vm~d=4UCHs9_HvgcE&zn}YIn0$}E;$iYV^CgpalZXGCZ<*Z3XXRCH z#V|RC>xhW=kiC!Rn?fIa)%4izj4x`{3e?j7o``)7UYR-7>7sA5|G#a%E%kY5>)rqF zC#%p9`+w*E&GSQC#wS6Nh{=%|+1M4d?^n=6&HSdQL3CD<5Oo{)JHF}gZDpdI0#JDo z4^`yuQF3Y?pwm?TgX;=d4wLQ%1mNBDJIUJlwwfOT7+x~}OKqWH$c+9(YCBJgp+RKE z)TCqOY}Qb8n}r8-!REw>%7hvWkhxN!fg^DN%XJM0D_W7Y?L#j0RqoewhsIvaRRtQg zNcDmR5)CIgcR{#b2kS480lU5saEQw>H*5S&VjZ@{deDzW4XS`aM+#b3AvUqzQcVES z6acc$?E7y*3g~@*HZr(|eScN=>{|~5srxRlq<(z?k$MPs!jL*wU-6JScY!2zEV=jn z0!!)wpOt)W#gKYA*Ae4Ym+URZKsZWsIjejc|6u=jrhRjV?v)X^y zC^%;!F?<_$#4vn|zT#o{mW77l48jY@#Z4-2@Z39N>nvg^U4G5)onrI_XT$KjF;@}% zZb{Y>7Fm8rFOoBg)7XSm#t(AA^$RV(FGUM4zgv+lXb65gpVut3{Qe=j80Si*;*)23 z)!j6hlBG7ho6}SE*o391=W_n!r8uJ3cX{S}ISH}<<8g^>%_LuLTV&b%G}jdvq>}Cv zi)2l5l1Fh{LhrZVTqNn7PHmxK=#2hEGCNOhhK8nd$HV%zya_Vr)Z#`u_Rb&XbW$^8 zisf|^{3)@%>n8faJR%YO<>b}(i!4_saa|GpC8YbSFM1~#2P=99-F$d?Ou!eP>kIK2 zvbHNsjR`DNcNbx8efd%BpuDk~n7-fc#@Rt&LRwpmo9)O=q>x!p|85zz;g&(?f>AZH zvxWy~u2kLLe-lSj9`D^X7*l2|aqTkVX{$0uF~idf^%ci4y-^NasQMQBZ@gbaPM=?9 zt8pivr4HPZVQW{eBgX1lvUg9JVQZj6xK}nqIIZ)w^orowWtOmSppo}BS_d+BwlO1a zx;x)nl!ZAPnUPdCl5{laW^@*sm#*(Kdvi)xPx>L`G9be z1F#ahA+{+TCqu+_sI1i75Nn}3HEV2qIq*x|5bM0%4XX~GMF@7&cxyo@!ZXVmjkMRS z!+Xi=7P>>aOMV81UEd|IZLj@5?~-?A4DVcS8Q!s+82&7G%`m*DzQP$E?1{JQ&&h4i z77GuO)7{H0yFc?;`Gi|B>>kQ>#LzuN_HxT@E&jyUqtif-rWQY5ZmB&NExfh(F|q{> zQH!0|kCcaajguUcvAni7!0b1I%?+@74`BMv2+1NdAhVCdXiEDe=1GW6JV24hy~wHc z08A755Z4u8bSK^Y2*A5-c9Om2me8?_Wl`=yZJ}X`GWrum*?F=C8ji>m4=Pf_XdNjY z4>HfbfXRs#AT44bfXP0A!Qi6BEYmdxEYn{i-_BQiE3j8?&s7Bk&yi}I#S#K1xnyye z%E9v&%P3u6h%&T}j(J3bZg|{1%wrZi3s4i;CovH|T8-PUklRQwvxa^UqpjD_9g(aj zxQ1T86FcND7F*VSx|mq|8+XF6c7nd*VeN#)lC^J;d%rBUtX=7|vW#0Xto@7Yh*9cG z_O<|iy+dB+>(ObTN5k4Ni!EzUULslh4%vc+V6F3dNa}hQ-4iDKoNZ zabiTJ;+$9U62N~=i}69D%32#tdhs~LeD(!7+Z~^>(H}*4m+J~la!B`0g9!u63Hqp< z?QTm9gCc6z6`~GNIf!Ivb`;C(T~`&KUKIrS;|AAPol=W&zpHYLOq8Rf=WOH^d5+!; zpML^zG@n038lNDa=N-qMc$E&A_QWfe5T}oFM+~Qr=qnyhA6X*z#NUyN2UXxN?1`H$ zWqE9jG}2d`5ku+LTt`s)dop+7QcLMZIM>Nr`klr>B(UBT?^|LieG^)E3-MsG1r0%I z=k%T>AxhVe%Ff8ZNoTeaXQ%3;9pjqeXX<7b7ULFnSctpZ_`RmZ$#^ogrw~Ozq?(Uh zln~pUhbU5aB)RqYQcLGIxvqd?IO)E=RMsIU>AlqQdEipX=MmHv8ivp4Ph__9URxD~^3;yWCclpIYd9PHhS~ec3Wwnji34x}RGz zJbsSrh#{Lw_IfU}+vWSiy|M||X^F4i8h|Q-* zXD8#}1iP@tuqCUU`*VA0F2_d+LH7w#x%kLxbxL6a03g&cQLGo*_MFotBg5>AF+eGN&K|^p?4a zz4rgyGNbB+Zi+p$+_Jpea$@;=+%;2U-_}<+%Y$z(mvwUmIo)@;W%zKPl_A`UVfbXO zBZhA!*_*K3R_YDLz@B3;a~o{8_(_$5LGD-1@Nx zdGI37HY4ywm39tDZb46oSRUc=IkhpJ&=#MnXZUZ&b#P&hR9Hm)kt zXDg|8@uA`*omPa|AG~aZ4BYjFz(Ykn<`q3=hWZtDhdu5U?@((@WXQ*~PSPErl=0)H z-28O_!`Q6RliIRNG~1~9I?Vuf7lA5{(SC)p?-a|*mDjz<$hvq%*e0l|4FIsKL?i2Jndv$#5 zWh)tH1;2xJ>|+&KD=ojfa9xcCOZsCJK}S`QQkW&yCQf+6N=xyFS4xW4qOPD}D2^@# z#ho+h&>)J(s0|Ml*NsHD87gj*zBQ(SNV++Px)PPIF4M5`Q36j*=MB{w_-SaCD#!HbQ;-ft8y~29Wbwiw(|Arw9u>J z@kzg19zXcIQuOaP`eO>3%9Y9Vi{L2T zTo!?Lsz=0AaY^q?ZxM*g^yu6_r;F4yWm222}Ux?3E7pq_@Zl38EKa*Aw zpKs?L89v{luXy-;%PPs|R^)5vRhG{$_^dq3tr$MP&viuXt;ycot87hv*4LxcK#zvY zH?Fc={s}F-%kfmQ1r5Pv=k@igG?$aqu`h6UGc!FoGuhA>JIFNkecb^))zr7~Q>*v- ztOf%TRO~zaI?5K_WoZAvlK9v{9-GcqmS~reKeJWe>k50vuI8!&hAdKD0oT31T{+3p zRhGZI0fU#nmrz@182-)%Fy2q0I7eneL-Tj^`{rjTL{CK+(ew!}>!{BE28(QqiR!aHN9`i%U> zjTqK0;5uTkZX|Oh+QTb?zuEp6HcsIS9LTEgcIT|Nq}_>;^OCkRnSzEOt@FA6>JVw; z@dH*yrY*f0>FF6bY!yE{Kdq*{4L)awWcbWadWLFI_s4im+<3p_rA6_vF>9($-2ahN zC#|uSw>j4p)V+;#o2-%4b&`f_EOpb?Nb24}ZJ}YPi~dAnJ5M5^LDa?VY!j*Fu8y?b z{BpzHL<>(?U?2c@{Q`}^tvo70-LB+W=QWnPk8@ptz&)hq@210+G16hXSq z5M-FW{dN8s_TCm^uNz7cA^3|kWOQaQfsSxMHC{hJUL(Cs)&0=2%~ajzk*+mRxT+0s z+t;uGp1#Hw+bL^^wHvr2hP7+;6%T9Iu93y|F>-Mg(oi3qT5By!S!3lWw_<2}8rKm6 z^*Gr(Wvwl?M}0jy4fJSuyL^r1Z3`&7j%*nKqLgKt!szr>r8&Y$bihh}ZgsN#mf3>+TwVsX5h z^?h+vw1xp6JvKi#Cyo|U3z7ljF)0fJ@)ZwK0P-3+`o&sH-!WWQ0P-^F{_F$9NruCU zrf<8k3t7Aj7uVhO77e{tj##p$wtC~E;wI{?am9(A;8}P+Svb6<)wtY;TtI|{8(e33dwebN_MCN+acAl)oVS59Ro}Of4C3ns?~sel)>-ae?Xz?R zw`90`2iFm!^e)-EWu4)!KF;0s$_Bz|HM3H4>TzS$rB5N9hx8&^gU77J2V}RgX(4U{ zxgZkPg{X|Xv?(dcc+g32e>2ik=-tQen$BDX#;4eKAHioXKyk(c%;w$4FL=BngFhp` za)6)S{Qk^!1vUdnci1{ZX%?N6{HQT_D=z$E*`R2=T{dH#BzO*4`qAQNez3|Rq`f~_ zIsf{jPoj7tK|@6dQJVK5L2oVz0|Rbz0Rv_o4^{y4HMzKIou&3Zt}B2UNV>Z%Fl>S5 zBs*ZmRc1V2VRH(RG7MdZ{k8Opm_*&5smlXwT?U8U`0B{R@d*Koui<(|EA2Du?pyLX zQFlkbQZ+ylfZsT&AG7U=f9 zTYi7wv+^FdV)*?n*AYYYBiZ|My{*mf`FeC3=+V^XuIp`Wo`x3Q+B}?WK||DL=k>j4 zt84SZwHUipJo;oe!XR`;y8C9y%j-Nc44%RQ4WW0A{^tDcp|({dd;Sm$>cS1%oOLl zzz|)WuR_k%P@HSn7vtM>xRn+7NJmZk;(i;5#bdcgee;%eiqRK5Bp$Uvl6WS$I%0z* z@gi=-Oa=3~6+_|*t|JC)7TH^C$Hm;8p6~0`X`xp`q3MutXy8=fZ@T zYW!SIej>BXzW4{rHnT78hit2X!d2~yYtKdPEw8Y(cVPvwc0YH-5N@x&!f6}Ws{`gg zX{;d+cOe1wwz&RAmaN7|oWA0W7}lQ4b;QW5C3|OXw52z0qr83QGOr_U___QMjF)L@Vmdq|~HVnD5Uj?5=w3@yL*qsW_GE zhLS`zcMm4*a4Re6b#QQe>_a?Gk*$A`V_i2|;=asv1twca_xX*o{yNDs8*Tmlc%!Vp zTd6HHO#MZFqB1#8?uCYC?4$dO8&Nz&SwtH5<)V&iPh}Ed5U;K{P)Qqu!Dt?rz+f-= zHe#b?>};+pFxW}DGkh30$y8X;j4eC3Fec!O()EQXP5m{L{j;LBx@jr4#rGcyjczz* z6WO@RBqp-0(pxq^>?3dg)M-cS=0Cs?y>7+}>iSwuPj^+t-T#(@yYZVWcTe9$+|Ax3 zX_uj|INF(~HZxTDJpbPKFu9t#$rAW~K1;WAONPKtavd>HN66lzo9y2B_HeHZAg7gT zrJBUS)|+hU{SYm^EIvjyTN`b`Vi&+gXl|fmh7^rG_uLG;%V@L4dMMj@=vVG=bD8SSkI9te-P0}bhc5mymCDaw!mnX z$6lm8Gt2CVlU3gtCD>xLDv9S<#Dr1=>$HmK(s(sPXfU))v=_?=m=Enk4e_f~OBJ^2w&UcU5)<^A_QBj0c% zhWF#Rju^KDvN!4v%lmIkhYS{{@RAl}DMR_^{;-rULnANc8^Su|E6XhF5 zB_(CyVeLTQ68$7dawZ<;G)Dx2?p%iQj3b6}MlLf%=aN9C+V$DIhOxVNkRp-KCa?Yi zXqw*hkI3i1iNN^fwMR`YqQ)n zr;@wVH(MHS;zrC|uz_1KG(Ny}#DJxdy}cL;{aoe-Uyn`$J(?Z!rQ&vbZudArd)4=l+biF*MH09zHE*x-4k}9hUgePq6s{xJUfN>mo5OVl z3RjWt#}Wl6_&^KjpwgF2gbYL1(?u2pQ;a9-+%xQL6J~E>rO|=BG{)huO>~o_$87(8 z19^<_1uygsukVm)HSCsaplwG(TTD@im~MD&+(Oi?{U^&h!@4Ma#lzjGKP7iN zldnO{ZhG&0zR$`z+=}7uC0s{vw+q?J_|tOt9AA%413hZ)29D_@ZWFu<4ZP*|HZpb0 z44o*y&hLM>SoW^E8?$U`iawZ5(-$k2ULBHey}%F5#;@BV4aZ!W;_KE-tpwS|V+G^0PUX?C9Uf`%@; zeY&EIS_pKq;viBy5R;+wvAYA?fTRWkN@IXyFu1Fmr;UZpV35z_5*R#8zD@tr(sw!6 z6&Q3Q-Nil(oMaKK=<3_G-J+O)FG|-Jq6}}E|J_nsb!bv@hI;v-68v7_k1SD@Rwgl# z{U^O;)5W9Y?Y}zbY~>9cvTV~gys)P?*K4Z2Rc@TmC>a!Nxz!fk^R^OmJ8qTCy+L2$ z%njV2`kr3o`%$?&xqIza%iiujOHXi1hP{2bju@<`$zE@K77mpc$BT!0Wgt1NYpv9* zqOaU)EAS6!>80^AWD_4;Lj;1xE`WAuu8Xjyaby~Pe;U}g1kZ+K;WpS0b@3rxkXT;N zZ!o}eSm>L_FsJh%MfUb4hb99w&EUmcR{-)N=`P$V8SEtU@DX8su-BHYvi`nIZRc5- z_MCHfjQ)#nkew?NVct>Lgrh2M#vZZlvnBc+P{`vbD;aH0jq+y-m66}Q1!5u+=O z!$di&9p!-p$VAy*dd`yeZSuUG?v&QlZIA(aO?{rdc7m)Pm<&?)*rvK{{joz}8*%zm z?ux0#1N0RSrw3?scshJQK7O>#()kykk+Ix}p>qM(5u^1X*_*Y^(s``ukb&Y9KCVEtu?le+SKp$&DgY)A8L1vmMUJN=s^m=Zm-EKDH)v6rOh? z88SRANmUeJC5w{G8et8drds?qFCjMgSJmnJC3$rWplLcMa9sh&=cIf3Uow52q~2ea z&KLeA3-Ul}3k_Y6v2F?FHe35SZ~g^Ah|!HL47&1~h{}JR*GY4kAfSruAOMeL0|P+^ z9+qJ659Hdle^~~1<+=ibZ%FqZ9|TVFKUi@L4#K3^4!h1!A`Q16#&%fepjl9VP77+( zW&Dt+N7xfyf+~3k1P%$pBmAy(nPq7%x%`gqk*ND7Mq5+&DSNFZ>ejHX9%8q{lrWqEwTcDW}WMfRW}_QcNfQnb}1Ue~>(aYPE9eXtzP#50O1 zmcs+yD5I7_F5jO$m0p**p=HYmG9xY0+c+`y;Fn2 zpM`LO+f;Hp9L{5YNbb2^7Uy57`E9CK8(?bgZe6KzulCHx&YyPMEtx+YSaOPr9i4k} zbaHZLHeO21eWs)lP6{%xn9tzWd#4%=gUo%;mNW^9rUsZ#c(4MPY2@uk+bzL|a$Nz; zZ={vrJ%R6x$F)`02dpGQ`JLha)k4^(U8it>?!!rD7v_Pe1IF^ttXb6To zuTMo=Vt8G(yAODbqk-Jk8INZ#%p%hReRoGjj-8FPRDU~=IbOM z@hC+mFDB342Wq-n=W<0F&t=pW8fN>9{>1j#dGZc4 zbfpHl8%8JNMK0h#MGH9WslBkH0;`)C9KzQP4&d@BswXHP5_)i0#$yvW{7(Lr@34&i zi|Yy;mXYoj9}Z5k308E;-t#`T(7s4rUx+lkg+6r$9u;{A3vO^Z-XFJ#uk3vqe;v0c zw0b)kWrVw{$z7zFA#p5*T9@j7^ptYqKRU-gie>iYIEAPQ-denLCvmqMcf@e_K7ECA zH*lXyzT3Zdt{^w>-f8*Ums@I4RNN_s8#46$jH`&KHC+bdUaZNTd7%a z-?7uu_*b;_F1WXl%{z>?Sa3W4Z$)#?Of zsz=h4E_^KDZcnv#&Xl49A~bH}0|?7n4Mg53oGbt~H*`QSkp{vMI)q_ZZm?*yi>1B5 z;ve!cewSr*YpyG>_?vVu+$FJalJjB3Ey4rws@H=$fxX*k*CD>(r9m;<=v#NzR`w`R^eSR?wZ<{+G{nf!mGM1R_|p{`>kD; z+HdS4Y7gVi7;68huXw2aqeg~rp^uT5gYamUUV9h%jLhLi46Rpk9WheJ$==dkmezAj zhYS{{FvyOPVf44VETa#hk(bdCG4|n%Z;iHKwDbKdG}nwi{(DK?fkR5_MrNd@*xTCC z8OiCX_*L0F4mM~AHp?MV1VpO5)!c-Et5KXsdzwY+W~xQg-1yk|-Bo9BEID`DZp-Ei zxvs#aHtC+XTV}A6oW0w!x$SOQn@^^;&@iU}ki3UBd_XF_pG=+rE_ zD|TCMx7i~X-Ob4yG{mCYIlc~U8L@E!P;z#vz0;kXlBVw0pOOcwai`mJJ#PP!c*knl zrpp5><74mUL5du{fV{e6k0o_at}6gJhjgFPfbc!F6Fjae-ou{ylPQay3+$0a`aEj= zxQ395^d0tZ@xX}l>DE1r-ak(%sT+Z~`JG*jO5e)|hZ%0emns?{%k!#?7?_6e&;?9M z(H5261#lLc(*)2EpF6-i z&=uE|Hbqs(XQS~Jv_7X7{I9F(uEv0e@S*(>>f6}25>@hV%eC`SLqS7*+ZuV9|) zdSeq#d8bmWWptQbuAOJ-u0IC>e6+yf)8f*c2I`IVm>)wT2EjHSmVlrmxwd()W%n_z zDi8A9j<;X~%mXa9cgFRLPrTymci%*s#LxS=J9F{$PZ&*Y3W{LbYT=!VL5LppUrI%?dtg}SJR+cR0&O@;BX zn|Zi8pIMGQNG{@Z$lRhcRL{S2?~Oge^#wfllm0&l$$KZwN%rBR+WKegQ})T#dN*nd z4YOLW0ASv?C!IIzph2u|6q%`U$r*uPv3s6Zit`N!mp}2TIV{&38%RQ8WO+uKfkc<_ zN`(fKR{IzQ1jnBsKU?mz9KVw53OpVm-M0HA9!_!@tT>JbVN!(bIzz~z)q2EZf7ezo z&A{dx)3+V-$^t~Wwu3H&Ccww5ar!B88rf$G^~2zfF4Q+68&9xMUyzSNt@f!dV}Ixn z*hh?>!hJA|o}{mM7(Hp9Wb`xS-S~Z$(W`t`R&XnZ(L1<~7@}v%-d13*9|B$B>(ObT zN5klG`z)hl_e(~^$XszU-J2NYMOTVM+dTB2IZZw!fNK4<{lIs?so_j;Y4|e&qh>eU|4x zgHf92pCi9dkmnaK0ngX$x25~{{Y3QR+zCVU|MZm*(f`FJe81%R0P^lIvQ)3dn;l>o zZHzS0SDX>U^JK0g2I~{Dckuzs^Ckymk4^(UYMuuU=**_`OS+(yw|ak0_6}h1!F4wH z&hx+b+v@Ge9ut+Cl$MsJm*R;kskkKaq%@qmpMnKB&Jydc8IQ97yc$tP!+yxhk=|#9 zl+4$TdT<0pYJW!_KY76N{%x)+(E5sW-#8!(my^79z!vf^4@lyFLv5j9h>!k6-aAho zg9azQ3k_@42CD0NhLAacKU-59mDBQZg|8#zPk{4I%f(AFwmP01xXTZV*mS1HU7EPjDJY-i&FW#Xoi$IO89h2Cn)?GPu3I;ux&=<-zv zyv{^hy@JOa&@d{+eC#}K2;SOCPR~ek=l6p6bybJ+N^#TKub>a{1@n31NZnZVjKC?N z<9VPuk6D49Le7m-Ig5*W$ChwafyqQtor^fU%XTN3{f}k)T43V+0sJ>=3k}2eaX`tt zY+^9b}m(u$WHzryP`6I7!SwR@4vs!gU=YT*K+49c^Py)()C|`9!@hkJq&w zXBSl-Cm8L9TVufD%&NxkIpjAo&d@jwe9<&M0~uHYjcd5KUTAmZj~ujoe()gixgYn& zROEN{6%U`^Jt+BHLVmt=(DHeN&&n`v#qfD5*Ae4YO7(ObTN5khn2Q8mh zqlK5x3&|EV1fQMPucEEy^QmXzJ`z5nnx>M|N}EKcWF;r5E@`FjN2P`?M&P0}gGiM(AwzMy_=bzARK4pp7EOGy9ZLo#oj5vy8&FZv3AWa#n0RTKtHmVj%|0F^GX|AY_up0!vN29it~^5vA)4Q5x!+r_x^4gJih7Bu3?SD!qus z9S-hjOE<wMLBKX%$6DsJN@r{VC0WA5HrYIaiSu(4TbTyA&aT5b;< z19PitZ4Mo~oQEqicR#s!$zi+PzJ=?G%-ut}HyxJbb&?woTk<}7Sd#Z|Y6}fRUi2r@ z+If-*4M$#!Nq#gI+Sp=8N9d6C!DE`enAtR7UZFXf3lx?@915(#G;qAfLlkiQOK!e( z*b@0$t}Ea;NV;G8;Bb;JU?oIkm=qDa&Jb~k$PxL6YO9YDOV3baT9)d=)+-MYM5ZAR z#m_^WU5(pE$?g0@md-Ok98Kq+kj5uS=QfQ&=RH`v=!emE9wt7YeuS~i@VTD8;`p3% zRav*d5lQEWSo=sw-6NLHsXik~+=!v`)m%pmQY6`Hf5g%`$=9RPK#yiaT}S2A!8x>D zXZAlY_%K>|i*IeRSLcWkeVn(BLI=uTv|bL3TM5SJSxo-Prk_$r^iS7zdgYfDVlKnPj0OLG#` zC+As^gv{VDpT{O}NF)b~k60F0a9x2zebQZPabR~yoMaWOXcm{9zBC32D?)XBA=EI5 zqmR^9pR_DZ_XHMAYhWkpdr@H&g%|ntJlrVp1|HFD_D{={+G;CDd zJ9aHs6-cxs)!*U0clYZg%m1~-cQ26e680i$3k^fq0$}4^IXg%4p`i&o>mIC}ZIoCk zHX;Q2-id{C#~vP02!J2F*TVqB{m0T-0FX|e)m6Dk#Y1Dy<*EXJWKuozKM8=7H2aU0 z+q(bB7+qh8F~roE4jOW^Zf>dar(o)x@eKC7;mAYb)qOTJz8aBmcsEw#b0+zW#4>EX z4z$p0O+lj7P-|=0?p~sj$KX-2SN^lKeepk{?RVT8L))+Q6%TE{{!h}j4f&~Xyp3K& zPxo1w!mSwEF5)_3tS%>e^Dqc{5k1A%qtif-hPI#mXKA||Exfe7f^0!U(AIhV3EC2E z@oQ9S8e2rCr)On@y5^)$P2H%}>`E2PDVLyd746M8z3UzodCY1>2XeB`QCoS>Kgo3kCY?z4Q6DBw@(`?q*3vL3!gie@>@c}M(J5-k zeQk)`iIoStw-dO3>a(R)h)u9L)dX-W1%O;MO#c{6(oBC5xmg3#tJ)-A-vxDf=21)V zX-A3R8@UsP;Oq4j55dJ?cd4kgybsckHPq8w43UD4G-3O0J zf;&mqW0v5(k4b_*LT#a82#)?lraMnMK!XV0(4msE6WhWJ0HVq!-oal{H)6Q^KdvLjOotBcFk#1RRS(u)louy7~hQm#^ z)u2@VDUSGUI~PwKRAZ_6%#!$6#X%5>{0=$&89>!rk3%jC*8dk7PcC4l3lQ(`Mu#D?3{g(yS@;4 znBR?#*H(j`!R@cr^Th}oI-4kw0r9Hk0+CB$xrwrItva=y$c@H#Ob)-Qgy;RqbL6Ed z)(J=gU992biSoV6^WgjSwN%Ax#Ww`6sWqwnQ^m~!u}^U)OqqRLUvYdlo9M@Dslf6Q z{%FSMtL?P(6ddxaYqeu}W`?SG zH^;ENVddhU@8b1^HgmDtsHZjDa5wPbq;^jgHxI<-ac2y5$LK2_ z>W&FW>gJJ~BLkMYjHJvg9DML9em71|!FluL8~PJ#r6jNgXLK9F`Xqac<6~O{ zMWQmFW|B`$aWvNIl2>9gxUPnR@p>xh;=5Vz7W3CAoS=2ka`lFwWb*km6&v8AfhO0h_4r!=#lZ|RIxrux-T+PJ{ zqPhBEphm7g!@LF+)U|En#?myfy z!`prOiifxRfVH>eE+m)t03Ka(<0Dwo8Y`#kE6$4H?fG0s@OBZ|J3GSi_VftZqtif- zhPOLF0bOⅈy*U3E6^%CN86d^Lm@AcnkaEcFXY~LndAw=#pD{Ml@E~`l(H`FW$)| zky@f(ph{3T{EMYzrxm5Kp=MTS-lBSh$0xFO4f*syge7iot}C!uNxClr3vZQmlIJ2U za|c97=B}c)&@jwJe;P__VhRjmQzu?Ot?OrN9mrXX?$ zK(6AxSQ@Xc{}-98IW1MlL|p6K`mrN91R|pklb^#QEw^WJT>;kt(w%1EN}3nP0(Qd5 z8kT;+rICi+OyMB4o=k{Lj%Z>}GZ{{hPq>6b(k!ne)JkKspT{e(sa4lLp0Fp#KDC90 zsom&L)HLVGHjE|_8lS!}VVm5gh;i5JM%80AV0mMwgN4go0mrvPd~I{e3+l&a^9VH> zEbp6=m+2~ZD)QbudEJTYix82WG2olZ$=F8Jt5N&WyH{-t4oqky|nq{2n&S+nM%yKL!b!4pwW7AJ!d==bIB}bD_vfRFb>uR7F1g%N;8kN5cOC4|R zcET%F`9jq0`%aSVPNvpZo@CjL9tFFdFRe~u?6zT9_F7mx>~^qdg~)V`NdEj{oRfPT zMJ?RaN(>mU^8f`HmynCEoMemjXIxi+kwLmRh1w5>6XIZK2-Tk5t>c0)D&lqB>3B80 zkrT7lmA2H(_J?H#8nwD^**UX!_w0ok)zO!3iKW%tW)EuY4e5C0N_>6* z@n(6;_FUK|{BeCL+>IKj^kb&irz4u_;rb2S!aY>{jcZ_7-Xmb8tG2={KSt{~EI(H4 z6*MrFyK7)XtAP=@av#;eu=|V#Zi78cY(c{*-PY^B>U-%ON>0SnBN=%Gx@yyxDVKNL zJ;`(Y*z*_y+V8`hjC?Kl)A zb=rRs4Y|`EL5;qrAl5gZ=hYadmh@Z+mLh#Q1=r zbG0Gn@nWsxTz995xvRXyPp~%NUB}Li4y?+R)f{f5)NqH7hZA(uY;8lgVxJ{;k2l&* zvu%SI+R*SiHzyxE&eLjKh?`%SPfu!(S~u4)JE|beg@U)d^{dIm>o#?xV&D0Thhg#g zqK@84>AB+NvxtMJy;tixNS!0Pm4uXDgIGaXL&NOP8@he=967a2z=-tO&kEB1KHGZr zzlMtDCPYJXL5E(WVwy)~c%#Y!!z7PN>X8JPGA0cgsq}L&xlo*qYh-AiqIDfi=8J9{ zFY%Yx^%iYbkW2!z`&t+ViRmh(>`?!cl%ftBDe-!^B-M~S>b?qWVAsfuYdAQtV{35s zVsUmTjV2xTAmXKT*xl*)KkBeAuUoPvw17gD&AiWRBs{-U`@_Y0IUUhF4=)GM{=4B< zil<8&nPUB9z{(bFWlL7otaz>B%+gh2?j@Owb0@}Q8zvf4&4pE3;tl@x^`YUL8<{@) zQ*ZmXzCL@g7=waStgY8KH1dkiF3I#x&A>e2tI%0!?M^9aAD4^GGQBkmux&}5%#wBi z$-#@UXUU`(l9k`$BUo|q)o1L@;?hy^hQ)2PE@7c=S6(l=E#ut+Z6(d|T{>#0d&j#p zzERF??hOg;lr07Ei#`4AY=&z+`pYZ&5jP}{+b(p+d{2db z4v+5^d+04wcA9(RKSu{vT(*jPjFg*eY=6h4x@Ur0s#l5G3ewhv&H7&&PlO&`FSj7K z5I1l^=2qT;%P5EQ^E2sl@U$_>pqV9Y0~)w$=Vy8g+LYlY`mvbn*ymSW_G(hXa2>dl z$PbE#$0rzqPtm##Nb5!SGy@X4YL%u|I3dAs{QLxW5xzlAhXyagF{HCRwayGpFx9#L z99+y88e%svFrX~%TQ?er7$@Bh1p0iotzvIfV{_xIe{@teb5;vK;E_+v?WD%0SkL#0TJ3DV zvhD@?Hq*0WHi=JgwgR;=BsM0BkEolGnTr=4BMiq=jrsZJ(G&2yU2HKwd@=V}q<&t^ z(?j&U!V(?0lhvG?-8G2aK8_+{_J*vN z6~8}S(#pFHYz_!$Hk&t5q;al0W#VKajU=0YHi27o*ZbFmT5EGH4Rxh(d9b%O6BmjB zO@zj0YLA%4)98qg#?!p?q2!VO2kbrK@8l-l@>yu81BMo9L(Jk8TE_{0ub5j-4w@pp zC_1j15vw@aNV%V$)Wj6&|2A=p^jl(flF@ehX&b|-O^C)L&U z%>&;)l{!&~%mBy6b`XriH>8%IQ@qg4?KQbD<^>q}m z^w!rj70N%P{b9;)pd*^{;SGS>-&-FNPuDdyRr~dTl~=Wu#aE!W)+)|i9TszMm?`0} z;k_Cd)M{Z+z8Ai#sVUfai9Bzoen|8uF$V>wyS9Gc)6{g=Up+=QytDG~>OP3xu5L~N zexLEywkuuW-MuN6i1)qxb`w+sXYnSGt(#S!y?={aNzDwcduv@nM6I!Z7v1j7+zM?a zU78tA4{7Fd`cF9*+m;WP1P>*dznx9{tw)K?44oIP#Y!82dBw|chZr4poFKv*f*#0O z*2YVHvKkdeX6m|Xqzq264%ne~-6rOll*!G!s%z0^YgGrEkf@#?z{X1E0UIjdlcQ0q znqh}ZG*YhONQefLQN@MC+AmB+ue}QyK)v>BTMr+*6TS8~+7G7mmvlr^I`pL=<6n$77B4?TKF|ZCjT2Qi zv!zCK#9HDqo~m^mUN;eY?YycPri_OhCA#;_tkP%3C0>hv1d7lt@j;1h32!bYKO$}2 zXItM7G*i^hDagny5Na3Z=N6iux&BT3jf${0C`9%rE+%(Wi2W|pHNs65aC*EdH8pg>w=OzpqbpyX!V`IyAVu#*j|SX`MMWG0JNRICEr4 z>qx+vpOudG4lTt!1;)uIAi7&4U?{3u z;gc*h9X5qf`N?|a(RU2;rX9IrTDWO*^N3kOb1BeS&0P-mr6ZPu{7`9M zuWD+rweBIV_G)g}JU(D)thU5#K1=I3*WI3CZ(4KHT91v6s;10p^)gbXbGPQ++O<^! zyyB^W#=5TGQ8}NmG3RsfjY*F zb|s-}upj?A9j%kY1>)GM=7!K)wXTCqj_5uCWc>ZKm27Tq`sotFK=;#ma_VM^e`pBr z9G&UAtXVhi!6Z^YO(hy%nI;I3w)9R1!pvB_V>DOhfCK8s?Nkupy z;b^+J9;#u6h=-kN7-^_G!Y3kcf;m>(*EDKrs*h{J&zpo#ZebW))Iu11iFRwq%pGIm z>3}A1_`(+M3VWFNyP$<3ucwW0DZW!%Ve&q#b(|SGQS5DKVIDQPGccmnz=*uOp4-CI z;GHeF2CK#CD6s_%XMJtGp54L__QdxXMLBqT68+kewj9^tdKIHR zTnT&x(*r_iSG3QG_2%bK!fW0f@qv7qwH9n zjg*T#WyA)o(ks6yX{}?{k%8^e$+md#Ja2ZrRij-Y-fp6d#G<^ast*xV?xL-vqcz?| ztEJE{ltRBB6Hk5jyIVuIQr{g)R;kCV|C^ljvHov?$KQ7^7Ki^p8c^Sz9(OoBOil5E+&mODUa5oP?dm%6I*@ydM`HUb@SA@B(I>NT@K`*+vOovz zbpd+z?*^wlW;~d;iuET1;e~ZKTfX#Bd zhCht!4z1zeHOFdO!&i4Bt>-hik=Ch|S-GdRk~)4uE0@v7(h%)p3N10(X%{g_tXf-kEEgj%^P_w`~53eL*i zI$hYxuy|}k{Km8Yo09mtS-E*Au9<{{C44ak7T%9545;vITm=S|@c zFth%hPacs|@y!5UuRji~{5zjmXEtFPsWvC1l_q+N{w#@)qrkkP6HD9F&&@GGS6zbV zRObH)QU_)Hs@vCT0$2QI}8O(x6zOaH|<1$PB>apA%^dGYc0u}d~_|r^{c_-|BA;Ljo0LPt<0J{4LMxP zo+#Ckc~B|HJgc=K^NiL)=3BHAT%K>FBbv;i8@ffXvx@3(f#^ER=$n6;hzXf}X_tsQdX zWnyr9`}oon?CYGJk9*+!Zgzy;QF$H6y{W}JT6qJ1MVbfB;}^33&_O$uX{R{&3qqh~ zyjdG3i&f~aiY^{3dv#}l6O0u$Y-1|)(QRCAzb2Em^EDKVm|C)W+H~ z6CWBm`~{ZYz{5-b;EmDVyg%tCctjAkKzv0P1inN@g}5 zq;)A>6dI+XdrAb27{c)^p`Q1=v7yal6v?^>UHA$Vpy%gV}h_G9tsL8NmO8zrUSKv~K35 zwJ(hih@1WJc5=dC9i&sAJ{8Z7@wUCY^NNI1w5oII`%qMi+Pd}0O2)J`v_7Y;OY4v2 zTxf8~J_Zo^OSW~Sux*6b?Ij#gI>}2*FRg1r-uCm`OzcE2W8IQQ_3{lQjuPVnmRDng zak)tc>yZ2#arnBnhUBZXt^>>$qI-7$7%TAr3_9#EtT|!ZaVTsm+{lA1-xy}&tsb82 zSdoF-HWwT*NA^k$-hLM5F&Ar86221!);&9V;riAAPEM;j+%)ObO45j;b!ZR;wvV zhlbIumv=Fl?^}D?w63OIx6gptx1{)>ZGTlTUQBw#p(_@Mm zp>iFygHR)JeOEif^pCWzgHS!u{UCslmAu!^wB5U+!Kk5XnX(pQ@5c6~1HU9NqSe5N z+<}j4?-gb59uR8pR`FJ1iWK~Nk6Nckw>LCjU4*u)PhM$4Tz)~mDdlmw8F&+fU)3Hp z9zB;|T92eC^!((;lEIk&g2m*=O43sdyYUobc$a>H$qqyD zQW-}gyq#E@>ZRqCwyh>EJjv2mW;udMG^Q~%_}N|j#30;ukHAC`gLB&dV+Jox0)wwi zF$}&eMHswVJHZUTmyT!#hwddP0BxbZHx_qM{6 z4u;kR9b8)Xm(!uaw8oGQt*tW+Iz(vQ&c+l;VpMNNg-h=xK1#12|e&`i|f zI@~@^{5`pY;r3ju>p(MDbkB)Eqj0mrvsq{waTs-ix5H8J#Brp?H=PW}TL(Z;A>MVG zx!gw*!@+@5;Eo!6KS6xIof1{5_EKDls2RV^9Q%JZJogSoC^&mIEHg_+&VHkHA3)24yi7Mgk^|o#S!-6 zX0MI*UOW!>(kSfMIt&eHUXu<3bYBes6^rM0VczMf)W@~1gV1EreJp^Gl{^ZBs2ztj zCw@B)#ZMeZCWP`zd)F2oDBeCU7C;=>TQxX)rZ|g%xEtSV7|7lD3;6A~mfPsHbmM0m zUWeP0^7#-Gz==KJt^PUA*O4!ODJ)INT}CRQBNkODAYc%`{2n_>c*#?g++K!#^0pcf1^(pmkT{_@d!M^a+i+OA^9cZ+6p*Nt@vYF*Foh1 z(R~D{_*rfx52kqw&Oyv_zkOIdYf+UJ)wA zf}L--QCw5YDo1-wZ*zt9C}@DifQ-Gu6)Q|W)NwkPEEH$=rx{-VqIDfiE*IS&0+?9I zAuN38L6-f|fE6%ytlNz=?TU=}Ml>Av-WPZak}qxH&0XjQ;)`?RxoA^jV8nBulCC&K zzN@hpiSO-cY$@Sw;4PK#I_6kyCA_-kyJQ5G?jzF;!B0#Vf}f|IVS>-0BbwmhIq7Z@ zy-1{(r!jU0h1bKyU;71v~Rv)G&V*Q0ZKDfcG{ZZ1Mt~7BXR1!Rtfuc zXq35XM(-4V-tmh1VGB+Ez555P??ACk^uGfXenwl#*XgEi*YD`o?c3#CXmH(r2k7|w zZR^dOn79a;DOUQe+prnGB^2i276UKKn}N@DeBuZk$sV)We=?)Um~`!^vfN?wJ>qAl zj)u+0Xk7;nPjm}9x_DSgZb!rBPF~RnU$bq8pC7ie9ANCm%9baBt_)IhIog_)fUrAKvgDZNQfhXzv`LpqeU&b03o zrF2~iIzz9*36tm>o>Zn|>o77z?AT(4=3E`FL+$^Gzq2|SYA@Eh4m3}S?o|#K0t{nwRt_RJye@- zGskMH&9yAUpO^M}AH|&MW!$^FU8s|g{#Wf8ll~_uuum_uhh&(OtJb zS|v3bX-P+{5$1ajt>f^0yO`^8w5iiAk9JoER^$6lrcQqgicot!;%K)}zbdw%;S_4? z^jDn>$xokcnM~Uo7oVCl~vq70=l--z$3o1>App`+}-gUek@G?Zcvtn@qVm z_#Od2fHg~p<|J;pxO3LghSOJRT?d9;qI(%&@YiT7x%g;9=;cSdgf5kHp}~a4cn+bh zC&fn_LchP4Zu292d^h1UdLT_g;s?@tuf|0zBEyy>0EaGeah#+zjqI9SPxz=1kwSaYJZ<4}}DT}*b-LKNrs-zsgbqE!*~dAk&! z`mQFVuWNAgO>q-LaPR!Np%?egyF1ldoNFQNJJLJ1?QF_)tIopM0i9j4^`j$}Y}`Bd z!x#U8W%_+_IKQ(g(~|?1PSci{w)3=(Gf(@)-ki>+OrI7VRb6qd7WPTF9KCaPXT#j3 zo!tukp_t2NGfsuJzGvV)09s`edF$bpM_zt`7pkI1RkCsl=p*%?<6by1IF_(z-I64t zal5*~6SuEcrj=f`uKH-Iw&KC{jJKm16aa+d&2(c>KKv*#U`cqnt=hdYr&P6DnPat8 z?dn$N?e4(pd}pCb&T}^W@66Uhy@y!LHx6`lOB%{W@LUq_&cyx*E#2>*`Xzo}7D>SA07z+m#QG ziw^-We~)b)`U-O?e5X$nBI32nN|S``6x#ezc=8l%$5qZRjsQlefb9VV1xAiB z;%USwe2tzFiLsCMKoJX@i^@CLa%(TUKg3! z2nN0&QQIXeB61bu#WnbyD1IaLxa&S2S0w7X&*)NXVXtnd25;1V?pPhZAG1$w_u8&P z?ANpx%*j{ih~*^L^H)q_I2$0g5+ApBHSGQ@VCiFRiP`;|)^X;lwb=U!b46|U$I($0 zF|5{hBjvXH`L2fLZMwNdy}j6cp0%B#ZUcCxtKs+jdSy+#BVXbdtgL+0^|h_bK=Q1- zeEWuHO8v5CjvUK&yzsmR?_x~-2|s`NPe%2_k4F5`Uw$`5T_>MAi;vmeOl2RXbsdb- zMfb#RF3qjv_-=;g)4I89^iFavG^s1b#w@-r;h8BXVPhGmfs)q$m#xO-(cL-Q3{*MX&*=q?YyVkJwkO~--V zLqma>?JyKG(fk?8P^Njh(EPhE!D4?1(fDRJ_2opYAfI&|SJ~W09Dj!LQ@Zc1xFS&< zUu%y2(>gwCE9&?c$O5AKr`?3^3Efp9GTj@}5g*+fdc~W4m%<$JvR-$?^j-lY-L(;B z`arGYOjoYh>(|{dy*m%6V6h7INMK&@4B^wD>+zQ5v=^6j4Nt*l?f#cM3&muZ&v1xt z{Xc?tnQ8S7qGJc0>})(|j>UVjx9rE#diCC6I`!G%x?l- zsY7?NdZ_q$X?H{RwP5v*iScT>($9w>91joIy37a1wPO@gF&WCvRGHccZ*L4m8_z;Qd> zQ3=O&R1d`_$JdeKE9`R#{}UHxD&e1YtF?qzw=|!&6O``L!%(_s5219Cc7iEAhK^`T zhsX4A*XBjy-pC$?(+dJt&eK+y)Bn;sPPpU6-qk(K+Wfr0h*kq5^4fe@4^y?*_h2%s z$vjnTLBm;+Td$Anp_rUoP>2tHSti%7Q-I%X`78HK<5*JuxI0)(k1YgF<&U9n*P%KY zJ5}6!9sy7*{)X0dU^!iMcLNrGD{dtfJxsy=67%YR&~&n#3k@#V7|$u#){|#2i4pRe zfVccckLdsj{=_|)n_^;(9A^xoymiiE5E}JV>Ft1Uwm4U>r=e}C)^$LbF1qb{x*%9d z>z?M08mu`X+Hnx#;ktWu~uvq!C5 zt>t^WbG#uNO1B+_Y~5u)ZQ>@@1P?-(%u1RapPMN<2>WuP(KkE(Q05sChe{GC@J0f{u~p93aos)Kx{$7A+7cLrk+IF4DZon z%9?s(v&-V+@^i3T0-EVoD=)##q6}=S?QQ!GAK{!d0IRC%G{z0ZOJAF6(pa`)PjW)N zUQY6=`gx`JiVu;$wd;z6c3Rbe=u%N_)yplyR)QUf_F-YtY|WAj!hL(WmH2WwKgk=i z8wH6gF}^uYe>;`fI&}n-OJweyQii>F2_bZkZR-&_eem((&q_ymWqr%=z_=9|;24&) z41JCfFdAcZh(u+D#=peHk%WePgYzt{??7_3=ub0{s2s48$-PV!9vL%GJ01l}OYWN} zLwU)4sVun%Wmgm5!t|hkv6FmcF*tm|7G`$hTZ?etkWv{zrBRr z?`m(D-EYwm&F;`!gpI!8aErLP4_i>tUMhbCjQpyNFu5D|R!Qzm)2(8!VQ;g_{*?z* z^KKRPnOWNW=$Lp)WH11beDKJthXu5)3mOG&I-{z1L*h*vz1KhZ3^>+z1_m> z$+^(r!i@2ps%1Snu6KmXDRB%&@2*&jFH-(?> z;}+~E<t38&x`x}`WUKzt92ceo)+CN4N9tzTghjAOd;PF1wbX29qT3|<#rmG@q3dp>|K_P zMc#`8f?%jv!S-e~=y0q_eHG2fe>MJ#;y*S){MB;489b)q{(J9Qi+go#_U6R0HQ}Ls z4c`a#6~52VjxgV+(-F=0@btd!iv3k_acW;f`0D~zuF+PQ@SfIjrfi4UyQ8mJv0oDy z(Q05sUa_Cv*R0sL_H|e6yTleWoE5wEdSYKi^Q?@*tZXXgDRuEJJFuL0Tw#_6M2Y*> zw)8d+D8pV#k+bU17w{@yLk-`j19b9tk2qBYx2d`QQtLWkREX}U0K;Fyt>mM=riTBG z+4MKpRdOygxQ1gqrU91 zk?D}3vfV-E9r3s=?sd>JEZJJuLFNt7?VI6V|E#2!cc?|l&@hZSVcTI4c4#ab?!I1= z^s?TDre-po*jA+D8QZJVE!`cR=&Vnw!Qc19UnCqa(NDp=5sL@)t(C>KG~geYCHf5+ zhR)Y!2%R6%-Y}gXq$55$KM17#4fu!R=lvOm&btCuUei{X&hKd*XP!P1dv9T$r~!X1 zFrwAKh)m}-8HUb(V&eP__-A4Z8V;SU*Y{zoQfk0o90Ouz=jCF%zO}_=?d#>_XXb&= z{P4=$v8dWnSscl{#64xLy>BkS4N_OK<;jxdgtnPZ)~ajtA@K^^GNzSWkwjTa$Bcbpr0mcUo`_uYZKa# zjIuT+=&ILujP}}J8bfmMl^xjfIF^LrI8(<+Bvx?zB0f$fIHcFURO>sK{2=-l8cbA) zwvq*zrbJJTMjB&0Z0<~$@SY3zQ9|;n{A*d2FTEl%>CyN(%JOq!NI1$>HF*7-c#VW( zI^T__c8Si{X8eEY{HLLFDJGv*<2y5j&fjTon9g6*5l!dN*Mx!YxQ~dNUmy)=HQqE! z(<+sd#pw?zJEh_N0M{aFxObXk|Fq%$dKebqiP?tYO|pgJIoU2dGwFzBCqJoz z-7Rx)nRA|0X)msV3e5A9wWXp5OUJ}(Lrn9twTd%cDPnFqKI}?OcTsdug^$(hW2F3` zN{?(V-l6NggV`nSmpaqMEPm}l3=Z9G2wk(iAy1cQdVgMv%*@NrFT{ubqIA#6&csjH zye@zAy0R3dAej#ZFKsERSDovt6NmmnMZaH%?__ol@pBD=p%wbmTGxT9i|GCrQ2E(z zC68w_+e2jpiT=JwH#zljf@5fCjezWb3f1~@A7-|^BH8=TO_8t^qYW&Hx2zxO72I6b zL10mQh`_R>S~0`&jSkg;B~$$U0zDEDKAfY{)q$nA=>8pm#Y+AFEc93!3I!)L!dAIu z$GXo*x$#D3jF^BOLN?vzgTS5mxFywzIl^wP*J{*k@wzLGDvUoGeiGxGm}CEt@heXQ z;ZMymgg+@q2!EOOh0F29bi_yai@oK8eKoyMoV*~%aQ&`;k(JsAll@Vx<4jdQvG-t( zA^S=mP@!TKE+9dHw>haOK7`#!=|{2>?5F8}Ol6>0o5#uy$F1w<<`|BrdAM|E<4aFW zahb@1ygc*ccG`1Txn~r_lJgItmsT(5-$TF9K|8rTOx*kgfe^+2*18Tr$BORn0LV{q zEBOWclG2t8&GECm|6%jv<=kHkc6_hx6Z5yTVz(ZBh-oFF|Fsd=Q1srkzGcY@8~(X_ z!DWp2+b7p>e3;gCa2X-G$L6}YSjpgAa~~bnXc?n& z%8v7)!GigXteA36S<1@Cs|lP#yX=)}q#W8@*IhN_IC1w}8dAu84knJseUdp=8@X%g z#82`v7nXV9dyoaRbpLm*(EJ7M71R7#I$~+Q{JuTKA>i$A#7`A>|CeiMzCU2(U2TME zen{&$vo%5NeT~_orTe>q5v>MBPoP&}qQ{p-ESo}qYDZWgd~KE5rs<&33C34QXaPv*14%^p}W z5Xq0#x(+=q1nqgb>3AjZ0i9TJ%KtE-U`?c=vl((;0S8ZYRH|2i5sTDk&gc`(|?YlvX3M1Tb4 z#{Dr|qNs8IH+Jc)WiyuQ?xuHJh}wPt89}6fKW}T%V|&s<@%bt*ne#`{5zBd6%ZHD` zFUNk;Um)K7h1{Tiy;HzSnzq8E&(%84d|fE^GV=}T)69r!My$qPW=6PQ|BW(zK=_n= zx42&_=6+*kr?^|+f6j|gzimByEF=d%kYfek4&Qjhw}t3^6537;%L}MkkM`p z%y}h=oKKY(GaQeol0b=b%uQIt)4G<)Y0@2!g{@${77C_&548?Og zJO_#!#l`<&x@o0erF9)Bt`*&~02EfT3sBIn;jrceYR92KsW<~1*`yG}biw~`(BEDCrYI!Msy?)+XkbqB#RH1wo^?eEU5V_PuA zRLgJsIT9n%I>`dC^3a~KUYlRgm>Y1k%z!h`FLc2P6{;k3z}X;<{)HEHiR{T**TG}0 z=r%8O@vxGn*us_C^1q_-s^qd`Z81__wj(uOTwRvxo%eYpHG=Wo_l6G`H@;(BpVgQT ziqHLNOkq6s_}NmqXM#EMPx*e?I`DmVq2c??LgD*u+7&L`H`5Ux-*5H~-stPeH;Rup z6dI~;3>bMt8)2%ysCArqdQ9v+i+Q3OaF6hS3KXkw0}12-7)tmbSkse_YJ{ zi?tn!Ti+KIMk!tg`-FK1$CkA*i>oX={$k(#CXUAz^GnWPd53VUllhI`zjVw_9zQEi z{)RB9emC!@a^AsbtLQfA=jO4M#P>7xyGuW}em^beLWAme=r;qQvr4z#{EQimFdL}Q z{uGh>?1YPX`J2fd75iXgT$te1C@?f9=x`lqUJ{pw_A?YeUF$l~ydb(00?=5=$$*CH zIjlKdxgF)F|8s>E}{zrr&{pgWOSr;|IlY}q1j+^zm5o{2*hj%Ma z^ftdy)~IfN9(^4!J+2&2trlkG;f~qz4Hf5kzjZ5b?kdEQg17u*uzOth@)ohhhapb5 zK?m&Q@K568zYqph@O!nc1I}U5{Wrkzv)f8m9AntM`53o?{~+f=gFA4H=QO6)lSP%%ju&xh$!(%!4BKG(7*6TT3%y}@1&4|y}4^9D$zK0|xNe4a!{e0-iX zz~ysXbMvsusRIn3uk=~TFB`*wS|d#7C0fM^y{?$Md4QqwWq|>$1_oq0j~`&@{MZ1O z&JD#DG#olxr^mvE&>45p3bQisWU8fdKB&w$(Kg3n9tWqEV?PHgr?kcmu=sVYyxy(K z@$83RFl`f_bSc$QI*Hp{JbN9!6Ne9KT?dgSqWeA&@pITp-Wgyx{1ax>|8#0IITsqt zVT|Xbw)NyyOrLPLy+vYL!}2yJ(q)6+VFD*99HP=Kb#O%ki&KIpG7>EZs#JH7Xd@mb z4m1?*p>+ufRZ&}tE;i$N$2{2(Lx?T)-oc%OM6c*g-|EZ`M1c~AG4*3VHyn;ky%Q1$ z+`&w3RKNj^bDdPT=-Y{tu+Q8bg~=iA=6UnqFRAgX+tuAMYxq^!n$SWDOFk-a#Xw=~ zTI~ljb`>45WaCF!RuK?^M_JOv%X_e1qq}C?1D0OUmYBACw2m`19mQS+PmMROU%f`5 z7osDpd9s@K7%AU5^9C9U|1i*9YVT&igUTD#&B)Iw zz_%-@Cg)^k7l6oX8{^S6CbFY|4|!$-ogbHRO~xbXkyDLi?W6A`CnOH4K7sp+hm8jr zDtFPk4wZX~ZpT3`m8~RokfCzFK`xbh%el~CDq}o{%GQ%cgCbP6@o@ffq(z%7lNAtA zF#`cAcMu?=5(eTl9h}4DJaO>UL59imw5|h0mgvq20AVGw00b3dSaZU(<4~A%JN!;c zOI}#_^wuPlchxBnb)N$Rq1)HXGE*ECabzo8Z&jWZh_`oA5}KAdwA}EKwn+?KVUE{U zmaF4;@4v9Pei;+qd+*55AffiB+8?I&M|8wedrRNF#UTLgZ<_~-qXz&DvAW)1mA7o9 z4jr*ZnANSdjx$Yz#9q>1Q;h2jc1N@t7?F$ddtd?mnq4s1Eyl-+EoeB!*n0goY)CQ2 z-R~^?oXr#_9%g$P*W-t5OJG!Dzx43+>xIA3^N9M{pgwpDn`72VANB&=j3kRS@fniHoThvKAKjG6Zm z$}@<$u>&&1ttO&(TrU-MPZ2NQ_6~eoGBW%It}4_DZyWTFTj8Rn^#I!c4WZPiP{oVcCyxSrsWK=H)#k{HgsZi zR0WIG>TIN3gwux@>RvU(EyB~pW;$y-H@0m69flb8&h1x@uR9dvG^To z$IR^`FNO>rjrDRw-Y_Ef_&tFG3#5j}RN)r}?$OaZ34D%t>LC_dS8vw34pK8j_dh_& zPh~54c!;6$E0}Hnb0{Mgkp?Q*pd@cchN(>MPP4jg3aP{lQJTn&7_INpHzZS=Rq0xq=Zl(qRYho?hnfq(h@n!i=WDOH)Xt?N`U()9JJcl(?T_*Nc4K)S(w!ny110!<5K6|KP{YyjLf_;_Pf`(JDt=DJ51{G{j zKGCb3Ssq^}Cj$@P9w@W4FU-!PAGGLZH)!9&uOrzH9WQYz8c0w-B`()mP}1VeSCSJB z=%}64zFs_i53vyIf6}@RLf44yVIbsZy_I}B)Udwcv2FpsR?dY67jTT{6gKP0+n7(` zyNNmuapid^(@AngG|=$PZqPo7p@}M~=oygP2Si}8+TGye_ zO`?mRtvZ$R>jR2kR)}9PI+YF$b@tY#mg+a5>_8Mh6?SCE2N{O>cmXDYfg2uJkH=Ij zLQ2Y!o#lF~y6vUnEe7Ild)iR1YWm&@pyxk*&g`!2@-?B`DZWf^(Z-kCg^m@5|5v-g z41b)CXoiO#CqM$t_6l)w)3Ju-`vR7BYfH@X&$Ny+MJvVLM?6KQ+1?!;SBkw$_tUx#=6DDaeMZ0hVcK= zx(+-Ki0;(^c&y|~z(WgpSaX86<52L_i$6qJ%f0w&>c#Oj$IGx9- z61f6gik=*R`+M@o#nT@F5%uJ4k5^gEMq1GkYlO+)OY1n(^@P~#cDyO^t&Vp`v>F(Z zOZ*{lgnIH($GatdtJs2uQ{t`H-@pcy_%RQn#BaL+B|aCAp%ssgtnBkMv-)6G~??-VNBv`N?H@!m=t?vex#o>J;y_^4o z;_X**u{lt)3gPpF4%)%zHF10s@S(o_b*<|F^s?x_5&+0bwgVudJFGe3+i@s-qWd?L z{!I7h4BbDtue@zNP5}dk8|SH;19)i_iu2nVeBUX)BP+Sue~Akdwex$A`^V+}-~=$e z{RxKYZBE#_{3dGWPjESU3>~o?<#zrUuWDGZ)K`dyg(n!cPYqZ)LtA3DFVH&9Y*mWA zxhI%*{*36T>S}1U3XPQ8`P>r>>zAM4*7?0+GnciUcHRb%b%G*(<=x0|Y|5WWH{@E` z8N;>@MLE0X5$`)hrLw-w&!wNjiwn{8_5ksta&`9dz7@#{n{@O}UcWD%K8jdqVgHKO zb&z^nbhiO1Kk=>Pd3+W1_PsZSFxmcY{#`lsc>^E6KK7^p?eFKULl0qkX?@T9kD{ab z&+#Yb;>8l?zh9|=x$Tjk>n)sF(%M^gBRxHk!3dKL7o%Tw+zv(`i}OF8V7T9Sn95xT zqXVMbaF~mcmDC$%`uZQE;j28eV?9LDp<(36$eCE(gY`1O0RR>sT+-5;uo-tQ`~bKS zX1iXiQ9l*0vuIRl>ieExn)){8SZ#H_mZtuT=KSUEaPcs69hfpqD*m4?4% zgclEU3-H(C@WNr{B5;4e%35uOF9J_#9cS9U5qpng+UTXSwSf_>21YDevv+7{nBo2# z!`zC0SWI0G#d}Nip0L*GONK>=pAyC`cxvZmw($0pSM}gJW_$~;*+bpDsDmqarrfP|Hd1QK-54i9_I^mXla7z&ZPcBH_(%M7m*d77(<3f0^~ zp#tWpF0H}SIuaFz;VOP1t~pf2rwseYRlNI^sNxS`hH1UN{zPH#PVEG<#TO zlke>G&`?}_`9#CuF9Mc6)s~pSe`p@QELo1N*G zq}9O-nD>>&kSu^Cp>VjOqm!_$#HZZhhPq?4E@7ggZ6UfN@V!EFqe1H^X^!}FIXtF1dxzF_ zV8{^Nr6b%rYbCdiFid@Lgv-<{ITsp8(~jX4M|qiXUD}(1i@}|&wr*Vlbt%2=x;+Z{<7!i z!~b!uy?hO7ZN^AbYkQ9rvYwHskIjbEX~)J4({7K zD_*NOQ6DGf7LPQgc7AkFb#1j;qm6X)&gA&eNJHEWBi%}SqL>`c%1*;<-9G`F)PuWm zdD(b*DLq`#x?vvu^o=h~V{3`~cXF-mP{#@zSfRII+MBJo+QvL{^H1f;2`}q#ot!Na z-(H0GMB=x!t^>_z(cKGZ{4KJTRE;zw{uM@E^0|PP29bGl;QdR0+#-(EpcVurFEQHD;9e@%;XIIVsCtOTs1XT?{*_y zbI0H=;U%LC*S{R)a(#waU1GE|yjNqzaLXvKDpWBlF24Y~DlLB+cf$>zb29U>^}>Qn zUYqOPcBs5V9V?b=0mRiE28mFnP40eCBAkZl5csLxWe?amZ!=$2_esq0xrwOMaA? zD_E_U~)YnD+0`5l#Cr9xQf#`?^YeeiJ~^Z(n}}to*L6Fy)($QMpfZr*d|o*oz;- zwLScMU_`5d5qUMfXS5-D-!blL{2H+Z4QDlOy{<$`g(^nZ$-&pJ4zGxC96JIjj^lG2 zR$k9s1H82p%GwCSUD?WUWo;5h>j<5)b&Gg4e2gjQ)3vUH#tou71!(xoxs{wg#&G-M zF)p`nl5?TK+{Sngx2-29jEQhNr7p#Tdw|h84lp9@rVUoK6t6rm6rgqo_smcpL$Oka z=Rk40xOh8)sIzZFyjFFPSR$$q29U6l`(cC@<1psLX@{XWX)%sj@3j|;@gsdI+TxAA z*dY;*V+c8>su~=|ckdB%_j}f9r>|tUI@ijWCe@^?_D51e~Z zZ@hyE8f1BC`FC{&S!<<#b#=Yb7ih+h8^@#%4cS`!UTIn=VW#$lIe!)%(VP#T1s?hz zRM{$C7UOk(D%LjytX!+DWTx($6|Yq&XjQBKC+1d+Gqw8Kz<^c*19GjNJdSI1=xHyr zqVybP>Nzn51*cS7pHCa-6_2PG>K*D?fk!d&@vS@DJZohZ<=NRe`FIMIU*$|GtZ3mV z86uOCH+ULu9X&repyIQ`+k(BR19uYoRq=KY!l91*Ypv^mv|V&R2T1-BZY7_LGbQ|} zBDaLUEayUlOE|`JN}Khh5;IDjc!vSL&?05LoA`q<{7+b@d zVT96(6dxRfO2zZ`MTYXZTG!#u>!OSOslV{`=2p;$1lTY4mA>)b_JdT${I?_QU<3j! z)=#79;KllOYR!|qIWsB}YYe!R_u`C-=CM?K5uffxp)$B!qClSVPhJx+tMrrCka7Q* z`F;LCi+&RYFD?4@MN;zrqa9)TKTJn7{X-86R;Lecq}<#qZaz?CE&-(hOFOkCuKD}5 zjx%}t#NIn*j`*$6ozaoib=hh@V5I!h*SaFJcK^G`E%|SY-F2j`OPdW~brD?;a3ei4 z8@nV$uLU_-xtX{Y@Z)N@7GQ^+h=REekb<}T(S3X!s78GF4*Xiue!P?4Dwq$&z1Cj( z&uGyzwW@>Aeo^i175^P*(XFt@cykRne!P1PI3TA(gRcRt$Gg`6>r2b=k!yerD@tvS zdhODZ(H_{3Tj~soBPLM5{A#3($qXGRab98ag?L&_m`Iy`xz=}p`9$XjN zG;MluAapw{# zX8n3P^#5+wzm;aaoDh&^y=1&x01j)<_yX`P9nlwn@VDdL`hQq_{t9qW{ZBkeWjI@D zLPx9>CVwZbLo=u@Cf|#_)RW8tpvg(@h*kq5@&e$q@rLlnp5!*`KZ`ABI4c0_^~d9h z@uTrHF&@WIgfA#8wB0%rJ~yHugolE;Cx^nHQa7fU@68nJP@RHyMBJNvk}3HYYh4GH zKScL@z~V3YRxiFJ!4n@p& z2IrmZaxa^XSnlxysCW#!Nm<}slP2P7#>w7-Q_!^s44tG6 zF^Oks9p^IKRLq@44w|n0r0BTnl57>RMHhKhIRRb!f`-^=n7j5HPj*Xq3o(pu{X*aA z+HDZsPc~&dKPxvMU3g?kpPPv#y==79p%AxJqY8%Aq+m8$Vphi#^DaCO=-8c9ZZ9sb zJK3=MS*`2f)LL}68l3!XyA?i3h};yeIN5F6+sfHb8t}MnUq^rIwT*RW^~q6c$5CY7 zmK*Kec8;5OTcSc9Q%YMC5xZjw8I$jHoDL?P#M7@%HcR)oQ&gfl{7x0!qfX%~ok|uf z`HRsqtvVh7LA*-I4z=2V!n>d%ArABrn#T-)qT|9HQ_A7>a9vhob{3brdj~t>j&GYc3r?_>qr+9hMDW+22 z6R`4cZDsK+bn05gnWtW2?qSRmJzo0nz<^c*19G8WaEj^F%e=*{%5up?&F4ZTFBeA!<^{dHV_d8vo zJ$Lc2SCSIG(qTHOTPVJL2Ir|SKkC%#Q#V(1|1_zqRy9`g8{(jy%acxZi*&x63k@#P z7|$tQ){~Dhf8`aeyiM1ky^KVBXe@3#TR`af@hSgCzwHw%K$cza3hlWJNRAHD0c5Z^ znsKV(@^G!|Hs>Mo%o@$;h#rGt8P+9VK;dU$vnbzXx(M0iD98X7_gij}a zaF2_D3bNkKde${S9OS$j93Lu)fpbK9nUU?x9LM>LZ|&kHpEru#(k@R?H$n-2smy{|2C$^KsJI8!xT?0t)=qGwIt zkB+LYbXE($_R(~4!~N8$X8qlKf?KUei_NDV!N3WI%9AFzR6bcwg$7f(7l85q0&e~2J|RNob~ez%V=M5G zDFr(J)@7rK#@JPf1C2@;0&p0YKv%>VT&4qaFqkafT|^j2OT9$vJ3vel{hJvGg^(58 zKmvIX{-Qvrb~p-^mfV=~ZYNcAAm+A@9T#XDne}MM9M_XI_&HVld;+f*VNtvpsYQ>p z+)e-fzZ>W2vf}>G+j0V``m|1K+lD4cHLg2RB^+}&Oh+__!{Lc;HJ%~v9sw@YH+K$L z>8PzRfAh7D!{4*TUiL&&jyncMv>F(Z%kdu*3~wh)bo=JnVhb8hJ+@x|isZi?eRE+B zUPjuss{&7l7vPCCe$B(MHq#OD3k|5l9o%#H!T*bNWKO}kK)hKn(Ny4@wXTE0Jkh-# zDEQlCEBV(%L)%poUD_^?bD_bs#dr>FttaPA)U-8`Zr{zc1qd1A@sKHKn`$DB3K#;z zTK60V;RPL-1H$Fv+%prsi$%2}fPs~i0t0H0Va$op4nq+VTQSe0W*D~8 zBMX>pCmci8nBn|ZgO68=kFd|J@lV973E>YW)LLF^X^pQIqIUJxo`$Qy(UXLvBPO{d z9Y#kqN%8vAmQ!&db6)DWMqE8^k|FBsfTfw*5)<`Gt>auz|0VV=B@az+JTp45y1rUP zykJjmQLPPOudyQA9p5|2t+zLbY3!|qGo0?&#xYLjf6X+XLPVm+Ab51o|w?w;xRU@B^s2);^8{wHydt{}qVduP;uo%I6?nLmL**uT({s3s6+_5f zV)u&JLWZKwX)4PcC_HiS$Rx9FZmo443g02RNvFA&F)K+t&8(Y`aF8l%>@ZIl9Jv3* zl+V8e{qLyVxXo2vV5@iIHdhQG2R6`kR*iUVOlm6vK?xZd7MM>Lhgx1Q$K+tuRbO{W-S7Qk3JOlOwLV{i$rj3DKb(wQd`{VLHZz|% z%fCzgy@BpSM`UrikeLlinYmF(9Z0;xt@pM{IHKcovUQ_4^#{DBwm0c?mDvs!4~uTI z)7@;flE$Z-qTB6sm$r|}xsAQz^Kp^mw<$5EQh)krXEZ_hcc*7{prdpqV0aU+yZX{M3^Uv8 zPV$z0T+y&@US1|W-^_J4Gm9SnPE5sCD4(6Z4qMu{s%(UtF%b>=0etxx3sKmKBUY!!Ua88SXOrbvYFp zyo|mG9SF!41;r< z6L7Eaia2l8U9Y$D7ER9954l%K2sfQ!sK3rRQ6p6*x~mu|1)&w(V=|7fY%u6xVTS@1 zyx>N=>C46EqU4;0O4Ap5^;5g#fYjAvzIQ|+w)P0yJh=r@v_Baa~&uQSjp2?_&P9B z>o|%1j@TRK72hh?fpA`6RI7zixpp_j=x^;C5Sr|E%KOC}6r9>^9Z$eH;J^3HHx;RM z3o`Q~>+Rf(0(!pe?|pNeDM?$z<#}jBIuHzq39Z&Ke`?&(|s|3U62`;A#ji)I7 zkk{(xg+t;sl8xKxhU8?X$M08m%RruUy>*53tFgve90BL{EZH71@8_;`H! z6qm<8i-!}Z7#=UwM)+!Qg|@;xUZ!=Nh<_1#w@xwZ?<)c$S`CcI96ou9so|TaxFr5V zY(c{zvGuwL=Lm_@=!I!py9=@k`{4W4cP(QMD^Z=N!SgRr@hlaMr9MUS?XQaFU zziX-??@xHe&j0z$)?)H5)^_fBS?^ckG~sWDdU=`I8F|d8G?&Gx zaxOHO#Td_FvGpWjT7<vV;IiRp*a_` zZsOj=X{G=#(7Fx`M~m*<01Q?#8!*t_YgluFwBsO1rZA?xH`-&OaAankkig>9>O#WC zj7QD3n}9f(+(X=4Noi-^q7L0*sK?K1US*Eg_9k^Ll@fB!W}M#7dTE*v`g83X z6Z#W6q6r=T1Zex;)yNR1KLkGXn^S{g6(C!wOGm5~rgK}ZIVU1NpI4b0#>TjZ?x<+%UA>F<2FS_s zLiv?TVjNEYdM`HJ8}6Kfca?IoaQke_8B3EACh9Pq^c^T}om^~KJXh;Fkn|JXa{!6I z7F)^L#fHU;iI~d$xg*pXb68a15#cxd`h~QL$n3Bcm%jP~3+-JQqTDvu$j= zQ+P%9$~2!8FCYOdMrG+3M`q7tRMzT99aN4NZ|^HMq<%{4I;ad0-Nyr{Sji@!Lifk+ zi^i*vv18$penNw9Y9kdUe~g>jiw0GuR2N;t@n+5gxNvmu)!^|k@ff3UnSKiw9V*i= zO{=v`SJxW1`wXk;M$-+G>rWRZ_nz)@um>Hn9HeJ9!#$?EOdc)nb)9aQJUU=ygto#= zo~m`62^u5zPM>a;(<1^SS`CcIEbcVjTb%yJfDm4YM?qF}A1|h$;E>olorZHPiR4wCQ zYh4G838MQL(D0MkN*0eM!l5?TKr5NKmRmys@5(v`mFCwpmli8}WjfEjG ze%VNms2f8z2kl2Zrh5-iMfA>V^N%x(*CeME92f3|8_ZV4zYA zYfg}M90bXw7<0ZHy)UyhMnJ_huf$d*iw2Z_rs9a>xZqH5vQ;%Qee^H;RQgS9FFqExRCRebXIyFg29g@r8SU*1Ap@tT#dDYk*~;*6uUIb%g+*`Z`Cd_(VwIvmgxKz#ghb7pjo~_9Nyw(ev4-L&48i3+7Ofd z3$5c!-;HAK6Y_FsXm89hthTprI=_*vrlF|7U}}wxyTZ{}nHUw4na_jTv$c_)~kv*MQ&Xh`t7d ze*^UX{`!9L`DcJd{dN1ZRerOTHgv>V;R`??t>aAG2C>)UY|~%2@zy4l2OdzfS{Rip z{`X)E_19z2NBWoM4~so$I2GS|{v8s4Dn6)>J0^vhS=e_=XpdeQH+p5v4b@ki z?e^E3<=o2+jN5)(8!v$RyKC#ujI$$z$F^h_S2i+1YeF+9++>6H=~20*vPA}T$4xbZ zr@m-F&hY$KhwQ-fw79+HY(w>3TGxT+zoNS%0FRZt40x!~-VzO6vCfV)!$`T&Mo#qZ zZ77e+f6N$o_Ca>ME9!$u!N6f2s=@VV#dQqF)&6T-lc?IiF{9RMUtP!jRo}`r;SMtm zx7*DWZV#F1vT`6Dv8?2dd*Do$+uOyx{xc1?ivw1sXe-R^3$%_iQ!k0Vd3gAf9w3_% z7}08AMCNt=Os{G-I_{Y+t#^niC^)pXPUqkpp>=9pMqWXomp;NSDzPu10z(zR0mf2kWG8g?PAereXLFt?K|&BDyaD7(c_UA##?hfE^GNQ<%|o+ofiA_ zbOPpg9jpV)8{+WKn0;!;o6b_X=>W4^bmM2az*tFxS*DD`niIAi2Vrv=M?w@2GMvV1 zG_fM*$e7aAqr>6l*5LA6;xdL~PG@4~h|}$6{$oz34h5&roMkvYZI*EQdhG;P+JDgz z%jv{oH0QHiO79o%7R@r0ejs3Ey*9#>{-4%yCg=mP_ar8WD7`)~qSe5NOzA6UnNt1M zESJ+Ci7jY2oVH$HhI1^Z@!jj(eB8-43-rQlEYOQPp)n^uD;er>VYat<*bc+xfTVKl zj^u=&b%aj3el1>o55K7!k3YvrS5-T7}e~81cdfW5LCnkIqF!Z@L#8m%F>p0W* zraRq(@8?@CGqMzq;`8VADvlX2k>Ngbk@@E_B zkJGx&g|M#Zj+*UODk~X2+wlIZ*=`B1FXuvoOE|`JNN+vKnQch_)iajR6!H8UE89ha zqDN9LeHNW|1P~G{Kq>>m$hm#jCM8^}gLD9CCXOzeZA$lDTGs(2L3CFH0I`zW0SI;A zu;zqo$3eJUx{(4q&qV3I?QXE!Myx^_@uHq%9~>0Yi>{lBB+bRm7bpd#=YH1kkbCY8 z=6G#Ack1sqH;DXjj=zMS_=_)3ExoEem0tK8Og;77U(ObCH=CofkICJbj`+yk*vp(8 z?0{Q~-;L&&LY@(@)LUC(b`RA$&UCdAdjsc~zPopHRE3t+YDChZ;d*lnv!~B-nVll$ z>aiJz+1B?uIE~6Vn4P@x*~&&dwVSW5OsSWVoso&3#dv#gusbaxi6e=Z*aPzoV!Ovf z7cEUrSfrzL61a=FbtN39V!lG_I*4=>-Q_^UzbLnoC36g;AD-h@@}uS4B?d+QS^G*s z)Zchpk1m@NVYa!-Ex56=t;M0Z4BOyd{;XX8ND{%JwYTcw%9auIqB6!}r;g9TqPO_? z>KsGn{aV+-qPyt66Tres-UJrZW4{`WQss>u>oOzd9vid&*F}cZNiqEAIR>%K96NEv zovV05zN)eMim!EOEZOY;D0oM;`pen1*6QjS>t`>;B0TF{L*V}-?YrZvs+P7rhk$6J zfI{dcfL$SlBt+#3*hN4r*K%#B*Gexcf)r7zlqj%4iUb5HDxe}=K&7`N1jH`twOp?X z_KM##vu2$$XLic>?Q=hPCLQ`zM76`0!OdzW_RJ);$r7+ zj=cRtR{CfwOx}@N$4pO-*c;x>?ZW$nM)VpOk$2%8x;f@P-_7pA&lOwHFuQQ?^<_9m z(H4((xhCm|P&b`+-R!eZ6FFH%H%ZF{z0?bvrp18eEVuo~cmYlh?b&Xxj*HRKvBcf(r`e z$1lNxci(IRM0oSHG_o_a=3BL|z@TvO-&7BJb2XW`eE} zds{I<)K0Gmjp#KnA`=<6Ve^&m|6#%suY6xGwxD5%?7bd`bBM^h|3|;>;B(YDc;>RO zj?2EROk6U%?a02KLC5#72$v#EE83Ylxmppn-tVGzm!eP*;JaGK_b5AeZxWW*ZruOe)i15*^#vrX-07S{d4L^ zdI;G+(ta@6-=`y*?2-3f@TRBkDPF!4bQyx4`tOjTKeeHPHE-RU+*9Shp?fc}c0y04 zd*shj$Mjn7I4Sqk`@k6b!7HPu-Ff#DoBLSX?7Y4E#XVxo$DInf_>n8Ss3AT|k(m{2 zJXFAxN9w01N~*8f&U~LTaAMVvuq%Wqopr2~(JHAP6~8(JT}JP26!iMO;FgrTw7$V+ zfau>2Y!d6Ym)z3Rk^SMGwtf$kbD_cYy8}>4d}_&ib6L+A*Be&hfPuwA+>u6D;5irm zEIpXsSPLCc1P9Zc@Cb_;kf}OA1IXjz>OGE!+*Ge}$17^8 z%i4Rzsbw+oHvH83Jq@Or%*l^^V7D|o)xf`+N!-s{>pM=E$~P*|zxxXKwh*;)A1 z<$IXY>@2*(JICEyiW*+F0&YY^9mg{Pv2!co+@QwV!rCd5bgZUGJtO{2LlEz9&kydvzN^2<>z7m2-~w`2E+(1>0G zBQm>h>+RURrnhDHOJWNehTY!ln{f`Ydsa5cnU$G^cYuP}wSx_p72#=zjLZzY0)Zc< zZrHpW1-i|6aZXqP*H1I?yzEu`Q&Zm2A)9nwA#UzNAVl(SwXT8Z718}K;7KI8mweIN zkv!VRl6<+G3k@bY#xn`;Jt^+(Nd8@|qQ*i7t*aanweF2&UAN^H-Uo?g^MKqGN- zObpPN;cd=~VPei_Oq%vl*>5m;U3_iS$5A|2>l#c}i*6RaJ(q}ym!$V`m(Cgmy_eI4 z-oy)pek?@IeK(Tgc4@U=?UBWVif+?3i+2n9I8N^l8QGzY zFsDD(I%a~lh`skQLFl<7J9t2~oAC+@-280#{;lL7W99BP(PR4B&G!zm^&G33&9`^F zppT+;D{MOP30F^ReA+g>RZ#8A%{>Dqb*bXcbH=ASN|!3`{nNXtDUJG?^i=_sh?n(( zuDf;*Ov%!!2Ao1sZQ0jmua}(N*D?CizLwF&axOHO(e(gV;x61fQoC=A(ReI`5mA&R zMACl4HxrrCrHUDm^Unk0OBFLB_vkQ*&_x-6B_C8k54_JOLd>41D)}tNNLz`baSk?D!LEE+XBi;xgtIbiw-!AuVeDD zquq-C`5*AQ5K~XQ-qlxl{eyOfd3}hEXkJGT^|i(NQ*rYf07JKup4?BRFk7ikN4%B8 z(M|UzYZWs`pNYA&eva38Bl&v?3yD|2cwDN#>g!7N#r(QPZ;3clZS3BNlm#^ zhiPijVe##@ey%=0taS|}--vEMK$2LCyrg$O$L1&dF`HEqeJAIlCcNjb9Np&rHWkZz zbaTHrt2yd}FBGO$b#)j~*T^gB#FQ>Y#)yE=X@n)6Ce=NL$O}43gUGMq>4JW)I&ajv z29X~{cU=e(FIf#l=!dNZ@mLiqek{Baicq0TWhtLiuJcCx8`+3ctu8A{;&n`B!~CKg z*MAq+k$POEKgEheReD$7qps5Fzk$DXv)Awr~GgA?B?fS z1wP(AV@Er6qmTFeESy7}KDS#DE`sFdW#auNu|kdgH(o@Dml@GLXWx{jf&DdJ)3+?T zEj9S)GOXRkKqZKSCJhT}r!3G>n_NCoynL>|WA{3(YY;kKbXNf(uv=xRm%K)ZjE)vz zh7&vN6gl-ZfU$5-yC{Y;rP@1E(BF}I{jEj#&44kXQZ2MbNSzxLbP9&{F2WVFxY%#b zJs`b0qEyGl@v|9_!#YRC4p>G}rZlf(AuF^riJOMjo^bZzyg)^q^z- z%#e|1v=L_b60KvVtC84SjOn5uzn%$==ru4RSM0tIx{AH$LCfx@Vhb9E-QMe7I492T zyjFSXxZfnc4ab{Lf{h!-_Y`iID*yP43Bv7C#c7-IYW{C@z$TZ^5+}bx7}Q!vA1XVS zPZQlEpFa$>$Ho*o|*g6C{+nzPHRu$3}*K&hB&@ zTJMZDC9j1XKQ(Vn_$kDrl);0OkLUb>E$kN+OE_%q-ZoDPq zNVv21Vc(VmaJS2R6Lp#BIUQb6npZTWI^#qD;tj`ti);{F;{7J~jN7@MU`A4l| z=I1=IcL?)CjrB)7pejpVVXd2<>gR4sp1g5Sn`q64ZC`zXm|Dr2rmyyXFMlY;=q5?& z*|-oC<8zhl?AERE-V=W1D5|xUSAra`Xa4r)k zTLgz|?HQPIsa7@6TqLR&K5SFhOWHo{*!-`DEt@ZqbD_a(ZUM9s+iLH~Sr5n9j1SUN zOhJv*qFRowgh;^e{zkFJgV`cxKte6`L!p5ESO}Pzj7&K3Y{%qAWkm)SH!3@_*Q}>%p1X*r%PAS9 zoqic%Qae4v9Xr}~dS?r;`7=y8vH9S`!scTKsH9^yC()4vHYWwWoA1$VzFxeH;GR3` zrcVnQX|9d5y8_*`Rx#6agP6-6;Kl(tme_53$rA${$!8C+-S(Yw?h_78zJU~d9U*JFZSPU9 z0Yvt*8LA|Lin;DeceX={zgm6c>Z01^DIFfRCp8$dpr}@PN{rJ69lOD)oA|$WfUD#C zw64MFUePTI;p8Q|ffM!MYvTy0%=2UQa#HTWe<%L(cD*Za*Uu;~8qSTgUYFb`13V7- zk8;B3Az>hKxw!v=<%){?!H18wxKC+^)!>Xr+-h*@BeEJ?`G{Q&E~g`UHHcpRh~2FB z6Ynm0#4QKiLRRk6R=Bti);ea=`is3s9&wxX`$8jn4UEX`c>AEs8AvT|$7ela7lZ*~ zul*x-LGYemfOBL)z=hC^oSfG2wIC@w6RqXJ$+&d|D?u6J{3-ZoJ(hqn#0O^;q^7LZ zA)B0jOk7;~h~s{d)-~`97TsNdC$SgzlI;Y?=;(hiy@|c}P&suwkf2^1!x@gfnIX*Kv&dZ%|z+PL6qEqUqEm(r3W*mGs}vsc5wFVMU6_8a&T?Sad@ma zjAUaHpZ|y>@u`ngNa6}w@A0nn?lI8O`GJ8#=X~uA7x(dW#M60L^SNCK>BRd^^To}v z109=}g^awUjWCP_y|>_!!ruxcBJy zfkfmShehw(is(}Sj0HdV@vqg`sk(TzjIjWRo0KABEUwV;84}MI|1KHiNPL^tHCW6M z-G4bO)Rj^%xnYp2&zHDp%?`zng(!JHEqt94if(E*WQ4?os#K*r!RNfdkGf3H-AaIEW|TG zv^W3R*yxz@gEqqSt@^0SY%@bk#9q>)Zgc(v52&_CUZK!U(Cx!EB~$vgiJtzbZM9z! zTRU0RwA$YBZG&PA#)a+7+?;Hoa3~HcdR+t$%7ZH;I4SD8;0K-i#%L8tA3&*wHr7 zGaka0`BzLVarCE0g`@QcEADWOtwTo=NLnX|bWb4Z4)LFidU#b0_mS?40c7f`(Vq`LNQl^wGB(X=O^McsJ$qiW!lHoYj?Vld4ux^)iWxQ}SmV!1z+){Av5LpUt*N*T~a0?yLOF{IOA$Gt0 zrMP(05VsZ#4Ow|qTj7HJl-4mb_m$WiKg8{~9}SJ@H83J~&-jRTZ{Iz?JjCv~zY%-? z9Afv}-t%j4j;sZZ@eSfUT<^xFJGKsFXZx~^b)ZR7Oz!hPJKGg+ECBj+CFUwtsAD#n z{j>PEbBLqc0LE}(S zwxFT&meD{VzcLuVldcN2DM<>dA1s{!%xLL|mbuN%OPfvG!G<-Y;uFY&n6 zP)GR|TGs&co9Lc7)UJtMa@tT=+F{Ma?Z-jfDD6$7lTQpXl1^>lZd$p9W`lYEeVq4= zT_Tu(I9?FGLSQ)ZYs-n|Z;1xU$-DKdhB(%rJLITYf5Hr~{;{Es^+SdV>*r}FnDuk$ zh-ZCK4>Z|8Ke5TKT*uwP^6XGY`b{AtZ)hV-`nR=?nY$`tZ!hMKn(Q}1BYF*t$W8Y2 zp|1Y_g1Jm=vX2*A&@fH5_j)SM5yCe~%FD^a_23xabJAO<)0K1j5EuB4CqH5eF0V-; zNc-jO)BuE6rz>euCp_F)YgpN7eX_V%W0>RnnOfICQ%!VF9cKCNCC!3^`B?wb*KFz+ z8D^_}4LQA8kTyZO?MMyxx2g8tsS}40_j4*C?qJzY{3gbAp2I#kBfn#SI*+U5!uu+v zsWCcWeOhTk2Ip2Cu;F|?@%W};j`MxBt^p@ibbC5*RR8TI-G;d`e^WeWRbTyBCpsyW z`Q)jTr%d;1!NHr)tQqwB5gkh@XmFSbWG@vB4tQEQK{Svckd{pK$ylbSzz-RE)KqWx z5~#if$v}Jkw}uJT|Erx~s((R8Jk_}&|ALUv4S7@X?z3Tz>c>B(@|uktOGmsBQ2pLy ztzu@ZnV75dm}B~}kMY`~=EQ4!=H`T+>5P0#Dc&Y}{$qBtf0~&4n3c_D-@E?7Fvs`W z)r+xgXJ_RGUEVFKBYB;fhcsWat7ovi4C#~?@g&fpBglbL&P*G&Ej8sP9k0pebaC*X zk2$LM)Vcg$rvIH*#nc z;3qAGM!P=v?$0f?im}(Bh!drZ#_}?R0pO^eF#86LT=DW*%sSnowz3>FvPAdQ5E@>x z3}{fR4r?Y>KMrE0Rz3Lx%5&!Q*^bi(>iAR$g;zUBuUiH(Jlh{ypH=SWiO(NUI?8_i zU93RVzQ5&;Rn)#$@Itin>je3~y&VLR1^8(DhIV7?MUNXU^lmxaGV^RY;+e_xK07FQ zk$xym{Jic3;`SNC9mhL|EM2KBaXIg*btsV)3~j|8zOcA}iq4d|c(tw{w-miIoRlBm zK4rKo?8Amzu3scpPhoB1x-#WMXd1Lzu_rwss#ng=psx(XYkRBAob(py?pJYQyHcpi zMGgwVh7)(zCc2j{%|Cu;?UZMA=qAHEij&h326geTYFz`<<)XWkVA5-@7rZ!}=^oh{ ze7s=KEh^d$a^{N;IPT%63&e@fNO^yz4v({5;*RfK37Fv7{+k@_mDs>Syf0PCuzaaQ zHLzSO4u3Y>5&ti(Yhbxbbbn)5RMcMZvrDU`WAc4kA!eoL2b)TWw2w9&9(=tA*XiD^ zQ;du1oD&qfiLGVbSVAO9IkskxD{dKo|0(`9rQsauBaO*L_sPx3aqf6U#4oE^Us#M< z-sN#u%R4L!ql()-7Uh z&f~6{=Z8l08W@rH?e{^en&kOkb=r=bjZW@=yPd!|xq;|?@I#QFs_ltKQ!++xSZ(7%& za<}OI1XL31xR-qYxU1tQJYnnjy>c!zxQ=5yQ`@{JA3PqU?bus8IR3Qav`RojZPq#7 zE=%xS*tFA%o0TSHFn-WNgT*;dsDw9I^cEk_c*2pnz1B74=q|ed2)Y#Q;rG5OqI%(Z zBy1mrJrk=R39<4ecVs~0Pl_4_bM>sZj%0r2D zVNn@M2y0lg2_1qD@`{_5rNF?fzqL5cLl-i^$n??C8g7plk9&-8+#acQ4KiaycX$XH zFBuACXon7KCT>3t;^rOt3zVk3Lm%#T=(9V=<~I}t$JyqNc#4EHIL;T#@qMEBj)Ww# zM;1Dg(mPn9Pvh3Y3LYjYt610g1;zS36 z7k>pr^iz1Fkt(6tN_{%wtuWiuwT@wXAok7-v}B(y=AdE7?j1jjkUZHdr|0G3o#fPbyPU?mSm^igqG}~Qf?YRa?-f^YivcMF z8*5F#n}k61q}b_7+U^c~HmHXV*<|x`;^X}z9nXhrT?5Z-(H+9@m`e#>IB2A!dN9&b zeU6+C4W>GVG%4?$xo2dY>MpE!56VFgiSFyjJTFzskPyiQF>^9wvO>pcFj*{)zJj@@ z9(3DaFpd{TRP&oNxgTp z?I=sOSH#aYqa4HU3|YBdTVaOx*E(iFepT%C9_6;u|AS9E|TcQ=YtOW-!`!nbN&1I9YheG6bD?!vuf<0wbw_c5D^zm%<)bD_ax#&{;T zy(ce>ijf(=6;Q0fvdP8u@KjBDUW=R{V^s;4Y`_qcIe-`j(70)m5ikgU>c9*LTgACw zF}pqj!uJj*ik!aQ%FOj%bcz z%RQ`WVd(l;p}6?iXvfn9AxrbLCFbdBtz%}TNbJ3aS)s?j=EX-tH7jmdB|9f8kG`@?&uUlihOWv=@-N++ z8uaK^+$1E~*l=RalwWn2CQ&~WmwtrP#MTqWl%1&Witce^Y@&Kel`)R3X=9kJD)jf| z+$upqDkg9C?FW(t(8OzD-k-yx9cRCrkErNfu7_(D*N-9b1vc4(p9d0F!td)HJGm4I zBhgMrXOQ@hc-Ur)qwGJmu1SuAqI-1+2`}jkBsAasEnA26n4M|+)X-8mrbB1|rA zou3~gq}`>RVbX4=Bc8Nf?my7g&APdy{f#)fWsIZjHz7O!)pnS&e`_5xE8mK}KQJpq z+5g5zRq%MNEl$dmeRGVXY~!((vfqo%H(A?I)(5ZwDFe#lOUSM8>;ejG?c@x;L9JC* z4&K+r`{!vBu_BkD(0h3?^B0eHlx`tyD?WJNW~`#7N!~xi&AhRW##d`y1Jf^}+i9$& zv6plh>u7xUSX*>|lXIcLMHl0lisU`X85<`s-Z+Xck`-K8Tq^+=emg1AxD0vM(@JUu zPfkX?D*b#$WrU8@pc1X?Zh?4gtfTaFt!q#@B9R3lRJ>#oP@zT{)=bQP9K_6382NBP z8zFTWz8~B&0iVyFR(@<7t-mUblO(ncl$gTuby#$W<y_PN@VcKdw1xS8^#<9KGsN=t2pIewAWp=nZKCyTwdL6@^pNBDAB z%h0G^3#0NDy6TgT-*-J}x6swZ9yCmc>^-jx>qKsRO*^wy0=Y9=f!ur-3aWBiSqj6B zcyh-r94E^I4D##j9@7z5}vADSf zGeeu}kF~Brq`v6BA45bXlNaK3*k_{_!=4G(kA!f!JFZM4ad%uZ=)DK?%4OTf5Dt+D zUK%_cVwG`>ga^o$$6!$t4z zTZ-#epm$aKcT$5B-mOq?;$&PI+oF*$d7drazlr#W`R{98gIb2@9sp{IowS$i8|P?$ z2(zBpNoUEq&|unQJi`O;$%b)`_G>;Uu47Tyu&x*negP<4G34*-Uh!dZz0#DDNGV{H zZr@p+3IkMqykdy~=zMWJWxQJmPSLsspw^|!iH(UL3lQ*9 za0N{UF9mq0e^2o_6-4^so^U=8Vh#+Bv_m=G|3kb-x^e@4DJGK|@QiU4t_5XX1|NMF zs{DZQZV7mByet7Tv=h7pOrs-u35ZM+fD&&|xky}`g0Du=rSP>OORKacUI%t-9W!AU zi@oibFxt(pijS(6aIb|Q@MzKsUpy^2GTto*-;TGN`OC%RQ>;woQCaf-PY5<%R+t|A zd4MjN;oHfrFuzy`s=AV$i#|LLZ?ncaP=>g3`*&&+{S(Bpj9^^}c&<|>l%3UAil%)n7xcc3TJo(mkB?NPzx8b{-kHi1V$5&s zVR4K{Op5VoT39I?a4{YrdV(Yg5`p469iAchjpAaL369|RYh44yb)tKB2nsK`6Hri3 z-i3oyQ}2hV?2w>aOrsOV2g&`ghu?7!zk*60P{8q+KEj(`dD16S5W%jmns;@eIa zj8;D}c=tq%dVq4NmGYM%=5-3A6`eE=;hp<-onkT7{-bMLtB#T}vKHXMSO5P_KnSdGFpJ-%%fBbqPMM-( zHfj8%`1ll}pi;e9>l%DUiSF}^kLk_5@VR_P?)CYW++*Z)XfU}kq{(&f%!K?nxg}~> zo+x0xgOq3;k}wpYw3bxDi)kDRAL+;p3Qvn`?_oZuAOBJ78Wbjo?x7e8Duul88xppU z!k!7ykAx6;6JD1_;!QYyh}u(}t%9ls*O36Z_w{Sp_m)YM@d?{LvrY~^0JD`+JidBQ zDGHedXtMZ>eB)+3mE4nN{FwZs-hkga9o71>r(CtZ_$lG?1KJU;vG>xE1TNqEl;!et zaq-_zIWCV4SsA6RaHXE9bxg=J#NM>0ToXPjG@{qQh)m?JPdOs5d&&}dw%CG(A+q=S zR-E&7ahIgrJiKK=b=~*^P%trlLeJpQ>U--3O?DPnt(;YwPDTdqKzXNpo%Cn$rI7b@ z$R>*yikojE5aRM7t!vOTK!_5jp8;OXTO}Txc+nF`mhC?@7s1j>vz1 zhs(qqx8pIvvSBhl5;Fc!aWgAmEPB=2TTkN^KaXK({0gTLG z;@*CBqhp>HRxi~qF{@vsBbwEb7acfFUMtYxtQ3bAJ?)rX7_ziWTViH^qIJxitrB}5 zx;eY-K#j<*_`quZyy7C6v-YPaN9RB7NFJSJH{$EW?0ly^@rk*~%9ameZjhgk-n#AA zxEPXNYj4%c^ieBawQ=`ohJVp1NS~$@T-7FpApf&D%=a?HhapaBGRfq)a%ZzR+aM^K zS2!>wTdNwTzagp_lPuG{q{Sr1^vfq%roScULW7y!0H`ItkHtGucT$Y$bu=)X*c>vy z>J)shSGt%H0qdIzVDS?fjQeziM0f?pF7fi;1ctnxWw6#ah-?%6M?#2r$wNSdw&VW} z#p}mHyj;KMQlfJGe#2c)2j%f>S3EP~ad3nnzMu2Bgd=>;daNScBOcGC+;n^L$ZSgg z>my^_p^CQT6;L19Ow^ASBL%4S-ZM#P|C9DA?XLr!lIehEef0ZDwwCV`cfSKjbRn(Q zWR=OhcAP{IJzn!rv)wn3SD?XF&MAGqAg@sa30NNDIQU0%?4vg7mk$;@Y!M+fE9z7D+fRh1gJt7csV z&E@B6G`&~1PEI7ZgQFL&j^jOPtb}SKM7R z*;Vp4wXQ+sbJ1PTsHm8|0PilPcZJy$Cok<(W?v^clt3$BSj{&=V6 z0u6eet6JV(JOP5(vVz_p($8KlIR4pdRvxNwT;}j%M26mqT{#!GxY(b{xcs1FHMkrr zxO_LovAJrXGSlEvNpzC}yJ_)~NZ>Aoe-{r|q36e%>!f@=9EtG4K~TAIo4xo(b}V!i z-jS}74oaL5UJL888uB=C`JA9#abbt(nN!>)vzqkZMnT)4UwT=*rSFE6CF}7SIDK>A zs`8D2ROKPs4=$*K=tu&o2L-(g!=$bzUJeKxsh(o~bt3WB<#drYwL zGuLUVV&H{;A*ttY8x^fH)mHBMa{6BmL1y~b^tWE}ygy$88zFgPA6tH}y>*iqo8GI@ zc!T393XvwFdwC3zQiPYVkbCbaj8gZZ zwES>iI#ihENQ^^2IGQ&qBSO#fvLftTj@PG(*L`S6xjfzz(?*xaZ*<50k9+Ym>bW+& zfI^oxeAZN9{#)8LX8uMxqM0Av2=Ei1w>n##etoKA{bwO72elPu{m)v*Ox-zR?|V0O zXu+cgLxXxH49a`))l(heQ>WRzc!rpRhS`gI$5%`xwqF*sy%jBYMs_Zq;EXdK@9LFr z1)-kf8Hm!v{NWfB^t$Dk;Lpdjnx;5R*{#y;T=6qKDEJm#_vKpEtcy9Kdhs+{z`UgW zG{^N@rrEB$wVVqL?z+ajnaCY(O*8I^KH zm%P&{nGR@5N2&zFjw=dvyO)crm7a05K0_Pg#o<(KiD`YF)-klcLhR)R?S918;p6Hx z@Q8ySSMk8>RdUkVPq#fa`u8-)?teXF+1*L3Lc_4z`~N4V_0hdoRnE%D%1vitCvz!B zEziWA8T`?p8z*8i;|i|UlS0t@Nqkn|oNjyR87DbiNh4M8nzR8rXj8JT7x(%<PUxKy!FQS{21cI*4um4=NZTF#*bmY?!tGu z%#n{O=oq~87}y(<5GGenE=9t4yrE+>c-$(EzW$6W;cshQgU3yxyO;4$8R7+nE|Yk> z@_IZ_rRj(3Be_IPH}c`(I(r)jEk|IdUTSFDr^d1&4hM(!mvvWdvu+o6VV`^M->~3N z&;9AN3b|d@{`}nfduK<_n(lh;(^qs!E<(@UX}Tgb^RNRQNnmt`pho>Lqwf|EFPrWd z-6Le_0d1+qztD4Q6|?5vBjyH8cf0ck;)ALw@LHESDbYD{QBWg_7ff=`JsaOtO6a*C z5VKIC7}A4H`l^wSp&eoXt1Gp_EB?B4+uNv0cB|ahpff)OMs$uzl1Sp-ZwemAk5|I+ zp!YQgYNx!egER@-PrO+@-4S@N)-{0i65TxjB(dN2lARRz=*SlobEx0$Bd0@&1CL!l zTP?sQlGuB;VtSm!9Q1@hwW&X4$*&1cRTIV>Ay$cRS!M~tnD?!)#2_lqz*r={b1Toq$3Hm#T`7=i$a&m zhKrZuW;oiu60)>ZTjD~zN$Z$-d0gym#Jo^fy)-_m!p3XihH3JNyXw(1Tp9k)4BJ(Y z5}SA$w0e=QUEcW-aGt7gPG&aVP^PxmIoYjTLk-e4O)5>weIrpm9I8ca;s?jG~*B+d4f@UmweEg;$UB^|2OP_Tti4sd7%^F=fm7(%5A>Vw27l$4(J2uqfN<7wY8dG$b>Ai(-7KVLHZ#L=dGVpS1Fu7WWR) z!R(k&hz}v2;x3qo#r{bxR_7Ls+nJhDtfMvM>PvBN_iR_LztFk{na@P`Qy`PrLwgBc zq<#f@=sySq*F!5LK9|!!1`_mr5DaN*ns;W$Y~ph+UeA?<7s)s}yI}ceYS1~Y3f{SD zg^^%;%>ax}5GG|4hKxh~0+s3phwsF>+6As`r)ynu28c(01uHYAkVFc>vP!reboV>xu3`c_bl*C-ZApIZ zl-hI3&ezKI-MuC!&vCpxTk8@mD&UCdo*s04Fw{AF;VE-mQEofO?zAh(>Cj-_Vo1YV z?@aYMu65q<-QGGn-eK$T6Ew#=u`S*j-1!i0CQ)$2#SF(c(UOoj4$AF1P($Jr@$}|7 zj>P@7t^uX0==P3*q7d`K9xQaNG>n?C{cs4I$&5^>jtkd8;SadartJ70s8W)U4HSMn zzUk%oe4_Y_-x%)1HL(Dz40Y4^5XYVWAJ@bx*oD`q?|yyWMlnk_y?Kss{D0aj=J;21 zL~}g)6;MyC%r(W|&jAqK4w^DoB{W+(j*fUM%&ZZ5GqHF&*gNtG%&xOb`rz5sCL zobCZAo>sY4qCyfW1o?F~F~#u%blEnBU5ZcW-mF76sohlEy)H=_axK3CLnuSG#!`gC-1ElEIF;DN+pCH z6b&BViHP1TL8K4?%W;8QpXc#pEavI>3>IgIj|G^1y3oB^>l!Rh5#859Sa``Rz=B$A zSTm9OaS$o-JLMxvdERh0svi_}Ev`jOZ&Fr(pgFF2>i}E2gvoQybv-d@*rds)9}_u- z{yjSBbhn;=Tuv-!Ni0ZAZouCsrd}W2Jm;tjdgJMPXGcy9dXK?slKh--J>xmc(iU{Y zv$SBrmaeGhhUyvO+gZ;!s&@$)>7!h>2ZPMk_9HNQ|2iSnI-8m@e>0ujnjyK(orWrS0R@xDB~Sm8IN8w&u!DMnkTe= zP`kv%w=W&>wC0zf^_^#V-ASD7HP7*SO32F7+6wb}fz~m>cNTlk&2uIE>ClK?10!;G z-7Q%5wC}FB1_cumy6bDiT(^0a*52{^FhGpfx7RE=E-5o3oA>CxisxpuMjKt@OT40# zt9WjrLQ)PCf@Q_NikD);sig1Nl$!Fnj@{I)o5k5r=D8aFht@SX-5|QZ0H?%W+e>~V zTt-K$;kNI@5`L4M`Xex*J{!XsQhP@}nx{zZ!lpc~LJmfN8R{&qZ7KpD7pXUBHFZl8vHGe+Hs9BOLVM|Fu#N2h?mWQ^QcO(v#xR?R? zt3z302Be=3(yVJk#nE2RyZ!iRt!n@oB)U(80P&K?00{QukzVmo6)1kJ=1$5#Un3{Z z*t54$@X`4tvgax_!X7=&rP7)uUaMw>jpLRyz~?fdH@Tt@o< z^G$4i_jzISF$+}6F`NG)w=|n0e+eduuP+-VF8+?`r#8Du$WlW(;w>?wGqsMHqtRlo z#RA9Zh6{KNQM2GRekXt0M}GzrsLQ^3fxUV*PE7sGj+-Ysyx%_{Z-mphY}5uNI;#~v z+!Nz9Xq(>3y-fkE#3d^W#u_Xs@G4gYE|%jnhgE z2L#qL8xNL4`q8?n^7UD9^9M>pxfkUS))~5b_O3ft(Y+{Tk-6n(XrY@1k?lqDYNN&r zh0qr-w1jR?M?4L?96}$x&@yYDczQulw6Exflz)e8+@WnSl^@bNG(Rfv`C_gwIp}`3 zj^5!0RTa%^U9iv<=<^mjJ_ieJfnFr`pkWHMcf2*MYck`hjXbmA#_NuJ8}0dArWQBT zA2r3o4%UaXqB)sCAFl;2K0s$e$tu%8wE{h>> zL`P*1SS_yoj=3R5pS(zAra|B}(XAGAeY>c&dC{a7rm&E=BvBYOar)sXP9io^V%ZOl z*!Z$X>0xL z-$NHUcE7*KvU`h|f`(zYcluFSCw6~$Kepdlty<$Qs#uw>lG6&??;Ls|VUM8mjU{;Z zeS#bpfUp;BGGTLS@a+TGikZ`$IPw=BH2htMYjU|zeEb3k{|-#xrT|J^2B+-cr)qMeF$LfZ+EKp4AIncA>h06$9ak(j*-J zg*qmRU#;kGi(eN6HNHpxe1le{%uwO)71e7);d@CJgipo!g2gsCKMaE7{`paw67HXO za{pX2Sll<30w%EaU2#>6=RPjrxCWQw>^tHtGK_irh+`b{_^w6&S02A#KiF7fYY@RS z)24gjVxjOJ?GaOWCml(k@Xp1S!XJsR+ZH^PkEg5~gMVhb9E!`|yRU|l$j*MerJXETLU((~{Tb*sE|eD?!SUeVRC zPT+85$VKD$xJGdBEyrTKVzV^yvRA?43v|SW#ovgR=e^)qe67|sY5bMwUiE@yv6pmw z!Lj(>7i&COiMO2S}( z&0z`SFiOW}aQIRDd;A4gnP+NUgTo=wofg8uOQrw^YMmdCN2pc~KUQle<<=RwkXNUq zaqt4jTzXs}vrhsQG6(i%InMqp&SC&=o7ZEdp|*M9;tHu;)=vA6dL^@?hcU&(;BQ|L z2G@L1@roH-gN`IHxW+P~-+oDmw)YhXlX z@bND?2H*XnWpJc{`za6_hQZ$JV{y*@?Ja|}M@vqrL@z<`HTc-dnXTx{9+CY0J%V>0 zEoq)8jbej2@x`}m2RVc7iIs3-kg@0O)Rf0{m?mA17uSZuc`Clsw61}qis()TB#F(j zmpt{NqwR|?+TvSP&V>dSUyNspulM9pyn62WeYJznhe@zV(t3hIQ3rhJa=>Fs5CdTE zVp6P4p*P*TjB;=zbWA-Amp>>{NMS%|zzML1esp#$-Qw zW=X@~_a|h|$mLid*Nsp|cd|GK!%WR2xI&Hax3n%C{TsY5IHzQGBqu03 z3HL(rJASiX5{llaoneapla6?bMp|#}8hObww61u0%}b7<142d~)JB-0W3>)NtyaH! zVs9jQD4p=_3`@P|SK=IE>8Y=lG_8`|IwKF8uUD3&c@Vlh56%$?)yB^47z|of z(kvul5DplL2H~V7D!~m1EyTMMmpG=LrgaSnXNqpKAfrjKZFjw}2@74j3!^4fKO913 z!eZVxo)5zQy*56Fv5+~io7N>tbYLB=vuZ=1F3w^E-XmY`*v5P0td}Y*tc`ykQ}vkp z3#uG*%>BO&!e2r_{KXr4{4%n>B!~>8V1>dDFA)mQ(q1uzr_&KnVQzJ&18&^^r8t)( z{!R@F8WrD=@_NX~8f}CrT&Q)-T;+KL56)NYL1%ef7LgRQX~4qdlDnf}tt zfOqBCrJBMnqJqx2_k)9NyR*o1*oqhjN8*r(aJXK_W;onI{JUnU<8U{vYjC(!bngw} z;3fYC4zw}8hGSG2>W4Yj!9aWBlzd7-W<=WtK}KEN%yZRL?14ie&@4M9heQF2q|;V;-BKa(r`jVX@yB#TlQ@Dq_$eRE8v(Bo ze?M62igBf7Dudb5F?7URVkXzpI%dYM6?-+7@pd_KOwi?G8C6Y=*ZRQu#5Zcc176Ti zP1(zs(n|XVvH1>bo1dC|0Q;B5Slt}IG30PXt{wE+Qc}4}c2)-6uvFvyP2H(7TX_=6 zgRZ^t<1wmp>Cz35rd*=~H)-8fob0^J(feMlYe2e1bngO4iS+i8uFD*~2Q9PozD>^U z>VW0njyns;iSGyW9$mRC#&Y^G3CMusHG>Iz;>hsB7bw@K7`Z|QY%g8P$js2u8f5Mj zkEbqkgkPq04KjC$?u#L0ykrrOA;ROmQk+q;l(P8gYSc~@7pWo~2ftN6h8 z(xn{V+tz0_=KbRHeo9aI32HBvCE9tfbH|SMC#dAR&=^<7?SI7f=*z_RCXwWqEk#eE zBc7sMu}^u~?z(%4mrY-GM87O#Cr!WwDy&!Qvy{Lfo;qQPAuAf?HBv)cOXWM?`-i@JZyj zm&||JaeO1@H}O8NL2@oMcoRMe(I?)#>AlH+*>U@V9k@otajD#tC@IhiL5N z1WZnSRVBQ^WRCdS^i@}*&(peuiCPI~i7s9#cVDQn_QF;ybd5EPn!x>V2%HIxr1;pTDMhC^_;kkv6$1hVB*GYy&nAP{lSioWzm*i zeRPi-PeJ1qUU=2a>lwWFHGW1eU7j}WK&@cn7PGHC3 zd8PQ+Xu0EeuGTgDepPg{mRo*%N&0ff?+(lDPW&}FH$6B!3@r}t#2eAyy4Cj1)L$N_ zxC<+71U@8Bn{XG_;VQ0BH#br|ZNZ@7i`}(?b9SQ4GbrY42IT=As3G`zarU0&j^IPJ zt^s9@=ne{j;w1wB3T?vg;c(U3;D@R2FyZ|-G9qKDklQ%#gX>D4-X?Y%c}o|3EA?De zo_(%remRkBlt|zLcjI_=kT}ZS_>-?zNc=Jug(=ff%1e+Bv@0)KE>!ztKczJlaE9kXfQ_0PiYSIyJiTQqp)-m(9RqUPen(M)923^O8dvLFH*!jdg z_&1;o5&!bnY!ALuY<|PqrU&-{{1@v5alcX1edvQGPOMxxD<>DP=)oDv^-MMG^(XZIgkcv$LFU8A5|~Ig6J&9Wte+31SZ}0iMw~c=GK5gTGzl;B)Sg+ zuEZMeCH-G>Yrw?U>>99F&h76YzP;|-$pUs_FYf)h{WZ4?OsKi9zDB6}Dtw%PJ95GR z*D8iJ!z%=v)Y{juR4s*6;c4aT5K>EZ^aiQ-C4v`Ta|^>Jt!t1vAi5hvNO{TYK#CTI z7vd}GDr(d#*a{qU*XQc4aBD;A3RxS@Utt-YM@KxPX&Vs9!&WGvbbKc6 z=B#kb!p$KgH)Ig_U>QdmW3O6K!uN2$RUAy`Cue7I6S+!O>{io35o0M zO8G0Xh8Gq=*(?a&^_DnI7KEl%a`G}W((z&h-?!u0D%>@;e%i#I!8u1t8U*X>>^rt{ zsXA>NyCtDn>EfX?@p#q?I&#W!~`;ll*byp-cts&qBj{3NPXR@&9lODe5&Yrx@n z#0ncf6g|BKJPQAOH#wO+qS0K9PYd ziTOA1De~i9!25w&+6WW>6+MobvZ$C_f+?e$&}M}O^conD8~le>x_!Xjm9_z>BDSDm z8UXKfKb#|+Z=Qr7*RnL@Gc)-`g}s6nM@s4koty2eTB-`ar4M_6rd4wB;)SpYexu!C z9kQuv)x^zj5D4}7RaTXq(aEA4U1c-cOa4Yi(>FZot+GA-334tpxW~tMrq%VH{C8!H z;b}gqSQDF+L%`szg`I+3Q53m2Fh+%e0ntx!uo)@Ca;^^5z>+HN=B#qXzO&XfS#y%; zb_l`ZC6}#o7wllo1ntK`(A3|j^rNX_h9@_4KfHnAc=Hj@tqFod1jA!9*`teh|5|yp8~)(WB5->yW}kNavsVeXH)|)Dmv7RM1aiL#q!VAA(n#Ff zu*#M7&qG!|)m9F^yY=2=tzxFBv6%Z2(?sO{G&G>sz<^BdwW}Pt>);L7iNBpU6I;+Q z6t|^iwZb~AiaI{t6LcN49pA^j6!oZ7asGSw_E*cB$}oW!ETw0( zz_XD>cymh5YDHXAwaylIGlTrC#RF41XjOyK>7sh+YRhpixdrV29^v~lip?McuNe{ z5RHHVD@&pnNMOl37ba|fpw zoBawR?sP|DdW5j!h*y^rLAFGIQF$GB4a*g+1G85h^*V6XXIKZmM265h@SoMP4kWKp zIm+umRXUQe4pd!Z*MalIy~=CcI&fCV%IVq)SNS$t$4uDyVlQuvTL?}Mjp#KnA{K)7 zku`1|xMhu92il4$Xqa`tJADLeN8&n=m6x886-54r`)IOT=jDLE8>da|PKyAxtX`Bv zqM*iPG`n&7htK4j;RfnhO&z;j9DE2NP+*ts2oINRe2F<9yZyKnVNMqC^_pY9QSONVM; zxk}vKfT{m^>%4@#G^kuDs{2Bycu6r(p`YVm%*5=6LCk#h9?9_G4+*r6`yLA|HHb4h zE=~yTZyg%>tCo|i#or^eoXE!g4=g~`yZ^@>t7zk1LGOND5IJsN5ItwDWA~YBh22-J zwe0RlM-tfGajj+d4dU+=YaP3Lg{*YfR+!z7X&p0PH;TQ%YaP40heq@o7?H|+8Zyv3JQ@OL6b{g*Znj-mG#qZX3ZTvIg(N>kl(BbLf#pVRwU|+8x-% z$K**Q54ujrkL{p1e&X{dIzg9L$ET)j(1Ds9zFQnyyVg;ApVl>?+#$L}041?c_mbTN z!szH%nAF6d*zb~4cO!m!l?sM4S?(QKwKm4=W-gj`!}sC!NEBwTCnt6!M&oxk3NtR? z_))Z*3vzJ@1903rl~V?Q?&4YHb#9N|Nb4E^?i1a5>+IU*CAHVNB3(IX_XRdDX2asg zLX5mmzmUM@efk};Pe-Z7Ln5U`2Rh5_n&2)f$KjshFp`UFa@)18CZCB<`Bv~NTv>hh zuT}TWj`qQgHdK>)t`pWy)=qFueu|E0)<&KpO!SX6{l&Wp>w>iE+ipk>*?3voV9svQ zI%akr6mxH4c4};E&!ed&&5QBFAx+KDleQ%Xk^kai+ZXGYtxEL~u{4%d&BZqF^(dSc zBW!MZW**)kOoYwO%O=9|ZLKKBOxR;9hZUAB%CAYBZB~k`XuzhLDV1L@J8OrFhmqGE zZR=@WgUb-nO?};Ft(Tnqx~s@7Ubnm*Cg(zfd5iH3Z@ni+Fp2d12sYtOlPKCCGI<}q zZtc)0=)Z|;F)mS95#vDI4T~6tPC7J0-ZA3d6|Xz;-l=sB3?oGMwh#yw(;cg* z441{@E9-;DD=^{2<5yo79>1%dVIIFtM>LP4Zv*Va9{VYAv*dMGeSZ&G`9)hf*mT>y z$?H{eo0)oA%vD|QitjI>0lfwWgyVfNPE>0Ov@;&JLkP_cD( z9@=YHc+)d-@ZNjAi*;9`44q;Iif;3w)ZncAQqST~IbWe;G?_bF{JLblBk*ln*WfWj zbpHiB61UV|a>IH@;J)i^H$6+vy&*V!!d~g7FL8gH;^aNLa6J(@llB?M3LdWFP|ODh z;JSFX$tbiAsknsE*qSIox6Bwa8c*v84I0mjmlM`I9xu?k293F*`&T)G1Gh z$Ei5w$GXr-xl=|CynE)p#zCjW=#)zhoWr|fT5Pf@@PzPom*et6aT&vK8QzYChFarS zUq9+HJo_Bb_fJeW(f7CYLf^(46swrN4d_S$eH(1B^j#wE)!pFedqK#``PvE>;x1ap z%+OM?*Kvd6@A;t-y#_|?lC!OSWP_t`?+uo|uZpQ!P@J)&ow|v}JAD$)5&AZ*(mFjO z8*Q=F;ha{e!v!Zy=pKN-2}0b2ieJJ%+JaAcfWW1Q8gHGDnleGhNExfLXq`AVHYljE zcVNnMTGha@N>pb9jzs!;$;=IozAHD_`nyKXg$CE(v4}SD)>QAvs0}gNR`ED+l2WL^ zA#L)$9;F?xv0z^YrF_Ck4j%^LfR4<7@RoR2LLkURu5YxyL1KgGe-%Q)OFjn@RDw%F zar&_kCwIY^_ZDpwWlQm&=NFuf%`dN3JoOyf$r}}0jH{c)RSd(Ftp>-a>i$NnM#ax| zR?z%zbIotNjgG(n*eLwHOMArp?Mg=y_}g`(V!V$ zg(bNHZh!8$J>m_=?cr|-w-;(}nA`K|h~_q4ObU#2i~NaL_O^-s@rG@YzZFZ*vZ`s3z1K5v z8qvDvJJ>g6W#$T_k%+CcT4cNTe-B=sAOqX+`*V#m@rzaZ)&xlKa5Gp(;GJCAAPZqt}SDJRYF zG%PMumWR7zN81d~xC^`K9hha>O>ccu82hbuh8g=c9np-9ehrWlo8c~A389G+XHF%4QaRe8wu1{DZyaLAKUidSlKJ~(F-?DW$SxiC0 zY^J@>2QkT>u$5YYh>^?o)vcO~_Zem9;N?ZP58B=a5c_SL!ukm{n_6M!Ucr@f@xTaLCP-?H8CNpfyC0s`d_1^n7M{W9f?LWd{L}wj9U&#F zN}vq!>e*n~O=yN!YE=WqIimV1z({1Tmn_@l*t-+6nYeduDd$3ii|(@sHL)4?j?CB; z<84z37G-984A{qg@{MA(Sm6E-t%e#dTUaex56SVhpBiGk8UmJz-OYl&#>!plurQ z*RrD5ZFc0ndb5!CVeJmr&Hi*GfxP|kdfCM4+g2Ryv)Pe%YRJlDZH39ZNb8shYA5#Q zZ+7IJ92(JUU_|bPdjuIhd@sCxvnBAwVz0+$OJMK$12~5WyuRsvT)4>1%gJH}H>i@{ zIz8LJFJ<=;?4RPYB$Bz;r3|f+c$$dlMH*k~I8D9jBz}Fi*;U}bw64MA3eo)ym?XBp zUh*?xFgjXei>2_Da_Y|rpW0sxXDI9)Ik-9KeF*I@$4`4i7YM&4rF*6Q%_aJ{gkO@< zFm-=351JBD^chtQh1YHM&J6=B) z0_1J;1B5hho3Cg@H*02V|Esx4&vj2^O^yUbeP*2;Tybn^@l%l9%5nU9aU2Q89KLt6 zzq)9iF^k-df4QKG-=s-da(Ood;4=&e>Xa<~|^fow3#N zw!PLhklZ7>|JZ6X*GtaZO0{=%WUJ-veR3)kn70_t@YXwW>Q>@yUJ^wT9Imv#UKNU- z)-CFEiMer+1BSyV;#O`QJIP5n`UiDHhPQphtv+}oE%A1&)-}=h5Z#fX=)L4|L{Fs_ z)=Y4I90bRu7Bk&)F-q;MANQq|8qTwI_ctv)oMqNUm6H9$#if*G(&4^{#e_QCz#Xfo z!>yp&J|xxlBg`;y_WiBG+2}TvW6asV$x+SO=-)s&vD!W&4*v;UsMl>8veKB2cq>fW zR$9l*(Lk}6zRgwJ#<)+apikW{EmN&V>dO72}y)_MSYjjfmQs<6F84H?BzJo~O-X5*0aU z+MJ-G6IA4DbTlUN3F6TT%q4NOQ0tn=$BORGP~={+4UrQ^Va>$l$3a|NSAU}X<+}Pf z*VUXvzj-1-Q=Ui@&d=qzm@h6OdAN#xk41xa!tZ0_E*J2i>+G)SLN(Sdgf)d#ub-km+l{JL`ftH zHk^DQH7L9(bfS}Ptb; zfMa&3oH78sAddZs877|A(z*tK1)^JHhXue(PTb*m3Tq}jKMulUo}NoUGfxYcr?rA_ z+w4y>QFCP9-64~k7&S+BUOC>rB;F#sn6kN;9HMO6_M@ik%wkaXz8#LTckd9&KB=AH zB08FmXv#)L2L)@XDMD)RvgGuWKDMLCeM7YD^IAeiz0^Rr?LE zHNr{xodl2VAo{k6?66zlRbuinRyJE;@Ba{-CIrT-V=}YxE^H!irEI)gd)eTkUO}VF zu+NJNk|4l68ufQGb+v>~x!@mrYN!0E<1|V8hB);rynb)nz~r4OzYQd>i|PqGZO(eh z@jD%9PuXcnyFt!{29Y-MtH7D~bg_5lCpeS0KQmZ*$NpoJC|10#3;SRS6$==@Ond#6 z`|)K5FH$Igy|~TS3*sPLtRpiZY!mO=?R3n&N$VOEHi_;(LnwI3H9&zXEUXc8Rl4|b zexm5xM={rDeS%Fe=vvRjssaLOaUXX$prO`DHP8-matIA1``|%XP-q`~w>wtRKDew4 z#fLuwabLm&)9!ciP9biQc7}<&n~rGWMt1|<#Jy;dxVZ!G(WTw*;gFSYwG}39rCnub zXtCJ)8*@X?7JeHV(Q9BtuC-fsx?0<8m#ww?#TGP7t@U2Nh57YV#bYBG*+G}N`|2E* zLqGOpx5mea4^A%VNqlWysT5)UlmbWD(odaLkebp?hiX#xBXO_IE>~^;sdY`tz9+g@ z@3O@8lFqw=$aiR4cUj(kAg4lsi!FvT)yO+?E*yz*meDx;{JvTWjq1X@2s!}SJ2XaEiLU2n0+Gkp(ET8wd^~wcTtf4G3tKx>-Hr_ zLW6oG49dJt+3k3JFCM5#d}jCuF$WFewHnAfeq2!W-@WNUwQeZ1xmkI*^2FQcoUGQF z?qy&-f}Z*N>vI~HqJX!7r3Sn6Wl2{GNo2vj4s3*u*JSaZ;^1Qlf%ehUwXVVDSJ4d^ z8?&YG!b!VbRbH~&vio;A9U9DT3~5r`J2QlE+@B}W^!j99O~-5wiC+bF!W8V9iP=gg znb$%Aj$a6N{}k*%jh3>+uLawq12*7PYV2-d*ntcnihrhc4LE;GbRWmSQIqY3ACRzp z6!uKyek4TByX@m=B;IBJ%De2EL7S1dMCB5M07(dzUl8{7w2Fg0evjgqS)(dTu*YHI zzTI&}qzd^eZv#8Dt3ukBRl%nnw|{n|b+GXp*y7J)WbYBe|4Tc=guj7~BoO|FJ(lpv z;^uXG9N`CstURo(FyY5(9W!q!VsA9LDBs6;I5eu)!l=ynE_)o~U)*CEUtR1$!&Gwb zc_*Ahl^m4E#noKAhL#wQH#yO*&<_;%40_~aCfjyLJ8h)Bv+=~vE?Nx|rBS>`u*d9O zby9ZdKut2&700%~bz=I*TGxP5OLX5SQ1oSgFL-BpxR-jTNm zyZw1dtr2C=^OJqGB&UG`Rz7|lm}yS2R`NQ>I+EiX8dG=G3GSn1pmaIoQL|9xyTPN0 zI9k2Xk^2m-Yq-%sbWbU?dm1lkTFCV~QaxB!xg>OhiXRIh6TOo=5%x^)T0tbUPt9N= zk+<|fI8Y{c>2eOVb2-j873Yz6OzaMhjQpCv>^(~HGtpB;U)&{gqA3We0OwIfXG znRG;xIx2|7!)DW+*Zoxh{-9eYzmm;0@5phG3`dh42ZT242|@8)9$TZt_6tx2Iii&>+6ez=>O61 zG0{JvBbw;ZPXP7*WADA=qpF(!aduNESxO*|sO|v3ZQ2_-z zMT!DPQ86egiUn-3B8Z4m6G}QIfFMYVbQJi`IcLu9+;ca{=cj-Ep3n1nJx{nZXU@!= zd7qiNd+)i%9{d_qb0;{5_ux^RNel}qR(?fE5g<>bJlaC_L3zzK%O2diS)WmHz>Feu zmlw*+?cJ6t#))!Yj1)Bb!D_PzSF^!gViOwiw!P zfoF{{?Ay%=wwtMeTGZZ%N)6d8v-Sg&S98W77sUaG)?X{d z+ptR4Ry+HC4Q#D0FMJte;h}BKW#-86!K-!|^1X(nuP7axM4+?D{njS1iPcei4qBUF zn@{c4;&&t}I1fzVRrjZqSM$w7$h$=NMk_BAaq$+Jj8|>ZG5jzN2M&Q@m{JRJrOYeb zk41^B%eQb_TR5dxl}g6w6!Ek2@^2yC2I;y}9^Oz5RXAl2HB@uTIMj3}tUL$x8Op0U zWeoD32s(vClOk4eVs9(R(=1jqfyJWmZo_91g*QA?&I|9uOVqk^7w9G)E2xGFCML#g zC4kblqQ_C|Hn2*(nQqAy#AZ5jORYGsu9-e?12oh9Sz(4k_w`#5-6NhkGM!2h=w3*9w8ff)^4{bs!t3iBy)hQkq>2e973j{{D$%`i ztB&qxQ5L@S>tNaO*3>&SqT>_rnFOJx0Q)TzHRIAX+07 z?1htZcT)4TxP1xrDF=-?m`_k%%@tFS_ZW8tZJ`z6@Ky=rdfRj$Ps5?WA%G0iX<@At zDd8?dAV+a)oGcJo9LEYWi{RjV?ge{KNXZ<>;mN`m0OVA7g3CNuIHcn?66Tsi=Afn> zwn-p&r@R^@W+AVCn_itLO2#(XLw8^+2bz0mH5b?{pq$B_FQ7an1mzm61T1%`-pZ^R zG@pl>L$C=j-y;Di8tCh{{%bII&w;vnHmp9ct7mLOAb&v>5kOwXuTUUc;3I0nLBcLm6IuunO&L5(F$?&nV2cc`GteSJ)Lsn0b9?gp4ERy&h0K$yVlq|-v zz#;Gr(`ootinJ+Wj*Xk*p@W;Wp5O3JEQn;Yb{0j#%|h_Wu*l+;(&#}gN(a`$(yQ?2 zgor^t2kZ6mtTt@$Uq#Wn5aFKT)MgFs%TVw8izM2gro5VeK1SXrP5x1o@!%icL4!2S zdNmKX9`2S|AtKg|Eox&KXjs>f_1v^-iNdPIx~3#3KSxd9=Rt{`^CH-Zc;`GrUi-J5 z^Xzee@FG}$j_@r-i14#i8G-Oq{0c?5^%S_+n5w@)HIIW+c<0=rn8dM=lEAMhDFWS> zP#$f8zD0TI#j$$zY8(m-0^Ts47T`*e%whp=*1f7IT^bG98_ubb z{#d!Gq(2+6Gw3h_jr+p>SGZxq4WCidG&gKS{XT&e=hgQb%B#6yE%L51xj|7@6iXO` zG|fsi54V!T7-Asl1=z)Ys9W3t-i{HAY_jRemf?xQs>3yCT7a6uETXGE0NV@is<#x? znxJdxs<&WQ-HI(6t?KUPB?#soB{~c*=T{UAMOS@!i4LtIRMuA_!F)HBQaN?)z!)k- zV0k2E;j2WpuwoSV5ZBN*@9yLni)l*515*k#yGtaRXO-w^E=Os=q4m^CZ3nBG06jGa zbEMzzgCDRK6*WgJ!<)xl;jk_KwMoEob@bTN63c{MU+x7ko~3;EOM>kaYOofk1o=BADS1?iK>3%HM_auUC=Wgq466qZH$^wF=9y+yTrjJ^ z`QxP$=i5qkoS#8?z@cSrrTL>U2D5gDC|&L30l7dSzNflb|?{Hbj=`XO)~N0 zRqHYx*%xsva0q0>d>XQqCWl}J5!tC|Ew4V6MMGMYibSofrLL}9;tFb= z=81af316AS_7KX;ql0)N5_t!hJfSFk!4tgT25Fj|Y94MU&(yH)1xsY6PK^}HPE8Vv z3m{I5-~mA?!k}?ADA@p&gb4(O$4ImZ4Bu7yUoqS;S-zY6E-W>#xZf^A{QgQ+68K%s zuNd&V8hmW5xSOD|Kb1-R{$Y~xJC!2vdyevGD-?_JPQeQC=S6=v&8RqFMuFYsWdgf! z_pmT;>-}W0<53haXwX$ke+P@qp_|vfIL+#C&%0RE7EWb?8)Pew!ELc0GKy0pT=a62 z@8C9f8?Syj0GDmPasogeq9kjyMNQmn**jau+XhfpZU1VCtk<)JuWxnCv#*OK7Aaz% zasgLMfScT!jr{f<`p{f!6w!x``Ut4@Zz5XDFHX4Sg`Qt_OCv&+a*lF|-woX$Xu)iD zPh@ecXzmUuRVG`v^)o1VQ>qIAq1;WPrRbJTjS@sd*$7b)3jOf@ccMqx_m% zQjq`Upj(K06>+8@vSUXti?vJ)*-ALov<^wl+utQE<~tsZA}_aOqb@D(7RJI4hsY%- zmVI#WpkxmQvi4Y^%W-sKhYPFUyAtYifg7ySCh zbxO7*#8}_~D*n3TJr(+`Fei$P;LP;)u+qH_3_$>=M!De`0k`OwWtHr8!4FyD5fVUh z8U&`9DxQ}BKohF0(D_*P2+2fhw3d7>M-3kb8+aOineu85@*?jHaFDTER+MQKG7Z01 zA<{5$n;*x*(VX0E;sY{|ql1kvY$%N$g=OXG7~q^PZ5M4M8YZ&w#g4_wYn&D-941@> zkPb6QWUgPRg_<{dqn1Ba$W&ZTc{OkJK;B}LHxy+ncmq5S=X9`&z1HKi^IUR)<^u z{padvJ+=U*FJmhUK-8=)V_R4+-HyP%fvO^aJ&0eSz_t$BuBYR^sAT``64awjQbtfI z0@Tk^9?j@}C~p#5_8r9C$eXT>v6v=ROfV_W$d>C^ul%iea^|A#dPO}5MP9dEPs>XA zYhX+e)frAd90L-%59W11@$442w?&4I3Naw;fkB@A!!tD@BeLaq5z9YO%e7d(4b@z} zT_U@f@@ihX33<10FVXWD6rq57WQz6A?Rt5A3yv%RXYjK_U^cDnRC;^|D~fndL!%_1 zr9B})OMl3q54wWq=rE&%7h-mhpx3-`59(KUheUKT<<$^<2lBSwq3>^s(qe}!u0fh+ zrJ9FZ$(!YCxVHtAZ<0_BYZX8_EmFh>b%ijhPYsF&P*I38QDFDx_`4OLS8Hmnmv+e1d;k{A_|C>dC<{2W;#z4v6~=HB+lLn?v0axJM@M>n@Mf?0 zjSAixZt(4ykImF*94$WaRCg!%QGM7_3*JXi$B3O0!mTN< z=9^K-+kB@UyowUPQzmEoP94N!a4c{L5W{?0cq>in?35tB>)GOD;uGE;N}HE;EFQ#W zjV^8*mMT0l_&L*9gGUBaD>aWyKu!DalyJ_WyqZTIL*9VNBZ_i2c!c-LAWgGZ%>(vM zKDM^Ebw_>H{UkgnHvYxpHq~3!D7zRwO38yn^viUar`4e7lc*>JoG7(lfL(@{+M{;- zS3FNfJbwdA&U@vrb|RiDs5%1ArTmHk&!ymFBc7i{MT;N`_^(s{n53MgQUsnG?IQ8b zSBR8A&!M~qtZFaxir1CITF;s$RZK9cfb?bn1612^XE5cUp2rg&RlA+=A741+u3k? zncw67kn(EInTx#d1)W2}N)g`?MA=Ty7G@JBHQP1PH~f6fh)p}|vxRkG?*f>^4bN~s z5M~0-li0}TilcNMgRKR+{-nEp9rcHZ6p&vJI}wNcS37Hke07!h0}YDvEEl-R{j7iQ zLY${m67&h2x8+wT&Mj?O)jtp&T6et=HEdNWvEIuhsRxxLuzn-u(RSmvQQjc9irh|*><~&B{eOEb4z@7 z{^BKn#)JbtJwj2eZXdfczO)7VWD?vIqE~yiENyO^O)cc{OLYGfwRwqI4#Q2d_b998 zj3vnWHaNrBNh``*l`>g>Td8-_ALH1!q>Dr+{SrFU*hwperos~P${Uh)M`2RcfZ`V1 z&;cz<2eX-@;kQ`y4JW|CvUb+9@aIGZXg2Z-7nD)EG#7k@y1{b|ht*xNqm*Cs!)M6< zr^yeB@(1{#*}C2#`-sEUY*Qt5MclfW27EG6b}wO-yNePyl2d~=hfGrlt{0?ne+c{H zcN55H+s@ahZybEOU|TX8(LUcf zclI{yp1bY{ARL^&&F79yW7PaqCEri$DDN`WiR_ z;a$iyPLGi?GH*=+domp5N1)h>sG(Z&S&wRM-YqlppOjZ~%CE?~pF4$i%ZjiU95BUt zakpM)uf>6T!FJv(!(>|Bsnpm6>&GG6^#f>orJ02v!$Tw70dP0l@y*tLY}!Vsql5n8 zWa%H_g#*glYz> z>A1nXZyw71E&vQid2s+Q{Shke>Z}~GnTANn1;WbPbaj(R+o$_+0 zkf8V-c`x0oXJtj{v{z>3tM}^A-j8E}LqHqm(;{7I61O)9?Q~&j!N>eZX7mAnd_({{ z&5-R?Wk$ z1zblg*i)Zv=mB~QJcn0aEVF=gc)Bp|tr`^m3l)Z76R3WjNB6DP=l1+pK%c}udIPLG z@1xi5MKm9y+6Xis=2r}8J`AolqWKK!c@Uh#`{*XWlK>V{8uBYjia>Ka%A=wAEXspJ zSGr0xTN<)nograsMZIE#i3Otf0V;Se-J6YaZKFRupGS$npaELxz6X{Z0i7D<@wyxt zB1K2TH-MdRubd9l#R>X&YmtFJ}?gmpA9f=|ymM#?q_nrK2+HokIhW;KzcQQ3l zWN-9MtVe=84Sgf>R>(Jyx+%rrmJg_@np+y8p6~uHp}m~)YHq2Iyx#`hLNd1^<_n_i zpWhV*6DBp=Q0W!XKkwOFpE-s|ki(Z_c}!@w0lHPRP>+Zu->d6Ow&upDFGQW_mv_O& z!~5m6duxSub^Y?W8;kR-P4@{vTN>wA_S}|iv3d6CNObZm3W@wdPm7cF>SKmhJZgB^ zK8fj@O_FY)k_4vjr99f^n}G7N_Q`(vhS02J6%^NHk}CS;OZLe${lY%IUv7yqFX7xY zdX@4WVF-YF?$8oMC#)f4XpW0%;`9yMDCpPt+{-u5kJ)f|(AtY3j+jJ>m>e7;X+>5Z_s@Jt;#6g^h+K4ssKk%%0>nyhh@^4L33wJ+D_DR?0yOG`6elhN)Z76 zi1KJ#unXla<|^WYp3F3>;(}R4Z#|M#Uay+#_51ZY+>0_t?$^_{(tbFMAqcMv=kmbg zeG=dvhgUt+EdlN`5k-k6As!+|dSRq|ocka(Sj$g6QMrBlW!k<-c{S%;fxLfn=g<~g z5zcTwOtCimLodX8;K(!J0^Vc8Y+7lm^wFX%3=7g(|_i7f%GPT!=*h>&)dksQ0Th(;jR$hh= z-(R1deFQSJLNf*cHBPLtf-|9$Wqw%KnxyLMQEP}aQG`DrAt+kwo8Uo{TF&FHrM2## z!k_+xbN92Lu@(=Uy!Hpe`bVmifc5wMiUHQ&gWHX;9)#+C^M{1>PLq@hDn-D$it=cS zHW=j{mW#$a>k8APiU}qab@-Qm$dny>Ku7dVC=NKZLR=~S87w+MbX2sUWS5sc@ z6A}_bk+lqBsPQ;DoH>&gYsxl9***$ zXB~%abxPQY6(dY6;Cv1+!5;{{<)9AdQ795PG&n2ePs74XIK%yIcq`g2le5n*-nbGE zoB))QSkKgwXu=T58Cb#AvP9PSC=UuFIReP=v6qF3wz1S;EtH=??M5Dyn4Us;HRn8v zyw6GJ7#nLveEOh-^_vIvO8hY#{Zw_*hkA-jObVy)59-7(SwwaF7d^8b9Z4CN|RK1G0 zP7r06{f+PdVN&xBmu?bW_UQxl+1mLM`0X(SxF?9A0C*KWoD#C}jIJ%&rJq4Pepm-{*>KzZfI7r8j9;GNfq7pm4C`xXs@%C6Smz?m}j8KD>*Zb zYNh)Xe+s0tADWh=!P{{jS%ydYoE|@meRS3c*24#@=+Y=FPUI!91>qHjI)^6b`W-A~B{pWC3b< zfjb2I>_p11;dwstH)9K#p({~@CY*pzw_gaEOV&V5`I)2&Kwt4^eb)730Q5sWOW>2- zV!<{0F1AuJ5+Vrmy4Rp?9;$lOOR_6|}WlPtMk2y@jT?6$}WNmy{2eqQu z4$FL=tIER&x5AWKjjEJ64Qm(#vouM@EjKpy%Gm?hQyj1%N;JAiyhypT za|u7lh`TQ|N;u+LYMthY?@+_54$C_HPRgr!A|H8gGkHQ$ZU#^A8)jEYd-=ziNvc$H zaXb01)|2@HiJN6h<;^mIWZeX@%7A1Q8=7%X*P!qZs4zsBsKTF=xSM6$oeqIoTTflx z?Xx?6f?MEAVXb-n{qbRh?-r_ufNuf6Lg5RC=87=TeqLIIT5dQjA$;5<=@^wHARKk1 z`hfiz~(;&;3sk`>i6i^ONP5EU;g6%45vKGaKsNL8| zSAQ(8{oA97e%uNGKMAY9eqBGy5yW@%qXcmR-|_s4!uPU`>jIXeB0Cc$ccGF^*{D_9 zZnODJGCWjWg6AvCi zHJ@d@zJu~>TaVoV9#{F1hF1RHD)9H*oK~YuiUz zHOEvT>u!@{6lEtkhTlZnU@}`x!_DS5(PEC)XSeT#(!1aWD7{1GlyUq@=q+_eBcOpRT=I*mfvgVx@1cX)kwhn zc78>{T%1{S`!T%=KaaZJdQ7J9i6$veP$>fFGbsK*avWEI9Ey!hB1iqv`9a!rhqwyvft%ZuU$%@!`U>*p|Y9FE8n}6 zKo8Lk62x+EpeAb>D+cxa4J_fWRPUy|ntSRZFTDBlo8cybB9ueT!%yWubxg;2eH;oL z0^=~9hH<6HFR+%p8kZQCW|1hCjv*Kiap;bb7!T3Sj!CE@IM5u^6g6&IB~$q&lvl${ zBjio5(sw^a=};v>4$?Hc)jZs84)Vdr>a*pi6v#u`>(&9tF>FlU5sN;g27TjDUkE|K zct43p@tc?T*ndTNVmtUK@H%Fxl7;$&Doo^WQ+))&-{Myc2!9KFZT!KjC2IOcl|=YY zCMiEsDFWeJDUY^Ntx#S8tQ3DK^GDN+iUVd85P!8wLi_}*obfr*B$Ndl8pM^>b72fZ zyhF4bPOb65@#0XQ%SiOu{TT%0@Ger2K`u6D2x6R)4dcaXH~p*nNbZPwHu{TM&O*~o zSvB``K-Ttu>4B^$$$v?RU;dZgbf@81c>3_5x~2LG<3q8G-cd+b z=5q$!I{@@*#|!V=K~2_hei^ELD|m;O>?0|!=AKKC_aT#e6y<(!5AVcp4H-`Ii<&D& zQu+Nf+gu*4qIB=jjuqC6XvQ|)0JRH7OE_}@`3AZ<8s^ntg9B}V*cAEwWr%aj`db07 z|F$vzGo~cZ`ZL4>Z_HQzg?Qgjbr5*p%db$pTj0S?9x7U6?nMnNAw2jmV|9;{*cOr^ z`4uHeV7>+A(N@ie^5Tz6%ts#A`vt{O$@S@N-Ts$^y#Kh~lwX0O;OGTVTx-ge-erGD z)c5@w9x^I;xFkB#X9r7+SIY&`GIWChtNYiXr^KjcC$=k{}6a?sdA?Pn#X^4YxrcO7rXr`9y z>XW@^AgT}NcpX%Ydok=*ym4PCul?J`eNbE20P3HR8$k34+yE{;p~JQlzoKAkNn9VW zoY0YY6Ka{pR@#bgv-LO0xSq-o(7&7VXlr&eio5-Ug#Pt%LejY_j3sQS-_#Cd!=*|jN$1XfX~moaXV#6uc8{h#xuJed`k}?PswUeaQdMbu&}jp3;<6V z$oPdXtxvGMK@H{sO;$M*m3)=Wj)W5cMBl!Q@@o#d8~Hy52N@BsC?B4X34b-Lukpdd|ckTmx{Y47zK6r>1JI zxgXW7;n7PhEJerugNyR zw_0|R_Q5+$EPL`vf+tPk2T@^&K#|m2gL=Gak3LarRiXbGnciocq|BgF1jgT?Jlu8?@}p7STU^85 z))}S=6$4BtD*Ag*N{FvIsYCox6a^d_#Ff(7Fa{wG$M(UkIhxhs$nXr9qId)=m<*2} zZ~72Ye@0lQ!aLv|t^H{eliJVW9mTKKB-$#e*;?v)3U%EM*6_yt6y?=iG#+`OplVh` zf8AGvqbDWE8=TTXJ`slkhX6TDr-584QU>eE8+XX-@Pq(2n^5JPZzE; zk>SI^-9jTZUvxf2!e8^n^QdInDVfHvq`Vqbo<`owPw6|JqWDfpY=bn-R5cGbm18^m zWPLWUCt^FKxxr@fAzXmA3>R**W>`)Q%D#xoLfARH>-$LziblQP$^VM%Y3*3mr>`&z zEIBXSXPv^l{T0eFkc}^pr$(ktSte3>6|k{Rd^yR%s@R+Y772 z`}8fQ2^9xSC{X>;DT(TOr*%}ng0g@^L$y-+16XN}>QC0f4(#>Y{qmN(T1U7S2Y}?i zhhKIKsx*#k!liN$+>e6~eKcoXb|9?7^N5c>q@AulnBPEk+nr`ZdaWNHLs>O1y^5^f z(|Rl`iu<$#_Mp>xyFMSsy4h@35k3XdPX4X6>q?=d(-PoUo`8~@IDsZBZ~}bzV-Rap z0KbY$PikcTWem1)ca0*1k48|#HNd}v%0GBo0{&Ubt2yZ{_4}(>zu$4j7#ZQLKDH$oUK)8Jd?BW$g?<-pfIt=b{k>Cc_Vv)T zpQ?2esP5PF@i#-wUIJ0UvA^v!V*hXIM}hq_{0hasS&4>+SY?MqQql~7!3+Lhi% zVA}|80e-h1sxE$~4)@b~{?UW+f zXLQ_4!*~pb{4;F%#(`{P5Z56Vqkky&!}19Kd_is2{IdcTUkVYyd-mTbujZfck$1Jp zKZ^3x8JX-snr6P5hnvrP_9Gk#0`p&*Fdxiru-?hG<1nfss9&N#XLvatEm9W1{PDmPd#nJ7o%=;NNm)O@lX^*qUa@~*AX zITD%N9mIX5$l8ESzO#tFe5VL-_Vuk;;8;(Z>{T;ydwEIkI$NJTF%BxYJI|D)hBI84 z2BHa4DB#c#u9SWZ#&Cr9h%1G63^F|M8+uB7Y3oRD20X7hZ1k@q*y(VT zCb#~Yz;2BWXQCP!fDcxzs_MJXK6B)l+rYDrv-Q#>Xp%@V!&8%BouK?Wu~ za?VILj2CX{K~2@%at_t)_P5O2H&R}0k2{6DgG_Ewl>Xoregh7qX-2DgxX~QZkDaT} zc1!_8uV_%(fmp8_H>piz^R5(NKZ6|$Y=do`C!QpGzdKm1*v^?L&$4#&TS^MqJ_z<64<7A~(r>lUarM4w35-@^aS zh6eoaTA`hEZYq4E4A0DlzYv`8m*^#0v&qX!nDr1u1MkES{DaVLe4fOkfVPcaF+kgP zUWaxPs#*WMg!W}7DVI_y0@}SOkG5FJD6ji@3GGWwGb#?4Q9wKDyo7e(ybkRSC<{0= zXe+I)FeaF+Jw69~i9jZ6FZ_}=xfi@-CX%&IS+=gEIU5>Z+CC~oiST-zY}um)iMFSx zd0O0dL6ydX(mYeop}d+aIw9{YaD}n#R+N{{OJpxTuV?B@a4c|$ObzpCNlR(+7%ZI1 z)REjAwr~^NF-FWf*^to%138}4!V!0kE=XiNM~5Q{XZ%VH)STf)C4YvM%v=9%3}w}P zVMo?dlP?sd2zn_j+y#XtoT~;!b#i=Zn`oci%YV%dT-XMm+#D62cI!KFY^IS0F9m!3 zaBgc+g6(H&B9By(0{Ws}E0}|+j=7ZbYcA=7{M#<*&{dSp;4J>&>S0(><889*a4c{L z=&k^ZjUBVn=7$Rsx*IY})6o}>7NsqvO(Xjk4PeIxmv)4M#=uFOpqw;nb7=zG(F0Pn zq7XMUyhuV@1MCn~t^P%sb=y&1%>@IHx9vsU1&Y$@qC_l6(+pJea0B^`uxq)iMe^#? zp7mN#8qX%)1n4vwCVu%UyQvhuZ4}0`>uS*UM${IiUz`jP65MZ0fuNV+J58P`kpogM*uUwQ__8XIwuc#EqckAzqp)A_k+>YYb zz}oQo`76_eiUTGTkezu^LiSHsE8{b%ccU!e&>*Xno(^LaWTQPkc&r?=ESy2&VfWiSrp3QY!Q|UG>4-KOJAx%`;n+U zgr9))6xeP!q{m$R*O2a61d#r&4hw86?rZ(JPX6Qt#Yq<14yuHJbUD95A#Ew=E}+jr zJc`k!6f8wDnumVCKeL)+FFf6c{U4Md9kDyvqGMZ8?zBj3kFyAD6ZAig zV}WDx;^JObm~`bghW$aQb1nD}F`W+IgUv8t7Ay`d-zX5B9+knJp_9drc-wnG(Gr#{ zyuzrFnpdWwqOSc{PW;fV_)M4pEeMEdtY4kfxcd<^gjne<keA${J0 zkZx}!NE47w=2r}mPKK;zfb=V6v>UQXchY^3IrbD*FdebPp~Rb!|iK_+na%RyZlgJ zyI3HPf6{&wWS<}@(hDS((hxrW1E4k&9)pw8UZG}c(Yp|}nrS7NUQ7pQet8oIEV2qr z6Nf0uLhb}OxGitS7|ZwE6L%4&w{SQxtt;wnnJJy8WoxC>bjV$ZY`BjtZ05IWu|4*C z*_G=H2l6sIogY!oy~W9RCoAX|NY~ZUxqB+8wVHbtqq-%+J&SBrlvnf2BIG?RJwx^~ zML7to%M*4<$ZFymHP>`W&3{34B__ zc{2bJ;M{uN!j`>JJfONFo1bu63&uZ|7{4Y$V!U?*V*Ea;k-&Hkzd|u?&52-^_eyC= zxD<8Ggm2dJy#1m{%5zkT0Qr2%qb=Dols7LzfZY0=X-35XGtMrD%zig>Y=__;_T!9n z>$h+X5;s}sFHzpz5v=l^;&7VZ5g`E1?wkt+s0$9Og(D02{cL#s$*Imajh_eE*-V2w zn(^$hd9a~}XwW+PLBe;xB-l!*omv<#N4>U25R@OL12o5civtcs=qOhdIC^+{(G;sC zQcv99GOHJGkFP5&o?x z!n@UIU;46OFoZU@(5m05>rA3?4eAUrH|i6pnQsHsa8&n>s1?=KA^xF;rFqt=krK== zL?W0!rb-Aff5@*G!2DsP4(1K0-usaf%o|Kn)>0{xBR1R@Ls_(t-H77KVF929x2`o! zs5oFkj%DjRk+J~42>&+Xcr(fZ4h_dj={#6&sJ=Ol)A;*dn5dzJbn_cwJW&ITJBCP5 zef!;PRErG>Y@C4rCA%0?`1tBLTbror!?hfhY7s?1?4$!Uj}+s8u2FjVttgj7$@05T zl-^pG;@C@=;%06`skZ zhH60Gjml;U&n&Wyr@Wd|b|CLKlT#FBY?RE>nIUsYx>R!|NUCV7^LSVaL>CK0UoMxO z;5BHcfOAcDF04WKy{J0`p8)imfE*6!7b5>PpbL@!(3_$ppw~wsp#P#u2tXg@S16$Q zDJ>y+<6bBrg#)DLJ z)qg}uP+uLbchyHx9vpZK+*$#yl>Z$TA8`#|xAyr%6}Z!*o(dQFIYfgJ9A179&p89K zq00=8k`(cDb0#%Z3*R%S*xk_t*yHE`%`+!(z?f(q*orbTS^|4ow4R<%;aK1heKky~ zKUir8oGK@ozzD4vtnOE4WHHWC^uTbI3*1 z@qOWtMYa``SM$Z+$osv?7mD&tw9L#PO|w+Z1D1-+{5ubFf#VaHnZp~$A87|5cdFL7 zeY(OVXe}M&;~4NEl=G_I-VKo9eKkDu!LR+tz8VtX)uqfDS68Aswl1RDTUQ69n_p3Y z6yFblJDy3!^j2A2RM!E|)$x-1R+EsMs1Skb`zepMUiDC3PF>ko-y|j^{!t7LPQbpp z3k$R>?rxn@SI4vsrF9X^8m5)%o$E?W5BL^xHFSx7HmX0|15Vml8WrtzdpwY^hjc0% z!H(@LO=iPBE{%e-b_`sRoQn+$z$v|hca^pa%cCTT&+NWW9l(Q|*cXo~zr#|R6_2-l zPgylz#Ukt1b@eJ-QNHAkk-fIHpst?8o8fpkQI2PPt#<4&kme6zYvUqgXaso-wqBy^ zPUdclx_9PtV=JBxxZ_(xth`p+)=*vH{`J+6=ZDslJHjpXa7UOxm8tS>7#PDZ&<(-* zcs;#t?|@o9T2Jl>Zy1D3Ts^?{8kHh;gik1swqmI$@56dB&%b7xQE|YGq6r_(R;EGJ ziza*{Tr(E$olxHBdV2A$G#^nfxFIC7Cc6OecDu*zqT2#|%MzaboV>Gij!uIwO}OB= z@(zV!Gl1LZ;fF4}b7q|F5H(v%a!yq9k9s8QTk2OI*!JW7Pq(*zCZNWg6rdK`=N2CJyJEG|tS$GC;Zz4x?$AMFY zXFSwU%`<+~)=^*f<$Woy7Cav0?NeXhA{FH-cC34GZz~AXOjgr?$>N4OM8(}VNt7F+ zBAk7I^)!=v3aH;Dh5lzg;LsX#rSuo|jo22iWIIC8hDX8eKGy5dZzI@|ozS4eo6BbERQQbyGJSYz z!SirO)zN?eRg2$2sAQK01lfJ)0L?@Fa6s<{dd^amD;vmq{`LlXjvs(y;UxDykmHB# z?j9rm(lWeKsx$aB1aOBiKN#T=;2dUeziuGMcPHtaAQ3&seFN|gPZhp-f|{!N<`z`< zQQ@0KwwaVybIT3LJI&-4MR~D-Oy!S;OeWi+nyWLqhJQKi3m&MV#P7#?E`TR-Ag2qo zW1NJuR)Sq~mGp+N_sbe=xD9Q9uoO^V2AJYdf4%;{hI-!p0QEf$B-D2`K&VH@kbo3W zkKk7fP>+bwp?){2S0_e7JQnGIABJB^?%?+9{wx% zZSZg7ui#lI>mRXvT5YcsKMN7S`}H=FWpF>;Y4>>zPzP*_uNCx7ENdq-eOMlGO#eqU z^N17eAEmZyq5Tl*J35BIei|L1IqNJ*q7#29i@3IT$1mhcCZ*e-Hkq>Mr=*JqK<~Pxe3=rVpJ>i+*)slr%exx>PP8oxG zekYu=$hMX8YW^63yagtID9VNy*~)`7%~~}NSj&@n%vp{}f%E$$&Korh21w8c#KfIR z#sJZHgq`Pf-N|0_282P>BDry9u8eV4peTj^fQFKLg-uD+v90zcJ;!0%_%fqxyp zVgUYiHXZomQQvE968I0Aq})fP2;fhoJlfh#KzWbbB=GMu&8RqFMp4A~VpR`9PyZ(T z(^$VxLQ%bJdX860_ke@`5%g*Br6`X*gn6jJ-29Uq;sKZt>fP0F@rP1FxYxKM_{$Il zRydgDJ8C(PaI*4KP~CheY@weopsbpcoc)3B)U)`TDDZi~uVrzi{WGxY2(>=qJk(*e8i)snyU|=BjOCA1y6X(bqz?~ZD_+Es1k@@tZ(<`*1ALUg^?at;?>E-U^OZB;l>=sqq^0KSq78X(XY4H|5nF^#StU zZgP~O+}cPccaX++H4<}b9(ZS)`$OE5gOKqqkkF?gV=`jM+wk>7*aa|TOmt!7v%2DB z@=sCmXZYlp*(U+o_)WP7m zp4h)dS-_z+?@H%iAq4n7aCksj2YAKP?}GQYgZJtqGkhM0JW_Far?QTbMk;)X-s4aw zDkgU}(IbG)svdx3ehoEOi|AFTVz0)ehQFN-(ERfw4!EVUj(Da_VoHn z9C{;5nWgT|_mY2WX-{d@qcL;zEb9(GE4tt(3&`rqXh)CI0c>Z_GN^`hk~l`OdoS=u zkQ8#o3~HI?inXZTRN;z6ws$D6=7nF7_brnb6y=S^GOte!8Avdu=ISA-0^kq}OO^t_ zcid72M@t2jS0)R)KD{5RcE}ge5z6e4ZNJr^?|Rf1<`Bt!HDHA&_fH$un%t|q!T$K? z(3PKVEFpZNF+#Xy69O#(;Y5DL0O73LiehB_;?8=K#Rui`C9YZCely2CBV%YDoXE-T_{ctpLRo40u z3^1G?6_z~PwkClAgsUMZAKsQ=n@Y{qB6k<6_py5REuYs@3F5ooAYG^!A7p9triA8Qde2o2(hYw)ZUS6qYI+0vHZY75>;l z&C~p`A648W{ISUP2j$gVu?Kngnp~kMm9W0>^O+T-X@;tKz)(@0LnI`vLIg*9Q z3(Gi)=k+R!4r{xxu2C$35!aaP9S2b3hHT^~#r>=e05d!_pWs_b?LVbg2j|19OY9un;(}QPtZ$B$uwDlLHa6WSP#$n-xmjs`Lu?S&$!zJEvM6y95dAGZ z!|&v0GK?CxW;jQ8yBfJxE`2+WgFHM}B$ve|_g#}<+eE#fMfQ2rdR;6*`d&IfbK6-Q zu#3Bm_ECzkJyrl6&QEKyxR^e;{x^=?&L%B}pOaulE&7!%zs7Qy`>63W=)tUeHWUc3 zw-3t`jcybU0?>!&A`WWalz>BXP-Lp?HR77e3cU;E)u3Moc{?@LcR@u-Ybv1+(lq1M zJYYPBzU>CS2IBVH*$%AIQRb=5)Ofb^{xW%d6dao!eA*xs1~=BAc{FMcA#`apafF-G2nk;Qyu>{RB=I5iT|HXQdUwa0{=yn zM_a6hC~q??1+U9jnr2iSFr&c!{H7B7r{Ld4?8l-k;LxzIv}UmIye|KN!A(?Wh8tcv z36|v%@GCLfHFx1iHe(E=>~Pds^A;wuW7Sc2Er2h7$2F@yh+Cq5O_~vuccKF{=Oo~O z)Mk1lD@wa&GM{&ErdQ?7acn!btWZ_uP2}HNRj$-(*o;}GmUTzVL$M2fakD1#H@aE! zV`aT`vT&PlOv7nq9m7(EWA37MYUoZuU55(CEV7NJyqZtiAn(H_pD4-s>IjJM<5wueE&I?*#$!=Cp|X46E6hC2*N-D% zUD&5|U<|*Y1PPS4qAc2?bw+WCaT4XxabjN~%c3~;NOi;`usfRxq+2d$v&xF;SHHWW zxSfJoyBDWauYfR6SckK996n}=Dr;TWHA4Ib+T8e6&;UX0-=H&I3{ zf)gHwQaiOk_M&1p#}R}-Ob2L=ap8am;&g;7%Dr(C;ZMiu6}tz=0*9#BVNxxdDRpiD zcXMQOFW6aSURfNQb$?k@G`a#FX&=BooeF77V~7m-Lx4LhSvciwYNO_q9;oL6;gm(T ze9Ei&qZ{&mZt{nsERB=78>DI0s(HX#QMN+>j6Vluy8v`p)x}B+M295{%eL#nIQfh%e6_4?gbzM)Ej~*kFdV!d1=rQxGlAhCMT`(%q*y?0(}MLT)MtJ? zLGb5vfaZ+BIN;NG9l?t7QM^R(ns^<-H{e*{5D11zwU}1wFmUnIvL0|e6x{sFDT|M> z^CJ*l(pYiV4Dg#Co-FP#0e(9L$@PPya+Mbq^z)D`9t>9{R` zgQw$q@wKMo>M;95a_cQf!+HPBz9NBzm3?v59I-ehFzt3ZUV>d z&Cx#ikp@n7nDu;F>qxg7-X9Z3n3iuUOEZ(iiJjdGjHGBjN*!XlhuWxx>nPM|X9B_R z89G37%5WS2-%mPb=%f{)DnY{6mZ-yb1P%ob0biI?3u>iJ1^A9XtTu5aBw6VT$igj@ zRpJcO1)oCs9HL1-31?g|Qq(AMxaXybB*ZmeJcjypOys^;Wa~wFH8_k#-tLL|Hl`@u z5+!s&nr5Y%2dorLb1rwcsHulzP5sttsHwx+HnJqN(9|WuxO;0*_z6@PLQM3^SrT`m zS00e?uQBXsSC(g;n<(?{%ZZ5Juc;yezhCkz2K;`RsN;7Ms`y!=#BYg7$~G!R;P)Wq z(bi}(%G(Dkz%|phNqZih72TjS|C7Cw5^ssvvr=^+2sT4SYF3ivOGUum)oR_Tw))@}V5;J1^s zo04L4%M#`-gd%bs|6$V`$L z)Lbc?+S|5-$DqLPREpn_-O_}eYi1@eiC>*0*88IxG-jwV1ewUbivc1$`@Wo5D{^aT zhUa55T-ID-xVSlD_&ildVE7!rLNRQCle>9DXdm``6O}#PT;jM*3lhjeQcHeCNfJ1| zjPhv9wE*Q^(n8|6CA^RfnV&3(;y5k!5#8|d<`T<;S_mu??zd6ialx&%!%F#M5CI#@ zZi%wHJ@7ar&&1Ilhug&;G2<_JLoS9_K!UVLPGc(@txsT(iYX-mC~Qd1tVG*zYN8gs zOHifz;gp!*@o7)f0h&+V#{o~a(DAG&<6B5P&ugLQ;SX>uaELq%lWG}Csgn!7Lma0@ z`=z-8t>_BT3Fm!UW*`z@KqgM7<3i5(irS_*<1^InGvSOywsn+O^TQ{|yT;@PMftgf z%)=l}vr^3iR*DiDmb~B9P(nlY?Lf6A1_6B4;&MNP?5WaqB=PnI>UfODTWeO3nrF8F zGwUmgR1OGNw&Of3o;Lx(K(%REf!qo|{F8O5P z47i1t8lHb=gaoTjsd^sHP7+`ZQKI>nu1+Ri=KPErr-kURsL&@Z30~LG0h%{{#sRBZ z>UdR@6)h!R%UkMr{RPJYhrlaLsztI=X9;*t;Wf(7?P4jd%i?99C;ZWP+B*Yy>V@Cf z!;ytkIBE%5_RiEZe^Wy>&ul_vPYcg1vNdT%f{{Cg0An5U+Srh8CG=rKMSzzlt}N+o z1zDQGY8EiqabS0EOH20SEr?vAIk8(9#?c!YG}~-fhOR3)RHYDgg+LP-*aebsN&>S62b4Aq%5LR1cJYz zJlgV;EU{-aVDDJ zaT0u@2@bUS*Fd&B1Znt#)-nyh*BU{*o+=_h{2RYw0P%0Fbr7FG6@O_hL43$0qy?lr{?!Y*(})Xw+iXnkFB2@WG*s z!SZDxxaH>Zu>4%flS`m(}o*cO{CUJLIy@xQcYSSjTJKO%_J zrDZajxygfDFGLJWXM`xi83MyPMR?;mYMkbc`l#S!;f+PM`IJ|4L=^JQGdV(0UTGs+ z;mIK*NeWkUc{sJV?MEJo0>l?WAjU}0Yy%AALWc;#v=ud|8-waXoQW*_J)neV;rCkC z3f@}!;6`ckN8uxFB#i%TgD{S5OX5zzxDmf%fN`U?I*emc(U`Up#txH|u2hPE@l}*Z zTc@Td@5;6k#$8P_Dh`-Yz_@N(3F9pIw=oYVpe*3vFea<1w1xxH9xk!73DM>7_u&A|r<=&?2HQ1eikvIYjtjEj3H?LmH~~i}1rD+fK@>xu6~LmYZCl zDDcTr@p}?T(+pJefPtbJj%>?X&47|xB;k2kyKic9$2A*a{NKOx!w z?cwZje0j&H5G|6^*zD%;lhEJ<14WIReC^M1w#TX8v@o~=^?f9Xz+na*pgG!y1EwbF za8Q&Nk|Z47PSWAf4aWk9fCEgbMT=5rbP}uFP#n*ec*;9ak1RU~zt$*^cxE~y=H7WN zd-Ao_5KkS;JHz+9z-yd`c&5NWP=keIexi12j=2hTT`nB6$W}~wHJ@CGyjx5@QIvut zi4Ty*EpBU@s6ODN<{52}|975Oyp|Mah!U9{2D15iWv$pjzcE-ev-@^4lMTk7H%tf( zG*RjrG>Fd5dhME@RZFtFP9{4G{Fw2KYChwVb=26C1!_os7>x6E;p1Af6{WA#Wh-V( zzs%BE3W7o!j*H^x0cka$=Xxs~oLTi};V6!j_H5SJnUV7xpsbE(D-M=52$~Ks&`2Ts-=pSe_76jy z-WK*RvVBK+HPi1z-h5#?@rfdQ!7NkYz6;3GP@rbH#UQO^i?vaTEKorWjt85; zkizb7ji?2w`B;|bq{!Ts3GzDazLpIb^t{jdq{*5eQHAj-y!eY}O(xBJ%Q{n9L^NHk z*rcWfOW^ENj$`X%LS2~wEt#C!nti(Jxl8{)>%B3JEqnaE=dHh_u&RX0fNfO@shMZD zexq;1iWE5B<*tc+@*jD!d~bc0_wZ8<`Jcz?TX(0hmBkfz5Wp3qzB^N7ww`t0M6b0X zg%!TIt6Sq=LG&XJERC*H=Yg_6qwBDXub05H^Sj16Z9niy)i<^P16Qz~d5^Yfdv*eB z>R7+4?Y#hJI5(9InOgp$HKCoTV$&USiGjZK&R z=w#5m`cUs8YGjIs5sSHUMfjho2~jrZh&@(=1+Z)~SW*9VG^Ref60&w43*oE)sT zHgCs91-t(bd1F;NE36mMEWgc%<+odG zFKE-y%=BweE_hg}GRpsY9J78@J~L_fv!To8#ehc@8%^)Zc6?NRyDd+f)^RU|o9tvX9I6S!|yWHdc7g`yJRf%gR%2U(w4ckqZV`KWWFVU0UANIAHS9@__Bv zaJ=1@mG?LDhJ=@e8{q$}{6*t{lobm)u;ph~Ic$f*4Vd_Oxl0=`YytJ~2J|rXgj_>< z#q66c=`3)P4YxF7vp;|@46G;|bB(P@do9YX4dEcvs`9S$zA8Uzxm0k@yKZbhTPMmm zYSruAtnuw-{552j4`H+D*?+z>A-n>Ne>R|&h1(7RmN@--cG<-V9V|nMhPTj(`Tk+O zQEJF6-4;%DP`6SkFd3kR(@6f7r+hZFeb7B zy<%R&qe6#ymR&@P?FKE5tOPAyT3()RJ7v=1IMHJJf6(F#Y5{Nh{D@U#L`nzhi-(TD z;cxR-m;2eRkrnB-ZXHON35R&)P^cSY*oxHWn_4=^G)c|>zc|FwQQW<;+(%T&F{rYD ztJ3{9P{sZec;!ixD&vVNe1WVv9mG8)^Wr2??aYhQfH~HcKbu_h7Pl^)%^n)tm33?U z)&ScVTp6`VLY~4sZW+03o~B7hu@}EzvA*1D`-!kJUhO4?I+vy$Wim2|W3j(S#j*P~ zl^?Nf)y7`Ml1IW@g#}=KLAkqO0U_68v8x*-vk5aNcDC&!*V)2b-W!YV;o6Boo36 zmYbx(8>VugH8_{=Lp?W4?qKbbDr97yrHVb$3hY&-<<};JpIh#a;c2k^;;w3HM>hGLiG$d%i{pn`$E1pyFk)mXR8p&6 z`Z6gu%Nc;5zx`fMR<1k4YtQuL1U#-lcEFvJ8-R0FQr?|9CAk)+95!1S)bmjdlsj|48 zwyS)tbz7=lRb}9?&8ece&Htmayo<%UFIBIot}ybkH};f&U_F&83Mx`mUKL^!x1u(| z?EGHxH)zmTCWET2qU=F~*yLS1vyy9G#OphTPfWYG|`hW;fg)Pgj*Fqa%tUCqt31FtkF=i!N(6HBGN<2^%*w(WO=Twbvp4PPpQ@x=>nIQ2-b^#CT=OOFX+n1 zbV{$7bIVAaxGzq8tzqKJ&X!-vhLu8vGt4ymT{!!-|6%sWarPNF`!q890ox+eoC|Tz zY5!r)r*Y2BIOirZ=QDF3skjpE>qFV_hiUTPaq><7Ve)Bma!Uep*h;aeY}S#kb@NEj z;L+begG)PV3vTJeM`2M3Mg4JzJJJ2pCH}uG`W#tMu%+uJ)MH(vD;C&p<#Um`gl5*) z{^d6CR!3I#*O+Fkv~ES;WTzv`pW}9Wv%R@lZhvMV5U_g#p6slw97n+IaAxLLx++FQ zCfRena5>lS&vd~Pm-awrc4n^KpXu>tW%;x0p8P=JqYEra9$$vjo9WJVxZFOsGdnBb za5(I~42L^AkmGT9SnRiR;_~x;9#>+ibzaumRWTsRSM$8gQZUZm3C<_8Pn>vZa=T2s zGXSa94;JLO{dUO0PG3gAYxml-oOX{tH-Gli;~tJo3c#hTY+p`xhAWF(?(;d}AduW# zPi|&TMs_ybtba5ve?|B4ODt`(Go79sdzRmmotf><&GGmG++HV_Zui4;L+753&mY$2 z*(H{wTBc?T2h4G_t!3iEv}aSByDKv* zGsEl4hX26-yK?iZlAawI+1h1y`t2@XP9P`C4KFRgO4;2mpWEfn^tsvW*XFd$&ntWM zeM^!%E7xz&h8N5-{8=D15Xf;loZzKQk2{bV$jF}@H*dKmxt2NMIiQcn+1qB-G^uM| z!8j+|bWKGJySsfwBfHDn)oH(f>}6x_YA2Qo&X@=|eJ)RS08U5DfZ220K8Gha;Lr8s zeFker?=T%TqP4 zlrzu{;^X?kL+=?d=;~|w-&0GV<`}ta@miqWU6-<()<2q%REt$?Qt~hCdTw=gx7!30w|Oz?IA0mte9D%sDHBZSZ z3+Fo0gMiBgj5~519!G{f;0}1R1NK0!-Q{pNo!S0C1{-o&MSOlCQGa%?VGKPOETmprx?n<*Q;@#T69|l3@Ye*&c@-G|O>A zF#0^c9ACEA&G)`c*d;J5Gcx@-x!D<6cAwjw3w(}@Y)3|B!0XI(WxIX(u+9BwNpiY! zT<|NK-Q|QwwR18ueD+McBgdKRgrJ9ua+_%~W!#6BTBj9&OUkHuTDI&`h^`f1jcdeK zd|c7sa!1-jV=uScyV>D+fMiEkm!H7TWe1J6Y=5q2rdXb;W!YRBplS}-EF*U< zj?4(cuNJFV!5hz9($;Q=eH0?l<@337a|3`d*jzlBZfCB?<96gvZZHlkciSD_EMIo6 z*8#xGgp}gU_PE^s0EA&qt~-~_-UBJZ-u#(q7Qnn0w%M#~_^CC=o#}RE!hY({&9%e6 zZO`@P%4LR}R|+|z#;NTx<<&N|rQS>SjzI*%UYMH!nG5!NzuV)=$#eu9urE6@?S9Br zxvcWWadG*_rayCMWKyQjnGLa+nUm#r2i&lNaN>McZniVv@(1jEmq;47+>!)o9-_hH z2xRAGg1}s;1^n(T4{RPTkI(DOKQ?vlk328dIP0=a;~dG3S|(((A&aoodn!6Z*X;K5 z%_`di8oojxaI^=zlx=>=s2tZ>k? z@tC$fZphFc$mMoeEl;M;m*Mh&e5hR9ZdV|`s_GfQXDySmQH9Sql4_pQ#VUI}>tqGj z0Nm^pZ%(HXZ-ML#P$b~;LOJ0M1abqgFSy+vH|!SnEOoGmP9d`!B-*h)ZTSuYWW?sb<46_$Hgmj#wY_TIbefg`?pJ zgkMMeuj>3?)%m}w)7&2Yuj;I((EVT4DVm|0%fJ6sou+2te^uxIs!qMk{a@Aj|D&q& zayIjZ@%1bZvy|f{m$STfV^heJo9~9ZeJY-h8CX)0Q_J%)aG>zI@;KJu%C{yYwC7K# z;yv2XjePc4X+?gb`0dR^tH&G{r}T_~ABgkwZkpfM!vC7Pa_S$}S30s46&3!7Yo4md z2ABQrj(FhNdhCU=-`ht_gPYMkcf6TqJw268-d>ShcRoC_GQCR{dve#IE_EOH1b*3_ z-j>aL^=Pv7nU3tj_KNhUUV(eZQyu_O@ZTT@{u_kAf1jSp|K{VTh;dUMc!pnp%d{+IY^{X_m&*$Z%O3I9txSoabCOZ+-t z_hbI&vJUV%(yn3b;ni=nWW##T`_T3yzpQR)FS}&>0PFYgYuuj|gDo5QIyqRADf3#{ zzUN%(x2ZttyF;zEiSX&;cbi%7oz4nV-(6$-!zAZ-lyi#6`Mp{>AH5{y#CFp4Y1B#R zV@>MBsw~_4*&1;UU6*C=Z;!LgkRrO7M0ioebtu9cPJ}QgW0sVWWs)%rWsE`@!>W}r zezue`-6UfQ%9xKbrc^6q#miF0mnIpXp^Q~1+8ql`l+qr6%fedkIU zbvx_J64_ZUOMGV*_-04{7|x)tig4-7c~XSkB%%w7=+RlOY?o?fY=s9Yc$5t_$+!h& z+>0`9sa8gd*QAW6O){QB8M9EvQ`O42d%l#h#3W-e%J>FlEUs3@JFiO_TTL&!;|vSSEam|EJJB}eSE+s;)hrON^-CG8S@aob-a_W<|`c2G`x z&J}irN53WI3^K{-k8hk@HBka{gH;tb_gJ9Vuq5Nz57)Q$ob72`5GX;Q2*T&T*5RV^WS4o+uPs+p%h8tb13=Xnm=^ zR4p!*IP8ovT5yiA%hcq3DdQTGjNT~YMwHRJS{XMlmNFhT$#@WDOh6eARx4xv2T}$z z$(VyO-bER6s+FDrIDwWCT#g=q{|+AFxkXE5f%- zig?K+Vk(Mw9o3jxt&EAENf}?6WPFY?enuIeS1aSE&!vo=CK(kd<1osos8&YZFS(3g zW4h|A64h0%N@qQu0$DKtCcZ3U&^@MB;!_)adO8H%m3r; zJm9K0x}tMz?>&FN#BuhV|D2g~rtI9=U54nZi@5wPMa&ftNz9B@ zjFF_vD0_r5_6m&MjB$i9cIz^R9i@y*0^@haurS8&x{MviDC3>Lc+D6}ZR(cST8yw) zFeZOT5mjreJzJ?Z^=y5HsDvdnJzM((Wpo!9;fyhaF~W5jlTT8{41qC~F%~k$R9(j5 zQ*qp>dIzy->P78t`BBc3sa>oT5Y zP{s;@v6L}3F~(9YMxO6&FX?xRFbIf43~`1b4rw9CGB5ED$}kFyTZ9oIF~luh#OXgN zqHrCxS6u2)ulUrVUU9(^T3(R~qr8AyXO%hvqBcW>GDK}XgxvKCHDjQ_=*Jji7^9yq zW6f2{m?toj8Dn)FlwLcti@Pr3>NSekCm{AP#8GC(9$kj-4Yca{&9kHshh2_87$S=y z{?J7Xze&w_FPQO$F+A#0r@T=y8Wm1;X5YF*$?eht@;6O(-9jPbVMwW~c5~&r)XfbT zu`-s>amJ zAhTkdt`$ekl<}*;_?a=TGse%li~?Dd@l0SmVGO5w)JIQr8EvyEqkKKJSIWYf0N4?e zYcWPyETL|X^e`AktQ65+K(t|q-VD)33qgjF3wJ1ElE4^W4@pIDMMw-WUKin&LlNr* zL>e<=7h|O9GWzFI#`gl_1Y=|{#tA)!v<0QNg`w!4fVj&LFB#&l9zwR31tSi=x=bP=g9DdI~NB3%B0F^)0D7g~&nXc#tL zQN$Gi@h3xMGsK@-2omLfZz!WcL$y!dHb4jKz_8JfHt1Vj#E7>PQC&b(X-HcGUfM#O zQUyzBI(GLv%IG05x-rHu#^|QUkRGClF)(a=A|R$S#A1e+u7{B8N+@E%t)GO)Q&CJ zhzI1O{q^Jm%mO2mF&;BUrY@s}7iG9NQTxQT3H3?o zCe$acSVGe$b4yZ2J%JIz7_As1M3-^an=%Fqi~)=>mN5qCGCWFA#sYycmoe5d##~)S zkJ6N}UtsKIjPDp@uPy_Xp^U2n;}T<78RL>J<7QdPkeaIf@{TczHl==fr^^WNrHmQ^ zqiR!hY8MP0O_4Mn)*Se{re{Z%r-YsYp?gyr9g)n6?z)UG;O%I5UYR8@W-!JQ#+aeY zc9s^Dd96SJH=tcptjv;n4#5z5M{0ID=j?FkNFitVX z?~HLumr)9S3&e~E0wb3(UNc6nE(4x?0>)YQ=IRD5(VRADrRLP7C9s5MFZmRHW5H&$ z6d27IBb+gs=`!xXZa!v=78uctF_kf*bs4o_Qxr2+35*qtv6V4a=rUqq-wiX42n+*b zoNbN{rof<~i}(h%crd~uAdC!=$ILM5GG4T7C z8TAE59mZ(Q76L^Uj-cI>Jf(4bHjwxXASh+v4}3=yG)APqViBr#*Qz?jJx zOBrLPE@NLPy!Qr14gv8QLmXm=&vX$_!l)S+1jet7af>m2)nznnO&Ko)#xurn38hYX zrpuVshB5*|)s8J6O1)B>G0I~JwO2@!o@z@OodiaE#^@J{A`ijHp^I>7PZ99~ViH3n zGczXXGCFslj7z_`a4Zy4jAE~88r z%J2zOyTuCv2j4JN4x_I1!V;Qp85&L*p#r0M7>YdwLkB}N*F|jaN)clO#7JhwG{zXI z%gE_Q8LI`xO2*j67%O!dK@pU3RA79|7(X+{w_1#__b_(!polC1VPXjAl4N(mq=g`X z{%udn@Mxv>id!q{m9niU!wpMldgW~|bnrZk9Ri{*L$qOtx_Sty6$*2@eO4JNAOv(`FvOQSh!V2r0Lr*7Fs?AhUBEwpRP301S_~r+BueJ}H1DG<~vh5H+Kgz^Kj`O&FuPF2gvOGI|S)9*hyi z7(H|um4{MBg24EMF_tmLC%TN7VU)2;U~FfMuUn%q3k=4(i2aciks%&UcSwO@x#2ki*)k2Vg!*w)eY!(5kCru zAD9_`GR6%u8qHrRXB=O``T46BvgX;}^y_tjh?Fql|2UVP=fK z7{jc~m=aGJMcS#o<=&2Zt6V$kEq5%T_7-W5Ba82cIHBxCH?W&AdSGHwWrtBjGu7+19z z>Fr=d`Gg{z+pE1I!7>>4q2leSS0pT<>6L!7C?il{)M$?+FE}j85H)lWn`cu*9|6&m znK6Pfdg?OF36zm2FlI5va>kgY%cz<}8J`P`9gOh}W9-mkm||c^Nv4R40^&D@$YhA$ zv=Div;H=~vig+a;o->4N2kMmPS_slr{+^4%{BNIi@1XXpKiryNzlJb`KbFw+Yt#AE zj4lGBBV!C;jE=gDqy>~QMPS4+#$3jT(`B4lNEurM#zw~2%NQGV8E%Uy<0pY}nlUbQ zKtQ9b;80J$Bvq}p?g7)(i z%K1*<9O;M-HiV~R?2U6om-1j0rC0@ug;@i~Ao3g8qQ{Y72XO){FN$_j`$~bkYTSi< zJJDXKUOKD zSg3^{zG=4(<+X+ZML-;2h*J!4Ko_xeJvHN|z_`X3xr}j5myxl7G75H9dqwU{y;7nx z^@@xoG`&)C6J-PmjGBzmj4^8JG6rm>jJ^V+7h^=j-(6uq(M4?CLJ>&r%3|Qp#?DvXdENV3paa%c!1C8NUmR3yfi8j0?Jq37=BNYk~2CF$#B~j(MTQ zkXFDj@)<=`>Z0~-0PI2G9#@AU0>*~L*M)A_f9HG1 z)Za7phg#|p!(iC>f>xqTxY{2+u%CzhQ7xRh)CWsw`Xg;GN*@KohJXlVhzN!V)kWOc zN6i=~Fvc*(OvV_a%kbY%8L0weHDkcngvplMYF$S30m?WoFpe_DuZ(e2m$By{W!w=M zS&Z?FF|u?SkG`UeVqMj4@qj&2?3VIfXu{JdZV8O* zU6E%Zj2aAaT^F(Z2t~MbQ+ve;cAc?Tyt+}ZIAIA*ul#2{De7>WM zegdO6V~k{s-nxuI$0;LOU?eccO2$agVo38~>^MOYdj!NThWM5tc4;AqSF9&d#8MbL z1Vjcym>42M7g6(jYQ`IZ@scszx>K*b)MZTififz0S9`WXck0=?j8OqgXnOYR)0ELw zV031TL5$H^m+|ThWlR$olNn=vcXTinmK?f>mOoL%HUY7jA--g0Y}RGWJ4+cq3ydEb z;|gQ^sLS~IXUcfOGfr*1-Bn_U0uj_Jk8}}5&QV0!2(?#A!7ntpzg1_9QdmOMD?NXu zj5Y!zj4^sJMwl*R-FeCwFEC;v(5X*h=wOH#UBs>5C?ZWjtYKzsXN)zvj0zc)aYA4m zV~q2RaZHyn>LO*_6&Tr!@i${+>oWHKP8ps()NU!#gSy492X$=`ETMJ_c^$|f6wyRL zG-QYl4AD>vL57Y7myom{h7JKSj3HtfVwf)ClgreMWddU{V{BlI#d-|sBwCdPOSrEE z#8(XQ14DeJhmZ?iqh{O|7&jQ>K4aX_Wpuhu8HIYPo#G5XBjUbNvL}5R2o_NLgf!^N z8x#>NAOabpMNjJ2KwZY4Hz}jP!05vmqZp%)E~E5q%9tZC5*Z_fF%oqdLozAj3xV-D zV;p9T&vhA}87bpWfpL*B%#3kSmvPrb8E*x~tDfX#AW|>dq_1=lffkCW(o5~xioK|3 z>oG<}ETQSzxGc)(CNR1%#$d+iqRTL3Q^s_GF@-S}Fvb*J#v3bTqzjBKjIp0FwrDZP zn?LSS#4iHkCx*Dn5I<=lNTe^wK?i?_p+i7CW(cV_^~z&i#JOB*M!DW}y&q7<1c5P@F=jEwSY5`3hm?T?##+YM!5C|G8JUle z=@vApfcTCfeq)I5bP<*Es2Mo|!^#-X8N;f}81sZOiuX~wrDz}O7XLofwMDUnrdz)J zi!z!Dj7E&nkue(SGX8o>86yNnBxA(&q3`_AMKt=GB9;q?B@D5VnXyEdG5a}Xd?PUa z!x*O-<3GBL?_W?xrogz#7!MfZrY@t7Q z5yTiR86!xSvFZ(F3=kN7fq`H8!4Q3Q5trXm#9RT9#LQU57)g2zsVvH?nR!;(D+bahUi2Q zjr9=H0hHbi>JcpvhBHDuB@EXi$j?erBUT8Ar3|r&B9>|)$oo8eD8V2Q4l%+RN;srN zAnUipQWRkn5Vr^-f&y;o0#28vfWiY+-jH0-!IE%5$_J&pf-_w3bxmg!hA|v>(K-U5 zHYJ2oLTz0_*K(9FP$2Z9gfW!RPnWR9mlEa)gk(xsO$o`m1o#>qsl`5lu!jxLLIOjwDZUs=-x$+fV@ylVS z43F7@POVN0GDMxoZ0C$J#&7e$$sW$KGzcA>ZywlWaP7(CC*l8Mhc_A*H=}WE?S_p; z4j<8=PW14Rbw@--hKz*oX26GMMl^^V5fT|S0zOqzcO-nfrCtci%$V(i%58Y$fhL{K zETX*2ufe;4DBzlLnGc_13kuIcZfKRqk}wqt7K!iPc<%w z2ZoLOWQ@1=MU-*Fn54Aj6p^&p6z&Ul&~I*bE=50|+KLxhm2NI+n0YocQ1a-><+~x{ z%i{j%&!02bCD@A*a=RS#RxYkN_vvmQ9e8fC0@$xtQ_U>5xK^2*)Ryc zXmhzC+Sbh3jq^|~4P0!gyS`{x=TgNDUtP}pT0#e$I(wkmS2J%Zmv}7pbqTw#gDC0Z zAe6V!9OnHSCu(m}6uH)1*3jsBW(`Ssz)7I=2hft;&zRaM&-m=frp9n55JVY83;8>0 z;CA7P52nTE{Da~HZ)G-@6raIh7I~Hsx&SHu2+x7 zB?gnq`)F6*4MjdF)SYX5)?^O8#2-P`>u*E;HjY-h@dm2;TNpK?3ok-~%K#RBOm!laDpCwxfcoZ?x8^{wX)p=hA;rL@ju=)}(1uYL>G{Y+FGbPYWdtPwr%P zmnHZOrq->dDCM)FwK$h`6m$mSZ}`%Y#e?^x8!Gm+h`-@y7gM05T;uCw4>l8@O`87N zV06UQ6eTG1RsPbFy;0aS$x&9-B>kwpykQ78iR?ave5IIcjsb!wZVqq5q{o?~B)RMm z6zO3a$u-3gL4F|lxG*}ocUyJ2CgpSTF&~s~D#%aJl84^$kuP7x@vPIY>Ghm!eGINa*1A=8no#K8HAR!Vu*7JhPvpEOrjp z;tOdFIm2j+KYgD0ha|5cE#40Kdn8rhnsKq91kH|{g~Q}8XzanBicB6!W95Bt&+2W8 zRQ6zl$x_mD5K10>wX-w?e?d6VQ1MM>f|L9sh~cjX|GIWHI%k&b&R*QY$SYpSgtaZew_JX z@q}A)TM)x7+lm)6Wtf^u@cc^+qc4^wUpnV);E1GUb*>dHY+No+VRppv1zA0d7jn0q80**YCL$ zppp}Z(hr!A!)4i;lrGq|P4z8L7OAW$K!EhKjQkcx>Fyih6Oy>?&M=$5SKBO~7>d7Z z-oa45a>7O@*))`X*gQY1!)r;DcY7#`?0Tc5p>y>F4`=zwQ2JqWyIez+TxMWGvJ*hCT6UaX?4}ncE2NjU9r#%QOQv<0+*#?tOOlS-0-lA!@zh`# z>8Ls-;&AfQzQ#Nj-X9&jzr@Qhv8FLeR%YRHY@WuQr@X!0hU8b0lOgLF?E+9{5L9

  • "class_imbalance": [], "null": ["features"], } -_REGRESSION_ARGS_DICT = {"label": ["features", "predictions"]} +_REGRESSION_ARGS_DICT = { + "label": ["features", "predictions"], + "outlier": ["features", "knn_graph"], + "near_duplicate": ["features", "knn_graph"], + "non_iid": ["features", "knn_graph"], + "null": ["features"], +} _MULTILABEL_ARGS_DICT = { "label": ["pred_probs"], + "outlier": ["features", "knn_graph"], + "near_duplicate": ["features", "knn_graph"], + "non_iid": ["features", "knn_graph"], + "null": ["features"], } @@ -655,9 +665,13 @@

    Source code for cleanlab.datalab.internal.issue_finder

    args_dict = { k: {k2: v2 for k2, v2 in v.items() if v2 is not None} for k, v in args_dict.items() - if v or k == "label" or keep_empty_argument(k) # Allow label issues to require no arguments + if v or keep_empty_argument(k) } + # Only keep issue types that have at least one argument + # or those that require no arguments. + args_dict = {k: v for k, v in args_dict.items() if (v or keep_empty_argument(k))} + return args_dict @@ -679,6 +693,10 @@

    Source code for cleanlab.datalab.internal.issue_finder

    if v or keep_empty_argument(k) # Allow label issues to require no arguments } + # Only keep issue types that have at least one argument + # or those that require no arguments. + args_dict = {k: v for k, v in args_dict.items() if (v or keep_empty_argument(k))} + return args_dict @@ -938,6 +956,7 @@

    Source code for cleanlab.datalab.internal.issue_finder

    if model_output is not None: # A basic trick to assign the model output to the correct argument + # E.g. Datalab accepts only `pred_probs`, but those are assigned to the `predictions` argument for regression-related issue_managers kwargs.update({model_output.argument: model_output.collect()}) # Determine which parameters are required for each issue type @@ -964,7 +983,11 @@

    Source code for cleanlab.datalab.internal.issue_finder

    warnings.warn("No labels were provided. " "The 'label' issue type will not be run.") issue_types_copy.pop("label") - outlier_check_needs_features = "outlier" in issue_types_copy and not self.datalab.has_labels + outlier_check_needs_features = ( + self.task == "classification" + and "outlier" in issue_types_copy + and not self.datalab.has_labels + ) if outlier_check_needs_features: no_features = features is None no_knn_graph = knn_graph is None diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html b/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html index 9e89bce07..f5b422638 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html @@ -726,14 +726,14 @@

    Source code for cleanlab.datalab.internal.issue_manager.noniid

    """ if features is None and pred_probs is not None: self._skip_storing_knn_graph_for_pred_probs = True + + if knn_graph is not None and not metric_changes: + return None features_to_use = self._determine_features(features, pred_probs) if self.metric is None: self.metric = "cosine" if features_to_use.shape[1] > 3 else "euclidean" - if knn_graph is not None and not metric_changes: - return None - knn = NearestNeighbors(n_neighbors=self.k, metric=self.metric) if self.metric != knn.metric: diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html b/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html index 47b917162..debe5ff0e 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html @@ -597,8 +597,20 @@

    Source code for cleanlab.datalab.internal.issue_manager_factory

    "data_valuation": DataValuationIssueManager, "null": NullIssueManager, }, - "regression": {"label": RegressionLabelIssueManager}, - "multilabel": {"label": MultilabelIssueManager}, + "regression": { + "label": RegressionLabelIssueManager, + "outlier": OutlierIssueManager, + "near_duplicate": NearDuplicateIssueManager, + "non_iid": NonIIDIssueManager, + "null": NullIssueManager, + }, + "multilabel": { + "label": MultilabelIssueManager, + "outlier": OutlierIssueManager, + "near_duplicate": NearDuplicateIssueManager, + "non_iid": NonIIDIssueManager, + "null": NullIssueManager, + }, } """Registry of issue managers that can be constructed from a string and used in the Datalab class. @@ -741,8 +753,20 @@

    Source code for cleanlab.datalab.internal.issue_manager_factory

    "non_iid", "class_imbalance", ], - "regression": ["label"], - "multilabel": ["label"], + "regression": [ + "null", + "label", + "outlier", + "near_duplicate", + "non_iid", + ], + "multilabel": [ + "null", + "label", + "outlier", + "near_duplicate", + "non_iid", + ], } if task not in default_issue_types_dict: task = "classification" diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index b9108c63a..0347ebe64 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 82e264190..bc4ecad4f 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 7093706d7..e939b997d 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index e881d022e..25369df12 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index d206dd99d..ab30df3c0 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index acd57bf48..845881f51 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 935593655..73fb0146e 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 1b012620e..2170b7fb8 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 1bfb268aa..96773272f 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index e5a868fb3..236ad0508 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index c3884c797..a8b57cfe7 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 8c851e7f1..49754aa89 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 6597dcf0b..526d0895d 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index a93fd7cd5..3aa099444 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index 42bd5152a..2ed48cdfe 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index ef1b06281..c3725526f 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 03c1e6e8c..6f8922b04 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 73, 75, 76, 83, 85, 86], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 75, 76, 83, 85, 86], "generate_noise_matrix_from_trac": [0, 1, 75, 76, 83, 85, 86], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 34, 38, 40, 41, 42, 43, 44, 45, 57, 80, 82, 94], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 87, 88, 89, 90, 91, 92, 93, 94], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 72, 73, 75, 80, 84, 89], "benchmark": [1, 31, 72, 73, 75, 76, 83, 85, 86], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89], "": [1, 2, 3, 8, 16, 30, 31, 35, 38, 41, 43, 45, 50, 51, 55, 57, 58, 59, 60, 62, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "core": [1, 4, 34, 36, 64, 66], "algorithm": [1, 2, 6, 8, 27, 32, 45, 50, 59, 68, 70, 72, 81, 83, 85, 94], "These": [1, 2, 3, 6, 8, 19, 31, 33, 35, 36, 37, 48, 50, 51, 54, 58, 59, 63, 67, 68, 70, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "introduc": [1, 74, 81, 83], "synthet": [1, 85, 86, 91], "nois": [1, 2, 3, 30, 36, 39, 45, 51, 75, 76, 80, 85], "label": [1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 18, 19, 20, 25, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 80, 84, 88, 89], "classif": [1, 3, 4, 5, 8, 12, 14, 28, 30, 34, 36, 39, 41, 42, 45, 50, 51, 52, 53, 54, 59, 60, 68, 69, 70, 71, 72, 73, 75, 76, 84, 85, 88, 89, 90, 91], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 33, 34, 35, 36, 39, 41, 45, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 84, 85, 89, 92], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 33, 48, 52, 55, 58, 67, 71, 78, 79, 82, 83, 87, 94], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 30, 31, 32, 33, 34, 35, 36, 41, 43, 45, 48, 50, 55, 58, 59, 60, 72, 81, 82], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 30, 31, 32, 34, 35, 36, 39, 45, 49, 50, 51, 52, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 30, 41, 45, 46, 59, 60, 62, 67, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94], "valid": [1, 2, 3, 4, 8, 10, 30, 36, 37, 39, 40, 41, 43, 45, 50, 52, 55, 58, 60, 62, 63, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "matric": [1, 3, 39, 81], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 30, 31, 35, 36, 39, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 32, 33, 34, 35, 36, 38, 40, 45, 48, 50, 52, 59, 61, 63, 66, 70, 72, 74, 75, 78, 79, 80, 82, 84, 85, 86, 90, 93], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "possibl": [1, 2, 3, 8, 30, 31, 35, 36, 38, 39, 41, 52, 53, 54, 55, 57, 58, 59, 60, 62, 68, 70, 71, 76, 81, 83, 85, 86, 87, 90, 91, 94], "noisi": [1, 2, 3, 8, 30, 32, 35, 36, 39, 45, 51, 52, 54, 60, 62, 63, 64, 66, 67, 73, 75, 76, 78, 79, 81, 84, 85], "given": [1, 2, 3, 8, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 30, 36, 38, 39, 42, 45, 46, 52, 55, 57, 58, 59, 60, 78, 87, 88], "trace": [1, 75, 76, 83, 85, 86], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 30, 31, 32, 34, 35, 36, 38, 39, 41, 43, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "more": [1, 2, 3, 4, 5, 8, 11, 14, 16, 22, 30, 31, 34, 35, 38, 41, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 72, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 91, 94], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 83, 85, 86, 87, 91, 92, 93, 94], "noise_matrix": [1, 2, 3, 8, 39, 45, 75, 76, 83, 85, 86], "py": [1, 3, 28, 31, 32, 36, 39, 41, 74, 75, 76, 79, 81, 83, 85, 86, 93], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 34, 36, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 75, 83, 85], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 74, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88, 90, 91, 93], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71], "prior": [1, 2, 3, 30, 36, 39, 41], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 30, 34, 36, 39, 42, 43, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "p": [1, 2, 3, 8, 30, 36, 38, 39, 45, 50, 58, 59, 60, 64, 78, 79, 83, 85, 94], "true_label": [1, 2, 3, 30, 39, 45, 83, 85], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 75, 76, 81, 83, 85, 86, 87, 88, 91, 92, 94], "check": [1, 2, 4, 7, 8, 10, 14, 23, 31, 34, 35, 40, 46, 49, 55, 58, 62, 72, 74, 75, 76, 81, 82, 83, 85, 86, 90, 92, 93], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 32, 35, 39, 41, 43, 57, 62, 76, 79, 81, 83, 85, 86, 87, 88, 90, 93], "achiev": [1, 2, 31, 32, 35, 62, 81, 85, 94], "better": [1, 4, 36, 50, 52, 60, 62, 63, 72, 74, 76, 78, 79, 81, 83, 86, 87, 88, 93, 94], "than": [1, 2, 3, 5, 8, 22, 24, 27, 30, 36, 45, 49, 50, 55, 57, 59, 60, 62, 66, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 94], "random": [1, 2, 3, 5, 8, 16, 27, 34, 41, 50, 60, 62, 74, 75, 76, 78, 81, 82, 83, 85, 86, 88, 92], "perform": [1, 2, 5, 8, 22, 24, 27, 31, 35, 41, 58, 62, 72, 75, 81, 83, 85, 86, 89, 90, 92, 93], "averag": [1, 3, 8, 20, 24, 30, 31, 35, 41, 43, 50, 51, 58, 59, 60, 81, 85, 88], "amount": [1, 3, 82], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 79, 82, 92, 93], "np": [1, 2, 3, 4, 5, 14, 16, 27, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 94], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 30, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "shape": [1, 2, 3, 4, 14, 16, 30, 32, 34, 36, 38, 39, 40, 41, 43, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 80, 81, 83, 86, 87, 88, 91, 94], "condit": [1, 2, 3, 39, 44, 45, 60, 82, 83, 94], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 91, 94], "k_": [1, 2, 3, 39, 45], "k_y": [1, 2, 3, 39, 45], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93], "fraction": [1, 2, 3, 8, 18, 32, 39, 45, 50, 62, 78, 81], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93, 94], "everi": [1, 2, 3, 4, 14, 31, 35, 36, 39, 44, 45, 52, 60, 62, 63, 74, 75, 76, 78, 79, 81, 82, 85, 87, 89, 91, 92, 94], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94], "other": [1, 2, 3, 4, 8, 14, 20, 23, 30, 31, 33, 34, 35, 36, 39, 42, 45, 46, 48, 50, 51, 54, 58, 59, 60, 62, 67, 74, 75, 76, 78, 79, 81, 82, 83, 86, 88, 91, 94], "assum": [1, 2, 3, 10, 36, 39, 44, 45, 60, 64, 67, 81, 86, 88, 91, 94], "column": [1, 2, 3, 4, 8, 10, 11, 26, 30, 34, 36, 39, 41, 42, 44, 45, 50, 51, 52, 54, 55, 58, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "sum": [1, 2, 3, 22, 27, 30, 39, 41, 45, 51, 52, 54, 57, 62, 75, 76, 81, 82, 83, 85, 86, 91, 94], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 80, 81, 89], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 18, 20, 21, 22, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 86, 87, 91, 92, 94], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 41, 44, 45, 50, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 34, 35, 36, 45, 50, 51, 52, 54, 55, 71, 74, 76, 78, 79, 80, 81, 82, 83, 90, 93, 94], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 60, 62, 63, 68, 70, 71, 72, 74, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 91, 94], "perfect": [1, 2, 30, 62, 83, 87], "exactli": [1, 3, 8, 30, 31, 35, 36, 53, 59, 75, 76, 78, 79, 82, 83], "yield": [1, 31, 35], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 48, 50, 51, 54, 57, 59, 60, 62, 63, 66, 70, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "below": [1, 3, 4, 8, 30, 31, 34, 35, 36, 38, 41, 50, 51, 52, 57, 58, 66, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "we": [1, 2, 3, 4, 5, 8, 11, 20, 31, 34, 35, 36, 41, 45, 46, 50, 57, 58, 60, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "loop": [1, 3, 39, 45, 82, 87], "implement": [1, 2, 3, 4, 7, 12, 20, 31, 32, 34, 35, 39, 45, 62, 72, 74, 75, 78, 88, 89, 92], "what": [1, 4, 7, 8, 14, 28, 30, 32, 34, 36, 50, 51, 55, 57, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "doe": [1, 2, 3, 8, 34, 35, 36, 41, 46, 57, 58, 62, 64, 66, 70, 74, 75, 76, 78, 79, 82, 86, 90, 91, 93], "do": [1, 2, 4, 8, 30, 34, 35, 45, 46, 59, 60, 64, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "fast": 1, "explain": [1, 8], "python": [1, 2, 35, 49, 62, 74, 75, 76, 79, 80, 88, 93], "pseudocod": [1, 89], "happen": [1, 8, 36, 52, 79, 85, 91], "n": [1, 2, 3, 4, 5, 30, 31, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 74, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "without": [1, 2, 4, 8, 10, 12, 18, 31, 35, 54, 62, 72, 74, 79, 83, 87, 88, 93], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 40, 43, 44, 45, 49, 50, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "distinct": [1, 16, 45, 94], "natur": [1, 8, 85, 88], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 91, 94], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "count_joint": 1, "len": [1, 2, 3, 5, 30, 34, 39, 44, 45, 46, 59, 60, 62, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "y": [1, 2, 3, 4, 6, 16, 26, 27, 35, 39, 41, 45, 46, 49, 58, 62, 63, 74, 75, 76, 78, 81, 83, 85, 86, 88, 90, 93], "round": [1, 34, 36, 45, 62, 81, 90], "astyp": [1, 85], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 54, 58, 59, 60, 62, 64, 66, 67, 68, 71, 74, 75, 82, 87, 88], "rang": [1, 3, 4, 5, 10, 39, 41, 43, 45, 58, 62, 63, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 94], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 30, 34, 36, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94], "pragma": 1, "cover": [1, 3, 73, 80], "choic": [1, 6, 36, 43, 81, 82, 86, 88], "replac": [1, 44, 49, 60, 75, 76, 79, 80, 81, 82, 85, 88, 92, 93], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 60, 74, 75, 76], "05": [1, 8, 22, 26, 44, 58, 62, 68, 70, 78, 80, 81, 83, 87, 91], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 75, 76, 83, 85, 86], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 81, 82, 83, 85, 86, 91], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 33, 35, 41, 62, 74, 75, 76, 78, 80, 83, 85, 86, 92], "max_it": [1, 74, 79, 88, 93], "10000": [1, 34, 80, 81], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 46, 49, 50, 52, 58, 59, 60, 62, 64, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "diagon": [1, 3, 4, 36, 39, 45], "equal": [1, 3, 8, 10, 52, 57, 67, 89], "creat": [1, 2, 7, 14, 16, 31, 34, 35, 36, 45, 62, 72, 74, 78, 79, 81, 82, 91, 93, 94], "impli": [1, 8, 30, 51, 58], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 43, 44, 45, 50, 51, 52, 54, 57, 58, 62, 66, 70, 74, 75, 76, 83, 85, 86], "entri": [1, 3, 4, 30, 31, 35, 36, 38, 42, 43, 45, 50, 51, 52, 55, 78, 79, 83, 86, 87, 92, 93], "maximum": [1, 8, 59, 67, 71, 91], "minimum": [1, 6, 8, 18, 36, 38, 52, 57, 70], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 31, 35, 36, 57, 62, 75, 81, 83, 85, 87, 88], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 81, 82, 91], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 49, 50, 51, 52, 55, 57, 58, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 30, 31, 34, 35, 36, 39, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "necessari": [1, 2, 3, 5, 8, 10, 44, 75], "In": [1, 2, 3, 8, 30, 31, 34, 35, 50, 51, 53, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 31, 35, 45, 50, 54, 58, 62, 67, 71, 72, 74, 76, 79, 81, 85, 86, 88, 90, 92, 93], "satisfi": [1, 3, 30], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 29, 31, 32, 33, 34, 35, 36, 39, 45, 48, 49, 52, 59, 60, 62, 64, 72, 73, 74, 80, 81, 83, 89], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 31, 34, 35, 36, 41, 46, 49, 50, 51, 52, 54, 57, 58, 59, 60, 62, 66, 67, 68, 70, 76, 79, 80, 81, 82, 86, 87, 90, 93, 94], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 31, 35, 36, 39, 41, 45, 49, 52, 54, 55, 57, 59, 60, 62, 63, 75, 76, 78, 79, 82, 85, 89, 90, 91, 92, 93, 94], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "rate": [1, 2, 3, 8, 32, 45, 74, 94], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 41, 43, 45, 49, 50, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 75, 76, 78, 79, 81, 85, 86, 88, 89, 90, 91, 92, 93, 94], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 31, 34, 35, 36, 41, 45, 50, 55, 57, 58, 59, 60, 62, 63, 67, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "you": [1, 2, 3, 4, 5, 8, 12, 14, 30, 31, 33, 34, 35, 36, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "high": [1, 2, 14, 34, 36, 45, 57, 60, 62, 75, 76, 80, 82, 83, 87, 90, 91, 92, 93, 94], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 50, 51, 55, 57, 58, 59, 60, 62, 64, 67, 71, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94], "imposs": [1, 8, 83], "also": [1, 2, 3, 4, 5, 8, 20, 30, 31, 34, 35, 36, 41, 44, 49, 50, 59, 62, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "low": [1, 8, 45, 50, 72, 75, 76, 79, 83, 87, 91], "zero": [1, 3, 4, 31, 35, 38, 45, 46, 75, 82, 86, 87, 88], "forc": [1, 2, 3, 4, 35, 75, 94], "instead": [1, 2, 3, 8, 11, 14, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 52, 54, 58, 59, 60, 62, 63, 66, 68, 70, 73, 74, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 93, 94], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 30, 31, 34, 35, 36, 38, 39, 44, 45, 46, 49, 50, 59, 60, 62, 64, 66, 70, 71, 72, 74, 75, 76, 79, 82, 85, 86, 87, 88, 89, 90, 91, 93, 94], "guarante": [1, 3, 4, 13, 19, 25, 31, 33, 35, 37, 39, 48, 73], "produc": [1, 2, 4, 8, 14, 41, 50, 60, 62, 64, 66, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "higher": [1, 4, 8, 30, 36, 38, 39, 41, 43, 50, 51, 62, 76, 79, 81, 87], "opposit": [1, 94], "occur": [1, 3, 8, 30, 44, 57, 75, 76, 81, 82, 88], "small": [1, 3, 8, 30, 34, 41, 45, 51, 58, 79, 80, 82, 86, 88, 93], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 34, 35, 41, 43, 44, 46, 49, 54, 57, 62, 63, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "max": [1, 36, 59, 60, 76, 82, 88], "tri": [1, 31, 35, 89], "befor": [1, 2, 3, 31, 35, 43, 45, 59, 62, 67, 79, 81, 83, 85, 88, 90, 92, 93], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 30, 31, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 86, 90, 91, 92], "left": [1, 2, 36, 38, 43, 45, 52, 55, 58, 75, 76, 86, 87, 88, 91], "stochast": 1, "exceed": 1, "m": [1, 4, 31, 35, 40, 41, 50, 55, 57, 58, 59, 75, 76, 80, 85, 86, 87, 94], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 31, 35, 49, 81, 83, 91], "length": [1, 4, 10, 22, 23, 30, 32, 36, 45, 52, 55, 59, 60, 62, 64, 67, 71, 74, 86, 88, 91, 92, 94], "must": [1, 2, 3, 4, 14, 30, 31, 32, 33, 35, 36, 39, 41, 42, 45, 48, 49, 50, 51, 52, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 85, 89, 91, 94], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 30, 34, 36, 42, 45, 46, 50, 52, 58, 64, 66, 67, 68, 70, 71, 74, 81, 85, 86, 87, 91, 92, 93, 94], "ball": [1, 80], "bin": [1, 3, 52, 75, 76, 88], "ensur": [1, 2, 8, 31, 35, 45, 46, 57, 60, 62, 74, 75, 76, 79, 81, 82, 83, 88, 89, 90, 92, 93], "most": [1, 3, 4, 5, 8, 14, 30, 34, 36, 41, 49, 50, 51, 52, 55, 57, 58, 59, 60, 63, 66, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93], "least": [1, 8, 16, 27, 30, 34, 50, 51, 57, 60, 70, 76, 81, 82, 85, 88, 91], "int_arrai": [1, 45], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "model": [2, 3, 4, 8, 14, 16, 26, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 44, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89, 91, 94], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 29, 30, 31, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 68, 70, 71, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "regular": [2, 3, 34, 49], "multi": [2, 3, 8, 30, 31, 34, 35, 36, 40, 41, 42, 45, 46, 51, 52, 53, 54, 59, 60, 72, 81, 83, 84], "task": [2, 4, 5, 8, 10, 12, 13, 14, 26, 28, 30, 34, 39, 41, 42, 43, 45, 50, 52, 60, 62, 72, 74, 79, 80, 81, 83, 86, 88, 91, 93, 94], "cleanlearn": [2, 3, 8, 21, 26, 31, 45, 49, 61, 62, 63, 72, 73, 90, 92, 93], "wrap": [2, 31, 35, 49, 59, 62, 72, 75, 76, 78, 79, 83, 90, 92, 93], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49, 58, 59, 62, 67, 74, 75, 76, 78, 79, 82, 83, 87, 92, 93], "sklearn": [2, 3, 4, 6, 8, 16, 27, 30, 35, 41, 45, 49, 59, 62, 63, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93], "classifi": [2, 3, 35, 41, 45, 50, 53, 59, 60, 72, 73, 74, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 94], "adher": [2, 35, 62], "estim": [2, 3, 4, 7, 11, 20, 30, 34, 35, 36, 39, 45, 50, 51, 52, 57, 59, 62, 64, 66, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 94], "api": [2, 3, 12, 49, 55, 58, 59, 62, 73, 81, 90], "defin": [2, 3, 4, 5, 8, 12, 20, 30, 31, 32, 34, 35, 36, 60, 62, 64, 74, 75, 76, 78, 81, 85, 88, 94], "four": [2, 8, 80, 83, 94], "clf": [2, 3, 4, 41, 62, 72, 78, 81, 83, 86, 92], "fit": [2, 3, 4, 6, 8, 16, 33, 35, 48, 49, 59, 61, 62, 72, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94], "sample_weight": [2, 35, 62, 83], "predict_proba": [2, 4, 30, 33, 35, 41, 48, 49, 74, 75, 76, 78, 79, 81, 83, 85, 86, 88, 92], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 30, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 88, 90, 91, 93, 94], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 36, 38, 41, 43, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 88, 90, 92, 93], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 41, 42, 45, 48, 49, 50, 51, 52, 53, 57, 59, 60, 61, 62, 67, 68, 69, 70, 71, 73, 77, 82, 84, 89, 93], "e": [2, 3, 4, 8, 10, 20, 30, 31, 34, 35, 36, 39, 41, 42, 45, 46, 50, 51, 52, 53, 55, 58, 59, 60, 62, 64, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 41, 45, 59, 62, 72, 75, 76, 78, 79, 81, 83, 85, 86, 90, 92], "element": [2, 3, 4, 30, 36, 38, 45, 50, 52, 60, 67, 68, 70, 74, 79, 81, 93, 94], "first": [2, 4, 8, 15, 22, 23, 30, 34, 41, 45, 50, 51, 55, 58, 60, 62, 74, 75, 78, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "index": [2, 8, 22, 30, 36, 44, 45, 46, 51, 60, 62, 67, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 30, 31, 34, 35, 36, 38, 39, 41, 43, 44, 45, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 30, 31, 33, 34, 35, 36, 37, 41, 45, 46, 48, 50, 55, 57, 59, 62, 74, 75, 76, 78, 79, 82, 83, 85, 86, 88, 89, 92], "sampl": [2, 3, 4, 6, 8, 14, 18, 36, 38, 41, 52, 55, 58, 60, 62, 63, 72, 73, 80, 81, 83, 84, 86, 87, 90, 91, 93, 94], "size": [2, 8, 27, 31, 34, 35, 36, 41, 52, 57, 58, 62, 64, 66, 78, 81, 82, 83, 85, 86, 87, 89, 91, 93], "here": [2, 4, 5, 8, 12, 34, 36, 39, 49, 50, 51, 52, 54, 55, 58, 59, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "re": [2, 4, 31, 35, 44, 50, 62, 72, 74, 75, 78, 79, 81, 90, 91, 92, 93, 94], "weight": [2, 8, 31, 32, 35, 41, 50, 57, 60, 62, 74, 75, 76, 79, 93], "loss": [2, 32, 49, 60, 62, 82], "while": [2, 3, 8, 31, 34, 35, 40, 41, 45, 62, 72, 81, 82, 83, 85, 86, 90], "train": [2, 3, 4, 8, 14, 16, 31, 32, 33, 35, 41, 45, 49, 50, 55, 58, 59, 62, 63, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 94], "support": [2, 3, 4, 10, 34, 41, 45, 46, 59, 60, 70, 72, 73, 74, 75, 76, 81, 82], "your": [2, 3, 4, 7, 8, 14, 30, 31, 33, 34, 35, 36, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 66, 67, 73, 74, 78, 80, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "recommend": [2, 4, 8, 11, 14, 34, 36, 50, 75, 76, 81, 82, 89, 90], "furthermor": 2, "correctli": [2, 3, 8, 30, 31, 35, 36, 39, 46, 51, 52, 57, 58, 62, 64, 79, 81, 86, 87, 90, 91, 93], "clonabl": [2, 62], "via": [2, 4, 8, 11, 14, 16, 20, 30, 32, 34, 35, 41, 45, 50, 55, 58, 59, 60, 62, 63, 66, 70, 74, 75, 76, 78, 79, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 57, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 94], "clone": [2, 62, 86], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 54, 58, 62, 68, 73, 74, 75, 81, 83, 85, 86, 87, 88, 94], "multipl": [2, 3, 4, 10, 11, 30, 36, 44, 50, 51, 52, 54, 57, 58, 62, 72, 75, 76, 81, 82, 84, 86, 87, 90], "g": [2, 3, 4, 8, 10, 20, 30, 31, 35, 36, 42, 45, 52, 53, 55, 58, 59, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "manual": [2, 62, 74, 81, 88, 89, 90, 92, 93, 94], "pytorch": [2, 31, 32, 35, 62, 72, 74, 81, 84, 86, 91], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 45, 49, 59, 62, 74, 75, 76, 79, 81, 83, 86, 88, 89, 91, 93, 94], "__init__": [2, 32, 62, 82], "independ": [2, 3, 8, 51, 62, 79, 89, 94], "compat": [2, 31, 34, 35, 49, 62, 63, 66, 70, 72, 81, 89, 90, 92, 93], "neural": [2, 32, 49, 59, 62, 74, 81, 82, 86, 88], "network": [2, 31, 32, 35, 49, 59, 62, 74, 79, 81, 82, 86, 88, 93], "typic": [2, 31, 35, 59, 62, 74, 76, 78, 79, 82, 88, 89, 92, 93], "initi": [2, 3, 11, 16, 31, 35, 50, 62, 79, 81, 92], "insid": [2, 35, 62, 81, 83], "There": [2, 3, 72, 83, 85], "two": [2, 3, 8, 16, 22, 30, 31, 34, 35, 42, 45, 55, 57, 58, 73, 75, 76, 78, 79, 81, 82, 83, 86, 90, 91, 93, 94], "new": [2, 5, 12, 20, 31, 34, 35, 40, 44, 45, 50, 62, 74, 75, 79, 80, 81, 88, 89, 93, 94], "notion": 2, "confid": [2, 3, 8, 20, 30, 34, 36, 39, 41, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 66, 70, 72, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 94], "packag": [2, 4, 5, 7, 8, 9, 13, 29, 33, 36, 37, 45, 48, 55, 58, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "prune": [2, 3, 36, 52, 62, 73, 87], "everyth": [2, 58, 83], "els": [2, 58, 75, 80, 81, 82, 85, 86, 87], "mathemat": [2, 3, 8, 39], "keep": [2, 11, 12, 45, 72, 75, 80, 81, 91], "belong": [2, 3, 8, 30, 36, 38, 39, 51, 52, 53, 54, 59, 60, 64, 68, 70, 71, 76, 82, 83, 86, 88, 91, 94], "2": [2, 3, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 63, 67, 68, 70, 71, 80, 81, 89], "error": [2, 3, 4, 8, 31, 35, 36, 38, 39, 45, 51, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 70, 73, 74, 75, 76, 78, 79, 80, 84, 92], "erron": [2, 3, 30, 36, 39, 45, 51, 52, 60, 62, 63, 64, 88, 90], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 34, 41, 43, 44, 50, 54, 57, 62, 63, 68, 70, 71, 72, 78, 79, 81, 86, 87, 88, 90, 91, 92, 93, 94], "linear_model": [2, 4, 30, 45, 62, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logisticregress": [2, 3, 4, 30, 45, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logreg": 2, "cl": [2, 12, 26, 62, 72, 81, 83, 90, 92, 93], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 31, 34, 35, 36, 40, 41, 45, 49, 50, 52, 59, 60, 62, 68, 72, 74, 75, 76, 79, 80, 81, 83, 85, 87, 88, 90, 93], "x_train": [2, 75, 76, 83, 85, 86, 90, 92], "labels_maybe_with_error": 2, "had": [2, 3, 62, 87], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 33, 34, 35, 36, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 84, 85, 89, 90, 93], "pred": [2, 36, 45, 89, 90, 92, 93], "x_test": [2, 75, 76, 83, 86, 90, 92], "might": [2, 50, 62, 67, 75, 76, 81, 82, 87, 92, 93], "case": [2, 3, 11, 30, 41, 50, 62, 74, 75, 76, 78, 80, 81, 82, 83, 88, 90, 92, 93, 94], "standard": [2, 3, 4, 26, 30, 36, 49, 51, 52, 54, 60, 62, 72, 75, 76, 78, 80, 83, 87, 92], "adapt": [2, 31, 33, 45, 48, 62, 88], "skorch": [2, 62, 72, 81], "kera": [2, 48, 55, 58, 62, 72, 81, 87], "scikera": [2, 49, 62, 81], "open": [2, 34, 80, 87, 94], "doesn": [2, 62, 72], "t": [2, 3, 8, 15, 23, 31, 32, 34, 35, 36, 41, 43, 44, 54, 59, 60, 62, 68, 70, 71, 72, 75, 76, 78, 79, 80, 82, 83, 86, 87, 94], "alreadi": [2, 4, 8, 14, 31, 34, 35, 39, 49, 50, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 92, 93], "exist": [2, 4, 8, 10, 16, 31, 34, 35, 44, 49, 55, 57, 59, 62, 72, 73, 75, 76, 79, 85, 93, 94], "made": [2, 4, 14, 31, 35, 62, 79, 81, 82, 85, 87, 89, 90, 92, 93], "easi": [2, 39, 62, 75, 76, 80, 81, 83, 86], "inherit": [2, 5, 32, 62], "baseestim": [2, 35, 62], "yourmodel": [2, 62], "def": [2, 5, 12, 31, 35, 49, 62, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 31, 32, 34, 35, 36, 41, 59, 60, 62, 75, 79, 80, 82, 86, 91, 92, 93, 94], "refer": [2, 8, 14, 31, 35, 51, 52, 54, 55, 57, 58, 62, 66, 67, 75, 76, 78, 79, 81, 82, 83, 86, 89, 90], "origin": [2, 4, 8, 35, 36, 44, 45, 49, 51, 52, 55, 58, 59, 62, 63, 66, 68, 70, 75, 78, 79, 81, 82, 83, 87, 88, 90, 92, 93, 94], "total": [2, 3, 30, 34, 45, 51, 71, 81, 82, 91], "state": [2, 3, 4, 31, 32, 35, 40, 62, 83, 86, 87, 94], "art": [2, 32, 83, 86], "northcutt": [2, 3, 30, 59, 60], "et": [2, 3, 30, 32, 59, 60], "al": [2, 3, 30, 32, 59, 60], "2021": [2, 3, 30, 59, 60], "weak": [2, 58], "supervis": [2, 8, 75, 76, 81, 85], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 33, 34, 35, 36, 40, 44, 45, 48, 55, 58, 59, 60, 62, 64, 68, 70, 73, 75, 84, 89], "uncertainti": [2, 8, 38, 59, 62, 81, 88, 90], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 31, 35, 36, 39, 41, 50, 57, 58, 62, 72, 75, 76, 79, 81, 82, 83, 86, 89, 93], "work": [2, 3, 4, 5, 8, 10, 26, 30, 31, 34, 35, 36, 39, 44, 45, 46, 49, 50, 60, 62, 72, 73, 75, 76, 80, 88, 90, 93], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 35, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 94], "deep": [2, 33, 35, 48, 49, 62, 79], "see": [2, 3, 4, 11, 30, 31, 34, 35, 36, 41, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "subfield": 2, "theori": [2, 83], "machin": [2, 4, 12, 14, 28, 33, 48, 62, 75, 76, 80, 85], "across": [2, 3, 4, 5, 8, 11, 20, 30, 34, 41, 51, 58, 59, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 89], "varieti": [2, 81, 92, 93], "like": [2, 3, 4, 5, 8, 12, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 51, 54, 55, 57, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "pu": [2, 45], "input": [2, 3, 4, 8, 14, 22, 30, 31, 34, 35, 39, 41, 44, 45, 46, 49, 58, 62, 72, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "discret": [2, 36, 39, 45, 59, 60, 64, 66, 67], "vector": [2, 3, 4, 8, 14, 36, 39, 41, 42, 45, 59, 60, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 93, 94], "would": [2, 3, 4, 31, 34, 35, 36, 45, 52, 62, 72, 75, 81, 82, 83, 88, 90, 93, 94], "obtain": [2, 4, 6, 8, 14, 36, 50, 52, 55, 58, 60, 63, 74, 76, 79, 81, 85, 87, 89, 91, 94], "been": [2, 30, 36, 39, 44, 45, 50, 51, 55, 57, 59, 60, 62, 74, 75, 78, 81, 83, 85, 86, 87, 88, 91, 94], "dure": [2, 8, 14, 59, 62, 74, 78, 79, 81, 83, 86, 89, 90, 92, 93, 94], "denot": [2, 3, 39, 41, 45, 52, 59, 60, 70], "tild": 2, "paper": [2, 8, 50, 59, 68, 70, 80, 83, 85, 88, 90, 94], "cv_n_fold": [2, 3, 62, 93], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 35, 36, 38, 40, 41, 45, 50, 51, 54, 55, 58, 62, 63, 70, 75, 79, 80, 81, 86, 87, 88, 89, 91, 93, 94], "converge_latent_estim": [2, 3], "pulearn": [2, 45], "find_label_issues_kwarg": [2, 8, 62, 73, 81, 83], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 52, 68, 81], "clean": [2, 57, 60, 62, 63, 72, 75, 76, 80, 90, 92, 93], "even": [2, 3, 30, 34, 38, 39, 45, 62, 74, 81, 83, 85, 86, 87], "messi": [2, 62, 83], "ridden": [2, 62], "autom": [2, 62, 72, 76, 80, 81], "robust": [2, 39, 62, 76, 81], "prone": [2, 62], "out": [2, 3, 4, 8, 14, 24, 31, 35, 36, 41, 49, 52, 53, 55, 58, 59, 60, 62, 63, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94], "current": [2, 3, 5, 8, 11, 12, 20, 31, 35, 36, 41, 50, 57, 62, 75, 76, 81, 85, 87], "intend": [2, 11, 12, 13, 14, 28, 37, 50, 66, 70, 74, 75, 76, 79, 83], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 54, 57, 58, 59, 60, 62, 64, 66, 67, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 87, 89, 92, 93, 94], "follow": [2, 3, 8, 12, 26, 30, 31, 34, 35, 41, 43, 50, 51, 55, 57, 58, 59, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "experiment": [2, 31, 32, 34, 35, 52, 73, 81], "wrapper": [2, 4, 49, 74, 90, 92, 93], "around": [2, 4, 57, 75, 76, 87, 88, 94], "fasttext": [2, 48], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 59, 62, 78, 79, 80, 81, 91, 92, 93, 94], "along": [2, 41, 52, 70, 75, 76, 81, 82, 88], "dimens": [2, 45, 64, 67, 81, 82, 88, 91], "select": [2, 7, 8, 22, 50, 60, 81, 82, 85, 88], "split": [2, 3, 4, 8, 10, 34, 41, 44, 45, 62, 74, 75, 76, 78, 79, 80, 82, 83, 86, 89, 92, 94], "cross": [2, 3, 8, 30, 36, 39, 40, 41, 52, 55, 58, 60, 62, 63, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "fold": [2, 3, 30, 36, 39, 62, 74, 78, 80, 81, 87, 91, 92], "By": [2, 4, 30, 51, 52, 62, 75, 81, 91], "need": [2, 3, 8, 30, 31, 34, 35, 36, 51, 52, 54, 59, 62, 72, 74, 75, 76, 79, 81, 83, 85, 86, 87, 91, 93], "holdout": [2, 3, 62], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 45, 50, 51, 52, 54, 57, 58, 59, 60, 62, 63, 64, 66, 72, 73, 75, 76, 80, 83, 84, 87, 88, 90, 91, 93], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 29, 31, 33, 34, 35, 36, 48, 50, 59, 62, 73, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 91, 92, 93, 94], "numer": [2, 3, 4, 8, 11, 20, 26, 41, 57, 59, 62, 67, 72, 73, 74, 75, 76, 77, 79, 82, 83, 85, 86, 88, 90, 92, 93], "consist": [2, 3, 31, 35, 45, 50, 91, 94], "latent": [2, 3, 39], "thei": [2, 3, 4, 13, 19, 22, 25, 31, 32, 33, 35, 36, 37, 43, 45, 49, 52, 57, 60, 62, 63, 66, 70, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93, 94], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 39, 45, 51, 62, 76, 79], "close": [2, 3, 8, 34, 39, 59, 74, 75, 76, 78, 79, 81, 82, 83, 87], "form": [2, 3, 8, 31, 32, 35, 39, 44, 45, 60, 62, 81], "equival": [2, 3, 31, 35, 39, 59, 88], "iter": [2, 3, 30, 31, 35, 36, 45, 51, 52, 62, 81, 85, 91], "enforc": [2, 31, 35, 45], "perfectli": [2, 30, 51, 83], "certain": [2, 3, 4, 31, 35, 49, 58, 62, 75, 76, 80, 87, 88], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 40, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 70, 75, 76, 81, 82, 94], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 31, 34, 35, 36, 38, 41, 44, 49, 50, 52, 59, 60, 62, 68, 70, 75], "filter": [2, 3, 8, 34, 44, 51, 53, 54, 56, 58, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81, 82, 87, 90, 91, 92, 93, 94], "find_label_issu": [2, 3, 8, 26, 34, 36, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 81, 87, 90, 91, 92, 93, 94], "particularli": [2, 72, 85, 88], "filter_bi": [2, 3, 34, 36, 52, 73, 81], "frac_nois": [2, 36, 52, 68, 81], "min_examples_per_class": [2, 36, 52, 76, 81, 83], "impact": [2, 8, 75, 76, 82], "ml": [2, 4, 8, 13, 62, 72, 75, 76, 78, 79, 82, 85, 86, 92, 93], "accuraci": [2, 32, 60, 74, 81, 82, 83, 85, 88, 90, 91, 92, 93], "n_job": [2, 34, 36, 52, 64, 66, 68, 81, 88, 91], "disabl": [2, 31, 35, 36, 88], "process": [2, 3, 5, 11, 14, 31, 34, 35, 36, 44, 50, 52, 58, 64, 66, 68, 74, 75, 81, 85, 89, 93], "caus": [2, 36, 41, 75, 76, 81], "rank": [2, 3, 8, 30, 34, 36, 41, 51, 52, 53, 55, 56, 58, 59, 61, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 87, 88, 90, 91, 92, 93, 94], "get_label_quality_scor": [2, 34, 36, 37, 41, 50, 52, 53, 54, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 70, 73, 83, 87, 90, 91, 94], "adjust_pred_prob": [2, 8, 54, 59, 60, 83], "control": [2, 4, 7, 8, 14, 34, 36, 50, 58, 59, 62, 68, 70, 75, 76, 80, 81], "how": [2, 3, 4, 8, 11, 12, 14, 20, 30, 31, 32, 34, 35, 39, 45, 50, 51, 54, 55, 57, 59, 60, 62, 66, 70, 72, 75, 76, 78, 79, 80, 82, 87, 88, 89, 90, 91, 92, 93], "much": [2, 8, 30, 34, 36, 62, 81, 83, 85, 88], "output": [2, 3, 4, 8, 14, 31, 32, 35, 39, 45, 49, 50, 51, 55, 57, 58, 59, 62, 66, 67, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 87, 88, 89, 90, 93], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 45, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "suppress": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67, 91, 94], "statement": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67], "big": [2, 34, 52, 58, 62, 83], "limit": [2, 4, 14, 34, 52, 87, 91, 94], "memori": [2, 31, 34, 35, 52, 58, 64, 66, 75, 91], "label_issues_batch": [2, 33, 52, 81], "find_label_issues_batch": [2, 33, 34, 52, 81], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 45, 46, 50, 51, 52, 54, 55, 58, 59, 60, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 92, 93], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 34, 57, 58, 59, 60, 66, 70, 75, 87, 88, 91, 94], "inverse_noise_matrix": [2, 3, 8, 39, 45, 73, 83], "label_issu": [2, 34, 36, 52, 55, 62, 64, 73, 74, 79, 81, 82, 83, 86, 90, 92, 93], "clf_kwarg": [2, 3, 8, 62], "clf_final_kwarg": [2, 62], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 30, 34, 36, 38, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 66, 70, 72, 74, 78, 79, 82, 83, 85, 87, 89, 90], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 34, 35, 36, 38, 43, 45, 52, 54, 55, 58, 60, 62, 63, 64, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 90, 91, 92, 93, 94], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 30, 34, 36, 52, 55, 58, 60, 62, 63, 64, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 90, 91, 92, 93, 94], "final": [2, 8, 62, 78, 87, 89, 90, 92], "remain": [2, 62, 73, 82, 86, 90, 92, 93, 94], "datasetlik": [2, 45, 62], "beyond": [2, 4, 5, 7, 9, 29, 72, 91], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 40, 49, 50, 51, 62, 70, 74, 75, 76, 78, 79, 81, 83, 85, 90, 92, 93, 94], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 40, 45, 46, 49, 50, 51, 62, 67, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 93, 94], "scipi": [2, 4, 11, 45], "spars": [2, 4, 8, 11, 14, 16, 27, 45, 46, 78], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 31, 32, 35, 74, 79, 80, 82, 88, 93], "util": [2, 4, 8, 14, 28, 31, 32, 35, 37, 50, 55, 58, 62, 72, 73, 74, 75, 76, 81, 82, 83, 88], "tensorflow": [2, 45, 49, 72, 74, 81], "object": [2, 4, 8, 10, 11, 14, 28, 31, 32, 34, 35, 41, 45, 46, 49, 52, 55, 56, 57, 58, 59, 62, 70, 72, 74, 76, 78, 82, 83, 84, 86, 90, 93], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 66, 67, 68, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 86, 87, 90, 93, 94], "index_list": 2, "subset": [2, 3, 4, 14, 30, 34, 36, 45, 60, 67, 71, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 92, 93, 94], "wa": [2, 3, 10, 12, 34, 45, 50, 51, 57, 59, 71, 74, 75, 76, 78, 79, 81, 83, 86, 87, 89, 91, 92, 93, 94], "abl": [2, 3, 8, 62, 74, 81, 83, 85, 86], "format": [2, 3, 4, 8, 10, 31, 34, 35, 36, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 70, 71, 74, 75, 76, 78, 80, 82, 85, 90, 91, 92, 94], "make": [2, 3, 16, 31, 34, 35, 41, 49, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "sure": [2, 34, 36, 41, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 92, 93], "shuffl": [2, 8, 45, 74, 79, 82, 86, 88], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 35, 39, 41, 44, 45, 50, 55, 57, 62, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "batch": [2, 34, 45, 49, 50, 64, 66, 81, 82, 88], "order": [2, 4, 8, 30, 31, 35, 36, 39, 40, 41, 45, 50, 51, 52, 55, 58, 59, 60, 64, 67, 68, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 87, 90, 91, 93, 94], "destroi": [2, 45], "oper": [2, 31, 34, 35, 45, 49, 60, 72, 79, 81, 88, 92, 93], "eg": [2, 8, 45, 55, 58, 75, 76, 81], "repeat": [2, 45, 50, 85, 88], "appli": [2, 31, 33, 35, 36, 41, 42, 44, 45, 54, 59, 68, 74, 75, 76, 78, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93], "array_lik": [2, 3, 30, 36, 45, 52, 59, 63], "some": [2, 3, 4, 8, 12, 20, 30, 31, 33, 35, 36, 39, 44, 45, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "seri": [2, 3, 34, 45, 46, 62, 70, 81], "row": [2, 3, 4, 8, 11, 23, 30, 34, 36, 38, 39, 45, 50, 51, 52, 54, 59, 60, 62, 67, 68, 70, 71, 74, 75, 78, 79, 80, 81, 82, 85, 86, 88, 92, 94], "rather": [2, 3, 22, 30, 45, 49, 50, 57, 66, 70, 85, 89, 91, 93, 94], "leav": [2, 36], "per": [2, 3, 11, 30, 34, 36, 41, 44, 50, 51, 52, 54, 57, 58, 60, 63, 64, 66, 70, 76, 81, 87, 94], "determin": [2, 3, 8, 14, 20, 22, 26, 30, 34, 36, 41, 45, 50, 52, 55, 57, 60, 66, 70, 75, 81, 85, 87, 88, 90], "cutoff": [2, 3, 88], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 30, 31, 35, 36, 45, 50, 57, 59, 60, 63, 66, 70, 74, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93], "section": [2, 3, 5, 8, 73, 78, 82, 87], "3": [2, 3, 4, 5, 8, 30, 31, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 52, 59, 60, 62, 63, 68, 70, 80, 81, 89], "equat": [2, 3, 39], "advanc": [2, 3, 4, 7, 8, 14, 57, 59, 70, 73, 76, 77, 83], "user": [2, 3, 4, 8, 12, 14, 23, 28, 31, 35, 36, 57, 59, 60, 62, 66, 70, 83], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 31, 34, 35, 36, 41, 44, 50, 51, 52, 55, 57, 59, 60, 62, 63, 71, 73, 74, 76, 79, 82, 85, 87, 90, 93], "automat": [2, 3, 4, 22, 30, 72, 78, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "greater": [2, 3, 4, 7, 8, 24, 34, 45, 57, 76, 80, 81, 94], "count": [2, 20, 22, 30, 34, 36, 39, 45, 51, 52, 58, 73, 81, 82, 87], "observ": [2, 3, 39, 74, 75, 76, 85, 88, 90], "mislabel": [2, 8, 30, 34, 36, 39, 50, 51, 52, 55, 57, 60, 66, 68, 70, 72, 74, 78, 79, 81, 82, 83, 86, 87, 90, 92, 93], "one": [2, 3, 4, 8, 22, 30, 31, 34, 35, 36, 41, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 82, 85, 88, 89, 90, 92, 93, 94], "get_label_issu": [2, 33, 34, 61, 62, 83, 90, 92, 93], "either": [2, 3, 5, 8, 31, 34, 35, 36, 50, 52, 57, 59, 60, 64, 66, 76, 81, 86, 87], "boolean": [2, 5, 8, 20, 34, 36, 44, 50, 52, 55, 60, 62, 64, 66, 67, 72, 74, 76, 79, 81, 82, 87, 90, 91, 93], "label_issues_mask": [2, 36, 60, 62, 73], "indic": [2, 3, 4, 5, 8, 11, 20, 30, 34, 35, 36, 38, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "its": [2, 4, 7, 8, 14, 31, 34, 35, 36, 43, 44, 52, 55, 58, 59, 60, 62, 64, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94], "return_indices_ranked_bi": [2, 34, 36, 52, 68, 73, 81, 83, 92, 93], "significantli": [2, 82, 83, 85, 89], "reduc": [2, 34, 36, 45, 74, 81], "time": [2, 8, 31, 34, 35, 45, 50, 73, 75, 80, 81, 82, 83, 87, 88, 90, 91, 92, 93, 94], "take": [2, 4, 8, 30, 31, 35, 40, 41, 45, 49, 60, 78, 82, 85, 86, 87, 92, 94], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 29, 31, 34, 35, 62, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "skip": [2, 8, 31, 35, 62, 74, 81, 86, 94], "slow": [2, 3], "step": [2, 5, 22, 41, 58, 81, 82, 83, 85, 89], "caution": [2, 4, 81], "previous": [2, 4, 11, 45, 59, 62, 73, 74, 75, 78, 79, 85, 89, 92], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 40, 41, 45, 62, 75, 78, 81, 82, 90, 91, 92, 94], "individu": [2, 8, 11, 22, 31, 35, 50, 54, 57, 60, 62, 68, 70, 73, 76, 78, 81, 85, 86, 87, 92, 94], "still": [2, 34, 35, 45, 59, 74, 81, 82, 88, 92], "extra": [2, 31, 35, 45, 49, 50, 51, 62, 79, 81, 82, 85, 88], "receiv": [2, 8, 31, 35, 51, 54, 55, 62, 64, 68, 76, 87], "overwritten": [2, 62], "callabl": [2, 3, 31, 35, 41, 44, 49, 54, 81], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 34, 35, 37, 40, 44, 45, 58, 60, 62, 67, 74, 75, 76, 81, 82, 83, 86, 94], "appropri": [2, 8, 14, 52, 60, 75, 78, 86, 87], "earli": [2, 82], "stop": [2, 82], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 30, 45, 59, 75, 78, 82, 86, 90, 92, 94], "f": [2, 5, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "ignor": [2, 31, 35, 44, 49, 62, 67, 71, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "allow": [2, 30, 31, 34, 35, 38, 45, 50, 58, 59, 62, 64, 66, 74, 81, 82, 89, 91, 93], "access": [2, 8, 11, 31, 35, 62, 76, 79, 82, 86, 93], "hyperparamet": [2, 54, 59, 82], "purpos": [2, 75, 76, 81, 86, 90], "want": [2, 4, 8, 30, 34, 46, 50, 52, 62, 75, 79, 80, 82, 85, 87, 88, 89, 91, 93, 94], "explicitli": [2, 6, 8, 35, 62, 81], "yourself": [2, 4, 34, 76], "altern": [2, 5, 8, 41, 45, 49, 50, 60, 73, 74, 78, 79, 81, 82, 83, 85, 86, 88, 90, 93], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 31, 34, 35, 36, 45, 49, 50, 52, 59, 60, 62, 66, 67, 70, 71, 72, 75, 76, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93], "effect": [2, 8, 23, 31, 35, 50, 59, 62, 78, 79, 81, 82, 88], "offer": [2, 4, 74, 75, 76, 79, 81, 83, 86, 93], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 50, 62, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 59, 62, 75, 92], "label_issues_df": [2, 62, 82], "similar": [2, 8, 30, 31, 35, 45, 50, 54, 55, 57, 59, 62, 66, 70, 75, 76, 78, 79, 81, 82, 83, 87, 88, 91], "document": [2, 3, 4, 8, 12, 14, 30, 31, 34, 35, 36, 41, 44, 49, 51, 52, 54, 57, 58, 59, 62, 66, 67, 68, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 45, 55, 62, 75, 76], "were": [2, 3, 4, 30, 35, 51, 57, 70, 74, 78, 81, 83, 85, 87, 89, 91, 92], "present": [2, 3, 4, 8, 10, 11, 18, 30, 45, 59, 67, 72, 78, 81, 82, 88], "actual": [2, 3, 4, 30, 50, 51, 60, 76, 81, 83, 94], "num_class": [2, 30, 34, 45, 49, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 92, 93], "uniqu": [2, 27, 45, 67, 75, 81, 86, 88], "given_label": [2, 4, 26, 30, 39, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93, 94], "normal": [2, 3, 16, 22, 27, 36, 38, 41, 43, 44, 45, 60, 81, 83, 88], "trick": [2, 81], "distribut": [2, 3, 4, 8, 22, 24, 30, 35, 36, 40, 43, 50, 58, 59, 60, 72, 75, 76, 78, 79, 82, 87, 88], "account": [2, 30, 50, 54, 59, 60, 79, 81, 83, 85, 86, 88, 90, 93], "word": [2, 3, 44, 70, 71, 81], "remov": [2, 8, 27, 30, 31, 35, 36, 62, 72, 79, 80, 81, 82, 86, 88, 90, 92, 93], "so": [2, 3, 4, 5, 8, 12, 22, 30, 31, 34, 35, 36, 45, 50, 51, 57, 60, 62, 66, 70, 74, 75, 76, 79, 82, 83, 88, 91], "proportion": [2, 8, 36], "just": [2, 3, 4, 8, 11, 30, 32, 34, 45, 49, 60, 62, 64, 72, 73, 74, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 31, 32, 35, 36, 41, 44, 45, 50, 52, 54, 59, 60, 62, 63, 64, 72, 74, 79, 80, 81, 82, 83, 88, 89, 90, 92, 93], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 43, 53, 55, 56, 57, 58, 59, 60, 61, 62, 65, 69, 72, 75, 77, 82, 84, 86, 90, 91, 92, 93, 94], "arg": [2, 10, 20, 23, 27, 31, 32, 35, 41, 45, 60, 62], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 49, 62, 64, 66, 68, 81], "test": [2, 8, 22, 35, 41, 49, 62, 72, 75, 76, 78, 79, 82, 89, 90, 92, 93, 94], "expect": [2, 3, 31, 35, 36, 41, 50, 59, 60, 62, 81, 83, 85, 86, 87, 90, 92, 93, 94], "class_predict": 2, "evalu": [2, 8, 31, 32, 33, 34, 35, 58, 62, 74, 75, 76, 81, 82, 83, 85, 89, 90, 91, 92, 93], "simpli": [2, 30, 60, 75, 76, 78, 79, 81, 83, 86, 90, 91, 93, 94], "quantifi": [2, 4, 5, 8, 11, 36, 54, 59, 62, 72, 76, 78, 79, 82, 83, 87], "save_spac": [2, 8, 61, 62], "potenti": [2, 8, 30, 36, 44, 52, 55, 58, 60, 62, 64, 66, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "cach": [2, 79, 93], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 45, 46, 49, 50, 51, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 90, 91, 92, 93], "unlik": [2, 8, 36, 38, 41, 49, 51, 52, 54, 70, 75, 85, 86, 88, 90], "both": [2, 4, 8, 14, 22, 30, 31, 35, 36, 45, 50, 52, 60, 64, 66, 71, 72, 75, 81, 82, 83, 85, 94], "mask": [2, 34, 36, 44, 45, 52, 55, 60, 62, 64, 66, 67, 72, 80, 81, 85, 87, 91, 94], "prefer": [2, 60, 68], "plan": 2, "subsequ": [2, 3, 31, 35, 79, 81, 83, 87, 93], "invok": [2, 31, 35, 83, 89], "scratch": [2, 62], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 29, 31, 34, 35, 36, 49, 50, 52, 54, 58, 59, 60, 62, 63, 64, 66, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "share": [2, 60, 62], "mostli": [2, 45, 57, 62, 86], "longer": [2, 40, 41, 44, 62, 73, 79, 81, 87, 93], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 62, 70, 75, 76, 80, 81, 94], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 38, 50, 51, 54, 58, 62, 67, 70, 74, 75, 78, 79, 80, 81, 82, 83, 85, 88], "docstr": [2, 30, 31, 35, 45, 62, 80, 83], "unless": [2, 31, 35, 62, 81], "our": [2, 3, 8, 49, 50, 60, 62, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "is_label_issu": [2, 26, 62, 74, 75, 76, 78, 79, 82, 83, 86, 90, 93], "entir": [2, 8, 22, 34, 36, 39, 51, 52, 57, 60, 62, 64, 66, 67, 72, 75, 76, 81, 87, 88, 89, 91, 94], "accur": [2, 3, 4, 8, 14, 30, 34, 36, 50, 51, 52, 55, 58, 60, 62, 63, 64, 66, 67, 73, 76, 78, 79, 81, 82, 85, 90], "label_qu": [2, 50, 62, 83, 85, 90, 93], "measur": [2, 30, 50, 51, 62, 72, 80, 81, 83, 85, 86, 91, 92, 94], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 30, 34, 36, 38, 41, 50, 51, 52, 54, 55, 57, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 90, 92, 93], "lower": [2, 4, 5, 8, 11, 24, 34, 41, 43, 50, 51, 54, 57, 58, 60, 62, 63, 66, 70, 74, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 93, 94], "eas": 2, "comparison": [2, 31, 35, 58, 83, 85, 87, 90], "against": [2, 31, 35, 75, 78, 81, 85, 86], "predicted_label": [2, 4, 26, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93], "ad": [2, 31, 35, 76, 85, 90], "precis": [2, 52, 55, 58, 81, 83, 91, 94], "definit": [2, 5, 41, 62, 78, 92], "accessor": [2, 62], "describ": [2, 8, 16, 50, 59, 60, 62, 68, 70, 83, 85, 86, 87, 89, 94], "precomput": [2, 4, 39, 62, 80], "clear": [2, 31, 35, 62, 79, 90, 93], "save": [2, 4, 14, 31, 34, 35, 58, 62, 81, 87, 91, 94], "space": [2, 8, 59, 62, 78, 80, 82], "place": [2, 31, 35, 45, 62, 85, 92], "larg": [2, 34, 62, 78, 79, 81, 82, 87, 88, 91, 94], "deploi": [2, 62, 78, 79, 81, 82], "care": [2, 8, 31, 35, 62, 79, 81, 83], "avail": [2, 4, 5, 10, 12, 28, 35, 62, 81, 83, 85, 87, 90], "cannot": [2, 4, 10, 12, 45, 89, 94], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 41, 62], "__init_subclass__": [2, 33, 35, 61, 62], "set_": [2, 35, 62], "_request": [2, 35, 62], "pep": [2, 35, 62], "487": [2, 35, 62], "look": [2, 4, 5, 14, 31, 35, 45, 62, 67, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 91, 92, 94], "inform": [2, 4, 5, 8, 11, 14, 28, 31, 35, 45, 50, 51, 55, 58, 62, 67, 70, 71, 72, 74, 75, 78, 79, 83, 85, 88, 91, 94], "__metadata_request__": [2, 35, 62], "infer": [2, 35, 45, 62, 67, 71, 82, 85, 86, 90, 92, 93], "signatur": [2, 31, 35, 62], "accept": [2, 31, 35, 60, 62, 75, 76], "metadata": [2, 35, 62, 78, 79, 82, 94], "through": [2, 4, 5, 35, 62, 74, 76, 79, 80, 81, 85, 87, 88, 90, 93], "develop": [2, 7, 35, 62, 81, 83, 94], "request": [2, 35, 62, 76, 79, 80, 86, 92, 93, 94], "those": [2, 3, 8, 34, 35, 36, 49, 50, 52, 58, 62, 66, 70, 71, 72, 74, 81, 82, 87, 91], "http": [2, 4, 5, 7, 8, 9, 16, 29, 31, 32, 34, 35, 38, 45, 55, 58, 59, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "www": [2, 35, 62, 88], "org": [2, 16, 31, 32, 35, 45, 59, 62, 81, 83, 94], "dev": [2, 35, 62], "0487": [2, 35, 62], "get_metadata_rout": [2, 33, 35, 61, 62], "rout": [2, 35, 62], "pleas": [2, 31, 35, 49, 62, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "guid": [2, 5, 35, 62, 73, 82], "mechan": [2, 31, 35, 62], "metadatarequest": [2, 35, 62], "encapsul": [2, 14, 35, 57, 62], "get_param": [2, 33, 35, 48, 49, 61, 62], "subobject": [2, 35, 62], "param": [2, 8, 31, 35, 49, 59, 62, 81], "name": [2, 4, 5, 8, 10, 11, 30, 31, 35, 40, 41, 45, 49, 50, 51, 58, 62, 67, 71, 74, 76, 79, 80, 81, 82, 83, 86, 91, 93, 94], "set_fit_request": [2, 33, 35, 61, 62], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 39, 41, 44, 45, 49, 50, 51, 55, 57, 58, 60, 62, 67, 71, 74, 75, 81, 85, 86, 87, 94], "unchang": [2, 31, 35, 62, 94], "relev": [2, 14, 22, 35, 62, 82], "enable_metadata_rout": [2, 35, 62], "set_config": [2, 35, 62], "meta": [2, 35, 62], "rais": [2, 4, 10, 11, 31, 35, 38, 41, 62, 74, 81], "alia": [2, 31, 35, 62], "metadata_rout": [2, 35, 62], "retain": [2, 35, 45, 62], "chang": [2, 31, 34, 35, 38, 62, 70, 74, 75, 79, 81, 87, 88, 93, 94], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 29, 31, 33, 35, 37, 38, 45, 48, 49, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "sub": [2, 35, 57, 62], "pipelin": [2, 35, 62], "otherwis": [2, 8, 30, 31, 34, 35, 36, 42, 44, 45, 52, 59, 62, 64, 66, 67, 71, 79, 81, 93], "updat": [2, 11, 31, 34, 35, 62, 73, 75, 82], "set_param": [2, 33, 35, 48, 49, 61, 62], "simpl": [2, 31, 35, 36, 50, 60, 62, 75, 76, 78, 79, 82, 85, 88, 90, 92, 93], "well": [2, 3, 8, 31, 35, 38, 39, 50, 52, 58, 60, 62, 67, 70, 71, 73, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88], "nest": [2, 31, 35, 46, 62, 68, 70, 71, 94], "latter": [2, 31, 35, 62, 88], "compon": [2, 35, 62], "__": [2, 35, 62], "set_score_request": [2, 61, 62], "structur": [3, 59, 78, 92], "unobserv": 3, "less": [3, 4, 8, 27, 34, 41, 50, 59, 60, 64, 66, 70, 76, 78, 80, 81, 82, 83, 87, 94], "channel": [3, 74, 83], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 30, 39, 45, 51, 76, 80, 93], "inv": 3, "confident_joint": [3, 20, 30, 36, 45, 51, 52, 73, 81, 83], "un": 3, "under": [3, 8, 31, 35, 51, 58, 59, 76, 88], "joint": [3, 30, 36, 39, 45, 51, 52, 80], "num_label_issu": [3, 34, 36, 52, 67, 71, 73], "estimation_method": [3, 34], "off_diagon": 3, "multi_label": [3, 30, 36, 45, 46, 52, 86], "don": [3, 72, 76, 78, 79, 82, 83, 87], "statis": 3, "compute_confident_joint": [3, 30, 36, 45, 52, 83], "off": [3, 36, 45, 57, 82, 83, 87, 88], "j": [3, 4, 30, 31, 35, 36, 52, 55, 58, 59, 68, 70, 71, 75, 76, 83, 91, 94], "confident_learn": [3, 36, 52, 83], "off_diagonal_calibr": 3, "calibr": [3, 36, 45, 50, 85], "cj": [3, 39, 45], "axi": [3, 27, 39, 41, 43, 64, 67, 74, 75, 76, 81, 82, 83, 85, 86, 88, 90, 91], "bincount": [3, 75, 76, 83, 85, 86], "alwai": [3, 8, 31, 35, 45, 74, 83, 90, 92, 93], "estimate_issu": 3, "over": [3, 8, 31, 34, 35, 57, 58, 64, 66, 76, 78, 80, 81, 82, 83, 88, 90, 92], "As": [3, 5, 72, 75, 76, 79, 83, 90, 94], "add": [3, 4, 5, 10, 11, 31, 35, 49, 58, 74, 75, 76, 79, 81, 82, 83, 86, 93], "approach": [3, 30, 34, 36, 78, 83, 86, 88, 90, 92], "custom": [3, 5, 8, 9, 26, 31, 34, 35, 41, 44, 60, 76, 79, 83, 93], "know": [3, 75, 76, 78, 79, 81, 82, 83, 85], "cut": [3, 57, 72, 83], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 88, 94], "underestim": 3, "few": [3, 58, 72, 76, 81, 85, 86, 87, 88, 94], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 40, 41, 44, 54, 55, 57, 58, 60, 63, 70, 80, 81, 86, 91, 94], "detail": [3, 4, 8, 12, 14, 30, 31, 35, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 66, 67, 68, 72, 73, 74, 86, 88, 94], "num_issu": [3, 5, 34, 74, 75, 76, 78, 79, 82, 83], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 36, 41, 50, 80, 81, 87, 90, 93, 94], "p_": [3, 30, 36], "pair": [3, 4, 8, 30, 36, 83], "v": [3, 8, 34, 51, 52, 54, 60, 75, 76, 86, 87, 88, 89], "rest": [3, 4, 5, 7, 8, 9, 29, 51, 52, 54, 62, 75, 76, 78, 79, 81, 82, 83, 85, 90, 92, 93], "fashion": [3, 4, 64, 92], "2x2": 3, "incorrectli": [3, 30, 51, 52, 55, 78, 94], "calibrated_cj": 3, "c": [3, 8, 44, 52, 60, 72, 74, 75, 76, 78, 79, 81, 83, 86, 87, 88, 89, 90, 92], "whose": [3, 4, 8, 24, 31, 35, 39, 44, 50, 54, 57, 63, 66, 70, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 91, 94], "truli": [3, 88, 91], "estimate_joint": [3, 30, 83], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 52, 58, 83, 87, 89, 91, 94], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 50, 51, 58, 67, 87, 88], "done": [3, 8, 62, 75, 81, 83, 86, 88, 89], "overfit": [3, 8, 55, 58, 74, 75, 76, 78, 79, 82, 89, 92], "classifict": 3, "singl": [3, 4, 22, 30, 31, 35, 41, 42, 45, 50, 51, 57, 58, 59, 60, 70, 74, 75, 81, 83, 86, 87, 92], "baselin": [3, 31, 36, 88, 90, 93], "proxi": 3, "union": [3, 4, 10, 41, 45, 46, 52, 58, 62, 66, 70, 81], "tupl": [3, 27, 31, 35, 39, 40, 42, 44, 45, 50, 52, 58, 66, 68, 70, 71, 74, 94], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 34, 39, 50, 64, 66, 72, 81, 82, 91, 93], "practic": [3, 76, 82, 83, 88, 90, 92, 93], "complet": [3, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "gist": 3, "cj_ish": 3, "guess": [3, 39, 83, 85], "8": [3, 4, 5, 6, 40, 41, 42, 44, 54, 68, 70, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "parallel": [3, 36, 58, 68, 80], "again": [3, 49, 81, 88, 92], "simplifi": [3, 12], "understand": [3, 7, 30, 51, 58, 76, 83, 90, 91, 94], "100": [3, 31, 35, 60, 75, 76, 78, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94], "optim": [3, 31, 32, 35, 49, 82, 85], "speed": [3, 36, 80, 81, 90, 93], "dtype": [3, 21, 22, 27, 31, 35, 44, 45, 54, 70, 74, 87], "enumer": [3, 31, 35, 74, 75, 76, 82, 94], "s_label": 3, "confident_bin": 3, "6": [3, 4, 35, 41, 45, 70, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "num_confident_bin": 3, "argmax": [3, 36, 60, 64, 67, 74, 81, 83, 87, 88, 91], "elif": 3, "estimate_lat": 3, "py_method": [3, 39], "cnt": [3, 39], "1d": [3, 4, 14, 34, 36, 41, 42, 45, 46, 54, 63, 74, 92], "eqn": [3, 39], "margin": [3, 36, 39, 41, 60], "marginal_p": [3, 39], "shorthand": [3, 11], "proport": [3, 8, 30, 51, 83, 89], "poorli": [3, 39, 92], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 83], "variabl": [3, 5, 12, 23, 45, 62, 63, 74, 75, 78, 83, 86, 90], "exact": [3, 39, 75, 76, 78, 82, 92], "within": [3, 4, 8, 13, 31, 32, 35, 37, 52, 57, 66, 68, 70, 75, 76, 81, 82, 87, 91], "percent": 3, "often": [3, 30, 39, 51, 81, 83, 89, 91], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 45, 46, 58, 74, 75, 78, 79, 81, 82, 86, 87, 88, 93], "wai": [3, 4, 49, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 89, 92, 93], "pro": 3, "con": 3, "pred_proba": [3, 89], "combin": [3, 30, 75, 80, 81, 82, 83, 89, 90], "becaus": [3, 39, 45, 57, 79, 81, 83, 85, 87], "littl": [3, 34, 80, 87, 94], "uniform": [3, 60, 80, 81, 83], "20": [3, 5, 71, 74, 79, 80, 81, 82, 83, 87, 91, 94], "Such": [3, 82, 88], "bound": [3, 21, 31, 35, 44, 54, 55, 57, 58, 87], "reason": [3, 20, 31, 35], "comment": [3, 44, 94], "end": [3, 4, 31, 35, 58, 82, 88, 91, 94], "file": [3, 4, 10, 33, 34, 48, 58, 74, 75, 78, 79, 80, 81, 87, 88, 91, 92, 94], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 83], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 73, 75, 76, 78, 79, 82, 83, 91, 92, 94], "five": [3, 55, 58, 83, 87], "estimate_cv_predicted_prob": [3, 83], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33, 34], "amongst": [3, 8, 87], "confident_threshold": [3, 8, 20, 34, 59], "unifi": 4, "audit": [4, 7, 10, 11, 14, 74, 77, 78, 79, 81, 82, 83, 86, 87], "kind": [4, 5, 74, 75, 78, 79, 80, 82, 83], "addit": [4, 5, 7, 8, 9, 11, 28, 29, 31, 35, 41, 46, 50, 58, 68, 74, 75, 78, 79, 83, 85, 88, 89, 92, 93], "depend": [4, 5, 7, 8, 9, 10, 11, 29, 33, 36, 38, 45, 48, 52, 59, 62, 63, 72], "instal": [4, 5, 7, 8, 9, 29, 31, 33, 34, 35, 36, 48, 49, 64, 66], "pip": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "development": [4, 5, 7, 9, 29], "git": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "github": [4, 5, 7, 9, 29, 31, 32, 45, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "com": [4, 5, 7, 9, 29, 31, 32, 34, 38, 45, 59, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "egg": [4, 5, 7, 9, 29, 72, 80], "label_nam": [4, 5, 6, 8, 10, 16, 27, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "image_kei": [4, 82], "interfac": [4, 72, 81, 83], "librari": [4, 8, 35, 55, 58, 59, 72, 75, 79, 80, 81, 93], "goal": 4, "track": [4, 11, 12, 72, 75, 80, 81, 83], "intermedi": [4, 7, 76], "statist": [4, 8, 11, 20, 22, 30, 50, 51, 58, 76, 78, 79, 83], "convert": [4, 10, 31, 35, 42, 43, 46, 50, 57, 66, 70, 73, 74, 79, 80, 81, 82, 85, 86, 87, 93], "hug": [4, 10, 82], "face": [4, 10, 14, 80, 82, 86], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 41, 50, 51, 57, 59, 75, 76, 79, 81, 82, 83, 85, 87], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 35, 45, 50, 51, 63, 67, 70, 71, 78, 79, 81, 85, 86, 93, 94], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 40, 45, 50, 51, 54, 55, 57, 58, 75, 76, 78, 79, 83, 85, 86, 87], "path": [4, 10, 31, 34, 35, 58, 74, 75, 81, 87], "local": [4, 10, 31, 32, 35, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 41, 59, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 84, 85, 88], "txt": [4, 10, 94], "csv": [4, 10, 78, 79, 90, 92, 93], "json": [4, 10], "hub": [4, 10], "regress": [4, 5, 10, 12, 14, 19, 26, 28, 75, 76, 79, 84, 85, 88, 93], "imag": [4, 7, 30, 35, 55, 57, 58, 59, 64, 66, 67, 72, 75, 76, 80, 81, 84, 85, 86, 87, 89, 91], "point": [4, 5, 8, 16, 22, 31, 35, 75, 76, 78, 79, 81, 82, 83, 85], "field": [4, 8, 31, 35], "themselv": [4, 90, 92, 93], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 44, 68, 70, 76, 82, 84, 91], "load_dataset": [4, 10, 82], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 31, 35], "has_label": [4, 10], "class_nam": [4, 10, 18, 30, 51, 58, 67, 71, 72, 80, 83, 87, 91, 94], "empti": [4, 10, 39, 50, 76, 81, 86], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 78], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 74, 75, 76, 78, 79, 81, 82, 83, 86], "sort": [4, 14, 34, 36, 41, 50, 52, 55, 57, 58, 60, 66, 68, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "common": [4, 11, 14, 76, 77, 80, 81, 83, 86, 87, 91], "real": [4, 14, 72, 75, 76, 81, 83, 85, 86, 90, 91], "world": [4, 14, 72, 75, 76, 81, 83, 85, 90, 91], "interact": [4, 14, 79, 81], "embed": [4, 8, 14, 59, 72, 74, 75, 76, 78, 79, 83, 86, 93], "thereof": [4, 14], "insight": [4, 14, 58, 85], "act": [4, 8, 57, 75], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 34, 36, 64, 66], "best": [4, 14, 40, 50, 60, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 92, 93, 94], "2d": [4, 14, 34, 41, 42, 44, 45, 50, 74, 86, 92], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 51, 74, 75, 76, 78, 79, 82, 83], "represent": [4, 8, 14, 31, 35, 42, 52, 72, 74, 75, 76, 79, 81, 82, 83, 88, 93], "num_featur": [4, 14, 31, 35, 49], "distanc": [4, 8, 14, 16, 22, 24, 27, 43, 57, 59, 78, 88], "nearest": [4, 8, 14, 21, 22, 24, 43, 59, 76, 79, 88], "neighbor": [4, 8, 14, 16, 21, 22, 24, 43, 59, 75, 76, 78, 79, 81, 82, 88], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 45, 62, 80, 90], "csr": 4, "evenli": 4, "omit": [4, 57, 58, 82, 87], "itself": [4, 31, 35, 87], "three": [4, 8, 30, 50, 51, 62, 67, 74, 75, 76, 78, 80, 83, 85, 89, 90, 91, 92, 94], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 32, 35, 41, 72, 78, 86, 94], "th": [4, 40, 44, 45, 50, 52, 55, 57, 58, 59, 68, 70, 71, 79, 86, 87, 94], "ascend": [4, 30, 51, 82, 83], "segment": [4, 64, 66, 67, 84], "reflect": [4, 78, 79, 85, 87, 88, 90, 92, 93], "maintain": 4, "posit": [4, 31, 35, 43, 45, 58, 80, 88], "nearestneighbor": [4, 8, 16, 59, 78, 88], "kneighbors_graph": [4, 16, 78], "illustr": 4, "todens": 4, "second": [4, 41, 45, 58, 60, 75, 81, 83, 94], "duplic": [4, 7, 19, 20, 31, 35, 72, 75, 83, 86], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49], "neither": [4, 8, 12, 87], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 50, 81, 85, 94], "unspecifi": [4, 14, 36, 52], "interest": [4, 14, 20, 67, 71, 79, 83, 91, 92, 93, 94], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 62, 63, 80, 90, 94], "random_st": [4, 74, 75, 76, 82, 83, 86, 88, 92], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 34, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86], "comprehens": [4, 72, 82, 86], "nbr": 4, "n_neighbor": [4, 8, 16, 59], "metric": [4, 8, 17, 22, 27, 45, 49, 58, 59, 74, 78, 79, 82, 83, 90, 92, 93], "euclidean": [4, 8, 57, 59, 78], "mode": [4, 16, 31, 34, 35, 88], "4x4": 4, "float64": [4, 22, 31, 35, 70], "compress": [4, 8, 45, 64, 66], "toarrai": 4, "NOT": [4, 34, 79], "23606798": 4, "41421356": 4, "configur": [4, 14, 41, 76], "suppos": [4, 8, 55, 88, 90, 92, 93], "who": [4, 57, 78, 83, 92, 94], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "clean_learning_kwarg": [4, 8, 21, 26], "labelissuemanag": [4, 8, 19, 21], "prune_method": [4, 73], "prune_by_noise_r": [4, 36, 52, 83], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 71, 72, 74, 75, 76, 78, 79, 83, 86, 94], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 48, 49, 51, 56, 65, 66, 68, 69, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 87, 91, 94], "show": [4, 22, 31, 35, 40, 45, 58, 67, 71, 76, 78, 79, 80, 81, 82, 83, 85, 88, 90, 91, 92, 94], "top": [4, 8, 30, 34, 36, 45, 52, 55, 58, 60, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 90, 93, 94], "suffer": [4, 8, 11, 20, 52, 60, 71, 94], "onc": [4, 20, 30, 31, 35, 75, 81, 83, 86, 87, 92], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 41, 50, 51, 54, 57, 58, 62, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87, 94], "sever": [4, 5, 8, 10, 11, 20, 31, 34, 35, 36, 54, 57, 59, 60, 66, 70, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 92, 93, 94], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 72, 74, 75, 76, 78, 79, 81, 82, 86, 88, 90, 92, 93, 94], "With": [4, 34, 79, 83, 85, 90, 91, 93, 94], "usag": [4, 34, 49], "issue_summari": [4, 8, 11, 75], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 37, 60, 72, 75, 76, 83, 84, 86], "someth": [4, 5, 31, 35, 60, 87], "123": [4, 75, 76], "456": [4, 74, 92, 93], "nearest_neighbor": 4, "7": [4, 41, 42, 49, 68, 70, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93, 94], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 54, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "distance_to_nearest_neighbor": [4, 75, 76, 78, 79, 82, 83], "789": 4, "get_issu": [4, 8, 11, 74, 76, 78, 79, 81, 82, 86], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75, 76], "focu": [4, 11, 79, 91, 94], "full": [4, 8, 11, 34, 58, 82, 94], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 67, 71, 72, 91], "valueerror": [4, 10, 11, 38, 41, 81], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 67, 76, 78, 79, 82, 83, 87], "lie": [4, 8, 59, 60, 74, 75, 76, 78, 79, 82, 83, 93], "directli": [4, 12, 14, 28, 34, 49, 50, 76, 79, 87, 90, 93], "compar": [4, 50, 59, 70, 75, 76, 78, 83, 87], "get_issue_summari": [4, 11, 76], "get_info": [4, 11, 76, 79], "yet": [4, 15, 19, 23, 80, 85], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 31, 35, 75], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 74, 75, 82], "load": [4, 10, 34, 58, 80, 81, 82, 83, 87, 88, 91, 94], "futur": [4, 8, 20, 31, 35, 50, 72, 74, 75, 79, 81, 93], "overwrit": [4, 75], "separ": [4, 30, 41, 54, 75, 76, 81, 82, 87, 89], "static": 4, "rememb": [4, 79, 81, 83], "part": [4, 8, 31, 35, 36, 55, 57, 58, 74, 75, 80, 91, 94], "ident": [4, 8, 20, 45, 79], "walk": 5, "alongsid": [5, 31, 35, 75, 81], "pre": [5, 6, 8, 31, 35, 75, 76, 82, 91, 94], "runtim": [5, 31, 34, 35, 62, 64, 66, 74, 81, 82], "issue_manager_factori": [5, 12, 75], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "thing": [5, 35, 83, 90, 93], "next": [5, 50, 72, 74, 78, 79, 81, 85, 87, 90, 92, 93, 94], "dummi": 5, "randint": [5, 27, 41, 75, 76, 81], "mark": [5, 8, 73, 87, 88, 90], "regard": [5, 76, 83], "rand": [5, 41, 75, 76], "is_": [5, 8, 75], "_issu": [5, 8, 75], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "whole": [5, 22, 31, 35, 76], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "popul": [5, 76, 79], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": [5, 87], "raw_scor": 5, "bit": 5, "involv": [5, 34, 67, 71, 81, 86], "intermediate_arg": 5, "min": [5, 41, 57, 70, 75, 81, 88], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 75], "instanti": [5, 14, 34, 49, 59, 74, 76, 78, 93], "477762": 5, "286455": 5, "term": [5, 8, 39, 45, 58, 74, 75, 76, 78, 79, 82, 83], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "003042": 5, "058117": 5, "11": [5, 49, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "121908": 5, "15": [5, 43, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "169312": 5, "17": [5, 74, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 75, 76, 80, 83], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 80, 87, 94], "dbscan": [6, 8, 27, 81], "hdbscan": [6, 81], "etc": [6, 8, 20, 31, 35, 39, 49, 50, 68, 72, 75, 76, 78, 79, 81, 83, 86], "sensit": [6, 8, 43], "ep": [6, 27, 58], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 72, 74, 81, 82, 85, 86, 92, 93], "kmean": [6, 81], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 81], "cluster_id": [6, 8, 27, 81], "labels_": 6, "underperforming_group": [6, 8, 19, 81], "search": [7, 8, 18, 22, 23, 44, 62, 81, 89], "nondefault": 7, "Near": [7, 81], "iid": [7, 22, 78, 83], "imbal": [7, 19, 54, 59, 60, 76], "null": [7, 19, 76, 79, 82, 83], "valuat": [7, 16], "togeth": [7, 8, 39, 75, 76, 78, 79, 82, 83, 90, 93, 94], "built": [7, 41], "own": [7, 31, 33, 35, 48, 54, 55, 58, 64, 68, 74, 76, 78, 79, 81, 82, 85, 86, 90, 91, 92, 93, 94], "prerequisit": 7, "basic": [7, 35, 49, 78, 79, 88], "page": [8, 76, 81, 83], "variou": [8, 11, 26, 33, 46, 48, 72, 75, 76, 78, 79, 80, 83, 85, 87, 92], "sai": [8, 31, 35, 86, 91], "why": [8, 79], "matter": [8, 30, 51, 79, 93], "_score": 8, "flag": [8, 20, 22, 36, 41, 51, 52, 55, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 90, 91, 93], "badli": [8, 57, 94], "code": [8, 31, 35, 39, 45, 49, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "issue_scor": 8, "outlier_scor": [8, 24, 75, 76, 78, 79, 82, 83, 88], "atyp": [8, 59, 75, 76, 78, 79, 82, 83, 88], "datapoint": [8, 27, 36, 41, 45, 60, 63, 72, 74, 75, 76, 78, 79, 81, 89, 90, 92, 93], "is_issu": [8, 20], "is_outlier_issu": [8, 75, 76, 78, 79, 82, 83], "annot": [8, 30, 40, 50, 51, 52, 54, 55, 57, 58, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91], "transform": [8, 41, 43, 45, 59, 60, 76, 79, 82, 88, 92, 93, 94], "dissimilar": [8, 78, 79], "preced": 8, "cosin": [8, 59, 88], "incorrect": [8, 57, 60, 63, 74, 75, 76, 78, 79, 82, 83, 87, 90, 92], "due": [8, 34, 36, 60, 64, 66, 74, 75, 76, 78, 79, 82, 83], "appear": [8, 30, 40, 51, 52, 55, 63, 76, 78, 79, 82, 90, 91], "likelihood": [8, 34, 36, 52, 57, 59, 60, 64, 68], "now": [8, 34, 73, 74, 76, 85, 87, 88, 90, 92, 93, 94], "u": [8, 74, 75, 78, 81, 82, 83, 85, 86, 89, 90, 91, 92, 93, 94], "token": [8, 44, 66, 67, 68, 69, 70, 71, 81, 83, 84], "calcul": [8, 16, 22, 34, 41, 50, 54, 55, 57, 58, 59, 62, 66, 80, 82], "hamper": [8, 80, 82], "analyt": [8, 72, 81, 85], "lead": [8, 57, 60, 82, 87], "draw": [8, 75, 76], "conclus": [8, 79], "try": [8, 34, 36, 49, 50, 64, 66, 72, 76, 78, 79, 81, 82, 83, 91], "veri": [8, 30, 51, 55, 57, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93], "rare": [8, 36, 58, 75, 76, 78, 79, 81, 82, 83], "anomal": [8, 60, 75, 76, 78, 79, 82, 83], "articl": [8, 34, 81], "ai": [8, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94], "blog": 8, "unexpect": [8, 31, 35, 79], "consequ": 8, "inspect": [8, 74, 76, 82, 83, 87, 90, 93], "neg": [8, 57, 58, 75, 76, 80], "affect": [8, 31, 35, 64, 70, 79, 81], "extrem": [8, 75, 76, 78, 79, 81, 82, 83], "rel": [8, 30, 50, 51, 59, 75, 76, 78, 79, 82, 83, 88], "record": [8, 31, 35, 74, 78, 90], "abbrevi": 8, "misspel": 8, "typo": [8, 71], "resolut": 8, "video": [8, 80], "audio": [8, 75, 76, 81, 84], "minor": [8, 44], "variat": 8, "translat": 8, "d": [8, 43, 78, 79, 83, 86, 92, 94], "constant": [8, 27, 62], "median": [8, 26, 43], "question": [8, 20, 72, 83], "nearli": [8, 20, 76, 78, 79, 82], "awar": [8, 73, 83], "presenc": [8, 83], "signific": [8, 78, 79, 83], "violat": [8, 78, 79, 83], "assumpt": [8, 78, 79, 83], "changepoint": [8, 78, 79, 83], "shift": [8, 78, 79, 83], "drift": [8, 76, 78, 83], "autocorrel": [8, 78, 79, 83], "almost": [8, 78, 79, 83], "adjac": [8, 78, 79, 83], "tend": [8, 30, 39, 78, 79, 83, 91, 94], "sequenti": [8, 31, 35, 49, 82], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 44, 45, 70, 78, 79, 80, 83, 89, 92, 94], "x1": [8, 55, 58, 87], "x2": [8, 55, 58, 87], "10th": 8, "100th": 8, "90": [8, 70, 78, 82, 83, 89, 90, 91, 92], "similarli": [8, 31, 35, 75, 78, 81, 82, 87], "math": [8, 82], "behind": [8, 59, 83], "fundament": 8, "proper": [8, 45, 50, 55, 58, 79, 82, 85, 87, 92], "closer": [8, 57, 87], "scenario": [8, 60, 75, 76], "underli": [8, 59, 68, 70, 94], "stem": [8, 59, 88], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 86, 88], "partit": [8, 89], "ahead": 8, "good": [8, 31, 35, 43, 49, 51, 57, 60, 64, 66, 67, 72, 78, 79, 82], "fix": [8, 50, 79, 83, 90, 93], "problem": [8, 34, 41, 67, 72, 75, 76, 79, 81, 82], "deploy": [8, 83, 90, 92, 93], "overlook": [8, 57, 87], "fact": 8, "thu": [8, 30, 35, 51, 74, 78, 79, 83, 89, 92, 94], "diagnos": [8, 76, 81], "rarest": [8, 76], "q": [8, 87], "fall": [8, 57, 66, 70, 83, 87, 88], "subpar": 8, "special": [8, 44], "techniqu": [8, 87], "smote": 8, "asymmetr": [8, 30], "properli": [8, 34, 40, 45, 46, 64, 81, 86, 88, 90, 91], "too": [8, 36, 41, 59, 76, 81, 82, 87], "dark": [8, 91], "bright": [8, 94], "blurri": [8, 82], "abnorm": [8, 58, 82, 87], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 50, 58, 76, 81, 82, 85, 86, 87, 91], "get_self_confidence_for_each_label": [8, 41, 60], "power": [8, 78, 79, 80, 82, 83, 94], "r": [8, 34, 62, 75, 76, 90, 91], "tabular": [8, 72, 75, 76, 77, 81, 84, 85], "categor": [8, 59, 75, 76, 77, 81, 90, 92], "encod": [8, 42, 58, 64, 67, 78, 79, 81, 90, 91, 92, 93], "miss": [8, 23, 31, 35, 45, 55, 57, 78, 81, 87, 90], "pattern": 8, "contribut": [8, 16, 87], "isn": [8, 15, 23], "approxim": [8, 16, 34, 59, 85], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 59, 78, 88], "scalabl": 8, "sacrific": 8, "One": [8, 45, 59, 81], "quantif": 8, "exert": [8, 76], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 75, 76, 78, 79, 81, 82, 83], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 76, 78, 79, 82, 83], "non_iid_kwarg": 8, "class_imbal": [8, 18, 76, 78, 79, 82, 83], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 30, 72, 80], "health_summary_kwarg": 8, "tandem": [8, 80], "view": [8, 31, 35, 36, 66, 68, 70, 72, 74, 75, 76, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "ood_kwarg": 8, "outofdistribut": [8, 24, 59, 88], "outsid": 8, "outlierissuemanag": [8, 12, 19, 24, 75], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 18, 19], "underperforminggroupissuemanag": [8, 19, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 72, 76, 78, 79, 82, 84], "nullissuemanag": [8, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 19], "datavaluationissuemanag": [8, 16, 19], "codeblock": 8, "demonstr": [8, 34, 75, 76, 79, 81, 82, 83, 85, 86, 87, 90, 91], "howev": [8, 31, 35, 45, 74, 78, 79, 82, 85, 89, 91, 92, 93], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 75, 80, 82, 85, 87, 91, 94], "fewer": [8, 36, 45, 87], "vice": [8, 51], "versa": [8, 51], "light": [8, 80, 82, 87, 91], "29": [8, 80, 82, 85, 86, 87, 88, 91, 94], "low_inform": [8, 82], "odd_aspect_ratio": [8, 82], "35": [8, 75, 80, 85, 86, 87, 91, 94], "odd_siz": [8, 82], "10": [8, 16, 17, 21, 22, 27, 31, 32, 58, 59, 60, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "doc": [8, 31, 35, 72, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "data_issu": [9, 13, 14, 28, 75], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 31, 35, 49, 60, 75, 76, 82, 85], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 82, 85, 90], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "map_to_int": 10, "is_multilabel": 10, "hold": 10, "abc": [10, 20], "is_avail": [10, 82], "multilabel": [10, 13, 42, 86], "multiclass": [10, 13, 41, 45, 50, 86], "serv": [11, 14, 85], "central": [11, 94], "repositori": 11, "strategi": [11, 41, 81], "being": [11, 30, 31, 35, 36, 41, 44, 45, 60, 78, 81, 83, 90, 91, 92], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 31, 34, 35, 36, 45, 52, 55, 58, 62, 64, 66, 75, 76, 81], "recomput": [11, 93], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 30, 51, 72], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 31, 35, 59, 75], "my_issu": 12, "stabl": [13, 19, 25, 33, 37, 45, 48, 59, 73], "unregist": 13, "instati": 14, "public": [14, 83, 87, 91, 94], "creation": [14, 35], "execut": [14, 31, 35, 75, 81, 87], "coordin": [14, 55, 57, 58, 87, 94], "behavior": [14, 30, 31, 35, 58, 81], "At": [14, 58, 81], "associ": [14, 31, 35, 58, 85], "get_available_issue_typ": 14, "direct": [15, 23, 31, 35], "valuabl": 16, "vstack": [16, 45, 80, 81, 82, 83, 85, 86], "25": [16, 22, 31, 41, 43, 76, 80, 82, 83, 85, 86, 87, 91, 94], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 44, 45], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 75, 76, 81, 82, 83, 85, 86], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 83], "ab": [16, 83, 87], "1911": 16, "07128": 16, "larger": [16, 62, 64, 66, 79, 80, 81, 82], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 35, 79, 88, 93], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 41, 44, 45, 74, 75, 80, 82, 83, 86, 92], "near_duplicate_set": [17, 19, 75, 76, 78, 79, 81, 82, 83], "occurr": [17, 18, 20, 22, 23, 24, 27, 44], "median_nn_dist": 17, "near_duplicate_scor": [17, 75, 76, 78, 79, 81, 82, 83], "class_imbalance_scor": [18, 76], "bleed": [19, 25, 33], "edg": [19, 25, 33, 57, 72, 83, 94], "sharp": [19, 25, 33], "get_health_summari": [19, 21], "ood": [19, 24, 59, 60, 75, 76, 79, 82, 83, 88], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "regressionlabelissuemanag": [19, 25, 26], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 91], "priori": [20, 83], "global": [20, 31, 35], "anoth": [20, 30, 34, 44, 57, 60, 78, 79, 81, 83, 85, 88, 93], "abstract": 20, "applic": [21, 50, 81, 83, 85, 86, 94], "typevar": [21, 31, 35, 44, 54, 57, 58], "scalartyp": 21, "covari": [21, 62, 90], "summary_dict": 21, "label_scor": [21, 26, 74, 75, 76, 78, 79, 82, 83, 86], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 34, 41, 60, 64, 66, 87, 91], "empir": [22, 40, 50], "cumul": 22, "ecdf": 22, "histogram": [22, 78, 90], "absolut": [22, 26], "dimension": [22, 45, 74, 83, 88], "trial": 22, "non_iid_scor": [22, 76, 78, 79, 83], "null_track": 23, "extend": [23, 42, 82, 87, 88, 94], "superclass": 23, "arbitrari": [23, 30, 66, 70, 75, 88, 90], "prompt": 23, "address": [23, 75, 76, 79, 81, 93], "enabl": [23, 35], "null_scor": [23, 76], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 30, 31, 35, 36, 45, 58, 93, 94], "50": [27, 35, 81, 82, 83, 85, 87, 88, 91], "keepdim": [27, 81], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 74, 85], "npt": 27, "int_": 27, "id": [27, 50, 75, 81, 82, 85], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": 27, "exclud": [28, 67, 71, 75, 81, 94], "get_report": 28, "overview": [30, 74, 76, 78, 79, 82, 85, 87, 88, 90, 92, 93, 94], "modifi": [30, 31, 34, 35, 45, 81, 83], "help": [30, 31, 35, 58, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "rank_classes_by_label_qu": [30, 76], "merg": [30, 44, 72, 80, 81, 94], "find_overlapping_class": [30, 81, 83], "problemat": [30, 51, 67, 71, 74, 87, 94], "unnorm": [30, 51, 83], "abov": [30, 31, 34, 35, 45, 50, 57, 58, 60, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "model_select": [30, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 90, 92, 93], "cross_val_predict": [30, 35, 74, 75, 76, 78, 79, 81, 83, 85, 89, 90, 92, 93], "get_data_labels_from_dataset": 30, "yourfavoritemodel": [30, 83], "cv": [30, 41, 74, 75, 76, 78, 83, 85, 92], "df": [30, 45, 71, 74, 81], "overall_label_qu": [30, 51], "col": 30, "prob": [30, 44, 83, 89], "divid": [30, 51, 60], "label_nois": [30, 51], "human": [30, 80, 91, 94], "clearli": [30, 60, 82, 87, 91], "num": [30, 51, 80, 83], "overlap": [30, 72, 80, 81, 83], "ontolog": 30, "publish": [30, 94], "therefor": [30, 60], "vehicl": [30, 80], "truck": [30, 80, 88, 91], "intuit": [30, 51], "car": [30, 80, 87, 91], "frequent": [30, 50, 78, 81, 90], "characterist": 30, "l": [30, 31, 35, 55, 57, 58], "class1": 30, "class2": 30, "relationship": 30, "match": [30, 31, 35, 36, 41, 50, 51, 60, 75, 76, 80, 82, 87, 89, 91], "dog": [30, 45, 51, 53, 67, 80, 81, 88, 89, 94], "cat": [30, 45, 51, 53, 80, 81, 88, 89], "captur": [30, 74, 87, 88, 91], "co": [30, 31, 32], "noisy_label": [30, 75, 76, 86], "overlapping_class": 30, "descend": [30, 31, 35, 41, 51, 58], "overall_label_health_scor": [30, 51, 83], "suggest": [30, 50, 51, 57, 79, 81, 82, 90, 93], "half": [30, 31, 33, 35, 51, 80, 94], "health_scor": [30, 51], "classes_by_label_qu": [30, 76], "cnn": [31, 33, 35, 82], "cifar": [31, 32, 80, 88], "teach": [31, 32], "bhanml": 31, "blob": 31, "master": [31, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "call_bn": [31, 33], "bn": 31, "input_channel": 31, "n_output": 31, "dropout_r": 31, "top_bn": 31, "architectur": [31, 35], "shown": [31, 58, 75, 81, 85, 88, 89, 91, 94], "forward": [31, 32, 33, 35, 82, 85], "overridden": [31, 35], "although": [31, 35, 59, 78, 92], "recip": [31, 35], "afterward": [31, 35], "sinc": [31, 35, 38, 46, 51, 58, 66, 70, 81, 85, 86, 87, 89, 94], "former": [31, 35], "hook": [31, 35, 80], "silent": [31, 34, 35], "t_destin": [31, 33, 35], "__call__": [31, 33, 35, 37, 41], "add_modul": [31, 33, 35], "child": [31, 35], "fn": [31, 35, 58], "recurs": [31, 35, 41], "submodul": [31, 35], "children": [31, 33, 35, 94], "nn": [31, 32, 35, 82], "init": [31, 35, 83], "no_grad": [31, 35, 82, 88], "init_weight": [31, 35], "linear": [31, 35, 79, 82, 93], "fill_": [31, 35], "net": [31, 35, 74, 80, 82], "in_featur": [31, 35], "out_featur": [31, 35], "bia": [31, 35, 82], "tensor": [31, 32, 35, 74, 79, 82, 88, 93], "requires_grad": [31, 35], "bfloat16": [31, 33, 35], "cast": [31, 35, 74], "buffer": [31, 33, 35], "datatyp": [31, 35], "member": [31, 35, 41, 75, 76], "xdoctest": [31, 35], "undefin": [31, 35], "var": [31, 35], "buf": [31, 35], "20l": [31, 35], "1l": [31, 35], "5l": [31, 35], "call_super_init": [31, 33, 35], "immedi": [31, 35, 88], "compil": [31, 33, 35, 49], "cpu": [31, 33, 35, 36, 74, 82], "move": [31, 35, 41, 73, 80], "cuda": [31, 33, 35, 74, 82], "devic": [31, 35, 74, 82], "gpu": [31, 35, 74, 79, 93], "live": [31, 35], "copi": [31, 35, 62, 74, 75, 76, 78, 81, 86, 89, 90, 92], "doubl": [31, 33, 35], "dump_patch": [31, 33, 35], "eval": [31, 33, 35, 82, 86, 88], "dropout": [31, 35], "batchnorm": [31, 35], "grad": [31, 35], "extra_repr": [31, 33, 35], "line": [31, 35, 72, 75, 80, 85, 88, 94], "get_buff": [31, 33, 35], "target": [31, 32, 35, 62, 63, 88, 90], "throw": [31, 35], "get_submodul": [31, 33, 35], "explan": [31, 35], "fulli": [31, 35, 49, 81], "qualifi": [31, 35], "referenc": [31, 35], "attributeerror": [31, 35], "invalid": [31, 35, 79], "resolv": [31, 35, 94], "get_extra_st": [31, 33, 35], "state_dict": [31, 33, 35], "set_extra_st": [31, 33, 35], "build": [31, 35, 82, 91], "picklabl": [31, 35], "serial": [31, 35], "backward": [31, 35, 82], "break": [31, 35, 82, 87], "pickl": [31, 35, 87], "get_paramet": [31, 33, 35], "let": [31, 35, 59, 60, 74, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "net_b": [31, 35], "net_c": [31, 35], "conv": [31, 35], "conv2d": [31, 35, 82], "16": [31, 35, 41, 66, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "33": [31, 35, 80, 87, 91], "kernel_s": [31, 35], "stride": [31, 35], "200": [31, 35, 60, 80, 87, 94], "diagram": [31, 35, 89], "degre": [31, 35, 90], "queri": [31, 35, 76, 81, 82, 86], "named_modul": [31, 33, 35], "o": [31, 35, 43, 44, 74, 75, 76, 80, 81, 83, 86, 87, 94], "transit": [31, 35], "ipu": [31, 33, 35], "load_state_dict": [31, 33, 35], "strict": [31, 35, 41], "persist": [31, 35], "strictli": [31, 35], "inplac": [31, 35, 85], "preserv": [31, 35, 45], "namedtupl": [31, 35], "missing_kei": [31, 35], "unexpected_kei": [31, 35], "runtimeerror": [31, 35], "idx": [31, 35, 45, 46, 58, 75, 81, 82, 83, 85, 87, 88], "named_buff": [31, 33, 35], "prefix": [31, 35, 74, 94], "remove_dupl": [31, 35], "prepend": [31, 35], "running_var": [31, 35], "named_children": [31, 33, 35], "conv4": [31, 35], "conv5": [31, 35], "memo": [31, 35], "named_paramet": [31, 33, 35], "register_backward_hook": [31, 33, 35], "deprec": [31, 35, 38, 74, 79, 81, 93], "favor": [31, 35], "register_full_backward_hook": [31, 33, 35], "removablehandl": [31, 35], "register_buff": [31, 33, 35], "running_mean": [31, 35], "register_forward_hook": [31, 33, 35], "with_kwarg": [31, 35], "always_cal": [31, 35], "won": [31, 35, 75, 76, 81, 86], "possibli": [31, 35, 78, 92], "fire": [31, 35, 80], "register_module_forward_hook": [31, 35], "regardless": [31, 35, 75, 76], "register_forward_pre_hook": [31, 33, 35], "And": [31, 35], "forward_pr": [31, 35], "register_module_forward_pre_hook": [31, 35], "gradient": [31, 35, 78, 82, 90], "respect": [31, 35, 55, 58, 83, 87], "grad_input": [31, 35], "grad_output": [31, 35], "technic": [31, 35], "caller": [31, 35], "register_module_full_backward_hook": [31, 35], "register_full_backward_pre_hook": [31, 33, 35], "backward_pr": [31, 35], "register_module_full_backward_pre_hook": [31, 35], "register_load_state_dict_post_hook": [31, 33, 35], "post": [31, 35], "incompatible_kei": [31, 35], "modif": [31, 35], "thrown": [31, 35], "register_modul": [31, 33, 35], "register_paramet": [31, 33, 35], "register_state_dict_pre_hook": [31, 33, 35], "keep_var": [31, 35], "requires_grad_": [31, 33, 35], "autograd": [31, 35], "freez": [31, 35, 74, 79, 93], "finetun": [31, 35], "gan": [31, 35], "share_memori": [31, 33, 35], "share_memory_": [31, 35], "destin": [31, 35], "shallow": [31, 35], "releas": [31, 35, 73, 74, 81], "design": [31, 35], "ordereddict": [31, 35], "detach": [31, 35, 82], "non_block": [31, 35], "memory_format": [31, 35], "channels_last": [31, 35], "Its": [31, 35, 41, 51, 57], "complex": [31, 35, 74], "integr": [31, 35, 72], "asynchron": [31, 35], "host": [31, 35], "pin": [31, 35, 79, 80, 93], "desir": [31, 35, 44, 58], "4d": [31, 35], "ignore_w": [31, 35], "determinist": [31, 35, 74], "1913": [31, 35], "3420": [31, 35], "5113": [31, 35], "2325": [31, 35], "env": [31, 35], "torch_doctest_cuda1": [31, 35], "gpu1": [31, 35], "1914": [31, 35], "5112": [31, 35], "2324": [31, 35], "float16": [31, 35], "cdoubl": [31, 35], "3741": [31, 35], "2382": [31, 35], "5593": [31, 35], "4443": [31, 35], "complex128": [31, 35], "6122": [31, 35], "1150": [31, 35], "to_empti": [31, 33, 35], "storag": [31, 35, 79, 93], "dst_type": [31, 35], "xpu": [31, 33, 35], "zero_grad": [31, 33, 35, 82], "set_to_non": [31, 35], "reset": [31, 35], "context": [31, 35, 87], "noisili": [32, 83], "han": 32, "2018": 32, "cifar_cnn": [32, 33], "loss_coteach": [32, 33], "y_1": 32, "y_2": 32, "forget_r": 32, "class_weight": 32, "logit": [32, 49, 82], "decim": [32, 45], "quickli": [32, 74, 78, 79, 81, 82, 86, 88, 91, 92, 94], "forget": [32, 41, 94], "rate_schedul": 32, "epoch": [32, 33, 35, 81, 82], "initialize_lr_schedul": [32, 33], "lr": [32, 33, 35], "001": [32, 60, 81], "250": [32, 75, 76, 83, 87, 94], "epoch_decay_start": 32, "80": [32, 78, 82, 86, 90, 91, 92], "schedul": 32, "adjust": [32, 36, 54, 59, 60, 72, 83], "beta": 32, "adam": 32, "adjust_learning_r": [32, 33], "alpha_plan": 32, "beta1_plan": 32, "forget_rate_schedul": [32, 33], "num_gradu": 32, "expon": 32, "tell": [32, 79, 82, 83, 93], "train_load": [32, 35], "model1": [32, 83], "optimizer1": 32, "model2": [32, 83], "optimizer2": 32, "dataload": [32, 82, 88], "parser": 32, "parse_arg": 32, "num_iter_per_epoch": 32, "print_freq": 32, "topk": 32, "top1": 32, "top5": 32, "test_load": 32, "offici": [33, 48, 94], "wish": [33, 48, 88, 91, 94], "adj_confident_thresholds_shar": [33, 34], "labels_shar": [33, 34], "pred_probs_shar": [33, 34], "labelinspector": [33, 34, 81], "get_num_issu": [33, 34], "get_quality_scor": [33, 34], "update_confident_threshold": [33, 34], "score_label_qu": [33, 34], "split_arr": [33, 34], "mnist_pytorch": 33, "get_mnist_dataset": [33, 35], "get_sklearn_digits_dataset": [33, 35], "simplenet": [33, 35], "batch_siz": [33, 34, 35, 64, 66, 81, 82, 88, 91], "log_interv": [33, 35], "momentum": [33, 35], "no_cuda": [33, 35], "test_batch_s": [33, 35, 82], "loader": [33, 35, 82], "set_predict_proba_request": [33, 35], "set_predict_request": [33, 35], "coteach": [33, 73], "mini": [34, 64, 66, 81], "low_self_confid": [34, 36, 52], "self_confid": [34, 36, 37, 41, 52, 54, 60, 68, 70, 81, 83, 92, 93], "conveni": [34, 74, 79, 93], "script": 34, "labels_fil": [34, 81], "pred_probs_fil": [34, 81], "quality_score_kwarg": 34, "num_issue_kwarg": 34, "return_mask": 34, "variant": [34, 50, 91], "read": [34, 38, 76, 81, 83, 88, 94], "zarr": [34, 81], "memmap": [34, 91], "pythonspe": 34, "mmap": [34, 81], "hdf5": 34, "further": [34, 51, 52, 54, 57, 58, 66, 67, 74, 81], "yourfil": 34, "npy": [34, 80, 81, 91], "mmap_mod": [34, 91], "tip": [34, 36, 49, 81], "save_arrai": 34, "your_arrai": 34, "disk": [34, 80, 81], "npz": [34, 94], "maxim": [34, 50, 64, 66, 91], "multiprocess": [34, 36, 52, 64, 66, 81, 82], "linux": [34, 64, 66], "physic": [34, 36, 64, 66, 87], "psutil": [34, 36, 64, 66], "labels_arrai": [34, 46], "predprob": 34, "pred_probs_arrai": 34, "back": [34, 58, 75, 81, 87, 88], "store_result": 34, "becom": [34, 88], "verifi": [34, 81, 85, 88], "long": [34, 50, 59, 85], "enough": [34, 45, 81], "chunk": [34, 89], "ram": [34, 80], "faster": [34, 59, 62, 64, 66, 81, 83], "end_index": 34, "labels_batch": 34, "pred_probs_batch": 34, "batch_result": 34, "indices_of_examples_with_issu": [34, 81], "shortcut": 34, "encount": [34, 36, 64], "1000": [34, 74, 79, 81, 88], "aggreg": [34, 37, 41, 50, 54, 57, 60, 70, 81, 83, 85], "fetch": [34, 74, 76], "seen": [34, 81, 88, 94], "far": [34, 50], "label_quality_scor": [34, 54, 57, 60, 63, 83, 87, 90], "method1": 34, "method2": 34, "normalized_margin": [34, 36, 37, 41, 52, 54, 60, 68, 70], "low_normalized_margin": [34, 36, 52], "issue_indic": [34, 57, 82], "update_num_issu": 34, "arr": [34, 81], "chunksiz": 34, "convnet": 35, "bespok": [35, 49], "download": [35, 74, 81, 88], "mnist": [35, 72, 74, 80], "handwritten": 35, "digit": [35, 74, 80], "last": [35, 41, 55, 58, 75, 76, 81, 85, 87, 94], "sklearn_digits_test_s": 35, "hard": [35, 80, 88], "64": [35, 78, 82, 83, 87, 91, 92, 94], "01": [35, 60, 62, 74, 82, 83, 86, 87, 88, 91], "templat": 35, "flexibli": 35, "among": [35, 50, 83], "test_set": 35, "Be": 35, "overrid": 35, "train_idx": [35, 45, 88], "train_label": [35, 88, 93], "scikit": [35, 45, 59, 72, 74, 75, 76, 78, 79, 81, 84, 90, 93], "encourag": [36, 52, 60, 63], "multilabel_classif": [36, 51, 52, 54, 60, 81], "pred_probs_by_class": 36, "prune_count_matrix_col": 36, "rank_by_kwarg": [36, 52, 60, 83], "num_to_remove_per_class": [36, 52], "bad": [36, 52, 57, 60, 79, 81, 93], "seem": [36, 83, 86], "aren": 36, "confidence_weighted_entropi": [36, 37, 41, 52, 54, 60, 68, 70], "label_issues_idx": [36, 60], "entropi": [36, 38, 40, 41, 59, 60], "prune_by_class": [36, 52, 83], "predicted_neq_given": [36, 52, 83], "prune_counts_matrix": 36, "smallest": [36, 60], "unus": 36, "number_of_mislabeled_examples_in_class_k": 36, "delet": [36, 72, 81, 93], "thread": [36, 52], "window": [36, 74, 80], "shorter": [36, 55], "find_predicted_neq_given": 36, "find_label_issues_using_argmax_confusion_matrix": 36, "remove_noise_from_class": [37, 45], "clip_noise_r": [37, 45], "clip_valu": [37, 45], "value_count": [37, 45, 81], "value_counts_fill_missing_class": [37, 45], "get_missing_class": [37, 45], "round_preserving_sum": [37, 45], "round_preserving_row_tot": [37, 45], "estimate_pu_f1": [37, 45], "confusion_matrix": [37, 45], "print_square_matrix": [37, 45], "print_noise_matrix": [37, 45, 83], "print_inverse_noise_matrix": [37, 45], "print_joint_matrix": [37, 45, 83], "compress_int_arrai": [37, 45], "train_val_split": [37, 45], "subset_x_i": [37, 45], "subset_label": [37, 45], "subset_data": [37, 45], "extract_indices_tf": [37, 45], "unshuffle_tensorflow_dataset": [37, 45], "is_torch_dataset": [37, 45], "is_tensorflow_dataset": [37, 45], "csr_vstack": [37, 45], "append_extra_datapoint": [37, 45], "get_num_class": [37, 45], "num_unique_class": [37, 45], "get_unique_class": [37, 45], "format_label": [37, 45], "smart_display_datafram": [37, 45], "force_two_dimens": [37, 45], "latent_algebra": [37, 73], "compute_ps_py_inv_noise_matrix": [37, 39], "compute_py_inv_noise_matrix": [37, 39], "compute_inv_noise_matrix": [37, 39], "compute_noise_matrix_from_invers": [37, 39], "compute_pi": [37, 39], "compute_pyx": [37, 39], "label_quality_util": 37, "get_normalized_entropi": [37, 38], "multilabel_util": [37, 86], "stack_compl": [37, 42], "get_onehot_num_class": [37, 42], "int2onehot": [37, 42, 86], "onehot2int": [37, 42, 86], "multilabel_scor": [37, 54], "classlabelscor": [37, 41], "from_str": [37, 41], "__contains__": [37, 41], "__getitem__": [37, 41], "__iter__": [37, 41], "__len__": [37, 41], "exponential_moving_averag": [37, 41, 54], "softmin": [37, 41, 54, 57, 66, 70], "possible_method": [37, 41], "multilabelscor": [37, 41], "get_class_label_quality_scor": [37, 41], "multilabel_pi": [37, 41], "get_cross_validated_multilabel_pred_prob": [37, 41], "transform_distances_to_scor": [37, 43], "token_classification_util": [37, 94], "get_sent": [37, 44, 94], "filter_sent": [37, 44, 94], "process_token": [37, 44], "merge_prob": [37, 44], "color_sent": [37, 44], "assert_valid_input": [37, 46], "assert_valid_class_label": [37, 46], "assert_nonempty_input": [37, 46], "assert_indexing_work": [37, 46], "labels_to_arrai": [37, 46], "labels_to_list_multilabel": [37, 46], "min_allowed_prob": 38, "wikipedia": 38, "activ": [38, 40, 50, 72, 85], "towardsdatasci": 38, "cheatsheet": 38, "ec57bc067c0b": 38, "clip": [38, 45, 74], "behav": 38, "unnecessari": [38, 81], "slightli": [38, 92, 93], "interv": [38, 41, 88], "herein": 39, "inexact": 39, "cours": 39, "propag": 39, "throughout": [39, 45, 62, 74, 85, 91, 94], "easili": [39, 73, 74, 76, 78, 79, 83, 85, 86, 88, 89, 90, 91, 92, 93], "increas": [39, 57, 59, 60, 74, 75, 81, 85, 86, 94], "dot": [39, 70, 81], "true_labels_class_count": 39, "pyx": 39, "multiannot": 40, "assert_valid_inputs_multiannot": 40, "labels_multiannot": [40, 50], "ensembl": [40, 41, 50, 60, 78, 81, 86, 88, 90, 92], "allow_single_label": 40, "annotator_id": 40, "assert_valid_pred_prob": 40, "pred_probs_unlabel": [40, 50], "format_multiannotator_label": [40, 50, 85], "lexicograph": [40, 45], "formatted_label": [40, 45], "old": [40, 45, 73, 74, 80], "check_consensus_label_class": 40, "consensus_label": [40, 50, 85], "consensus_method": [40, 50], "consensu": [40, 50, 72, 84, 94], "establish": [40, 90, 93], "compute_soft_cross_entropi": 40, "soft": [40, 80], "find_best_temp_scal": 40, "coarse_search_rang": [40, 62, 81], "fine_search_s": [40, 62, 81], "temperatur": [40, 41, 57, 66, 70], "scale": [40, 43, 80, 81, 88, 91, 92], "factor": [40, 41, 43, 64, 66], "minim": [40, 57, 88], "temp_scale_pred_prob": 40, "temp": 40, "sharpen": [40, 80], "smoothen": 40, "qualnam": 41, "boundari": [41, 75, 76], "enum": 41, "get_normalized_margin_for_each_label": [41, 60], "get_confidence_weighted_entropy_for_each_label": [41, 60], "75": [41, 75, 76, 80, 85, 86, 87, 90, 91, 94], "scorer": 41, "typeerror": 41, "12": [41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "alias": 41, "alpha": [41, 54, 57, 75, 76, 83, 86, 90], "exponenti": 41, "ema": 41, "s_1": 41, "s_k": 41, "ema_k": 41, "accord": [41, 52, 78, 79, 83, 94], "formula": [41, 43], "_t": 41, "cdot": 41, "s_t": 41, "qquad": 41, "leq": 41, "_1": 41, "give": [41, 60, 83, 85, 91], "recent": [41, 94], "success": 41, "previou": [41, 81, 82, 87], "discount": 41, "s_ema": 41, "175": [41, 82, 83, 87], "underflow": 41, "nan": [41, 50, 78, 85, 90, 92], "aggregated_scor": 41, "base_scor": 41, "base_scorer_kwarg": 41, "aggregator_kwarg": [41, 54], "n_sampl": 41, "n_label": 41, "binari": [41, 45, 52, 54, 83, 94], "worst": [41, 85], "class_label_quality_scor": 41, "42": [41, 79, 80, 82, 87, 88, 91, 94], "452": 41, "new_scor": 41, "575": 41, "get_label_quality_scores_per_class": [41, 53, 54], "ml_scorer": 41, "binar": [41, 42], "reformat": [41, 74], "wider": 41, "splitter": 41, "kfold": [41, 82], "onevsrestclassifi": [41, 86], "randomforestclassifi": [41, 83, 86], "n_split": [41, 76, 82, 86], "pred_prob_slic": 42, "onehot": 42, "hot": [42, 52, 58, 64, 67, 78, 80, 81, 90, 91, 92], "onehot_matrix": 42, "avg_dist": 43, "scaling_factor": 43, "exp": [43, 59, 60, 75], "dt": 43, "right": [43, 55, 58, 79, 86, 87, 88, 93], "strength": [43, 58], "pronounc": 43, "differenti": 43, "ly": 43, "rule": [43, 44, 80], "thumb": 43, "ood_features_scor": [43, 59, 88], "88988177": 43, "80519832": 43, "token_classif": [44, 68, 70, 71, 81], "sentenc": [44, 68, 70, 71, 79, 93], "readabl": 44, "lambda": [44, 74, 75, 81, 85], "long_sent": 44, "headlin": 44, "charact": [44, 45], "s1": 44, "s2": 44, "processed_token": 44, "alecnlcb": 44, "entiti": [44, 72, 81, 94], "mapped_ent": 44, "unique_ident": 44, "loc": [44, 75, 76, 82, 94], "nbitbas": [44, 54], "probs_merg": 44, "55": [44, 80, 82, 87, 91], "0125": [44, 70], "0375": 44, "075": 44, "025": 44, "color": [44, 67, 75, 76, 78, 83, 86, 88, 90, 91], "red": [44, 58, 75, 76, 80, 83, 86, 87, 88, 91], "colored_sent": 44, "termcolor": 44, "31msentenc": 44, "0m": 44, "ancillari": 45, "class_without_nois": 45, "any_other_class": 45, "choos": [45, 60, 78, 81, 83, 90, 92], "tradition": 45, "new_sum": 45, "fill": 45, "wherea": [45, 52, 89], "come": [45, 75, 76, 81, 82, 88, 91], "major": [45, 50, 73, 82, 88], "versu": [45, 83], "obviou": 45, "cgdeboer": 45, "iteround": 45, "reach": 45, "prob_s_eq_1": 45, "claesen": 45, "f1": [45, 58, 79, 83], "BE": 45, "left_nam": 45, "top_nam": 45, "titl": [45, 75, 76, 83, 86, 88], "short_titl": 45, "round_plac": 45, "pretti": [45, 83], "joint_matrix": 45, "num_possible_valu": 45, "holdout_idx": 45, "extract": [45, 59, 74, 79, 85, 88, 91, 93], "allow_shuffl": 45, "turn": [45, 72, 87], "shuffledataset": 45, "histori": 45, "pre_x": 45, "buffer_s": 45, "csr_matric": 45, "append": [45, 74, 80, 81, 82, 83, 85, 86, 87, 88, 94], "bottom": [45, 55, 58, 87], "to_data": 45, "from_data": 45, "taken": 45, "label_matrix": 45, "canon": 45, "displai": [45, 58, 67, 71, 74, 79, 83, 93, 94], "jupyt": [45, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "notebook": [45, 50, 74, 76, 80, 81, 83, 85, 86, 87, 91, 94], "consol": 45, "html": [45, 55, 58, 59, 78, 81, 83], "allow_missing_class": 46, "allow_one_class": 46, "length_x": 46, "labellik": 46, "labels_list": [46, 52], "keraswrappermodel": [48, 49, 72], "keraswrappersequenti": [48, 49], "tf": [49, 74], "legaci": 49, "lack": 49, "keraswrapp": 49, "huggingface_keras_imdb": 49, "unit": [49, 94], "model_kwarg": [49, 62], "compile_kwarg": 49, "sparsecategoricalcrossentropi": 49, "layer": [49, 74, 79, 88, 93], "dens": 49, "my_keras_model": 49, "from_logit": 49, "declar": 49, "apply_softmax": 49, "analysi": 50, "analyz": [50, 72, 83, 85, 86], "get_label_quality_multiannot": [50, 85], "vote": 50, "crowdsourc": [50, 72, 85], "dawid": [50, 85], "skene": [50, 85], "analog": [50, 80, 85], "chosen": [50, 60, 81, 85], "crowdlab": [50, 85], "unlabel": [50, 78, 79, 82, 85, 88, 91], "decid": [50, 79, 80, 85, 90, 93, 94], "get_active_learning_scor": [50, 85], "activelab": [50, 85], "priorit": [50, 57, 87, 91, 94], "showcas": 50, "main": 50, "best_qual": 50, "quality_method": 50, "calibrate_prob": 50, "return_detailed_qu": 50, "return_annotator_stat": 50, "return_weight": 50, "label_quality_score_kwarg": 50, "necessarili": [50, 58, 79, 83], "did": [50, 51, 74, 78, 83, 85, 90, 92, 93], "majority_vot": 50, "ti": 50, "broken": [50, 58, 80], "highest": [50, 58, 75, 82, 89], "0th": 50, "consensus_quality_scor": [50, 85], "annotator_agr": [50, 85], "reman": 50, "1st": 50, "2nd": [50, 64], "3rd": 50, "consensus_label_suffix": 50, "consensus_quality_score_suffix": 50, "suffix": 50, "emsembl": 50, "weigh": [50, 80], "agreement": [50, 85], "agre": 50, "prevent": [50, 81], "overconfid": [50, 89], "wrong": [50, 55, 57, 73, 75, 76, 79, 81, 83, 87, 93], "detailed_label_qu": [50, 85], "annotator_stat": [50, 85], "model_weight": 50, "annotator_weight": 50, "warn": [50, 75, 76, 81], "labels_info": 50, "num_annot": [50, 85], "deriv": [50, 85], "quality_annotator_1": 50, "quality_annotator_2": 50, "quality_annotator_m": 50, "annotator_qu": [50, 85], "num_examples_label": [50, 85], "agreement_with_consensu": [50, 85], "worst_class": [50, 85], "trustworthi": [50, 85, 90], "get_label_quality_multiannotator_ensembl": 50, "weigtht": 50, "budget": 50, "retrain": [50, 90, 93], "active_learning_scor": 50, "improv": [50, 76, 80, 81, 82, 83, 90, 91, 92, 93], "active_learning_scores_unlabel": 50, "get_active_learning_scores_ensembl": 50, "henc": [50, 74, 75, 85], "get_majority_vote_label": [50, 85], "event": 50, "lastli": [50, 78], "convert_long_to_wide_dataset": 50, "labels_multiannotator_long": 50, "wide": [50, 74, 92, 93], "suitabl": [50, 78, 92], "labels_multiannotator_wid": 50, "common_multilabel_issu": [51, 53], "mutual": [51, 86], "exclus": [51, 86], "rank_classes_by_multilabel_qu": [51, 53], "overall_multilabel_health_scor": [51, 53], "multilabel_health_summari": [51, 53], "classes_by_multilabel_qu": 51, "inner": [52, 66], "find_multilabel_issues_per_class": [52, 53], "per_class_label_issu": 52, "label_issues_list": 52, "pred_probs_list": [52, 60, 82, 83], "anim": [53, 88], "rat": 53, "predat": 53, "pet": 53, "reptil": 53, "manner": [54, 85, 90, 92, 93], "box": [55, 57, 58, 80, 87], "object_detect": [55, 57, 58, 87], "return_indices_ranked_by_scor": [55, 87], "overlapping_label_check": [55, 57], "suboptim": [55, 57], "locat": [55, 57, 87, 91, 94], "bbox": [55, 58, 87], "image_nam": [55, 58], "y1": [55, 58, 87], "y2": [55, 58, 87], "later": [55, 58, 59, 93, 94], "corner": [55, 58, 87], "xyxi": [55, 58, 87], "io": [55, 58, 74, 80], "keras_cv": [55, 58], "bounding_box": [55, 58, 87], "detectron": [55, 58, 87], "detectron2": [55, 58, 87], "readthedoc": [55, 58], "en": [55, 58], "latest": [55, 58], "visual": [55, 56, 58, 75, 76, 82, 90, 92, 94], "draw_box": [55, 58], "mmdetect": [55, 58, 87], "swap": [55, 57, 67, 71], "penal": [55, 57], "concern": [55, 57, 72, 76], "issues_from_scor": [56, 57, 65, 66, 67, 69, 70, 71, 87, 91, 94], "compute_overlooked_box_scor": [56, 57], "compute_badloc_box_scor": [56, 57], "compute_swap_box_scor": [56, 57], "pool_box_scores_per_imag": [56, 57], "object_counts_per_imag": [56, 58, 87], "bounding_box_size_distribut": [56, 58, 87], "class_label_distribut": [56, 58, 87], "get_sorted_bbox_count_idx": [56, 58], "plot_class_size_distribut": [56, 58], "plot_class_distribut": [56, 58], "get_average_per_class_confusion_matrix": [56, 58], "calculate_per_class_metr": [56, 58], "aggregation_weight": 57, "imperfect": [57, 81], "chose": [57, 85, 87], "imperfectli": [57, 87], "dirti": [57, 60, 63, 90], "subtyp": 57, "badloc": 57, "nonneg": 57, "high_probability_threshold": 57, "auxiliary_input": [57, 58], "vari": [57, 76], "iou": [57, 58], "heavili": 57, "auxiliarytypesdict": 57, "pred_label": [57, 93], "pred_label_prob": 57, "pred_bbox": 57, "lab_label": 57, "lab_bbox": 57, "similarity_matrix": 57, "min_possible_similar": 57, "scores_overlook": 57, "low_probability_threshold": 57, "scores_badloc": 57, "accident": [57, 78, 79, 81, 93], "scores_swap": 57, "box_scor": 57, "image_scor": [57, 66, 91], "discov": [58, 76, 94], "auxiliari": [58, 88, 91], "_get_valid_inputs_for_compute_scor": 58, "object_count": 58, "down": 58, "bbox_siz": 58, "class_distribut": 58, "plot": [58, 75, 76, 83, 86, 88, 90, 91], "sorted_idx": [58, 88], "class_to_show": 58, "hidden": [58, 88], "max_class_to_show": 58, "prediction_threshold": 58, "overlai": [58, 87], "figsiz": [58, 75, 76, 82, 83, 86, 88], "save_path": [58, 87], "blue": [58, 80, 83, 87], "overlaid": 58, "side": [58, 80, 87], "figur": [58, 83, 86, 88, 90], "extens": [58, 83, 85], "png": [58, 87], "pdf": [58, 59], "svg": 58, "matplotlib": [58, 75, 76, 82, 83, 86, 87, 88, 90], "num_proc": [58, 82], "intersect": [58, 81], "tp": 58, "fp": 58, "ground": [58, 80, 83, 85, 90], "truth": [58, 83, 85, 90], "bias": 58, "avg_metr": 58, "distionari": 58, "95": [58, 68, 70, 78, 80, 83, 90, 91], "per_class_metr": 58, "Of": 59, "li": 59, "smaller": [59, 86, 87], "find_top_issu": [59, 60, 88], "reli": [59, 74, 75, 76, 79, 87, 88, 93], "dist_metr": 59, "dim": [59, 82, 91], "subtract": [59, 60], "renorm": [59, 60, 81], "least_confid": 59, "sum_": 59, "log": [59, 60, 73], "softmax": [59, 66, 70, 82], "literatur": 59, "gen": 59, "liu": 59, "lochman": 59, "zach": 59, "openaccess": 59, "thecvf": 59, "content": [59, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "cvpr2023": 59, "liu_gen_pushing_the_limits_of_softmax": 59, "based_out": 59, "distribution_detection_cvpr_2023_pap": 59, "fit_scor": [59, 88], "ood_predictions_scor": 59, "pretrain": [59, 74, 79, 88, 93], "adjust_confident_threshold": 59, "probabilist": [59, 74, 75, 76, 78, 79, 88, 89, 92], "order_label_issu": [60, 73], "whichev": [60, 89], "argsort": [60, 79, 82, 83, 87, 88, 90, 93], "max_": 60, "get_label_quality_ensemble_scor": [60, 81, 83], "weight_ensemble_members_bi": 60, "custom_weight": 60, "log_loss_search_t_valu": 60, "0001": [60, 80], "scheme": 60, "log_loss_search": 60, "log_loss": [60, 79], "1e0": 60, "1e1": 60, "1e2": 60, "2e2": 60, "quality_scor": [60, 88], "forth": 60, "top_issue_indic": 60, "rank_bi": [60, 73], "weird": [60, 71], "minu": 60, "prob_label": 60, "max_prob_not_label": 60, "idea": [60, 87], "AND": [60, 79], "get_epistemic_uncertainti": [61, 62], "get_aleatoric_uncertainti": [61, 62], "corrupt": [62, 90], "linearregress": [62, 81, 90], "y_with_nois": 62, "n_boot": [62, 81], "include_aleatoric_uncertainti": [62, 81], "sole": [62, 75, 85, 88, 92], "bootstrap": [62, 81, 90], "resampl": [62, 74, 81], "epistem": [62, 81, 88, 90], "aleator": [62, 81, 90], "model_final_kwarg": 62, "coars": 62, "thorough": [62, 81], "fine": [62, 74, 79, 88, 93], "grain": 62, "grid": 62, "varianc": [62, 83], "epistemic_uncertainti": 62, "residu": [62, 63, 81], "deviat": [62, 87, 90], "ie": 62, "aleatoric_uncertainti": 62, "outr": 63, "contin": 63, "raw": [63, 72, 73, 76, 80, 82, 85, 87, 88], "aka": [63, 74, 83, 87, 94], "00323821": 63, "33692597": 63, "00191686": 63, "semant": [64, 66, 67, 84], "pixel": [64, 66, 67, 88, 91], "h": [64, 66, 67, 91], "height": [64, 66, 67, 91], "w": [64, 66, 67, 91], "width": [64, 66, 67, 91], "labels_one_hot": [64, 67, 91], "stream": [64, 88, 94], "downsampl": [64, 66, 91], "shrink": [64, 66], "divis": [64, 66, 75], "display_issu": [65, 66, 67, 68, 69, 70, 71, 91, 94], "common_label_issu": [65, 67, 69, 71, 91, 94], "filter_by_class": [65, 67, 91], "segmant": [66, 67], "num_pixel_issu": [66, 91], "product": [66, 81, 82], "pixel_scor": [66, 91], "highlight": [67, 71, 75, 76, 78, 87, 91], "enter": 67, "legend": [67, 75, 76, 86, 87, 90, 91], "colormap": 67, "background": 67, "person": [67, 81, 87, 91, 94], "ambigu": [67, 71, 74, 79, 80, 83, 93, 94], "systemat": [67, 71, 85], "misunderstood": [67, 71], "issues_df": [67, 82], "class_index": 67, "issues_subset": [67, 71], "filter_by_token": [69, 71, 94], "token_score_method": 70, "sentence_score_method": 70, "sentence_score_kwarg": 70, "compris": [70, 71], "token_scor": [70, 94], "converg": 70, "toward": 70, "_softmin_sentence_scor": 70, "sentence_scor": [70, 94], "token_info": 70, "70": [70, 78, 88, 91], "02": [70, 75, 76, 82, 83, 87, 88, 91, 94], "03": [70, 78, 80, 83, 87, 91, 94], "04": [70, 78, 82, 87, 91, 94], "08": [70, 83, 87, 88, 91, 94], "commonli": [71, 73, 75, 76, 86, 94], "But": [71, 79, 83, 94], "restrict": [71, 81], "reliabl": [72, 74, 81, 85, 91, 92], "thousand": 72, "imagenet": [72, 80], "popular": [72, 85, 87], "centric": [72, 78, 79, 82, 84], "capabl": 72, "minut": [72, 74, 78, 79, 80, 85, 86, 87, 90, 91, 92, 93, 94], "conda": 72, "feature_embed": [72, 88], "Then": [72, 81, 82, 90, 92, 93], "your_dataset": [72, 74, 75, 76, 78, 79, 81, 82], "column_name_of_label": [72, 74, 75, 76, 78, 79, 82], "plagu": [72, 76], "untrain": 72, "\u30c4": 72, "label_issues_info": [72, 76], "sklearn_compatible_model": 72, "framework": [72, 86, 87], "complianc": 72, "tag": [72, 86, 94], "sequenc": 72, "recognit": [72, 74, 81, 94], "train_data": [72, 88, 90, 92, 93], "gotten": 72, "test_data": [72, 83, 86, 88, 90, 92, 93], "deal": [72, 76], "tutori": [72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "feel": [72, 74, 76, 81], "free": [72, 74, 76, 78, 79, 81, 82, 83], "ask": [72, 81], "slack": [72, 81], "project": [72, 90], "welcom": 72, "commun": [72, 81], "guidelin": [72, 87], "piec": 72, "studio": [72, 76, 78, 79, 81, 82], "platform": [72, 78, 79, 81, 82], "automl": [72, 81], "foundat": 72, "smart": [72, 78, 79, 81, 82], "edit": [72, 81], "easier": [72, 83], "unreli": [72, 74, 78, 79, 92], "link": [72, 74, 80, 87], "older": 73, "outlin": 73, "substitut": 73, "v2": [73, 78, 92], "get_noise_indic": 73, "psx": 73, "sorted_index_method": 73, "order_label_error": 73, "label_errors_bool": 73, "latent_estim": 73, "num_label_error": 73, "learningwithnoisylabel": 73, "neatli": 73, "organ": [73, 78, 80, 92, 94], "reorgan": 73, "baseline_method": 73, "incorpor": [73, 83], "research": [73, 83], "polyplex": 73, "terminologi": 73, "label_error": 73, "quickstart": [74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "spoken": 74, "500": [74, 88, 94], "english": [74, 80], "pronunci": 74, "wav": 74, "huggingfac": [74, 75, 76, 82], "voxceleb": 74, "speech": [74, 94], "your_pred_prob": [74, 75, 76, 78, 79], "tensorflow_io": 74, "huggingface_hub": 74, "branch": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "reproduc": [74, 78, 83, 85], "command": 74, "wget": [74, 87, 91, 94], "navig": 74, "browser": 74, "jakobovski": 74, "archiv": [74, 94], "v1": 74, "tar": [74, 88], "gz": [74, 88], "mkdir": [74, 94], "spoken_digit": 74, "xf": 74, "6_nicolas_32": 74, "data_path": 74, "listdir": 74, "nondeterminist": 74, "file_nam": 74, "endswith": 74, "file_path": 74, "join": [74, 81, 82], "39": [74, 75, 79, 80, 81, 82, 87, 90, 91, 93, 94], "7_george_26": 74, "0_nicolas_24": 74, "0_nicolas_6": 74, "listen": 74, "display_exampl": 74, "click": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "expand": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "pulldown": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "colab": [74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "tfio": 74, "pathlib": 74, "ipython": 74, "load_wav_16k_mono": 74, "filenam": 74, "khz": 74, "file_cont": 74, "read_fil": 74, "sample_r": 74, "decode_wav": 74, "desired_channel": 74, "squeez": 74, "rate_in": 74, "rate_out": 74, "16000": 74, "wav_file_nam": 74, "audio_r": 74, "wav_file_exampl": 74, "plai": [74, 80, 81], "button": 74, "wav_file_name_exampl": 74, "7_jackson_43": 74, "hear": 74, "extractor": 74, "encoderclassifi": 74, "spkrec": 74, "xvect": 74, "feature_extractor": 74, "from_hparam": 74, "run_opt": 74, "uncom": 74, "ffmpeg": 74, "system": [74, 78, 79, 82, 91], "backend": 74, "wav_audio_file_path": 74, "head": [74, 76, 78, 79, 80, 82, 83, 85, 90, 92, 93], "torchaudio": 74, "extract_audio_embed": 74, "emb": [74, 82], "signal": 74, "encode_batch": 74, "embeddings_list": [74, 82], "embeddings_arrai": 74, "opt": [74, 76, 79, 93], "hostedtoolcach": [74, 76, 79, 93], "x64": [74, 76, 79, 93], "lib": [74, 76, 79, 93], "python3": [74, 76, 79, 93], "site": [74, 76, 79, 93], "650": 74, "userwarn": [74, 75, 76, 79, 93], "stft": 74, "return_complex": 74, "view_as_r": 74, "recov": 74, "trigger": 74, "aten": 74, "src": 74, "nativ": 74, "spectralop": 74, "cpp": 74, "863": [74, 93], "_vf": 74, "n_fft": 74, "hop_length": 74, "win_length": 74, "attr": 74, "512": [74, 82], "14": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "196311": 74, "319459": 74, "478975": 74, "2890875": 74, "8170238": 74, "89265": 74, "24": [74, 80, 82, 83, 85, 87, 91], "898056": 74, "256195": 74, "559641": 74, "559721": 74, "62067": 74, "285245": 74, "21": [74, 75, 80, 81, 83, 87, 91, 94], "709627": 74, "5033693": 74, "913803": 74, "819831": 74, "1831515": 74, "208763": 74, "084257": 74, "3210397": 74, "005453": 74, "216152": 74, "478235": 74, "6821785": 74, "053807": 74, "242471": 74, "091424": 74, "78334856": 74, "03954": 74, "23": [74, 80, 82, 83, 87, 91], "569176": 74, "19": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93], "761097": 74, "1258295": 74, "753237": 74, "3508866": 74, "598274": 74, "23712": 74, "2500": 74, "leverag": [74, 79, 81, 83, 85, 93], "tune": [74, 79, 80, 88, 93], "computation": [74, 79, 93], "intens": [74, 79, 93], "held": [74, 78, 79, 80, 87, 88, 89, 92], "straightforward": [74, 78, 92], "benefit": [74, 89, 91, 92], "tol": 74, "num_crossval_fold": [74, 78, 85, 92], "decreas": [74, 81], "never": [74, 83, 86, 88, 89], "accuracy_scor": [74, 79, 83, 92, 93], "cv_accuraci": 74, "9708": 74, "probabilit": [74, 93], "9976": 74, "986": 74, "002161": 74, "176": [74, 80, 83, 86], "002483": 74, "2318": 74, "004411": 74, "1005": 74, "004857": 74, "1871": 74, "007494": 74, "investig": 74, "040587": 74, "999207": 74, "999377": 74, "975220": 74, "999367": 74, "18": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93], "identified_label_issu": [74, 79], "lowest_quality_label": [74, 79, 83, 90, 93], "sort_valu": [74, 76, 78, 79, 81, 82, 83, 85, 86], "516": 74, "1946": 74, "469": 74, "2132": 74, "worth": [74, 83], "iloc": [74, 78, 79, 90, 92, 93], "6_yweweler_25": 74, "7_nicolas_43": 74, "6_theo_27": 74, "6_yweweler_36": 74, "6_yweweler_14": 74, "6_yweweler_35": 74, "6_nicolas_8": 74, "sound": 74, "quit": [74, 88], "22": [74, 75, 80, 82, 83, 86, 87, 88, 91, 94], "blindli": [74, 81, 90, 92, 93], "trust": [74, 81, 83, 85, 89, 90, 92, 93], "underneath": 75, "hood": 75, "alert": 75, "introduct": 75, "mayb": [75, 76, 79], "examin": [75, 76, 78, 87, 92], "your_feature_matrix": [75, 76], "toi": [75, 76, 80, 82, 83, 85], "train_test_split": [75, 76, 88, 92, 93], "inf": [75, 76], "mid": [75, 76], "bins_map": [75, 76], "create_data": [75, 76], "y_bin": [75, 76], "y_i": [75, 76], "y_bin_idx": [75, 76], "y_train": [75, 76, 83, 90], "y_test": [75, 76, 83, 90], "y_train_idx": [75, 76], "y_test_idx": [75, 76], "test_siz": [75, 76, 92, 93], "slide": [75, 76, 80], "decis": [75, 76, 92], "frame": [75, 76], "x_out": [75, 76], "tini": [75, 76], "concaten": [75, 76, 81, 89], "y_out": [75, 76], "y_out_bin": [75, 76], "y_out_bin_idx": [75, 76], "exact_duplicate_idx": [75, 76], "x_duplic": [75, 76], "y_duplic": [75, 76], "y_duplicate_idx": [75, 76], "noisy_labels_idx": [75, 76, 86], "scatter": [75, 76, 83, 86, 90], "black": [75, 76, 80, 90], "cyan": [75, 76], "pyplot": [75, 76, 82, 83, 86, 88, 90], "plt": [75, 76, 82, 83, 86, 88, 90], "plot_data": [75, 76, 83, 86, 90], "fig": [75, 76, 80, 82, 88, 90], "ax": [75, 76, 82, 88, 90], "subplot": [75, 76, 82, 88], "set_titl": [75, 76, 82, 88], "set_xlabel": [75, 76], "x_1": [75, 76], "fontsiz": [75, 76, 82, 83, 86], "set_ylabel": [75, 76], "x_2": [75, 76], "set_xlim": [75, 76], "set_ylim": [75, 76], "linestyl": [75, 76], "circl": [75, 76, 83, 86], "misclassifi": [75, 76], "zip": [75, 76, 82, 87, 94], "label_err": [75, 76], "180": [75, 76, 87], "marker": [75, 76], "facecolor": [75, 76], "edgecolor": [75, 76], "linewidth": [75, 76, 88], "dup": [75, 76], "first_legend": [75, 76], "align": [75, 76], "title_fontproperti": [75, 76], "semibold": [75, 76], "second_legend": [75, 76], "45": [75, 76, 80, 82, 83, 87, 91], "gca": [75, 76], "add_artist": [75, 76], "tight_layout": [75, 76], "ideal": [75, 76], "logist": [75, 76, 79, 85, 88, 93], "remaind": 75, "modal": [75, 76, 81, 85], "132": [75, 76, 83, 87], "9318": 75, "77": [75, 76, 78, 87, 88, 91, 92], "006940": 75, "007830": 75, "40": [75, 76, 79, 80, 82, 91], "014828": 75, "107": [75, 76, 83, 86], "021241": 75, "120": [75, 76, 92], "026407": 75, "notic": [75, 83, 85, 87], "3558": [75, 76], "126": [75, 76, 83, 87], "006636": [75, 76], "130": [75, 76, 94], "012571": [75, 76], "129": [75, 76], "127": [75, 76], "014909": [75, 76], "128": [75, 76, 82], "017443": [75, 76], "6160": [75, 76], "is_near_duplicate_issu": [75, 76, 78, 79, 81, 82, 83], "131": [75, 76, 91], "000000e": [75, 76], "00": [75, 76, 78, 80, 82, 88, 91, 92], "000002": [75, 76], "463180e": [75, 76], "07": [75, 76, 78, 82, 83, 87, 91], "51": [75, 76, 78, 80, 82, 83, 87, 91, 94], "161148": [75, 76], "859087e": [75, 76], "30": [75, 76, 80, 81, 82, 86, 91, 94], "3453": 75, "029542": 75, "031182": 75, "057961": 75, "058244": 75, "home": [75, 76, 79, 80, 93], "runner": [75, 76, 79, 93], "329": [75, 82, 87], "359": 75, "338": 75, "34": [75, 80, 83, 85, 87, 91, 94], "54": [75, 80, 83, 87, 91], "039122": 75, "53": [75, 76, 78, 80, 86, 87, 91, 92], "044598": 75, "105": [75, 87], "105196": 75, "133654": 75, "43": [75, 80, 83, 87, 91], "168033": 75, "125": 75, "101107": 75, "37": [75, 80, 91], "183382": 75, "109": [75, 80, 87], "209259": 75, "211042": 75, "221316": 75, "average_ood_scor": 75, "34530442089193386": 75, "52": [75, 80, 87, 91, 94], "169820": 75, "087324e": 75, "89": [75, 78, 87, 90, 91, 93], "92": [75, 83, 87, 91, 92, 94], "259024": 75, "583757e": 75, "91": [75, 87, 88, 91], "346458": 75, "341292e": 75, "specfi": 75, "new_lab": 75, "scoring_funct": 75, "div": 75, "rem": 75, "inv_scal": 75, "49": [75, 80, 83, 87, 88, 91], "superstitionissuemanag": 75, "unlucki": 75, "superstit": 75, "to_seri": 75, "issues_mask": 75, "summary_scor": 75, "9242": 75, "is_superstition_issu": 75, "superstition_scor": 75, "26": [75, 80, 82, 83, 85, 87, 91], "047581": 75, "090635": 75, "129591": 75, "65": [75, 82, 87, 91, 92, 94], "164840": 75, "demo": [76, 78, 86, 92], "lurk": [76, 82, 83], "_split": 76, "737": 76, "thoroughli": 76, "preprocess": [76, 78, 88, 90, 92, 93], "904": 76, "review": [76, 78, 79, 80, 81, 83, 87, 90, 91, 92, 93, 94], "8561": 76, "001908": 76, "58": [76, 78, 80, 82, 83, 87, 91, 92], "003564": 76, "007331": 76, "008963": 76, "009664": 76, "0227": 76, "is_class_imbalance_issu": 76, "022727": 76, "86": [76, 78, 82, 83, 87, 90, 91, 92], "87": [76, 82, 87, 90, 91, 93], "auto": [76, 80, 81, 90, 92, 93], "conceptu": 76, "856061": 76, "355772": 76, "616034": 76, "821750": 76, "betweeen": 76, "is_null_issu": 76, "is_non_iid_issu": [76, 78, 79, 83], "859131": 76, "417707": 76, "664083": 76, "970324": 76, "816953": 76, "375317": 76, "641516": 76, "890575": 76, "531021": 76, "460593": 76, "601188": 76, "826147": 76, "752808": 76, "321635": 76, "562539": 76, "948362": 76, "090243": 76, "472909": 76, "746763": 76, "878267": 76, "examples_w_issu": [76, 81], "013445": 76, "025184": 76, "026376": 76, "inde": [76, 79], "miscellan": [76, 94], "428571": 76, "111111": 76, "571429": 76, "407407": 76, "592593": 76, "337838": 76, "092593": 76, "662162": 76, "333333": [76, 80], "952381": 76, "666667": 76, "portion": 76, "huge": [76, 83], "worri": [76, 79], "critic": 76, "highli": [76, 82], "sql": [78, 92], "databas": [78, 92], "excel": [78, 92], "parquet": [78, 92], "student": [78, 90, 92, 94], "grade": [78, 90, 92], "900": [78, 90, 92], "exam": [78, 90, 92], "letter": [78, 92, 94], "hundr": [78, 92], "histgradientboostingclassifi": 78, "standardscal": [78, 88, 92], "grades_data": [78, 92], "read_csv": [78, 79, 90, 92, 93], "stud_id": [78, 92], "exam_1": [78, 90, 92], "exam_2": [78, 90, 92], "exam_3": [78, 90, 92], "letter_grad": [78, 92], "f48f73": [78, 92], "0bd4e7": [78, 92], "81": [78, 79, 87, 90, 91, 92, 94], "great": [78, 80, 92], "particip": [78, 92], "cb9d7a": [78, 92], "61": [78, 82, 83, 87, 90, 91, 92], "94": [78, 80, 83, 87, 90, 91, 92], "78": [78, 80, 82, 83, 87, 90, 91, 92], "9acca4": [78, 92], "48": [78, 80, 82, 83, 87, 91, 92, 94], "x_raw": [78, 92], "cat_featur": 78, "x_encod": [78, 92], "get_dummi": [78, 90, 92], "drop_first": [78, 92], "numeric_featur": [78, 92], "scaler": [78, 88, 92], "x_process": [78, 92], "fit_transform": [78, 92], "bring": [78, 79, 82, 85, 90, 92, 93], "byod": [78, 79, 82, 85, 90, 92, 93], "boost": [78, 81, 85, 90], "xgboost": [78, 81, 90], "think": [78, 79, 81, 86, 91, 94], "carefulli": [78, 79, 82, 92], "nonzero": 78, "suspici": [78, 92], "tabl": [78, 80, 85, 92], "358": 78, "294": [78, 87], "46": [78, 80, 83, 87, 91], "941": 78, "7109": 78, "000005": [78, 79], "886": 78, "000059": 78, "709": 78, "000104": 78, "723": 78, "000169": 78, "689": 78, "000181": 78, "3590": 78, "051882e": 78, "683133e": 78, "536582e": 78, "406589e": 78, "324246e": 78, "6165": 78, "582": 78, "185": [78, 80, 87, 94], "187": [78, 80], "27": [78, 80, 82, 83, 87, 91, 94], "898": 78, "637": [78, 92], "0014": [78, 80], "595": 78, "702427": 78, "147": [78, 83, 87], "711186": 78, "157": [78, 83], "721394": 78, "771": 78, "731979": 78, "740335": 78, "0014153602099278074": 78, "issue_result": 78, "000842": 78, "555944": 78, "004374": 78, "sorted_issu": 78, "73": [78, 80, 82, 86, 87, 90, 91], "deserv": 78, "outlier_result": 78, "sorted_outli": 78, "56": [78, 80, 82, 88, 90, 91], "96": [78, 80, 83, 86, 87, 90, 91], "lt": [78, 79, 80, 82, 85, 88, 91], "style": [78, 91], "font": 78, "18px": 78, "ff00ff": 78, "bac": 78, "unintend": [78, 79], "mistak": [78, 79, 82, 92, 93], "duplicate_result": 78, "690": 78, "246": [78, 87], "perhap": [78, 83, 85], "twice": 78, "67": [78, 80, 87, 90, 91], "wari": [78, 79, 81], "super": [78, 79, 82], "intent": [79, 93], "servic": [79, 81, 93], "onlin": [79, 93], "bank": [79, 80, 93], "banking77": [79, 93], "oo": [79, 93], "000": [79, 80, 82, 93, 94], "categori": [79, 82, 93], "scope": [79, 93], "dive": 79, "your_featur": 79, "sentence_transform": [79, 93], "sentencetransform": [79, 93], "payment": [79, 93], "cancel_transf": [79, 93], "transfer": [79, 93], "fund": [79, 93], "cancel": [79, 93], "transact": [79, 93], "my": [79, 93], "revert": [79, 93], "morn": [79, 93], "realis": [79, 93], "yesterdai": [79, 93], "rent": [79, 93], "realli": [79, 85, 91, 93], "tomorrow": [79, 93], "raw_text": [79, 93], "lost_or_stolen_phon": [79, 93], "apple_pay_or_google_pai": [79, 93], "visa_or_mastercard": [79, 93], "beneficiary_not_allow": [79, 93], "card_about_to_expir": [79, 93], "change_pin": [79, 93], "getting_spare_card": [79, 93], "card_payment_fee_charg": [79, 93], "supported_cards_and_curr": [79, 93], "utter": [79, 93], "continu": [79, 81, 82, 85, 87, 90, 92, 93, 94], "suit": [79, 80, 81, 93], "electra": [79, 93], "discrimin": [79, 93], "googl": [79, 93], "text_embed": 79, "No": [79, 81, 93], "google_electra": [79, 93], "pool": [79, 81, 88, 93], "_util": [79, 93], "831": [79, 93], "typedstorag": [79, 93], "untypedstorag": [79, 93], "untyped_storag": [79, 93], "fget": [79, 93], "__get__": [79, 93], "owner": [79, 93], "400": [79, 93], "data_dict": [79, 83, 85], "85": [79, 87, 91], "38": [79, 80, 82, 87, 91], "9710": 79, "981": 79, "974": 79, "000146": 79, "982": [79, 80], "000224": 79, "971": 79, "000507": 79, "980": [79, 80], "000960": 79, "3584": 79, "994": 79, "009642": 79, "999": 79, "013067": 79, "013841": 79, "433": 79, "014722": 79, "989": 79, "018224": 79, "6070": 79, "160": [79, 90], "095724": 79, "148": 79, "006237": 79, "546": 79, "099341": 79, "514": 79, "006485": 79, "481": 79, "123418": 79, "008165": 79, "0000": [79, 80, 83], "313": [79, 87], "564102": 79, "572258": 79, "28": [79, 80, 82, 83, 85, 91, 94], "574915": 79, "31": [79, 80, 82, 83, 85, 87, 91], "575507": 79, "575874": 79, "792090": 79, "257611": 79, "698710": 79, "182121": 79, "771619": 79, "to_numpi": [79, 81, 90, 93], "data_with_suggested_label": 79, "suggested_label": 79, "charg": [79, 93], "cash": [79, 93], "holidai": [79, 93], "sent": [79, 93, 94], "card": [79, 80, 93], "mine": [79, 93], "expir": [79, 93], "me": [79, 93], "withdraw": 79, "monei": 79, "whoever": [79, 93], "outlier_issu": [79, 82], "lowest_quality_outli": 79, "OR": 79, "636c65616e6c616220697320617765736f6d6521": 79, "phone": [79, 80], "gone": 79, "gt": [79, 85, 94], "samp": 79, "br": 79, "press": [79, 94], "nonsens": 79, "sens": 79, "detriment": 79, "duplicate_issu": 79, "fee": 79, "pai": 79, "go": [79, 80, 83], "strongli": 79, "p_valu": 79, "benign": 79, "shortlist": [79, 90, 93], "curat": [79, 84], "mnist_test_set": 80, "imagenet_val_set": 80, "tench": 80, "goldfish": 80, "white": [80, 94], "shark": 80, "tiger": 80, "hammerhead": 80, "electr": 80, "rai": 80, "stingrai": 80, "cock": 80, "hen": 80, "ostrich": 80, "brambl": 80, "goldfinch": 80, "hous": 80, "finch": 80, "junco": 80, "indigo": 80, "bunt": 80, "american": [80, 94], "robin": 80, "bulbul": 80, "jai": 80, "magpi": 80, "chickade": 80, "dipper": 80, "kite": 80, "bald": 80, "eagl": 80, "vultur": 80, "grei": 80, "owl": 80, "salamand": 80, "smooth": 80, "newt": 80, "spot": [80, 87], "axolotl": 80, "bullfrog": 80, "tree": 80, "frog": [80, 88], "tail": 80, "loggerhead": 80, "sea": 80, "turtl": 80, "leatherback": 80, "mud": 80, "terrapin": 80, "band": 80, "gecko": 80, "green": [80, 94], "iguana": 80, "carolina": 80, "anol": 80, "desert": 80, "grassland": 80, "whiptail": 80, "lizard": 80, "agama": 80, "frill": 80, "neck": 80, "allig": 80, "gila": 80, "monster": 80, "european": 80, "chameleon": 80, "komodo": 80, "dragon": 80, "nile": 80, "crocodil": 80, "triceratop": 80, "worm": 80, "snake": 80, "ring": 80, "eastern": 80, "hog": 80, "nose": 80, "kingsnak": 80, "garter": 80, "water": 80, "vine": 80, "night": 80, "boa": 80, "constrictor": 80, "african": 80, "rock": 80, "indian": 80, "cobra": 80, "mamba": 80, "saharan": 80, "horn": 80, "viper": 80, "diamondback": 80, "rattlesnak": 80, "sidewind": 80, "trilobit": 80, "harvestman": 80, "scorpion": 80, "yellow": 80, "garden": 80, "spider": 80, "barn": 80, "southern": 80, "widow": 80, "tarantula": 80, "wolf": 80, "tick": 80, "centiped": 80, "grous": 80, "ptarmigan": 80, "ruf": 80, "prairi": 80, "peacock": 80, "quail": 80, "partridg": 80, "parrot": 80, "macaw": 80, "sulphur": 80, "crest": 80, "cockatoo": 80, "lorikeet": 80, "coucal": 80, "bee": 80, "eater": 80, "hornbil": 80, "hummingbird": 80, "jacamar": 80, "toucan": 80, "duck": [80, 93], "breast": 80, "mergans": 80, "goos": 80, "swan": 80, "tusker": 80, "echidna": 80, "platypu": 80, "wallabi": 80, "koala": 80, "wombat": 80, "jellyfish": 80, "anemon": 80, "brain": 80, "coral": 80, "flatworm": 80, "nematod": 80, "conch": 80, "snail": 80, "slug": 80, "chiton": 80, "chamber": 80, "nautilu": 80, "dung": 80, "crab": 80, "fiddler": 80, "king": 80, "lobster": 80, "spini": 80, "crayfish": 80, "hermit": 80, "isopod": 80, "stork": 80, "spoonbil": 80, "flamingo": 80, "heron": 80, "egret": 80, "bittern": 80, "crane": 80, "bird": [80, 88], "limpkin": 80, "gallinul": 80, "coot": 80, "bustard": 80, "ruddi": 80, "turnston": 80, "dunlin": 80, "redshank": 80, "dowitch": 80, "oystercatch": 80, "pelican": 80, "penguin": 80, "albatross": 80, "whale": 80, "killer": 80, "dugong": 80, "lion": 80, "chihuahua": 80, "japanes": 80, "chin": 80, "maltes": 80, "pekinges": 80, "shih": 80, "tzu": 80, "charl": 80, "spaniel": 80, "papillon": 80, "terrier": 80, "rhodesian": 80, "ridgeback": 80, "afghan": [80, 94], "hound": 80, "basset": 80, "beagl": 80, "bloodhound": 80, "bluetick": 80, "coonhound": 80, "tan": 80, "walker": 80, "foxhound": 80, "redbon": 80, "borzoi": 80, "irish": 80, "wolfhound": 80, "italian": 80, "greyhound": 80, "whippet": 80, "ibizan": 80, "norwegian": 80, "elkhound": 80, "otterhound": 80, "saluki": 80, "scottish": 80, "deerhound": 80, "weimaran": 80, "staffordshir": 80, "bull": 80, "bedlington": 80, "border": 80, "kerri": 80, "norfolk": 80, "norwich": 80, "yorkshir": 80, "wire": 80, "fox": 80, "lakeland": 80, "sealyham": 80, "airedal": 80, "cairn": 80, "australian": 80, "dandi": 80, "dinmont": 80, "boston": 80, "miniatur": 80, "schnauzer": 80, "giant": 80, "tibetan": 80, "silki": 80, "coat": [80, 82], "wheaten": 80, "west": 80, "highland": 80, "lhasa": 80, "apso": 80, "flat": 80, "retriev": 80, "curli": 80, "golden": 80, "labrador": 80, "chesapeak": 80, "bai": 80, "german": [80, 94], "shorthair": 80, "pointer": 80, "vizsla": 80, "setter": 80, "gordon": 80, "brittani": 80, "clumber": 80, "springer": 80, "welsh": 80, "cocker": 80, "sussex": 80, "kuvasz": 80, "schipperk": 80, "groenendael": 80, "malinoi": 80, "briard": 80, "kelpi": 80, "komondor": 80, "sheepdog": 80, "shetland": 80, "colli": 80, "bouvier": 80, "de": 80, "flandr": 80, "rottweil": 80, "shepherd": 80, "dobermann": 80, "pinscher": 80, "swiss": [80, 94], "mountain": 80, "bernes": 80, "appenzel": 80, "sennenhund": 80, "entlebuch": 80, "boxer": 80, "bullmastiff": 80, "mastiff": 80, "french": 80, "bulldog": 80, "dane": 80, "st": 80, "bernard": 80, "huski": 80, "alaskan": 80, "malamut": 80, "siberian": 80, "dalmatian": 80, "affenpinsch": 80, "basenji": 80, "pug": 80, "leonberg": 80, "newfoundland": 80, "pyrenean": 80, "samoi": 80, "pomeranian": 80, "chow": 80, "keeshond": 80, "griffon": 80, "bruxelloi": 80, "pembrok": 80, "corgi": 80, "cardigan": 80, "poodl": 80, "mexican": 80, "hairless": 80, "tundra": 80, "coyot": 80, "dingo": 80, "dhole": 80, "wild": 80, "hyena": 80, "kit": 80, "arctic": 80, "tabbi": 80, "persian": 80, "siames": 80, "egyptian": 80, "mau": 80, "cougar": 80, "lynx": 80, "leopard": 80, "snow": 80, "jaguar": 80, "cheetah": 80, "brown": [80, 91], "bear": 80, "polar": 80, "sloth": 80, "mongoos": 80, "meerkat": 80, "beetl": 80, "ladybug": 80, "longhorn": 80, "leaf": 80, "rhinocero": 80, "weevil": 80, "fly": 80, "ant": 80, "grasshopp": 80, "cricket": 80, "stick": 80, "insect": 80, "cockroach": 80, "manti": 80, "cicada": 80, "leafhopp": 80, "lacew": 80, "dragonfli": 80, "damselfli": 80, "admir": 80, "ringlet": 80, "monarch": 80, "butterfli": 80, "gossam": 80, "wing": 80, "starfish": 80, "urchin": 80, "cucumb": 80, "cottontail": 80, "rabbit": 80, "hare": 80, "angora": 80, "hamster": 80, "porcupin": 80, "squirrel": 80, "marmot": 80, "beaver": 80, "guinea": 80, "pig": 80, "sorrel": 80, "zebra": 80, "boar": 80, "warthog": 80, "hippopotamu": 80, "ox": 80, "buffalo": 80, "bison": 80, "bighorn": 80, "sheep": 80, "alpin": 80, "ibex": 80, "hartebeest": 80, "impala": 80, "gazel": 80, "dromedari": 80, "llama": 80, "weasel": 80, "mink": 80, "polecat": 80, "foot": 80, "ferret": 80, "otter": 80, "skunk": 80, "badger": 80, "armadillo": 80, "toed": 80, "orangutan": 80, "gorilla": 80, "chimpanze": 80, "gibbon": 80, "siamang": 80, "guenon": 80, "pata": 80, "monkei": 80, "baboon": 80, "macaqu": 80, "langur": 80, "colobu": 80, "probosci": 80, "marmoset": 80, "capuchin": 80, "howler": 80, "titi": 80, "geoffroi": 80, "lemur": 80, "indri": 80, "asian": 80, "eleph": 80, "bush": 80, "snoek": 80, "eel": 80, "coho": 80, "salmon": 80, "beauti": 80, "clownfish": 80, "sturgeon": 80, "garfish": 80, "lionfish": 80, "pufferfish": 80, "abacu": 80, "abaya": 80, "academ": 80, "gown": 80, "accordion": 80, "acoust": 80, "guitar": 80, "aircraft": 80, "carrier": 80, "airlin": 80, "airship": 80, "altar": 80, "ambul": 80, "amphibi": 80, "clock": [80, 94], "apiari": 80, "apron": 80, "wast": 80, "assault": 80, "rifl": 80, "backpack": 80, "bakeri": 80, "balanc": 80, "beam": 80, "balloon": 80, "ballpoint": 80, "pen": 80, "aid": 80, "banjo": 80, "balust": 80, "barbel": 80, "barber": 80, "chair": [80, 87], "barbershop": 80, "baromet": 80, "barrel": 80, "wheelbarrow": 80, "basebal": 80, "basketbal": 80, "bassinet": 80, "bassoon": 80, "swim": 80, "cap": 80, "bath": 80, "towel": 80, "bathtub": 80, "station": 80, "wagon": 80, "lighthous": 80, "beaker": 80, "militari": 80, "beer": 80, "bottl": 80, "glass": 80, "bell": 80, "cot": 80, "bib": 80, "bicycl": [80, 91], "bikini": 80, "binder": 80, "binocular": 80, "birdhous": 80, "boathous": 80, "bobsleigh": 80, "bolo": 80, "tie": 80, "poke": 80, "bonnet": 80, "bookcas": 80, "bookstor": 80, "bow": 80, "brass": 80, "bra": 80, "breakwat": 80, "breastplat": 80, "broom": 80, "bucket": 80, "buckl": 80, "bulletproof": 80, "vest": 80, "butcher": 80, "shop": 80, "taxicab": 80, "cauldron": 80, "candl": 80, "cannon": 80, "cano": 80, "mirror": [80, 87], "carousel": 80, "tool": [80, 83, 85], "carton": 80, "wheel": 80, "teller": 80, "cassett": 80, "player": 80, "castl": 80, "catamaran": 80, "cd": 80, "cello": 80, "mobil": [80, 94], "chain": 80, "fenc": [80, 91], "mail": 80, "chainsaw": 80, "chest": 80, "chiffoni": 80, "chime": 80, "china": 80, "cabinet": 80, "christma": 80, "stock": 80, "church": 80, "movi": 80, "theater": 80, "cleaver": 80, "cliff": 80, "dwell": 80, "cloak": 80, "clog": 80, "cocktail": 80, "shaker": 80, "coffe": 80, "mug": 80, "coffeemak": 80, "coil": 80, "lock": 80, "keyboard": 80, "confectioneri": 80, "ship": [80, 88], "corkscrew": 80, "cornet": 80, "cowboi": 80, "boot": 80, "hat": 80, "cradl": 80, "crash": 80, "helmet": 80, "crate": 80, "infant": 80, "bed": 80, "crock": 80, "pot": 80, "croquet": 80, "crutch": 80, "cuirass": 80, "dam": 80, "desk": 80, "desktop": 80, "rotari": 80, "dial": 80, "telephon": 80, "diaper": 80, "watch": 80, "dine": 80, "dishcloth": 80, "dishwash": 80, "disc": 80, "brake": 80, "dock": 80, "sled": 80, "dome": 80, "doormat": 80, "drill": 80, "rig": 80, "drum": 80, "drumstick": 80, "dumbbel": 80, "dutch": 80, "oven": 80, "fan": 80, "locomot": 80, "entertain": 80, "center": 80, "envelop": 80, "espresso": 80, "powder": 80, "feather": 80, "fireboat": 80, "engin": [80, 91], "screen": 80, "sheet": 80, "flagpol": 80, "flute": 80, "footbal": 80, "forklift": 80, "fountain": 80, "poster": 80, "freight": 80, "fry": 80, "pan": 80, "fur": 80, "garbag": 80, "ga": 80, "pump": 80, "goblet": 80, "kart": 80, "golf": 80, "cart": 80, "gondola": 80, "gong": 80, "grand": 80, "piano": 80, "greenhous": 80, "grill": 80, "groceri": 80, "guillotin": 80, "barrett": 80, "hair": 80, "sprai": 80, "hammer": 80, "dryer": 80, "hand": [80, 83], "handkerchief": 80, "drive": 80, "harmonica": 80, "harp": 80, "harvest": 80, "hatchet": 80, "holster": 80, "honeycomb": 80, "hoop": 80, "skirt": 80, "horizont": 80, "bar": 80, "hors": [80, 88, 93], "drawn": 80, "hourglass": 80, "ipod": 80, "cloth": 80, "iron": 80, "jack": 80, "lantern": 80, "jean": 80, "jeep": 80, "shirt": [80, 82], "jigsaw": 80, "puzzl": 80, "pull": 80, "rickshaw": 80, "joystick": 80, "kimono": 80, "knee": 80, "pad": 80, "knot": 80, "ladl": 80, "lampshad": 80, "laptop": 80, "lawn": 80, "mower": 80, "knife": 80, "lifeboat": 80, "lighter": 80, "limousin": 80, "ocean": 80, "liner": 80, "lipstick": 80, "slip": 80, "shoe": 80, "lotion": 80, "speaker": 80, "loup": 80, "sawmil": 80, "magnet": 80, "compass": 80, "bag": [80, 82, 88, 89], "mailbox": 80, "tight": 80, "tank": 80, "manhol": 80, "maraca": 80, "marimba": 80, "maypol": 80, "maze": 80, "cup": [80, 87], "medicin": 80, "megalith": 80, "microphon": 80, "microwav": 80, "milk": 80, "minibu": 80, "miniskirt": 80, "minivan": 80, "missil": 80, "mitten": 80, "mix": 80, "bowl": 80, "modem": 80, "monasteri": 80, "monitor": 80, "mope": 80, "mortar": 80, "mosqu": 80, "mosquito": 80, "scooter": 80, "bike": 80, "tent": 80, "mous": [80, 81], "mousetrap": 80, "van": 80, "muzzl": 80, "nail": 80, "brace": 80, "necklac": 80, "nippl": 80, "obelisk": 80, "obo": 80, "ocarina": 80, "odomet": 80, "oil": 80, "oscilloscop": 80, "overskirt": 80, "bullock": 80, "oxygen": 80, "packet": 80, "paddl": 80, "padlock": 80, "paintbrush": 80, "pajama": 80, "palac": [80, 94], "parachut": 80, "park": 80, "bench": 80, "meter": 80, "passeng": 80, "patio": 80, "payphon": 80, "pedest": 80, "pencil": 80, "perfum": 80, "petri": 80, "dish": 80, "photocopi": 80, "plectrum": 80, "pickelhaub": 80, "picket": 80, "pickup": 80, "pier": 80, "piggi": 80, "pill": 80, "pillow": 80, "ping": 80, "pong": 80, "pinwheel": 80, "pirat": 80, "pitcher": 80, "plane": 80, "planetarium": 80, "plastic": 80, "plate": 80, "rack": 80, "plow": 80, "plunger": 80, "polaroid": 80, "camera": 80, "pole": [80, 91], "polic": 80, "poncho": 80, "billiard": 80, "soda": 80, "potter": 80, "prayer": 80, "rug": 80, "printer": 80, "prison": 80, "projectil": 80, "projector": 80, "hockei": 80, "puck": 80, "punch": 80, "purs": 80, "quill": 80, "quilt": 80, "race": 80, "racket": 80, "radiat": 80, "radio": 80, "telescop": 80, "rain": 80, "recreat": 80, "reel": 80, "reflex": 80, "refriger": 80, "remot": 80, "restaur": 80, "revolv": 80, "rotisseri": 80, "eras": 80, "rugbi": 80, "ruler": 80, "safe": 80, "safeti": 80, "salt": 80, "sandal": [80, 82], "sarong": 80, "saxophon": 80, "scabbard": 80, "school": 80, "bu": [80, 91], "schooner": 80, "scoreboard": 80, "crt": 80, "screw": 80, "screwdriv": 80, "seat": 80, "belt": 80, "sew": 80, "shield": 80, "shoji": 80, "basket": 80, "shovel": 80, "shower": 80, "curtain": 80, "ski": 80, "sleep": 80, "door": 80, "slot": 80, "snorkel": 80, "snowmobil": 80, "snowplow": 80, "soap": 80, "dispens": 80, "soccer": [80, 94], "sock": 80, "solar": 80, "thermal": 80, "collector": 80, "sombrero": 80, "soup": 80, "heater": 80, "shuttl": 80, "spatula": 80, "motorboat": 80, "web": 80, "spindl": 80, "sport": [80, 94], "spotlight": 80, "stage": 80, "steam": 80, "arch": 80, "bridg": 80, "steel": 80, "stethoscop": 80, "scarf": 80, "stone": 80, "wall": [80, 91], "stopwatch": 80, "stove": 80, "strainer": 80, "tram": 80, "stretcher": 80, "couch": 80, "stupa": 80, "submarin": 80, "sundial": 80, "sunglass": 80, "sunscreen": 80, "suspens": 80, "mop": 80, "sweatshirt": 80, "swimsuit": 80, "swing": 80, "switch": 80, "syring": 80, "lamp": 80, "tape": 80, "teapot": 80, "teddi": 80, "televis": [80, 94], "tenni": 80, "thatch": 80, "roof": 80, "front": 80, "thimbl": 80, "thresh": 80, "throne": 80, "tile": 80, "toaster": 80, "tobacco": 80, "toilet": 80, "totem": 80, "tow": 80, "tractor": 80, "semi": 80, "trailer": 80, "trai": 80, "trench": 80, "tricycl": 80, "trimaran": 80, "tripod": 80, "triumphal": 80, "trolleybu": 80, "trombon": 80, "tub": 80, "turnstil": 80, "typewrit": 80, "umbrella": 80, "unicycl": 80, "upright": 80, "vacuum": 80, "cleaner": 80, "vase": 80, "vault": 80, "velvet": 80, "vend": 80, "vestment": 80, "viaduct": 80, "violin": 80, "volleybal": 80, "waffl": 80, "wallet": 80, "wardrob": 80, "sink": 80, "wash": 80, "jug": 80, "tower": 80, "whiskei": 80, "whistl": 80, "wig": 80, "shade": [80, 91], "windsor": 80, "wine": 80, "wok": 80, "wooden": 80, "spoon": 80, "wool": 80, "rail": 80, "shipwreck": 80, "yawl": 80, "yurt": 80, "websit": 80, "comic": 80, "book": 80, "crossword": 80, "traffic": [80, 87, 91], "sign": [80, 91, 94], "dust": 80, "jacket": [80, 87], "menu": 80, "guacamol": 80, "consomm": 80, "trifl": 80, "ic": 80, "cream": 80, "pop": 80, "baguett": 80, "bagel": 80, "pretzel": 80, "cheeseburg": 80, "mash": 80, "potato": 80, "cabbag": 80, "broccoli": 80, "cauliflow": 80, "zucchini": 80, "spaghetti": 80, "squash": 80, "acorn": 80, "butternut": 80, "artichok": 80, "pepper": 80, "cardoon": 80, "mushroom": 80, "granni": 80, "smith": 80, "strawberri": 80, "orang": 80, "lemon": 80, "pineappl": 80, "banana": 80, "jackfruit": 80, "custard": 80, "appl": 80, "pomegran": 80, "hai": 80, "carbonara": 80, "chocol": 80, "syrup": 80, "dough": 80, "meatloaf": 80, "pizza": 80, "pie": 80, "burrito": 80, "eggnog": 80, "alp": 80, "bubbl": 80, "reef": 80, "geyser": 80, "lakeshor": 80, "promontori": 80, "shoal": 80, "seashor": 80, "vallei": 80, "volcano": 80, "bridegroom": 80, "scuba": 80, "diver": 80, "rapese": 80, "daisi": 80, "ladi": 80, "slipper": 80, "corn": 80, "rose": 80, "hip": 80, "chestnut": 80, "fungu": 80, "agar": 80, "gyromitra": 80, "stinkhorn": 80, "earth": 80, "star": 80, "wood": 80, "bolet": 80, "ear": 80, "cifar10_test_set": 80, "airplan": [80, 88], "automobil": [80, 88], "deer": [80, 88], "cifar100_test_set": 80, "aquarium_fish": 80, "babi": 80, "boi": 80, "camel": 80, "caterpillar": 80, "cattl": [80, 94], "cloud": 80, "dinosaur": 80, "dolphin": 80, "flatfish": 80, "forest": 80, "girl": 80, "kangaroo": 80, "lawn_mow": 80, "man": 80, "maple_tre": 80, "motorcycl": [80, 91], "oak_tre": 80, "orchid": 80, "palm_tre": 80, "pear": 80, "pickup_truck": 80, "pine_tre": 80, "plain": 80, "poppi": 80, "possum": 80, "raccoon": 80, "road": [80, 91], "rocket": 80, "seal": 80, "shrew": 80, "skyscrap": 80, "streetcar": 80, "sunflow": 80, "sweet_pepp": 80, "trout": 80, "tulip": 80, "willow_tre": 80, "woman": [80, 87], "caltech256": 80, "ak47": 80, "bat": 80, "glove": 80, "birdbath": 80, "blimp": 80, "bonsai": 80, "boom": 80, "breadmak": 80, "buddha": 80, "bulldoz": 80, "cactu": 80, "cake": 80, "tire": 80, "cartman": 80, "cereal": 80, "chandeli": 80, "chess": 80, "board": 80, "chimp": 80, "chopstick": 80, "coffin": 80, "coin": 80, "comet": 80, "cormor": 80, "globe": 80, "diamond": 80, "dice": 80, "doorknob": 80, "drink": 80, "straw": 80, "dumb": 80, "eiffel": 80, "elk": 80, "ewer": 80, "eyeglass": 80, "fern": 80, "fighter": 80, "jet": [80, 90], "extinguish": 80, "hydrant": 80, "firework": 80, "flashlight": 80, "floppi": 80, "fri": 80, "frisbe": 80, "galaxi": 80, "giraff": 80, "goat": 80, "gate": 80, "grape": 80, "pick": [80, 81], "hamburg": 80, "hammock": 80, "harpsichord": 80, "hawksbil": 80, "helicopt": 80, "hibiscu": 80, "homer": 80, "simpson": 80, "horsesho": 80, "air": 80, "skeleton": 80, "ibi": 80, "cone": 80, "iri": 80, "jesu": 80, "christ": 80, "joi": 80, "kayak": 80, "ketch": 80, "ladder": 80, "lath": 80, "licens": 80, "lightbulb": 80, "lightn": 80, "mandolin": 80, "mar": 80, "mattress": 80, "megaphon": 80, "menorah": 80, "microscop": 80, "minaret": 80, "minotaur": 80, "motorbik": 80, "mussel": 80, "neckti": 80, "octopu": 80, "palm": 80, "pilot": 80, "paperclip": 80, "shredder": 80, "pci": 80, "peopl": [80, 87], "pez": 80, "picnic": 80, "pram": 80, "prai": 80, "pyramid": 80, "rainbow": 80, "roulett": 80, "saddl": 80, "saturn": 80, "segwai": 80, "propel": 80, "sextant": 80, "music": 80, "skateboard": 80, "smokestack": 80, "sneaker": 80, "boat": 80, "stain": 80, "steer": 80, "stirrup": 80, "superman": 80, "sushi": 80, "armi": [80, 94], "sword": 80, "tambourin": 80, "teepe": 80, "court": 80, "theodolit": 80, "tomato": 80, "tombston": 80, "tour": 80, "pisa": 80, "treadmil": 80, "fork": 80, "tweezer": 80, "unicorn": 80, "vcr": 80, "waterfal": 80, "watermelon": 80, "weld": 80, "windmil": 80, "xylophon": 80, "yarmulk": 80, "yo": 80, "toad": 80, "twenty_news_test_set": 80, "alt": 80, "atheism": 80, "comp": 80, "graphic": [80, 91], "misc": [80, 94], "sy": 80, "ibm": 80, "pc": 80, "hardwar": 80, "mac": 80, "forsal": 80, "rec": 80, "sci": 80, "crypt": 80, "electron": 80, "med": 80, "soc": 80, "religion": 80, "christian": [80, 94], "talk": [80, 94], "polit": 80, "gun": 80, "mideast": 80, "amazon": 80, "neutral": 80, "imdb_test_set": 80, "all_class": 80, "20news_test_set": 80, "_load_classes_predprobs_label": 80, "dataset_nam": 80, "labelerror": 80, "url_bas": 80, "5392f6c71473055060be3044becdde1cbc18284d": 80, "url_label": 80, "original_test_label": 80, "_original_label": 80, "url_prob": 80, "cross_validated_predicted_prob": 80, "_pyx": 80, "num_part": 80, "datatset": 80, "bytesio": 80, "allow_pickl": 80, "pred_probs_part": 80, "url": 80, "_of_": 80, "nload": 80, "imdb": 80, "ve": [80, 81, 83, 85, 87], "interpret": [80, 81, 83, 86], "capit": 80, "29780": 80, "256": [80, 81, 87], "780": 80, "medic": [80, 94], "doctor": 80, "254": [80, 87], "359223": 80, "640777": 80, "184": [80, 83], "258427": 80, "341176": 80, "263158": 80, "658824": 80, "337349": 80, "246575": 80, "662651": 80, "248": 80, "330000": 80, "355769": 80, "670000": 80, "251": [80, 87], "167": [80, 83, 87], "252": 80, "112": 80, "253": [80, 87], "022989": 80, "255": [80, 82], "049505": 80, "190": [80, 83, 87], "66": [80, 82, 91], "002216": 80, "000974": 80, "59": [80, 82, 87, 91], "88": [80, 81, 82, 83, 86, 87, 90, 91], "000873": 80, "000739": 80, "79": [80, 87, 91, 92], "32635": 80, "32636": 80, "47": [80, 87, 91], "32637": 80, "32638": 80, "32639": 80, "32640": 80, "051": 80, "93": [80, 87, 90, 91, 92, 94], "002242": 80, "997758": 80, "002088": 80, "001045": 80, "997912": 80, "002053": 80, "997947": 80, "001980": 80, "000991": 80, "998020": 80, "001946": 80, "002915": 80, "998054": 80, "001938": 80, "002904": 80, "998062": 80, "001020": 80, "998980": 80, "001018": 80, "002035": 80, "998982": 80, "999009": 80, "0003": 80, "0002": 80, "36": [80, 82, 88, 91, 94], "41": [80, 87, 90, 91], "44": [80, 82, 86, 87, 91, 93], "71": [80, 83, 87, 90, 91], "071": 80, "067269": 80, "929": 80, "046": 80, "058243": 80, "954": 80, "035": 80, "032096": 80, "965": 80, "031": 80, "012232": 80, "969": 80, "022": 80, "025896": 80, "978": 80, "020": [80, 83], "013092": 80, "018": 80, "013065": 80, "016": 80, "030542": 80, "984": 80, "013": 80, "020833": 80, "987": 80, "012": 80, "010020": 80, "988": 80, "0073": 80, "0020": 80, "0016": 80, "0015": 80, "0013": 80, "0012": 80, "0010": 80, "0008": 80, "0007": 80, "0006": 80, "0005": 80, "0004": 80, "244": [80, 87], "98": [80, 81, 82, 88, 90, 91], "452381": 80, "459770": 80, "72": [80, 82, 83, 86, 90, 91], "523364": 80, "460784": 80, "446602": 80, "57": [80, 82, 83, 91], "68": [80, 82, 83, 87, 91, 92], "103774": 80, "030612": 80, "97": [80, 81, 83, 87, 90, 91, 92, 94], "110092": 80, "049020": 80, "99": [80, 83, 91, 92], "0034": 80, "0032": 80, "0026": 80, "0025": 80, "4945": 80, "4946": 80, "4947": 80, "4948": 80, "4949": 80, "4950": 80, "846": 80, "82": [80, 83, 87, 90, 91], "7532": 80, "532": 80, "034483": 80, "009646": 80, "965517": 80, "030457": 80, "020513": 80, "969543": 80, "028061": 80, "035443": 80, "971939": 80, "025316": 80, "005168": 80, "974684": 80, "049751": 80, "979487": 80, "019920": 80, "042802": 80, "980080": 80, "017677": 80, "005115": 80, "982323": 80, "012987": 80, "005236": 80, "987013": 80, "012723": 80, "025126": 80, "987277": 80, "010989": 80, "008264": 80, "989011": 80, "010283": 80, "027778": 80, "989717": 80, "009677": 80, "990323": 80, "007614": 80, "010127": 80, "992386": 80, "005051": 80, "994949": 80, "005025": 80, "994975": 80, "005013": 80, "994987": 80, "001859": 80, "001328": 80, "000929": 80, "000664": 80, "186": [80, 83], "188": [80, 83, 86], "189": [80, 83], "snippet": 81, "nlp": [81, 94], "mind": [81, 83], "number_of_class": 81, "total_number_of_data_point": 81, "drop": [81, 85, 90, 93], "feed": 81, "alphabet": 81, "labels_proper_format": 81, "your_classifi": 81, "issues_datafram": 81, "class_predicted_for_flagged_exampl": 81, "class_predicted_for_all_exampl": 81, "grant": 81, "datataset": 81, "fair": [81, 83], "game": 81, "speedup": [81, 88], "flexibl": 81, "tempfil": 81, "mkdtemp": 81, "sped": 81, "anywai": 81, "pred_probs_merg": 81, "merge_rare_class": 81, "count_threshold": 81, "class_mapping_orig2new": 81, "heath_summari": 81, "num_examples_per_class": 81, "rare_class": 81, "num_classes_merg": 81, "other_class": 81, "labels_merg": 81, "new_c": 81, "merged_prob": 81, "hstack": [81, 82, 83, 85], "new_class": 81, "original_class": 81, "num_check": 81, "ones_array_ref": 81, "isclos": 81, "though": [81, 83, 94], "successfulli": 81, "meaning": [81, 88], "virtuou": [81, 85], "cycl": [81, 85], "jointli": 81, "junk": 81, "clutter": 81, "unknown": 81, "caltech": 81, "combined_boolean_mask": 81, "mask1": 81, "mask2": 81, "gradientboostingclassifi": [81, 83], "true_error": [81, 83, 86], "101": [81, 87], "102": [81, 86, 87], "104": [81, 83, 87], "model_to_find_error": 81, "model_to_return": 81, "cl0": 81, "randomizedsearchcv": 81, "expens": 81, "param_distribut": 81, "learning_r": [81, 83], "max_depth": [81, 83], "magnitud": 81, "coeffici": [81, 90], "optin": 81, "environ": [81, 83], "rerun": [81, 83], "cell": [81, 83], "On": [81, 83, 87], "unabl": [81, 83], "render": [81, 83], "nbviewer": [81, 83], "nbsp": [81, 83], "cleanlearninginot": [81, 83], "fittedcleanlearn": [81, 83], "linearregressionlinearregress": 81, "n_init": 81, "fit_predict": 81, "continuous_column": 81, "categorical_column": 81, "data_df": 81, "feature_a": 81, "feature_b": 81, "unexpectedli": 81, "emphas": 81, "especi": [81, 82, 90, 92, 93], "crucial": 81, "merge_duplicate_set": 81, "merge_kei": 81, "construct_group_kei": 81, "merged_set": 81, "consolidate_set": 81, "tolist": [81, 86], "issubset": 81, "frozenset": 81, "sets_list": 81, "mutabl": 81, "new_set": 81, "current_set": 81, "intersecting_set": 81, "lowest_score_strategi": 81, "sub_df": 81, "idxmin": 81, "filter_near_dupl": 81, "strategy_fn": 81, "strategy_kwarg": 81, "duplicate_row": 81, "group_kei": 81, "to_keep_indic": 81, "groupbi": 81, "explod": 81, "to_remov": 81, "isin": [81, 88], "kept": 81, "near_duplicate_issu": [81, 82], "ids_to_remove_seri": 81, "tmp": 81, "ipykernel_5856": 81, "1995098996": 81, "deprecationwarn": 81, "dataframegroupbi": 81, "include_group": 81, "silenc": 81, "assist": 81, "streamlin": 81, "ux": 81, "agpl": 81, "compani": 81, "commerci": 81, "alter": 81, "email": 81, "discuss": 81, "anywher": 81, "profession": 81, "expert": 81, "60": [82, 83, 91], "excess": 82, "torchvis": [82, 88], "tensordataset": 82, "stratifiedkfold": [82, 86], "tqdm": 82, "fashion_mnist": 82, "num_row": 82, "60000": 82, "pil": 82, "transformed_dataset": 82, "with_format": 82, "unsqueez": 82, "cpu_count": 82, "torch_dataset": 82, "quick": [82, 86], "relu": 82, "batchnorm2d": 82, "maxpool2d": 82, "lazylinear": 82, "flatten": 82, "get_test_accuraci": 82, "testload": [82, 88], "energi": 82, "trainload": [82, 88], "n_epoch": 82, "patienc": 82, "criterion": 82, "crossentropyloss": 82, "adamw": 82, "best_test_accuraci": 82, "start_epoch": 82, "running_loss": 82, "best_epoch": 82, "end_epoch": 82, "3f": [82, 90], "acc": [82, 83], "time_taken": 82, "compute_embed": 82, "compute_pred_prob": 82, "train_batch_s": 82, "num_work": 82, "worker": [82, 94], "train_id_list": 82, "test_id_list": 82, "train_id": 82, "test_id": 82, "embeddings_model": 82, "ntrain": 82, "trainset": 82, "testset": 82, "pin_memori": 82, "fold_embed": 82, "fold_pred_prob": 82, "finish": 82, "482": 82, "720": 82, "545": 82, "195": 82, "360": 82, "stderr": [82, 88, 91], "sphinxverbatim": [82, 88, 91, 94], "78it": [82, 91], "02it": [82, 91], "17it": [82, 91], "62": [82, 83, 87, 90, 91], "63": [82, 83, 87, 88, 90, 91, 94], "86it": [82, 91], "77it": [82, 91], "88it": [82, 88, 91], "05it": [82, 91], "24it": [82, 91], "60it": [82, 91], "68it": [82, 88, 91], "11it": [82, 91], "45it": [82, 91], "493": 82, "060": 82, "565": 82, "330": [82, 87], "505": 82, "325": 82, "22it": [82, 88, 91], "56it": 82, "12it": [82, 91], "37it": [82, 91], "97it": [82, 91], "47it": [82, 88, 91], "34it": 82, "99it": [82, 91], "63it": [82, 91], "58it": [82, 88, 91], "07it": [82, 91], "41it": [82, 91], "476": 82, "340": 82, "716": 82, "328": [82, 87], "310": 82, "350": 82, "70it": [82, 91], "21it": [82, 91], "53it": [82, 91], "28it": [82, 91], "03it": [82, 91], "91it": [82, 91], "27it": [82, 91], "44it": [82, 91], "reorder": 82, "vision": 82, "grayscal": 82, "exce": 82, "max_preval": 82, "7714": 82, "3772": 82, "3585": 82, "166": 82, "3651": 82, "27080": 82, "873833e": 82, "40378": 82, "915575e": 82, "25316": 82, "390277e": 82, "06": [82, 83, 87, 91, 94], "2090": 82, "751164e": 82, "14999": 82, "881301e": 82, "9569": 82, "11262": 82, "000003": 82, "19228": 82, "000010": 82, "dress": 82, "32657": 82, "000013": 82, "21282": 82, "000016": 82, "53564": 82, "000018": 82, "pullov": 82, "6321": 82, "30968": 82, "001267": 82, "30659": 82, "000022": [82, 94], "47824": 82, "001454": 82, "3370": 82, "000026": 82, "54565": 82, "001854": 82, "9762": 82, "258": 82, "47139": 82, "000033": 82, "166980": 82, "986195": 82, "997205": 82, "948781": 82, "999358": 82, "54078": 82, "17371": 82, "000025": 82, "plot_label_issue_exampl": 82, "ncol": [82, 88], "nrow": [82, 88], "ceil": 82, "axes_list": 82, "label_issue_indic": 82, "gl": 82, "sl": 82, "fontdict": 82, "imshow": [82, 88], "cmap": [82, 90], "grai": 82, "subplots_adjust": 82, "hspace": 82, "outsiz": 82, "outlier_issues_df": 82, "depict": [82, 86, 87, 88, 89, 91], "plot_outlier_issues_exampl": 82, "n_comparison_imag": 82, "sample_from_class": 82, "number_of_sampl": 82, "non_outlier_indic": 82, "isnul": 82, "non_outlier_indices_excluding_curr": 82, "sampled_indic": 82, "label_scores_of_sampl": 82, "top_score_indic": 82, "top_label_indic": 82, "sampled_imag": 82, "get_image_given_label_and_sampl": 82, "image_from_dataset": 82, "corresponding_label": 82, "comparison_imag": 82, "images_to_plot": 82, "idlist": 82, "iterrow": 82, "closest": 82, "counterpart": 82, "near_duplicate_issues_df": 82, "plot_near_duplicate_issue_exampl": 82, "seen_id_pair": 82, "get_image_and_given_label_and_predicted_label": 82, "duplicate_imag": 82, "nd_set": 82, "challeng": 82, "dark_issu": 82, "reveal": [82, 87, 91], "dark_scor": 82, "dark_issues_df": 82, "is_dark_issu": 82, "34848": 82, "203922": 82, "50270": 82, "204588": 82, "3936": 82, "213098": 82, "733": 82, "217686": 82, "8094": 82, "230118": 82, "plot_image_issue_exampl": 82, "difficult": 82, "disproportion": 82, "lowinfo_issu": 82, "low_information_scor": 82, "lowinfo_issues_df": 82, "is_low_information_issu": 82, "53050": 82, "067975": 82, "40875": 82, "089929": 82, "9594": 82, "092601": 82, "34825": 82, "107744": 82, "37530": 82, "108516": 82, "lot": 82, "depth": 83, "survei": [83, 94], "focus": [83, 85, 86, 87], "scienc": 83, "multivariate_norm": [83, 85, 86], "make_data": [83, 85], "cov": [83, 85, 86], "avg_trac": [83, 86], "test_label": [83, 86, 88, 93], "py_tru": 83, "noise_matrix_tru": 83, "noise_marix": 83, "s_test": 83, "noisy_test_label": 83, "purpl": 83, "val": 83, "namespac": 83, "exec": 83, "markerfacecolor": [83, 86], "markeredgecolor": [83, 86, 90], "markers": [83, 86, 90], "markeredgewidth": [83, 86, 90], "realist": 83, "7560": 83, "637318e": 83, "896262e": 83, "548391e": 83, "923417e": 83, "375075e": 83, "3454": 83, "014051": 83, "020451": 83, "249": [83, 87], "042594": 83, "043859": 83, "045954": 83, "6120": 83, "023714": 83, "007136": 83, "119": [83, 87], "107266": 83, "103": [83, 87], "033738": 83, "238": [83, 87], "119505": 83, "236": [83, 87], "037843": 83, "222": 83, "614915": 83, "122": [83, 87], "624422": 83, "625965": 83, "626079": 83, "118": 83, "627675": 83, "695223": 83, "323529": 83, "523015": 83, "013720": 83, "675727": 83, "646521": 83, "anyth": 83, "enhanc": [83, 85, 87], "magic": 83, "83": [83, 87, 90, 91, 92, 94], "liter": 83, "identif": 83, "x27": 83, "logisticregressionlogisticregress": 83, "ever": 83, "092": 83, "040": 83, "024": 83, "004": 83, "surpris": 83, "1705": 83, "01936": 83, "ton": 83, "yourfavoritemodel1": 83, "merged_label": 83, "merged_test_label": 83, "newli": [83, 85], "yourfavoritemodel2": 83, "yourfavoritemodel3": 83, "cl3": 83, "takeawai": 83, "That": [83, 86], "randomli": 83, "my_test_pred_prob": 83, "my_test_pr": 83, "issues_test": 83, "corrected_test_label": 83, "pretend": 83, "cl_test_pr": 83, "69": [83, 90, 91], "fairli": 83, "label_acc": 83, "percentag": 83, "offset": 83, "nquestion": 83, "overestim": 83, "answer": 83, "experienc": 83, "76": [83, 86, 87, 90, 91, 92], "knowledg": 83, "quantiti": [83, 90], "prioiri": 83, "known": 83, "versatil": 83, "label_issues_indic": 83, "213": [83, 87], "212": [83, 92], "218": [83, 87], "152": 83, "197": [83, 87], "196": [83, 87], "170": 83, "214": 83, "164": [83, 86], "198": [83, 87], "191": [83, 87], "121": [83, 93], "117": [83, 90], "206": [83, 87], "115": [83, 87], "193": 83, "194": 83, "201": [83, 87], "174": 83, "163": 83, "150": [83, 85, 87], "169": 83, "151": [83, 87], "168": 83, "precision_scor": 83, "recall_scor": 83, "f1_score": 83, "true_label_issu": 83, "filter_by_list": 83, "718750": [83, 85], "807018": 83, "912": 83, "733333": 83, "800000": 83, "721311": 83, "792793": 83, "908": 83, "676923": 83, "765217": 83, "892": 83, "567901": 83, "702290": 83, "844": 83, "gaug": 83, "label_issues_count": 83, "155": [83, 87], "156": 83, "172": [83, 86], "easiest": 83, "modular": 83, "penalti": 83, "l2": 83, "model3": 83, "n_estim": 83, "cv_pred_probs_1": 83, "cv_pred_probs_2": 83, "cv_pred_probs_3": 83, "label_quality_scores_best": 83, "cv_pred_probs_ensembl": 83, "label_quality_scores_bett": 83, "superior": [83, 89], "workflow": [84, 90], "speechbrain": 84, "timm": 84, "glad": 85, "multiannotator_label": 85, "300": [85, 94], "noisier": 85, "111": [85, 90], "local_data": [85, 86], "true_labels_train": [85, 86], "noise_matrix_bett": 85, "noise_matrix_wors": 85, "transpos": [85, 88], "dropna": 85, "zfill": 85, "row_na_check": 85, "notna": 85, "reset_index": 85, "a0001": 85, "a0002": 85, "a0003": 85, "a0004": 85, "a0005": 85, "a0006": 85, "a0007": 85, "a0008": 85, "a0009": 85, "a0010": 85, "a0041": 85, "a0042": 85, "a0043": 85, "a0044": 85, "a0045": 85, "a0046": 85, "a0047": 85, "a0048": 85, "a0049": 85, "a0050": 85, "na": 85, "60856743": 85, "41693214": 85, "40908785": 85, "87147629": 85, "64941785": 85, "10774851": 85, "0524466": 85, "71853246": 85, "37169848": 85, "66031048": 85, "multiannotator_util": 85, "crude": 85, "straight": 85, "majority_vote_label": 85, "736118": 85, "757751": 85, "782232": 85, "715565": 85, "824256": 85, "quality_annotator_a0001": 85, "quality_annotator_a0002": 85, "quality_annotator_a0003": 85, "quality_annotator_a0004": 85, "quality_annotator_a0005": 85, "quality_annotator_a0006": 85, "quality_annotator_a0007": 85, "quality_annotator_a0008": 85, "quality_annotator_a0009": 85, "quality_annotator_a0010": 85, "quality_annotator_a0041": 85, "quality_annotator_a0042": 85, "quality_annotator_a0043": 85, "quality_annotator_a0044": 85, "quality_annotator_a0045": 85, "quality_annotator_a0046": 85, "quality_annotator_a0047": 85, "quality_annotator_a0048": 85, "quality_annotator_a0049": 85, "quality_annotator_a0050": 85, "070564": 85, "216078": 85, "119188": 85, "alongisd": 85, "244981": 85, "208333": 85, "295979": 85, "294118": 85, "324197": 85, "310345": 85, "355316": 85, "346154": 85, "439732": 85, "480000": 85, "a0031": 85, "523205": 85, "580645": 85, "a0034": 85, "535313": 85, "607143": 85, "a0021": 85, "606999": 85, "a0015": 85, "609526": 85, "678571": 85, "a0011": 85, "621103": 85, "692308": 85, "wors": 85, "improved_consensus_label": 85, "majority_vote_accuraci": 85, "cleanlab_label_accuraci": 85, "8581081081081081": 85, "9797297297297297": 85, "besid": 85, "sorted_consensus_quality_scor": 85, "worst_qual": 85, "better_qu": 85, "worst_quality_accuraci": 85, "better_quality_accuraci": 85, "9893238434163701": 85, "improved_pred_prob": 85, "treat": [85, 86, 90, 94], "analzi": 85, "copyright": 86, "advertis": 86, "violenc": 86, "nsfw": 86, "suppli": [86, 87], "celeba": 86, "make_multilabel_data": 86, "boxes_coordin": 86, "box_multilabel": 86, "make_multi": 86, "bx1": 86, "by1": 86, "bx2": 86, "by2": 86, "label_list": 86, "ur": 86, "upper": 86, "inidx": 86, "logical_and": 86, "inv_d": 86, "labels_idx": 86, "true_labels_test": 86, "dict_unique_label": 86, "get_color_arrai": 86, "dcolor": 86, "aa4400": 86, "55227f": 86, "55a100": 86, "00ff00": 86, "007f7f": 86, "386b55": 86, "0000ff": 86, "simplic": 86, "advis": 86, "y_onehot": 86, "single_class_label": 86, "stratifi": [86, 89], "kf": 86, "train_index": 86, "test_index": 86, "clf_cv": 86, "x_train_cv": 86, "x_test_cv": 86, "y_train_cv": 86, "y_test_cv": 86, "y_pred_cv": 86, "saw": 86, "num_to_displai": 86, "09": [86, 87, 91], "275": 86, "267": 86, "225": 86, "171": 86, "234": 86, "165": 86, "227": [86, 87], "262": [86, 87], "263": [86, 87], "266": [86, 87], "139": 86, "143": [86, 87], "216": [86, 87, 94], "265": 86, "159": [86, 87], "despit": [86, 94], "suspect": 86, "888": 86, "8224": 86, "9632": 86, "968": 86, "6512": 86, "0444": 86, "774": 86, "labels_binary_format": 86, "labels_list_format": 86, "surround": 87, "scene": 87, "coco": 87, "everydai": 87, "has_label_issu": 87, "insal": 87, "nc": [87, 91, 94], "s3": [87, 91, 94], "amazonaw": [87, 91, 94], "objectdetectionbenchmark": 87, "tutorial_obj": 87, "pkl": 87, "example_imag": 87, "unzip": [87, 94], "_separate_label": 87, "_separate_predict": 87, "begin": 87, "image_path": 87, "rb": 87, "image_to_visu": 87, "seg_map": 87, "334": 87, "float32": 87, "bboxes_ignor": 87, "290": 87, "286": 87, "285": 87, "224": 87, "231": 87, "293": 87, "235": 87, "289": 87, "282": 87, "74": [87, 90, 91, 92], "281": 87, "271": 87, "280": 87, "277": 87, "279": 87, "287": 87, "299": 87, "276": 87, "307": 87, "321": 87, "326": 87, "333": 87, "261": 87, "319": 87, "257": 87, "295": 87, "283": 87, "243": 87, "303": 87, "316": 87, "247": 87, "323": 87, "327": 87, "226": 87, "228": 87, "232": 87, "219": 87, "239": 87, "240": 87, "209": [87, 94], "242": 87, "202": 87, "230": 87, "215": 87, "220": 87, "229": 87, "217": [87, 94], "237": 87, "207": 87, "204": 87, "84": [87, 88, 90, 91], "205": 87, "223": 87, "153": 87, "149": 87, "140": 87, "124": 87, "268": 87, "273": 87, "108": 87, "284": 87, "110": 87, "136": 87, "145": 87, "173": 87, "297": 87, "317": 87, "192": 87, "332": 87, "324": 87, "203": 87, "320": 87, "314": 87, "199": 87, "291": 87, "000000481413": 87, "jpg": 87, "42398": 87, "44503": 87, "337": [87, 93], "29968": 87, "336": 87, "21005": 87, "9978472": 87, "forgot": 87, "drew": 87, "label_issue_idx": 87, "num_examples_to_show": 87, "138": 87, "candid": 87, "97489622": 87, "70610878": 87, "98764951": 87, "88899237": 87, "99085805": 87, "issue_idx": 87, "95569726e": 87, "03354841e": 87, "57510169e": 87, "58447666e": 87, "39755858e": 87, "issue_to_visu": 87, "000000009483": 87, "95569726168054e": 87, "addition": [87, 91], "visibl": 87, "missmatch": 87, "likelei": 87, "agnost": 87, "vaidat": 87, "inconsist": 87, "000000395701": 87, "033548411774308e": 87, "armchair": 87, "tv": 87, "000000154004": 87, "38300759625496356": 87, "foreground": 87, "000000448410": 87, "0008575101690203273": 87, "crowd": 87, "alon": 87, "explor": [87, 88], "resembl": [87, 88], "000000499768": 87, "9748962231208227": 87, "000000521141": 87, "8889923658893665": 87, "000000143931": 87, "9876495074395956": 87, "uncov": 87, "irregular": 87, "aim": [87, 91, 94], "anomali": 87, "unusu": [87, 88], "object_detection_util": 87, "calculate_bounding_box_area": 87, "num_imgs_to_show": 87, "lab_object_count": 87, "pred_object_count": 87, "000000430073": 87, "000000183709": 87, "000000189475": 87, "studi": 87, "label_norm": 87, "pred_norm": 87, "area": [87, 91], "lab_area": 87, "pred_area": 87, "lab_area_mean": 87, "lab_area_std": 87, "max_deviation_valu": 87, "max_deviation_class": 87, "deviation_valu": 87, "deviation_class": 87, "mean_area": 87, "std_area": 87, "class_area": 87, "deviations_awai": 87, "max_deviation_index": 87, "num_imgs_to_show_per_class": 87, "class_num": 87, "sorted_indic": 87, "000000422886": 87, "000000341828": 87, "000000461009": 87, "train_feature_embed": 88, "ood_train_feature_scor": 88, "test_feature_embed": 88, "ood_test_feature_scor": 88, "ood_train_predictions_scor": 88, "train_pred_prob": 88, "ood_test_predictions_scor": 88, "test_pred_prob": 88, "pylab": 88, "rcparam": 88, "baggingclassifi": 88, "therebi": 88, "rescal": 88, "transform_norm": 88, "totensor": 88, "root": 88, "animal_class": 88, "non_animal_class": 88, "animal_idx": 88, "test_idx": 88, "toronto": 88, "edu": 88, "kriz": 88, "170498071": 88, "1966080": 88, "19659740": 88, "13729792": 88, "77179148": 88, "66it": [88, 91], "25460736": 88, "95453009": 88, "37191680": 88, "104050694": 88, "82it": [88, 91], "48922624": 88, "108754354": 88, "60653568": 88, "111599175": 88, "08it": [88, 91], "72417280": 88, "113485568": 88, "84148224": 88, "114683185": 88, "40it": [88, 91], "95879168": 88, "115452930": 88, "26it": [88, 91], "107610112": 88, "116001177": 88, "119341056": 88, "116178766": 88, "29it": [88, 91], "131137536": 88, "116661736": 88, "90it": [88, 91], "142868480": 88, "116808215": 88, "89it": [88, 91], "154599424": 88, "116920831": 88, "64it": [88, 91], "166330368": 88, "116990077": 88, "48it": [88, 91], "110845448": 88, "51it": [88, 91], "5000": 88, "plot_imag": 88, "visualize_outli": 88, "txt_class": 88, "img": [88, 90], "npimg": 88, "show_label": 88, "data_subset": 88, "resnet50": 88, "corpu": 88, "2048": 88, "embed_imag": 88, "create_model": 88, "strang": 88, "odd": 88, "train_ood_features_scor": 88, "top_train_ood_features_idx": 88, "fun": 88, "negat": 88, "homogen": 88, "bottom_train_ood_features_idx": 88, "test_ood_features_scor": 88, "top_ood_features_idx": 88, "inevit": 88, "trade": 88, "5th": 88, "percentil": 88, "fifth_percentil": 88, "plt_rang": 88, "hist": 88, "train_outlier_scor": 88, "ylabel": 88, "axvlin": 88, "test_outlier_scor": 88, "ood_features_indic": 88, "revisit": 88, "return_invers": 88, "train_feature_embeddings_sc": 88, "test_feature_embeddings_sc": 88, "train_pred_label": 88, "9702": 88, "train_ood_predictions_scor": 88, "test_ood_predictions_scor": 88, "mainli": [88, 94], "lost": 88, "unsuit": 89, "ok": [89, 94], "convention": 89, "aforement": 89, "hypothet": 89, "contrast": 89, "tradit": 89, "disjoint": 89, "out_of_sample_pred_probs_for_a": 89, "out_of_sample_pred_probs_for_b": 89, "out_of_sample_pred_probs_for_c": 89, "out_of_sample_pred_prob": 89, "price": 90, "incom": 90, "ag": 90, "histgradientboostingregressor": 90, "r2_score": 90, "student_grades_r": 90, "final_scor": 90, "true_final_scor": 90, "homework": 90, "3d": 90, "hue": 90, "mpl_toolkit": 90, "mplot3d": 90, "axes3d": 90, "errors_idx": 90, "add_subplot": 90, "z": 90, "colorbar": 90, "errors_mask": 90, "feature_column": 90, "predicted_column": 90, "x_train_raw": 90, "x_test_raw": 90, "categorical_featur": [90, 92], "randomforestregressor": 90, "636197": 90, "499503": 90, "843478": 90, "776647": 90, "350358": 90, "170547": 90, "706969": 90, "984759": 90, "812515": 90, "795928": 90, "identified_issu": [90, 93], "141": 90, "659": 90, "367": 90, "318": 90, "305": 90, "560": 90, "657": 90, "688": 90, "view_datapoint": 90, "concat": 90, "consum": [90, 93], "baseline_model": [90, 93], "preds_og": 90, "r2_og": 90, "838": 90, "robustli": [90, 92, 93], "acceler": [90, 93], "found_label_issu": 90, "preds_cl": 90, "r2_cl": 90, "926": 90, "effort": [90, 92, 93], "favorit": 90, "13091885": 90, "48412548": 90, "00695165": 90, "44421119": 90, "43029854": 90, "synthia": 91, "imagesegment": 91, "given_mask": 91, "predicted_mask": 91, "set_printopt": [91, 94], "sky": 91, "sidewalk": 91, "veget": 91, "terrain": 91, "rider": 91, "pred_probs_filepath": 91, "1088": 91, "1920": 91, "label_filepath": 91, "synthia_class": 91, "maunal": 91, "100000": 91, "244800": 91, "leftmost": 91, "middl": [91, 94], "infact": 91, "rightmost": 91, "discrep": 91, "4997817": 91, "15263": 91, "152620": 91, "32it": 91, "30666": 91, "153444": 91, "23it": 91, "46403": 91, "155233": 91, "62it": 91, "62088": 91, "155869": 91, "77755": 91, "156156": 91, "65it": 91, "93461": 91, "156459": 91, "109145": 91, "156582": 91, "124865": 91, "156775": 91, "140561": 91, "156832": 91, "156296": 91, "156990": 91, "171996": 91, "156816": 91, "52it": 91, "187678": 91, "156789": 91, "10it": 91, "203449": 91, "157064": 91, "19it": 91, "219271": 91, "157411": 91, "235039": 91, "157491": 91, "250894": 91, "157807": 91, "98it": 91, "266675": 91, "157776": 91, "96it": 91, "282453": 91, "157761": 91, "298230": 91, "157339": 91, "46it": 91, "313965": 91, "157107": 91, "54it": 91, "329811": 91, "157509": 91, "345563": 91, "153954": 91, "15it": 91, "361251": 91, "154814": 91, "376940": 91, "155427": 91, "392762": 91, "156257": 91, "408619": 91, "156944": 91, "424451": 91, "157351": 91, "440219": 91, "157448": 91, "13it": 91, "456014": 91, "157594": 91, "94it": 91, "471810": 91, "157702": 91, "43it": 91, "487647": 91, "157900": 91, "06it": 91, "503447": 91, "157926": 91, "519243": 91, "157933": 91, "535046": 91, "157960": 91, "35it": 91, "550843": 91, "157126": 91, "81it": 91, "566561": 91, "157141": 91, "74it": 91, "582279": 91, "157149": 91, "597995": 91, "157124": 91, "613708": 91, "156897": 91, "25it": 91, "629508": 91, "157224": 91, "645231": 91, "157177": 91, "39it": 91, "660949": 91, "156978": 91, "676648": 91, "156760": 91, "692325": 91, "156208": 91, "707947": 91, "156090": 91, "723563": 91, "156108": 91, "57it": 91, "739191": 91, "156158": 91, "754807": 91, "156048": 91, "770497": 91, "156302": 91, "786317": 91, "156868": 91, "802017": 91, "156904": 91, "817708": 91, "153225": 91, "833392": 91, "154288": 91, "849328": 91, "155788": 91, "865122": 91, "156427": 91, "880887": 91, "156788": 91, "95it": 91, "896614": 91, "156931": 91, "912312": 91, "156914": 91, "928025": 91, "156976": 91, "92it": 91, "943726": 91, "156932": 91, "85it": 91, "959463": 91, "157062": 91, "975171": 91, "156949": 91, "990867": 91, "156556": 91, "1006550": 91, "156635": 91, "1022215": 91, "156528": 91, "1037881": 91, "156565": 91, "1053699": 91, "157047": 91, "75it": 91, "1069405": 91, "157030": 91, "1085109": 91, "157023": 91, "73it": 91, "1100812": 91, "157017": 91, "1116514": 91, "1132201": 91, "156856": 91, "61it": 91, "1147887": 91, "156805": 91, "1163580": 91, "156840": 91, "1179265": 91, "156735": 91, "1194966": 91, "156815": 91, "1210648": 91, "156722": 91, "01it": 91, "1226321": 91, "156153": 91, "1241937": 91, "156124": 91, "87it": 91, "1257558": 91, "156148": 91, "50it": 91, "1273179": 91, "156164": 91, "18it": 91, "1288823": 91, "156245": 91, "31it": 91, "1304448": 91, "149122": 91, "1320201": 91, "151560": 91, "1335784": 91, "152810": 91, "1351437": 91, "153905": 91, "1367067": 91, "154615": 91, "30it": 91, "1382626": 91, "154902": 91, "1398347": 91, "155589": 91, "1414047": 91, "156009": 91, "20it": 91, "1429657": 91, "155598": 91, "1445223": 91, "155576": 91, "1460785": 91, "151230": 91, "69it": 91, "1476499": 91, "152962": 91, "1492193": 91, "154135": 91, "1507910": 91, "155034": 91, "80it": 91, "1523500": 91, "155291": 91, "00it": 91, "1539068": 91, "155405": 91, "1554740": 91, "155797": 91, "1570325": 91, "155632": 91, "09it": 91, "1585935": 91, "155771": 91, "1601515": 91, "155577": 91, "1617101": 91, "155645": 91, "1632667": 91, "148235": 91, "1648018": 91, "149759": 91, "1663496": 91, "151227": 91, "1679092": 91, "1694624": 91, "153418": 91, "04it": 91, "1710114": 91, "153856": 91, "1725618": 91, "154206": 91, "1741184": 91, "154637": 91, "42it": 91, "1756809": 91, "155118": 91, "1772353": 91, "155210": 91, "55it": 91, "1787879": 91, "155071": 91, "1803441": 91, "155232": 91, "1818967": 91, "155131": 91, "1834552": 91, "155345": 91, "1850088": 91, "155196": 91, "1865620": 91, "155230": 91, "1881152": 91, "155254": 91, "1896678": 91, "155248": 91, "93it": 91, "1912204": 91, "155052": 91, "1927782": 91, "155267": 91, "1943309": 91, "147382": 91, "1958900": 91, "149845": 91, "1974144": 91, "150601": 91, "16it": 91, "1989777": 91, "152285": 91, "2005339": 91, "153271": 91, "2020923": 91, "154032": 91, "2036556": 91, "154716": 91, "2052197": 91, "155218": 91, "2067791": 91, "155431": 91, "2083480": 91, "155866": 91, "2099072": 91, "153960": 91, "2114477": 91, "149462": 91, "2129964": 91, "151036": 91, "2145511": 91, "152339": 91, "2161091": 91, "153360": 91, "76it": 91, "2176618": 91, "153926": 91, "2192023": 91, "153927": 91, "2207487": 91, "154138": 91, "2222907": 91, "154133": 91, "2238462": 91, "154555": 91, "2254046": 91, "154936": 91, "2269542": 91, "154628": 91, "2285034": 91, "154712": 91, "2300521": 91, "154756": 91, "2316076": 91, "154990": 91, "2331731": 91, "155457": 91, "59it": 91, "2347419": 91, "155882": 91, "2363116": 91, "156205": 91, "14it": 91, "2378808": 91, "156417": 91, "2394450": 91, "156396": 91, "2410090": 91, "156233": 91, "2425714": 91, "153347": 91, "2441355": 91, "154251": 91, "2456999": 91, "154899": 91, "2472573": 91, "155147": 91, "2488269": 91, "155687": 91, "2503888": 91, "155834": 91, "72it": 91, "2519475": 91, "155805": 91, "2535058": 91, "155369": 91, "2550597": 91, "155179": 91, "2566117": 91, "155127": 91, "2581758": 91, "155508": 91, "2597417": 91, "155829": 91, "2613047": 91, "155967": 91, "2628736": 91, "156242": 91, "2644396": 91, "156346": 91, "2660031": 91, "156281": 91, "2675660": 91, "156120": 91, "2691280": 91, "156142": 91, "2706895": 91, "155947": 91, "2722572": 91, "156193": 91, "2738193": 91, "156195": 91, "2753813": 91, "150301": 91, "2769422": 91, "151987": 91, "2785064": 91, "153289": 91, "2800777": 91, "154423": 91, "2816532": 91, "155351": 91, "2832326": 91, "156121": 91, "2848000": 91, "156304": 91, "2863639": 91, "156075": 91, "36it": 91, "2879282": 91, "156179": 91, "2894905": 91, "156130": 91, "38it": 91, "2910521": 91, "155588": 91, "2926101": 91, "155647": 91, "2941668": 91, "155279": 91, "2957198": 91, "155117": 91, "2972765": 91, "155281": 91, "2988398": 91, "155591": 91, "3003958": 91, "155555": 91, "3019690": 91, "156080": 91, "3035372": 91, "156299": 91, "79it": 91, "3051003": 91, "154260": 91, "3066480": 91, "154409": 91, "3082098": 91, "154934": 91, "3097722": 91, "155321": 91, "3113318": 91, "155509": 91, "3128913": 91, "155639": 91, "3144479": 91, "155436": 91, "3160024": 91, "155424": 91, "3175636": 91, "155631": 91, "3191241": 91, "155756": 91, "3206843": 91, "155833": 91, "3222427": 91, "155273": 91, "3237981": 91, "3253517": 91, "154931": 91, "3269081": 91, "155140": 91, "3284643": 91, "155282": 91, "3300172": 91, "3315734": 91, "155110": 91, "3331370": 91, "155482": 91, "3346919": 91, "155478": 91, "3362526": 91, "155654": 91, "3378092": 91, "155458": 91, "3393723": 91, "155711": 91, "3409391": 91, "155999": 91, "3425019": 91, "156082": 91, "3440777": 91, "3456471": 91, "156650": 91, "3472159": 91, "156718": 91, "3487831": 91, "156663": 91, "3503498": 91, "156604": 91, "3519159": 91, "3534858": 91, "156463": 91, "3550505": 91, "149036": 91, "3566172": 91, "151244": 91, "49it": 91, "3581958": 91, "153178": 91, "3597789": 91, "154690": 91, "3613468": 91, "155310": 91, "3629200": 91, "155906": 91, "3644976": 91, "156457": 91, "3660681": 91, "156631": 91, "3676412": 91, "156830": 91, "3692102": 91, "156763": 91, "3707783": 91, "156228": 91, "3723410": 91, "156001": 91, "3739013": 91, "155896": 91, "3754680": 91, "156126": 91, "3770294": 91, "155956": 91, "3785910": 91, "156016": 91, "3801513": 91, "155964": 91, "71it": 91, "3817120": 91, "155992": 91, "84it": 91, "3832720": 91, "155983": 91, "3848345": 91, "156059": 91, "3863952": 91, "148367": 91, "3879632": 91, "150805": 91, "3895335": 91, "152623": 91, "3911069": 91, "154010": 91, "3926784": 91, "154938": 91, "3942544": 91, "155727": 91, "3958159": 91, "155850": 91, "3973923": 91, "156382": 91, "3989706": 91, "156813": 91, "4005509": 91, "157173": 91, "4021268": 91, "157297": 91, "4037002": 91, "156864": 91, "4052692": 91, "156360": 91, "4068403": 91, "156583": 91, "4084170": 91, "156906": 91, "4099862": 91, "156560": 91, "4115633": 91, "156901": 91, "4131413": 91, "157169": 91, "4147174": 91, "157300": 91, "4162905": 91, "157101": 91, "4178673": 91, "157271": 91, "4194401": 91, "154293": 91, "4210003": 91, "154802": 91, "4225675": 91, "4241497": 91, "156216": 91, "4257316": 91, "156802": 91, "4273149": 91, "157256": 91, "33it": 91, "4288963": 91, "157517": 91, "4304819": 91, "157827": 91, "4320680": 91, "158060": 91, "4336553": 91, "158259": 91, "4352399": 91, "158317": 91, "4368232": 91, "157914": 91, "4384025": 91, "157847": 91, "4399840": 91, "157937": 91, "4415688": 91, "158096": 91, "4431584": 91, "158353": 91, "4447420": 91, "158329": 91, "4463254": 91, "158306": 91, "4479095": 91, "158337": 91, "4494929": 91, "158263": 91, "4510756": 91, "157835": 91, "4526540": 91, "157699": 91, "4542329": 91, "157754": 91, "4558105": 91, "157720": 91, "4573998": 91, "158079": 91, "4589845": 91, "158195": 91, "4605665": 91, "158104": 91, "4621476": 91, "157979": 91, "4637312": 91, "158092": 91, "4653156": 91, "158194": 91, "4668976": 91, "157925": 91, "4684769": 91, "157455": 91, "4700543": 91, "157536": 91, "4716321": 91, "157608": 91, "67it": 91, "4732087": 91, "157621": 91, "4747850": 91, "157549": 91, "4763606": 91, "157330": 91, "4779340": 91, "156851": 91, "4795062": 91, "156958": 91, "4810759": 91, "156924": 91, "4826479": 91, "157004": 91, "4842180": 91, "153018": 91, "4857754": 91, "153817": 91, "4873365": 91, "154494": 91, "4888941": 91, "154867": 91, "4904521": 91, "155143": 91, "4920058": 91, "4935639": 91, "155386": 91, "4951237": 91, "155562": 91, "4966796": 91, "155195": 91, "4982344": 91, "155277": 91, "155619": 91, "3263230": 91, "783379": 91, "275110": 91, "255792": 91, "78225": 91, "55990": 91, "54427": 91, "33591": 91, "24645": 91, "21308": 91, "15045": 91, "14171": 91, "13832": 91, "13498": 91, "11490": 91, "9164": 91, "8769": 91, "6999": 91, "6031": 91, "5011": 91, "mistakenli": 91, "class_issu": 91, "domin": 91, "extratreesclassifi": 92, "extratre": 92, "ranked_label_issu": [92, 93], "labelencod": [92, 93], "labels_raw": 92, "interg": [92, 93], "tress": 92, "827": 92, "cheat": 92, "0pt": 92, "233": 92, "labels_train": 92, "labels_test": 92, "acc_og": [92, 93], "783068783068783": 92, "acc_cl": [92, 93], "8095238095238095": 92, "earlier": [93, 94], "raw_label": 93, "raw_train_text": 93, "raw_test_text": 93, "raw_train_label": 93, "raw_test_label": 93, "encond": 93, "train_text": 93, "test_text": 93, "858371": 93, "547274": 93, "826228": 93, "966008": 93, "792449": 93, "646": 93, "390": 93, "628": 93, "702": 93, "135": 93, "735": 93, "print_as_df": 93, "inverse_transform": 93, "fight": 93, "bunch": 94, "conll": 94, "2003": 94, "love": 94, "n_i": 94, "optional_list_of_ordered_class_nam": 94, "deepai": 94, "conll2003": 94, "rm": 94, "tokenclassif": 94, "2024": 94, "2400": 94, "52e0": 94, "1a00": 94, "718": 94, "connect": 94, "443": 94, "await": 94, "982975": 94, "960k": 94, "kb": 94, "959": 94, "94k": 94, "mb": 94, "directori": 94, "inflat": 94, "182": 94, "241": 94, "17045998": 94, "16m": 94, "octet": 94, "25m": 94, "1mb": 94, "26m": 94, "bert": 94, "read_npz": 94, "filepath": 94, "corrsespond": 94, "iob2": 94, "given_ent": 94, "entity_map": 94, "readfil": 94, "sep": 94, "startswith": 94, "docstart": 94, "isalpha": 94, "isupp": 94, "indices_to_preview": 94, "nsentenc": 94, "eu": 94, "reject": 94, "boycott": 94, "british": 94, "lamb": 94, "00030412": 94, "00023826": 94, "99936208": 94, "00007009": 94, "00002545": 94, "99998795": 94, "00000401": 94, "00000218": 94, "00000455": 94, "00000131": 94, "00000749": 94, "99996115": 94, "00001371": 94, "0000087": 94, "00000895": 94, "99998936": 94, "00000382": 94, "00000178": 94, "00000366": 94, "00000137": 94, "99999101": 94, "00000266": 94, "00000174": 94, "0000035": 94, "00000109": 94, "99998768": 94, "00000482": 94, "00000202": 94, "00000438": 94, "0000011": 94, "00000465": 94, "99996392": 94, "00001105": 94, "0000116": 94, "00000878": 94, "99998671": 94, "00000364": 94, "00000213": 94, "00000472": 94, "00000281": 94, "99999073": 94, "00000211": 94, "00000159": 94, "00000442": 94, "00000115": 94, "peter": 94, "blackburn": 94, "00000358": 94, "00000529": 94, "99995623": 94, "0000129": 94, "0000024": 94, "00001812": 94, "99994141": 94, "00001645": 94, "00002162": 94, "brussel": 94, "1996": 94, "00001172": 94, "00000821": 94, "00004661": 94, "0000618": 94, "99987167": 94, "99999061": 94, "00000201": 94, "00000195": 94, "00000408": 94, "00000135": 94, "2254": 94, "2907": 94, "19392": 94, "9962": 94, "8904": 94, "19303": 94, "12918": 94, "9256": 94, "11855": 94, "18392": 94, "20426": 94, "19402": 94, "14744": 94, "19371": 94, "4645": 94, "10331": 94, "9430": 94, "6143": 94, "18367": 94, "12914": 94, "todai": 94, "weather": 94, "march": 94, "scalfaro": 94, "northern": 94, "himself": 94, "said": 94, "germani": 94, "nastja": 94, "rysich": 94, "north": 94, "spla": 94, "fought": 94, "khartoum": 94, "govern": 94, "south": 94, "1983": 94, "autonomi": 94, "animist": 94, "region": 94, "moslem": 94, "arabis": 94, "mayor": 94, "antonio": 94, "gonzalez": 94, "garcia": 94, "revolutionari": 94, "parti": 94, "wednesdai": 94, "troop": 94, "raid": 94, "farm": 94, "stole": 94, "rape": 94, "women": 94, "spring": 94, "chg": 94, "hrw": 94, "12pct": 94, "princ": 94, "photo": 94, "moment": 94, "spokeswoman": 94, "rainier": 94, "told": 94, "reuter": 94, "danila": 94, "carib": 94, "w224": 94, "equip": 94, "radiomet": 94, "earn": 94, "19996": 94, "london": 94, "denom": 94, "sale": 94, "uk": 94, "jp": 94, "fr": 94, "maccabi": 94, "hapoel": 94, "haifa": 94, "tel": 94, "aviv": 94, "hospit": 94, "rever": 94, "roman": 94, "cathol": 94, "nun": 94, "admit": 94, "calcutta": 94, "week": 94, "ago": 94, "fever": 94, "vomit": 94, "allianc": 94, "embattl": 94, "kabul": 94, "salang": 94, "highwai": 94, "mondai": 94, "tuesdai": 94, "suprem": 94, "council": 94, "led": 94, "jumbish": 94, "milli": 94, "movement": 94, "warlord": 94, "abdul": 94, "rashid": 94, "dostum": 94, "dollar": 94, "exchang": 94, "3570": 94, "12049": 94, "born": 94, "1937": 94, "provinc": 94, "anhui": 94, "dai": 94, "came": 94, "shanghai": 94, "citi": 94, "prolif": 94, "author": 94, "teacher": 94, "chines": 94, "16764": 94, "1990": 94, "historian": 94, "alan": 94, "john": 94, "percival": 94, "taylor": 94, "di": 94, "20446": 94, "pace": 94, "bowler": 94, "ian": 94, "harvei": 94, "claim": 94, "victoria": 94, "15514": 94, "cotti": 94, "osc": 94, "foreign": 94, "minist": 94, "7525": 94, "sultan": 94, "specter": 94, "met": 94, "crown": 94, "abdullah": 94, "defenc": 94, "aviat": 94, "jeddah": 94, "saudi": 94, "agenc": 94, "2288": 94, "hi": 94, "customari": 94, "outfit": 94, "champion": 94, "damp": 94, "scalp": 94, "canada": 94, "reign": 94, "olymp": 94, "donovan": 94, "bailei": 94, "1992": 94, "linford": 94, "christi": 94, "britain": 94, "1984": 94, "1988": 94, "carl": 94, "lewi": 94, "ambigi": 94, "punctuat": 94, "chicago": 94, "digest": 94, "philadelphia": 94, "usda": 94, "york": 94, "token_issu": 94, "471": 94, "kean": 94, "year": 94, "contract": 94, "manchest": 94, "19072": 94, "societi": 94, "million": 94, "bite": 94, "deliv": 94, "19910": 94, "father": 94, "clarenc": 94, "woolmer": 94, "renam": 94, "uttar": 94, "pradesh": 94, "india": 94, "ranji": 94, "trophi": 94, "nation": 94, "championship": 94, "captain": 94, "1949": 94, "15658": 94, "19879": 94, "iii": 94, "brian": 94, "shimer": 94, "randi": 94, "jone": 94, "19104": 94}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [30, 0, 0, "-", "dataset"], [33, 0, 0, "-", "experimental"], [36, 0, 0, "-", "filter"], [37, 0, 0, "-", "internal"], [48, 0, 0, "-", "models"], [50, 0, 0, "-", "multiannotator"], [53, 0, 0, "-", "multilabel_classification"], [56, 0, 0, "-", "object_detection"], [59, 0, 0, "-", "outlier"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "regression"], [65, 0, 0, "-", "segmentation"], [69, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.dataset": [[30, 1, 1, "", "find_overlapping_classes"], [30, 1, 1, "", "health_summary"], [30, 1, 1, "", "overall_label_health_score"], [30, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[31, 0, 0, "-", "cifar_cnn"], [32, 0, 0, "-", "coteaching"], [34, 0, 0, "-", "label_issues_batched"], [35, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[31, 2, 1, "", "CNN"], [31, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[31, 6, 1, "", "T_destination"], [31, 3, 1, "", "__call__"], [31, 3, 1, "", "add_module"], [31, 3, 1, "", "apply"], [31, 3, 1, "", "bfloat16"], [31, 3, 1, "", "buffers"], [31, 6, 1, "", "call_super_init"], [31, 3, 1, "", "children"], [31, 3, 1, "", "compile"], [31, 3, 1, "", "cpu"], [31, 3, 1, "", "cuda"], [31, 3, 1, "", "double"], [31, 6, 1, "", "dump_patches"], [31, 3, 1, "", "eval"], [31, 3, 1, "", "extra_repr"], [31, 3, 1, "", "float"], [31, 3, 1, "id0", "forward"], [31, 3, 1, "", "get_buffer"], [31, 3, 1, "", "get_extra_state"], [31, 3, 1, "", "get_parameter"], [31, 3, 1, "", "get_submodule"], [31, 3, 1, "", "half"], [31, 3, 1, "", "ipu"], [31, 3, 1, "", "load_state_dict"], [31, 3, 1, "", "modules"], [31, 3, 1, "", "named_buffers"], [31, 3, 1, "", "named_children"], [31, 3, 1, "", "named_modules"], [31, 3, 1, "", "named_parameters"], [31, 3, 1, "", "parameters"], [31, 3, 1, "", "register_backward_hook"], [31, 3, 1, "", "register_buffer"], [31, 3, 1, "", "register_forward_hook"], [31, 3, 1, "", "register_forward_pre_hook"], [31, 3, 1, "", "register_full_backward_hook"], [31, 3, 1, "", "register_full_backward_pre_hook"], [31, 3, 1, "", "register_load_state_dict_post_hook"], [31, 3, 1, "", "register_module"], [31, 3, 1, "", "register_parameter"], [31, 3, 1, "", "register_state_dict_pre_hook"], [31, 3, 1, "", "requires_grad_"], [31, 3, 1, "", "set_extra_state"], [31, 3, 1, "", "share_memory"], [31, 3, 1, "", "state_dict"], [31, 3, 1, "", "to"], [31, 3, 1, "", "to_empty"], [31, 3, 1, "", "train"], [31, 6, 1, "", "training"], [31, 3, 1, "", "type"], [31, 3, 1, "", "xpu"], [31, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[32, 1, 1, "", "adjust_learning_rate"], [32, 1, 1, "", "evaluate"], [32, 1, 1, "", "forget_rate_scheduler"], [32, 1, 1, "", "initialize_lr_scheduler"], [32, 1, 1, "", "loss_coteaching"], [32, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[34, 2, 1, "", "LabelInspector"], [34, 7, 1, "", "adj_confident_thresholds_shared"], [34, 1, 1, "", "find_label_issues_batched"], [34, 7, 1, "", "labels_shared"], [34, 7, 1, "", "pred_probs_shared"], [34, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[34, 3, 1, "", "get_confident_thresholds"], [34, 3, 1, "", "get_label_issues"], [34, 3, 1, "", "get_num_issues"], [34, 3, 1, "", "get_quality_scores"], [34, 3, 1, "", "score_label_quality"], [34, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[35, 2, 1, "", "CNN"], [35, 2, 1, "", "SimpleNet"], [35, 1, 1, "", "get_mnist_dataset"], [35, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[35, 3, 1, "", "__init_subclass__"], [35, 6, 1, "", "batch_size"], [35, 6, 1, "", "dataset"], [35, 6, 1, "", "epochs"], [35, 3, 1, "id0", "fit"], [35, 3, 1, "", "get_metadata_routing"], [35, 3, 1, "", "get_params"], [35, 6, 1, "", "loader"], [35, 6, 1, "", "log_interval"], [35, 6, 1, "", "lr"], [35, 6, 1, "", "momentum"], [35, 6, 1, "", "no_cuda"], [35, 3, 1, "id1", "predict"], [35, 3, 1, "id4", "predict_proba"], [35, 6, 1, "", "seed"], [35, 3, 1, "", "set_fit_request"], [35, 3, 1, "", "set_params"], [35, 3, 1, "", "set_predict_proba_request"], [35, 3, 1, "", "set_predict_request"], [35, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[35, 6, 1, "", "T_destination"], [35, 3, 1, "", "__call__"], [35, 3, 1, "", "add_module"], [35, 3, 1, "", "apply"], [35, 3, 1, "", "bfloat16"], [35, 3, 1, "", "buffers"], [35, 6, 1, "", "call_super_init"], [35, 3, 1, "", "children"], [35, 3, 1, "", "compile"], [35, 3, 1, "", "cpu"], [35, 3, 1, "", "cuda"], [35, 3, 1, "", "double"], [35, 6, 1, "", "dump_patches"], [35, 3, 1, "", "eval"], [35, 3, 1, "", "extra_repr"], [35, 3, 1, "", "float"], [35, 3, 1, "", "forward"], [35, 3, 1, "", "get_buffer"], [35, 3, 1, "", "get_extra_state"], [35, 3, 1, "", "get_parameter"], [35, 3, 1, "", "get_submodule"], [35, 3, 1, "", "half"], [35, 3, 1, "", "ipu"], [35, 3, 1, "", "load_state_dict"], [35, 3, 1, "", "modules"], [35, 3, 1, "", "named_buffers"], [35, 3, 1, "", "named_children"], [35, 3, 1, "", "named_modules"], [35, 3, 1, "", "named_parameters"], [35, 3, 1, "", "parameters"], [35, 3, 1, "", "register_backward_hook"], [35, 3, 1, "", "register_buffer"], [35, 3, 1, "", "register_forward_hook"], [35, 3, 1, "", "register_forward_pre_hook"], [35, 3, 1, "", "register_full_backward_hook"], [35, 3, 1, "", "register_full_backward_pre_hook"], [35, 3, 1, "", "register_load_state_dict_post_hook"], [35, 3, 1, "", "register_module"], [35, 3, 1, "", "register_parameter"], [35, 3, 1, "", "register_state_dict_pre_hook"], [35, 3, 1, "", "requires_grad_"], [35, 3, 1, "", "set_extra_state"], [35, 3, 1, "", "share_memory"], [35, 3, 1, "", "state_dict"], [35, 3, 1, "", "to"], [35, 3, 1, "", "to_empty"], [35, 3, 1, "", "train"], [35, 6, 1, "", "training"], [35, 3, 1, "", "type"], [35, 3, 1, "", "xpu"], [35, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[36, 1, 1, "", "find_label_issues"], [36, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [36, 1, 1, "", "find_predicted_neq_given"], [36, 7, 1, "", "pred_probs_by_class"], [36, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[38, 0, 0, "-", "label_quality_utils"], [39, 0, 0, "-", "latent_algebra"], [40, 0, 0, "-", "multiannotator_utils"], [41, 0, 0, "-", "multilabel_scorer"], [42, 0, 0, "-", "multilabel_utils"], [43, 0, 0, "-", "outlier"], [44, 0, 0, "-", "token_classification_utils"], [45, 0, 0, "-", "util"], [46, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[38, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, 1, 1, "", "compute_inv_noise_matrix"], [39, 1, 1, "", "compute_noise_matrix_from_inverse"], [39, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [39, 1, 1, "", "compute_py"], [39, 1, 1, "", "compute_py_inv_noise_matrix"], [39, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[40, 1, 1, "", "assert_valid_inputs_multiannotator"], [40, 1, 1, "", "assert_valid_pred_probs"], [40, 1, 1, "", "check_consensus_label_classes"], [40, 1, 1, "", "compute_soft_cross_entropy"], [40, 1, 1, "", "find_best_temp_scaler"], [40, 1, 1, "", "format_multiannotator_labels"], [40, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[41, 2, 1, "", "Aggregator"], [41, 2, 1, "", "ClassLabelScorer"], [41, 2, 1, "", "MultilabelScorer"], [41, 1, 1, "", "exponential_moving_average"], [41, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [41, 1, 1, "", "get_label_quality_scores"], [41, 1, 1, "", "multilabel_py"], [41, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[41, 3, 1, "", "__call__"], [41, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[41, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [41, 6, 1, "", "NORMALIZED_MARGIN"], [41, 6, 1, "", "SELF_CONFIDENCE"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "__contains__"], [41, 3, 1, "", "__getitem__"], [41, 3, 1, "", "__iter__"], [41, 3, 1, "", "__len__"], [41, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[41, 3, 1, "", "__call__"], [41, 3, 1, "", "aggregate"], [41, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[42, 1, 1, "", "get_onehot_num_classes"], [42, 1, 1, "", "int2onehot"], [42, 1, 1, "", "onehot2int"], [42, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[43, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, 1, 1, "", "color_sentence"], [44, 1, 1, "", "filter_sentence"], [44, 1, 1, "", "get_sentence"], [44, 1, 1, "", "mapping"], [44, 1, 1, "", "merge_probs"], [44, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[45, 1, 1, "", "append_extra_datapoint"], [45, 1, 1, "", "clip_noise_rates"], [45, 1, 1, "", "clip_values"], [45, 1, 1, "", "compress_int_array"], [45, 1, 1, "", "confusion_matrix"], [45, 1, 1, "", "csr_vstack"], [45, 1, 1, "", "estimate_pu_f1"], [45, 1, 1, "", "extract_indices_tf"], [45, 1, 1, "", "force_two_dimensions"], [45, 1, 1, "", "format_labels"], [45, 1, 1, "", "get_missing_classes"], [45, 1, 1, "", "get_num_classes"], [45, 1, 1, "", "get_unique_classes"], [45, 1, 1, "", "is_tensorflow_dataset"], [45, 1, 1, "", "is_torch_dataset"], [45, 1, 1, "", "num_unique_classes"], [45, 1, 1, "", "print_inverse_noise_matrix"], [45, 1, 1, "", "print_joint_matrix"], [45, 1, 1, "", "print_noise_matrix"], [45, 1, 1, "", "print_square_matrix"], [45, 1, 1, "", "remove_noise_from_class"], [45, 1, 1, "", "round_preserving_row_totals"], [45, 1, 1, "", "round_preserving_sum"], [45, 1, 1, "", "smart_display_dataframe"], [45, 1, 1, "", "subset_X_y"], [45, 1, 1, "", "subset_data"], [45, 1, 1, "", "subset_labels"], [45, 1, 1, "", "train_val_split"], [45, 1, 1, "", "unshuffle_tensorflow_dataset"], [45, 1, 1, "", "value_counts"], [45, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[46, 1, 1, "", "assert_indexing_works"], [46, 1, 1, "", "assert_nonempty_input"], [46, 1, 1, "", "assert_valid_class_labels"], [46, 1, 1, "", "assert_valid_inputs"], [46, 1, 1, "", "labels_to_array"], [46, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[49, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[49, 2, 1, "", "KerasWrapperModel"], [49, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[50, 1, 1, "", "convert_long_to_wide_dataset"], [50, 1, 1, "", "get_active_learning_scores"], [50, 1, 1, "", "get_active_learning_scores_ensemble"], [50, 1, 1, "", "get_label_quality_multiannotator"], [50, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [50, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[51, 0, 0, "-", "dataset"], [52, 0, 0, "-", "filter"], [54, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[51, 1, 1, "", "common_multilabel_issues"], [51, 1, 1, "", "multilabel_health_summary"], [51, 1, 1, "", "overall_multilabel_health_score"], [51, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, 1, 1, "", "find_label_issues"], [52, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[54, 1, 1, "", "get_label_quality_scores"], [54, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"], [58, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[55, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[57, 1, 1, "", "compute_badloc_box_scores"], [57, 1, 1, "", "compute_overlooked_box_scores"], [57, 1, 1, "", "compute_swap_box_scores"], [57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "issues_from_scores"], [57, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[58, 1, 1, "", "bounding_box_size_distribution"], [58, 1, 1, "", "calculate_per_class_metrics"], [58, 1, 1, "", "class_label_distribution"], [58, 1, 1, "", "get_average_per_class_confusion_matrix"], [58, 1, 1, "", "get_sorted_bbox_count_idxs"], [58, 1, 1, "", "object_counts_per_image"], [58, 1, 1, "", "plot_class_distribution"], [58, 1, 1, "", "plot_class_size_distributions"], [58, 1, 1, "", "visualize"]], "cleanlab.outlier": [[59, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[59, 3, 1, "", "fit"], [59, 3, 1, "", "fit_score"], [59, 3, 1, "", "score"]], "cleanlab.rank": [[60, 1, 1, "", "find_top_issues"], [60, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [60, 1, 1, "", "get_label_quality_ensemble_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "get_normalized_margin_for_each_label"], [60, 1, 1, "", "get_self_confidence_for_each_label"], [60, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[62, 0, 0, "-", "learn"], [63, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[62, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[62, 3, 1, "", "__init_subclass__"], [62, 3, 1, "", "find_label_issues"], [62, 3, 1, "", "fit"], [62, 3, 1, "", "get_aleatoric_uncertainty"], [62, 3, 1, "", "get_epistemic_uncertainty"], [62, 3, 1, "", "get_label_issues"], [62, 3, 1, "", "get_metadata_routing"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "save_space"], [62, 3, 1, "", "score"], [62, 3, 1, "", "set_fit_request"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[63, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"], [67, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[64, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[67, 1, 1, "", "common_label_issues"], [67, 1, 1, "", "display_issues"], [67, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[71, 1, 1, "", "common_label_issues"], [71, 1, 1, "", "display_issues"], [71, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 74, 78, 79, 81, 82, 83, 86, 92, 93, 94], "count": [3, 83], "datalab": [4, 5, 7, 8, 9, 75, 76, 77, 78, 79, 83], "creat": [5, 75, 76, 83, 85], "your": [5, 72, 75, 76, 79, 81, 83], "own": 5, "issu": [5, 7, 8, 19, 26, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 75], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 75], "us": [5, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "gener": 6, "cluster": [6, 81], "id": 6, "guid": [7, 9], "type": [7, 8, 83], "custom": [7, 75], "can": [8, 76, 80, 81, 83, 85], "detect": [8, 76, 78, 79, 81, 83, 87, 88], "estim": [8, 83, 85], "each": 8, "label": [8, 21, 26, 72, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "outlier": [8, 24, 43, 59, 78, 79, 82, 88], "Near": [8, 76, 78, 79, 82], "duplic": [8, 17, 76, 78, 79, 81, 82], "non": [8, 79], "iid": [8, 79], "class": [8, 73, 83, 91], "imbal": [8, 18], "imag": [8, 82, 88], "specif": [8, 19, 91], "underperform": [8, 81], "group": [8, 81], "null": [8, 23], "data": [8, 10, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87, 88, 90, 91, 92, 94], "valuat": 8, "option": 8, "paramet": [8, 83], "get": [9, 75, 76, 85, 86, 87, 91, 94], "start": [9, 80], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 37], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 81, 83], "task": 19, "noniid": 22, "regress": [25, 61, 62, 63, 81, 90], "prioriti": 26, "order": 26, "find": [26, 72, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "underperforming_group": 27, "report": [28, 82], "dataset": [30, 51, 72, 76, 79, 80, 81, 82, 83, 86, 87, 88, 90, 91, 93, 94], "cifar_cnn": 31, "coteach": 32, "experiment": 33, "label_issues_batch": 34, "mnist_pytorch": 35, "filter": [36, 52, 55, 64, 68, 83], "label_quality_util": 38, "latent_algebra": 39, "multiannotator_util": 40, "multilabel_scor": 41, "multilabel_util": 42, "token_classification_util": 44, "util": 45, "valid": [46, 82, 89], "fasttext": 47, "model": [48, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "kera": 49, "multiannot": [50, 85], "multilabel_classif": 53, "rank": [54, 57, 60, 63, 66, 70, 83], "object_detect": 56, "summari": [58, 67, 71], "learn": [62, 76, 81, 83, 92], "segment": [65, 91], "token_classif": [69, 94], "cleanlab": [72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "open": [72, 81], "sourc": [72, 81], "document": 72, "quickstart": 72, "1": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "instal": [72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "2": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "common": [72, 73, 94], "3": [72, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "handl": [72, 81], "error": [72, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "train": [72, 74, 81, 88, 90, 92, 93], "robust": [72, 83, 90, 92, 93], "noisi": [72, 83, 90, 92, 93], "4": [72, 74, 75, 76, 78, 79, 82, 83, 85, 87, 88, 90, 92, 93], "curat": [72, 80], "fix": [72, 81], "level": [72, 80, 83, 94], "5": [72, 74, 76, 78, 82, 83, 85, 90, 92], "improv": [72, 85], "via": [72, 83, 85], "mani": [72, 83], "other": [72, 85, 87, 90], "techniqu": 72, "contribut": 72, "easi": [72, 78, 79, 82], "mode": [72, 78, 79, 82], "how": [73, 81, 83, 85, 86, 94], "migrat": 73, "version": 73, "0": 73, "from": [73, 75, 76, 83, 90, 92, 93], "pre": [73, 74, 81, 88], "function": [73, 75], "name": 73, "chang": 73, "modul": [73, 83], "new": 73, "remov": 73, "argument": [73, 75], "variabl": 73, "audio": 74, "speechbrain": 74, "depend": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "import": [74, 75, 76, 80, 82, 83, 85], "them": [74, 80, 83], "load": [74, 75, 76, 78, 79, 90, 92, 93], "featur": [74, 82, 88], "fit": 74, "linear": 74, "comput": [74, 78, 79, 81, 82, 85, 89, 92], "out": [74, 75, 76, 78, 79, 82, 85, 89, 92], "sampl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "predict": [74, 75, 76, 78, 79, 82, 85, 86, 87, 89, 92], "probabl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "workflow": [75, 83], "audit": [75, 76], "requir": [75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "classifi": [75, 76], "instanti": 75, "object": [75, 87], "increment": 75, "search": 75, "specifi": [75, 81], "nondefault": 75, "save": 75, "ad": 75, "A": 76, "unifi": 76, "all": [76, 83], "kind": [76, 87], "skip": [76, 80, 83, 85], "detail": [76, 80, 83, 85], "more": [76, 83, 90, 92, 93], "about": 76, "addit": 76, "inform": [76, 82], "tutori": [77, 80, 84], "tabular": [78, 92], "numer": 78, "categor": 78, "column": 78, "process": [78, 88, 90, 92], "select": [78, 92], "construct": 78, "k": [78, 82, 89], "nearest": 78, "neighbour": 78, "graph": 78, "text": [79, 93, 94], "format": [79, 81, 86, 87, 93], "defin": [79, 82, 90, 93], "drift": 79, "fetch": [80, 82], "evalu": 80, "health": [80, 83], "8": [80, 83], "popular": 80, "faq": 81, "what": [81, 83, 89], "do": [81, 83], "i": [81, 83, 89], "infer": 81, "correct": 81, "exampl": [81, 82, 83, 88], "ha": 81, "flag": 81, "should": 81, "v": 81, "test": [81, 83, 88], "big": 81, "limit": 81, "memori": 81, "why": 81, "isn": 81, "t": 81, "cleanlearn": [81, 83], "work": [81, 83, 85, 94], "me": 81, "differ": [81, 87], "clean": [81, 83], "final": 81, "hyperparamet": 81, "tune": 81, "onli": 81, "one": [81, 83, 86, 91], "doe": [81, 85, 94], "take": 81, "so": 81, "long": 81, "slice": 81, "when": [81, 83], "identifi": [81, 87], "run": 81, "licens": 81, "under": 81, "an": 81, "answer": 81, "question": 81, "pytorch": [82, 88], "normal": 82, "fashion": 82, "mnist": 82, "prepar": 82, "fold": [82, 89], "cross": [82, 89], "embed": [82, 88], "7": [82, 83], "view": 82, "most": [82, 94], "like": 82, "sever": 82, "set": [82, 83], "dark": 82, "top": [82, 91], "low": 82, "The": 83, "centric": 83, "ai": 83, "machin": 83, "find_label_issu": 83, "line": 83, "code": 83, "visual": [83, 87, 88, 91], "twenti": 83, "lowest": 83, "qualiti": [83, 85, 86, 87, 91, 94], "see": 83, "now": 83, "let": 83, "": 83, "happen": 83, "we": 83, "merg": 83, "seafoam": 83, "green": 83, "yellow": 83, "too": 83, "you": 83, "re": 83, "6": 83, "One": 83, "score": [83, 85, 86, 87, 91, 94], "rule": 83, "overal": [83, 91], "accur": 83, "thi": 83, "directli": 83, "fulli": 83, "character": 83, "nois": 83, "matrix": [83, 86], "joint": 83, "prior": 83, "true": 83, "distribut": 83, "flip": 83, "rate": 83, "ani": 83, "again": 83, "support": 83, "lot": 83, "method": 83, "filter_bi": 83, "automat": 83, "everi": 83, "uniqu": 83, "num_label_issu": 83, "threshold": 83, "found": 83, "Not": 83, "sure": 83, "ensembl": 83, "multipl": [83, 85], "predictor": 83, "consensu": 85, "annot": 85, "initi": 85, "major": 85, "vote": 85, "better": 85, "statist": 85, "compar": 85, "inspect": 85, "potenti": [85, 90, 93], "retrain": 85, "further": 85, "multi": 86, "given": 86, "hot": 86, "binari": 86, "download": [87, 91, 94], "objectlab": 87, "exploratori": 87, "analysi": 87, "timm": 88, "cifar10": 88, "some": 88, "pred_prob": [88, 91, 94], "wai": 90, "semant": 91, "which": 91, "ar": 91, "commonli": 91, "mislabel": [91, 94], "focus": 91, "scikit": 92, "token": 94, "word": 94, "sentenc": 94, "contain": 94, "particular": 94}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [37, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [43, "module-cleanlab.internal.outlier"], [59, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [61, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "dataset": [[30, "module-cleanlab.dataset"], [51, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "experimental": [[33, "experimental"]], "label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[36, "module-cleanlab.filter"], [52, "module-cleanlab.multilabel_classification.filter"], [55, "filter"], [64, "filter"], [68, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "util": [[45, "module-cleanlab.internal.util"]], "validation": [[46, "module-cleanlab.internal.validation"]], "fasttext": [[47, "fasttext"]], "models": [[48, "models"]], "keras": [[49, "module-cleanlab.models.keras"]], "multiannotator": [[50, "module-cleanlab.multiannotator"]], "multilabel_classification": [[53, "multilabel-classification"]], "rank": [[54, "module-cleanlab.multilabel_classification.rank"], [57, "module-cleanlab.object_detection.rank"], [60, "module-cleanlab.rank"], [66, "module-cleanlab.segmentation.rank"], [70, "module-cleanlab.token_classification.rank"]], "object_detection": [[56, "object-detection"]], "summary": [[58, "summary"], [67, "module-cleanlab.segmentation.summary"], [71, "module-cleanlab.token_classification.summary"]], "regression.learn": [[62, "module-cleanlab.regression.learn"]], "regression.rank": [[63, "module-cleanlab.regression.rank"]], "segmentation": [[65, "segmentation"]], "token_classification": [[69, "token-classification"]], "cleanlab open-source documentation": [[72, "cleanlab-open-source-documentation"]], "Quickstart": [[72, "quickstart"]], "1. Install cleanlab": [[72, "install-cleanlab"]], "2. Find common issues in your data": [[72, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[72, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[72, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[72, "improve-your-data-via-many-other-techniques"]], "Contributing": [[72, "contributing"]], "Easy Mode": [[72, "easy-mode"], [78, "Easy-Mode"], [79, "Easy-Mode"], [82, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[73, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[73, "function-and-class-name-changes"]], "Module name changes": [[73, "module-name-changes"]], "New modules": [[73, "new-modules"]], "Removed modules": [[73, "removed-modules"]], "Common argument and variable name changes": [[73, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[74, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[74, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[74, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[74, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[74, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[74, "5.-Use-cleanlab-to-find-label-issues"], [78, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[75, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[75, "Install-and-import-required-dependencies"]], "Create and load the data": [[75, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[75, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[75, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[75, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[75, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[75, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[75, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[76, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[76, "1.-Install-and-import-required-dependencies"], [82, "1.-Install-and-import-required-dependencies"], [85, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[76, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[76, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[76, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[76, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[76, "Get-additional-information"]], "Near duplicate issues": [[76, "Near-duplicate-issues"], [82, "Near-duplicate-issues"]], "Datalab Tutorials": [[77, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[78, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[78, "1.-Install-required-dependencies"], [79, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [92, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"]], "2. Load and process the data": [[78, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [92, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[78, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [92, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[78, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[78, "Label-issues"], [79, "Label-issues"], [82, "Label-issues"]], "Outlier issues": [[78, "Outlier-issues"], [79, "Outlier-issues"], [82, "Outlier-issues"]], "Near-duplicate issues": [[78, "Near-duplicate-issues"], [79, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[79, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[79, "2.-Load-and-format-the-text-dataset"], [93, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[79, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[79, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[80, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[80, "Install-dependencies-and-import-them"], [83, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[80, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[80, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[81, "FAQ"]], "What data can cleanlab detect issues in?": [[81, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[81, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[81, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[81, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[81, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[81, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[81, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[81, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[81, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[81, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[81, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[81, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[81, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[81, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[82, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[82, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[82, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[82, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[82, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[82, "7.-Use-cleanlab-to-find-issues"]], "View report": [[82, "View-report"]], "View most likely examples with label errors": [[82, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[82, "View-most-severe-outliers"]], "View sets of near duplicate images": [[82, "View-sets-of-near-duplicate-images"]], "Dark images": [[82, "Dark-images"]], "View top examples of dark images": [[82, "View-top-examples-of-dark-images"]], "Low information images": [[82, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[83, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[83, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[83, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[83, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[83, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[83, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[83, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[83, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[83, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[83, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[83, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[83, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[83, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[83, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[83, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[83, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[83, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[83, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[83, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[84, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[85, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[85, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[85, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[85, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[85, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[85, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[85, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[85, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[85, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[86, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[86, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[86, "2.-Format-data,-labels,-and-model-predictions"], [87, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[86, "3.-Use-cleanlab-to-find-label-issues"], [87, "3.-Use-cleanlab-to-find-label-issues"], [91, "3.-Use-cleanlab-to-find-label-issues"], [94, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[86, "Label-quality-scores"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[86, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Finding Label Errors in Object Detection Datasets": [[87, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[87, "1.-Install-required-dependencies-and-download-data"], [91, "1.-Install-required-dependencies-and-download-data"], [94, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[87, "Get-label-quality-scores"], [91, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[87, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[87, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[87, "Other-uses-of-visualize"]], "Exploratory data analysys": [[87, "Exploratory-data-analysys"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[88, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[88, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[88, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[88, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[88, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[88, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[89, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[89, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[89, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[90, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[90, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[90, "4.-Train-a-more-robust-model-from-noisy-labels"], [93, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[90, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[91, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[91, "2.-Get-data,-labels,-and-pred_probs"], [94, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[91, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[91, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[91, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[92, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[92, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[92, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[93, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[93, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[94, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[94, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[94, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[94, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[94, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [30, "module-cleanlab.dataset"], [31, "module-cleanlab.experimental.cifar_cnn"], [32, "module-cleanlab.experimental.coteaching"], [33, "module-cleanlab.experimental"], [34, "module-cleanlab.experimental.label_issues_batched"], [35, "module-cleanlab.experimental.mnist_pytorch"], [36, "module-cleanlab.filter"], [37, "module-cleanlab.internal"], [38, "module-cleanlab.internal.label_quality_utils"], [39, "module-cleanlab.internal.latent_algebra"], [40, "module-cleanlab.internal.multiannotator_utils"], [41, "module-cleanlab.internal.multilabel_scorer"], [42, "module-cleanlab.internal.multilabel_utils"], [43, "module-cleanlab.internal.outlier"], [44, "module-cleanlab.internal.token_classification_utils"], [45, "module-cleanlab.internal.util"], [46, "module-cleanlab.internal.validation"], [48, "module-cleanlab.models"], [49, "module-cleanlab.models.keras"], [50, "module-cleanlab.multiannotator"], [51, "module-cleanlab.multilabel_classification.dataset"], [52, "module-cleanlab.multilabel_classification.filter"], [53, "module-cleanlab.multilabel_classification"], [54, "module-cleanlab.multilabel_classification.rank"], [55, "module-cleanlab.object_detection.filter"], [56, "module-cleanlab.object_detection"], [57, "module-cleanlab.object_detection.rank"], [58, "module-cleanlab.object_detection.summary"], [59, "module-cleanlab.outlier"], [60, "module-cleanlab.rank"], [61, "module-cleanlab.regression"], [62, "module-cleanlab.regression.learn"], [63, "module-cleanlab.regression.rank"], [64, "module-cleanlab.segmentation.filter"], [65, "module-cleanlab.segmentation"], [66, "module-cleanlab.segmentation.rank"], [67, "module-cleanlab.segmentation.summary"], [68, "module-cleanlab.token_classification.filter"], [69, "module-cleanlab.token_classification"], [70, "module-cleanlab.token_classification.rank"], [71, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "cleanlab.dataset": [[30, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.forward"], [31, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[33, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [35, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [35, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [35, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[36, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[36, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[36, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[37, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[38, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[43, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[43, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[45, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[46, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[48, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[49, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[50, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[51, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[53, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[54, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[55, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[55, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[56, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[57, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[58, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[59, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[59, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[60, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[61, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[62, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[62, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[62, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[63, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[63, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[64, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[64, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[65, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[66, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[67, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[68, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[68, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[69, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[70, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[71, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 73, 75, 76, 83, 85, 86], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 75, 76, 83, 85, 86], "generate_noise_matrix_from_trac": [0, 1, 75, 76, 83, 85, 86], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 34, 38, 40, 41, 42, 43, 44, 45, 57, 80, 82, 94], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 87, 88, 89, 90, 91, 92, 93, 94], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 72, 73, 75, 80, 84, 89], "benchmark": [1, 31, 72, 73, 75, 76, 83, 85, 86], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89], "": [1, 2, 3, 8, 16, 30, 31, 35, 38, 41, 43, 45, 50, 51, 55, 57, 58, 59, 60, 62, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "core": [1, 4, 34, 36, 64, 66], "algorithm": [1, 2, 6, 8, 27, 32, 45, 50, 59, 68, 70, 72, 81, 83, 85, 94], "These": [1, 2, 3, 6, 8, 19, 31, 33, 35, 36, 37, 48, 50, 51, 54, 58, 59, 63, 67, 68, 70, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "introduc": [1, 74, 81, 83], "synthet": [1, 85, 86, 91], "nois": [1, 2, 3, 30, 36, 39, 45, 51, 75, 76, 80, 85], "label": [1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 18, 19, 20, 25, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 80, 84, 88, 89], "classif": [1, 3, 4, 5, 8, 12, 14, 28, 30, 34, 36, 39, 41, 42, 45, 50, 51, 52, 53, 54, 59, 60, 68, 69, 70, 71, 72, 73, 75, 76, 84, 85, 88, 89, 90, 91], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 33, 34, 35, 36, 39, 41, 45, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 84, 85, 89, 92], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 33, 48, 52, 55, 58, 67, 71, 78, 79, 82, 83, 87, 94], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 30, 31, 32, 33, 34, 35, 36, 41, 43, 45, 48, 50, 55, 58, 59, 60, 72, 81, 82], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 30, 31, 32, 34, 35, 36, 39, 45, 49, 50, 51, 52, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 30, 41, 45, 46, 59, 60, 62, 67, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94], "valid": [1, 2, 3, 4, 8, 10, 30, 36, 37, 39, 40, 41, 43, 45, 50, 52, 55, 58, 60, 62, 63, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "matric": [1, 3, 39, 81], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 30, 31, 35, 36, 39, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 32, 33, 34, 35, 36, 38, 40, 45, 48, 50, 52, 59, 61, 63, 66, 70, 72, 74, 75, 78, 79, 80, 82, 84, 85, 86, 90, 93], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "possibl": [1, 2, 3, 8, 30, 31, 35, 36, 38, 39, 41, 52, 53, 54, 55, 57, 58, 59, 60, 62, 68, 70, 71, 76, 81, 83, 85, 86, 87, 90, 91, 94], "noisi": [1, 2, 3, 8, 30, 32, 35, 36, 39, 45, 51, 52, 54, 60, 62, 63, 64, 66, 67, 73, 75, 76, 78, 79, 81, 84, 85], "given": [1, 2, 3, 8, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 30, 36, 38, 39, 42, 45, 46, 52, 55, 57, 58, 59, 60, 78, 87, 88], "trace": [1, 75, 76, 83, 85, 86], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 30, 31, 32, 34, 35, 36, 38, 39, 41, 43, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "more": [1, 2, 3, 4, 5, 8, 11, 14, 16, 22, 30, 31, 34, 35, 38, 41, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 72, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 91, 94], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 83, 85, 86, 87, 91, 92, 93, 94], "noise_matrix": [1, 2, 3, 8, 39, 45, 75, 76, 83, 85, 86], "py": [1, 3, 28, 31, 32, 36, 39, 41, 74, 75, 76, 79, 81, 83, 85, 86, 93], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 34, 36, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 75, 83, 85], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 74, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88, 90, 91, 93], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71], "prior": [1, 2, 3, 30, 36, 39, 41], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 30, 34, 36, 39, 42, 43, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "p": [1, 2, 3, 8, 30, 36, 38, 39, 45, 50, 58, 59, 60, 64, 78, 79, 83, 85, 94], "true_label": [1, 2, 3, 30, 39, 45, 83, 85], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 75, 76, 81, 83, 85, 86, 87, 88, 91, 92, 94], "check": [1, 2, 4, 7, 8, 10, 14, 23, 31, 34, 35, 40, 46, 49, 55, 58, 62, 72, 74, 75, 76, 81, 82, 83, 85, 86, 90, 92, 93], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 32, 35, 39, 41, 43, 57, 62, 76, 79, 81, 83, 85, 86, 87, 88, 90, 93], "achiev": [1, 2, 31, 32, 35, 62, 81, 85, 94], "better": [1, 4, 36, 50, 52, 60, 62, 63, 72, 74, 76, 78, 79, 81, 83, 86, 87, 88, 93, 94], "than": [1, 2, 3, 5, 8, 22, 24, 27, 30, 36, 45, 49, 50, 55, 57, 59, 60, 62, 66, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 94], "random": [1, 2, 3, 5, 8, 16, 27, 34, 41, 50, 60, 62, 74, 75, 76, 78, 81, 82, 83, 85, 86, 88, 92], "perform": [1, 2, 5, 8, 22, 24, 27, 31, 35, 41, 58, 62, 72, 75, 81, 83, 85, 86, 89, 90, 92, 93], "averag": [1, 3, 8, 20, 24, 30, 31, 35, 41, 43, 50, 51, 58, 59, 60, 81, 85, 88], "amount": [1, 3, 82], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 79, 82, 92, 93], "np": [1, 2, 3, 4, 5, 14, 16, 27, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 94], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 30, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "shape": [1, 2, 3, 4, 14, 16, 30, 32, 34, 36, 38, 39, 40, 41, 43, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 80, 81, 83, 86, 87, 88, 91, 94], "condit": [1, 2, 3, 39, 44, 45, 60, 82, 83, 94], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 91, 94], "k_": [1, 2, 3, 39, 45], "k_y": [1, 2, 3, 39, 45], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93], "fraction": [1, 2, 3, 8, 18, 32, 39, 45, 50, 62, 78, 81], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93, 94], "everi": [1, 2, 3, 4, 14, 31, 35, 36, 39, 44, 45, 52, 60, 62, 63, 74, 75, 76, 78, 79, 81, 82, 85, 87, 89, 91, 92, 94], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94], "other": [1, 2, 3, 4, 8, 14, 20, 23, 30, 31, 33, 34, 35, 36, 39, 42, 45, 46, 48, 50, 51, 54, 58, 59, 60, 62, 67, 74, 75, 76, 78, 79, 81, 82, 83, 86, 88, 91, 94], "assum": [1, 2, 3, 10, 36, 39, 44, 45, 60, 64, 67, 81, 86, 88, 91, 94], "column": [1, 2, 3, 4, 8, 10, 11, 26, 30, 34, 36, 39, 41, 42, 44, 45, 50, 51, 52, 54, 55, 58, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "sum": [1, 2, 3, 22, 27, 30, 39, 41, 45, 51, 52, 54, 57, 62, 75, 76, 81, 82, 83, 85, 86, 91, 94], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 80, 81, 89], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 18, 20, 21, 22, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 86, 87, 91, 92, 94], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 41, 44, 45, 50, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 34, 35, 36, 45, 50, 51, 52, 54, 55, 71, 74, 76, 78, 79, 80, 81, 82, 83, 90, 93, 94], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 60, 62, 63, 68, 70, 71, 72, 74, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 91, 94], "perfect": [1, 2, 30, 62, 83, 87], "exactli": [1, 3, 8, 30, 31, 35, 36, 53, 59, 75, 76, 78, 79, 82, 83], "yield": [1, 31, 35], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 48, 50, 51, 54, 57, 59, 60, 62, 63, 66, 70, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "below": [1, 3, 4, 8, 30, 31, 34, 35, 36, 38, 41, 50, 51, 52, 57, 58, 66, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "we": [1, 2, 3, 4, 5, 8, 11, 20, 31, 34, 35, 36, 41, 45, 46, 50, 57, 58, 60, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "loop": [1, 3, 39, 45, 82, 87], "implement": [1, 2, 3, 4, 7, 12, 20, 31, 32, 34, 35, 39, 45, 62, 72, 74, 75, 78, 88, 89, 92], "what": [1, 4, 7, 8, 14, 28, 30, 32, 34, 36, 50, 51, 55, 57, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "doe": [1, 2, 3, 8, 34, 35, 36, 41, 46, 57, 58, 62, 64, 66, 70, 74, 75, 76, 78, 79, 82, 86, 90, 91, 93], "do": [1, 2, 4, 8, 30, 34, 35, 45, 46, 59, 60, 64, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "fast": 1, "explain": [1, 8], "python": [1, 2, 35, 49, 62, 74, 75, 76, 79, 80, 88, 93], "pseudocod": [1, 89], "happen": [1, 8, 36, 52, 79, 85, 91], "n": [1, 2, 3, 4, 5, 30, 31, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 74, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "without": [1, 2, 4, 8, 10, 12, 18, 31, 35, 54, 62, 72, 74, 79, 83, 87, 88, 93], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 40, 43, 44, 45, 49, 50, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "distinct": [1, 16, 45, 94], "natur": [1, 8, 85, 88], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 91, 94], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "count_joint": 1, "len": [1, 2, 3, 5, 30, 34, 39, 44, 45, 46, 59, 60, 62, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "y": [1, 2, 3, 4, 6, 16, 26, 27, 35, 39, 41, 45, 46, 49, 58, 62, 63, 74, 75, 76, 78, 81, 83, 85, 86, 88, 90, 93], "round": [1, 34, 36, 45, 62, 81, 90], "astyp": [1, 85], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 54, 58, 59, 60, 62, 64, 66, 67, 68, 71, 74, 75, 82, 87, 88], "rang": [1, 3, 4, 5, 10, 39, 41, 43, 45, 58, 62, 63, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 94], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 30, 34, 36, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94], "pragma": 1, "cover": [1, 3, 73, 80], "choic": [1, 6, 36, 43, 81, 82, 86, 88], "replac": [1, 44, 49, 60, 75, 76, 79, 80, 81, 82, 85, 88, 92, 93], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 60, 74, 75, 76], "05": [1, 8, 22, 26, 44, 58, 62, 68, 70, 78, 80, 81, 83, 87, 91, 94], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 75, 76, 83, 85, 86], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 81, 82, 83, 85, 86, 91], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 33, 35, 41, 62, 74, 75, 76, 78, 80, 83, 85, 86, 92], "max_it": [1, 74, 79, 88, 93], "10000": [1, 34, 80, 81], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 46, 49, 50, 52, 58, 59, 60, 62, 64, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "diagon": [1, 3, 4, 36, 39, 45], "equal": [1, 3, 8, 10, 52, 57, 67, 89], "creat": [1, 2, 7, 14, 16, 31, 34, 35, 36, 45, 62, 72, 74, 78, 79, 81, 82, 91, 93, 94], "impli": [1, 8, 30, 51, 58], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 43, 44, 45, 50, 51, 52, 54, 57, 58, 62, 66, 70, 74, 75, 76, 83, 85, 86], "entri": [1, 3, 4, 30, 31, 35, 36, 38, 42, 43, 45, 50, 51, 52, 55, 78, 79, 83, 86, 87, 92, 93], "maximum": [1, 8, 59, 67, 71, 91], "minimum": [1, 6, 8, 18, 36, 38, 52, 57, 70], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 31, 35, 36, 57, 62, 75, 81, 83, 85, 87, 88], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 81, 82, 91], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 49, 50, 51, 52, 55, 57, 58, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 30, 31, 34, 35, 36, 39, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "necessari": [1, 2, 3, 5, 8, 10, 44, 75], "In": [1, 2, 3, 8, 30, 31, 34, 35, 50, 51, 53, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 31, 35, 45, 50, 54, 58, 62, 67, 71, 72, 74, 76, 79, 81, 85, 86, 88, 90, 92, 93], "satisfi": [1, 3, 30], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 29, 31, 32, 33, 34, 35, 36, 39, 45, 48, 49, 52, 59, 60, 62, 64, 72, 73, 74, 80, 81, 83, 89], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 31, 34, 35, 36, 41, 46, 49, 50, 51, 52, 54, 57, 58, 59, 60, 62, 66, 67, 68, 70, 76, 79, 80, 81, 82, 86, 87, 90, 93, 94], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 31, 35, 36, 39, 41, 45, 49, 52, 54, 55, 57, 59, 60, 62, 63, 75, 76, 78, 79, 82, 85, 89, 90, 91, 92, 93, 94], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "rate": [1, 2, 3, 8, 32, 45, 74, 94], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 41, 43, 45, 49, 50, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 75, 76, 78, 79, 81, 85, 86, 88, 89, 90, 91, 92, 93, 94], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 31, 34, 35, 36, 41, 45, 50, 55, 57, 58, 59, 60, 62, 63, 67, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "you": [1, 2, 3, 4, 5, 8, 12, 14, 30, 31, 33, 34, 35, 36, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "high": [1, 2, 14, 34, 36, 45, 57, 60, 62, 75, 76, 80, 82, 83, 87, 90, 91, 92, 93, 94], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 50, 51, 55, 57, 58, 59, 60, 62, 64, 67, 71, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94], "imposs": [1, 8, 83], "also": [1, 2, 3, 4, 5, 8, 20, 30, 31, 34, 35, 36, 41, 44, 49, 50, 59, 62, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "low": [1, 8, 45, 50, 72, 75, 76, 79, 83, 87, 91], "zero": [1, 3, 4, 31, 35, 38, 45, 46, 75, 82, 86, 87, 88], "forc": [1, 2, 3, 4, 35, 75, 94], "instead": [1, 2, 3, 8, 11, 14, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 52, 54, 58, 59, 60, 62, 63, 66, 68, 70, 73, 74, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 93, 94], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 30, 31, 34, 35, 36, 38, 39, 44, 45, 46, 49, 50, 59, 60, 62, 64, 66, 70, 71, 72, 74, 75, 76, 79, 82, 85, 86, 87, 88, 89, 90, 91, 93, 94], "guarante": [1, 3, 4, 13, 19, 25, 31, 33, 35, 37, 39, 48, 73], "produc": [1, 2, 4, 8, 14, 41, 50, 60, 62, 64, 66, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "higher": [1, 4, 8, 30, 36, 38, 39, 41, 43, 50, 51, 62, 76, 79, 81, 87], "opposit": [1, 94], "occur": [1, 3, 8, 30, 44, 57, 75, 76, 81, 82, 88], "small": [1, 3, 8, 30, 34, 41, 45, 51, 58, 79, 80, 82, 86, 88, 93], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 34, 35, 41, 43, 44, 46, 49, 54, 57, 62, 63, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "max": [1, 36, 59, 60, 76, 82, 88], "tri": [1, 31, 35, 89], "befor": [1, 2, 3, 31, 35, 43, 45, 59, 62, 67, 79, 81, 83, 85, 88, 90, 92, 93], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 30, 31, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 86, 90, 91, 92], "left": [1, 2, 36, 38, 43, 45, 52, 55, 58, 75, 76, 86, 87, 88, 91], "stochast": 1, "exceed": 1, "m": [1, 4, 31, 35, 40, 41, 50, 55, 57, 58, 59, 75, 76, 80, 85, 86, 87, 94], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 31, 35, 49, 81, 83, 91], "length": [1, 4, 10, 22, 23, 30, 32, 36, 45, 52, 55, 59, 60, 62, 64, 67, 71, 74, 86, 88, 91, 92, 94], "must": [1, 2, 3, 4, 14, 30, 31, 32, 33, 35, 36, 39, 41, 42, 45, 48, 49, 50, 51, 52, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 85, 89, 91, 94], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 30, 34, 36, 42, 45, 46, 50, 52, 58, 64, 66, 67, 68, 70, 71, 74, 81, 85, 86, 87, 91, 92, 93, 94], "ball": [1, 80], "bin": [1, 3, 52, 75, 76, 88], "ensur": [1, 2, 8, 31, 35, 45, 46, 57, 60, 62, 74, 75, 76, 79, 81, 82, 83, 88, 89, 90, 92, 93], "most": [1, 3, 4, 5, 8, 14, 30, 34, 36, 41, 49, 50, 51, 52, 55, 57, 58, 59, 60, 63, 66, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93], "least": [1, 8, 16, 27, 30, 34, 50, 51, 57, 60, 70, 76, 81, 82, 85, 88, 91], "int_arrai": [1, 45], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "model": [2, 3, 4, 8, 14, 16, 26, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 44, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89, 91, 94], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 29, 30, 31, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 68, 70, 71, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "regular": [2, 3, 34, 49], "multi": [2, 3, 8, 30, 31, 34, 35, 36, 40, 41, 42, 45, 46, 51, 52, 53, 54, 59, 60, 72, 81, 83, 84], "task": [2, 4, 5, 8, 10, 12, 13, 14, 26, 28, 30, 34, 39, 41, 42, 43, 45, 50, 52, 60, 62, 72, 74, 79, 80, 81, 83, 86, 88, 91, 93, 94], "cleanlearn": [2, 3, 8, 21, 26, 31, 45, 49, 61, 62, 63, 72, 73, 90, 92, 93], "wrap": [2, 31, 35, 49, 59, 62, 72, 75, 76, 78, 79, 83, 90, 92, 93], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49, 58, 59, 62, 67, 74, 75, 76, 78, 79, 82, 83, 87, 92, 93], "sklearn": [2, 3, 4, 6, 8, 16, 27, 30, 35, 41, 45, 49, 59, 62, 63, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93], "classifi": [2, 3, 35, 41, 45, 50, 53, 59, 60, 72, 73, 74, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 94], "adher": [2, 35, 62], "estim": [2, 3, 4, 7, 11, 20, 30, 34, 35, 36, 39, 45, 50, 51, 52, 57, 59, 62, 64, 66, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 94], "api": [2, 3, 12, 49, 55, 58, 59, 62, 73, 81, 90], "defin": [2, 3, 4, 5, 8, 12, 20, 30, 31, 32, 34, 35, 36, 60, 62, 64, 74, 75, 76, 78, 81, 85, 88, 94], "four": [2, 8, 80, 83, 94], "clf": [2, 3, 4, 41, 62, 72, 78, 81, 83, 86, 92], "fit": [2, 3, 4, 6, 8, 16, 33, 35, 48, 49, 59, 61, 62, 72, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94], "sample_weight": [2, 35, 62, 83], "predict_proba": [2, 4, 30, 33, 35, 41, 48, 49, 74, 75, 76, 78, 79, 81, 83, 85, 86, 88, 92], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 30, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 88, 90, 91, 93, 94], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 36, 38, 41, 43, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 88, 90, 92, 93], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 41, 42, 45, 48, 49, 50, 51, 52, 53, 57, 59, 60, 61, 62, 67, 68, 69, 70, 71, 73, 77, 82, 84, 89, 93], "e": [2, 3, 4, 8, 10, 20, 30, 31, 34, 35, 36, 39, 41, 42, 45, 46, 50, 51, 52, 53, 55, 58, 59, 60, 62, 64, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 41, 45, 59, 62, 72, 75, 76, 78, 79, 81, 83, 85, 86, 90, 92], "element": [2, 3, 4, 30, 36, 38, 45, 50, 52, 60, 67, 68, 70, 74, 79, 81, 93, 94], "first": [2, 4, 8, 15, 22, 23, 30, 34, 41, 45, 50, 51, 55, 58, 60, 62, 74, 75, 78, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "index": [2, 8, 22, 30, 36, 44, 45, 46, 51, 60, 62, 67, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 30, 31, 34, 35, 36, 38, 39, 41, 43, 44, 45, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 30, 31, 33, 34, 35, 36, 37, 41, 45, 46, 48, 50, 55, 57, 59, 62, 74, 75, 76, 78, 79, 82, 83, 85, 86, 88, 89, 92], "sampl": [2, 3, 4, 6, 8, 14, 18, 36, 38, 41, 52, 55, 58, 60, 62, 63, 72, 73, 80, 81, 83, 84, 86, 87, 90, 91, 93, 94], "size": [2, 8, 27, 31, 34, 35, 36, 41, 52, 57, 58, 62, 64, 66, 78, 81, 82, 83, 85, 86, 87, 89, 91, 93], "here": [2, 4, 5, 8, 12, 34, 36, 39, 49, 50, 51, 52, 54, 55, 58, 59, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "re": [2, 4, 31, 35, 44, 50, 62, 72, 74, 75, 78, 79, 81, 90, 91, 92, 93, 94], "weight": [2, 8, 31, 32, 35, 41, 50, 57, 60, 62, 74, 75, 76, 79, 93], "loss": [2, 32, 49, 60, 62, 82], "while": [2, 3, 8, 31, 34, 35, 40, 41, 45, 62, 72, 81, 82, 83, 85, 86, 90], "train": [2, 3, 4, 8, 14, 16, 31, 32, 33, 35, 41, 45, 49, 50, 55, 58, 59, 62, 63, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 94], "support": [2, 3, 4, 10, 34, 41, 45, 46, 59, 60, 70, 72, 73, 74, 75, 76, 81, 82], "your": [2, 3, 4, 7, 8, 14, 30, 31, 33, 34, 35, 36, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 66, 67, 73, 74, 78, 80, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "recommend": [2, 4, 8, 11, 14, 34, 36, 50, 75, 76, 81, 82, 89, 90], "furthermor": 2, "correctli": [2, 3, 8, 30, 31, 35, 36, 39, 46, 51, 52, 57, 58, 62, 64, 79, 81, 86, 87, 90, 91, 93], "clonabl": [2, 62], "via": [2, 4, 8, 11, 14, 16, 20, 30, 32, 34, 35, 41, 45, 50, 55, 58, 59, 60, 62, 63, 66, 70, 74, 75, 76, 78, 79, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 57, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 94], "clone": [2, 62, 86], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 54, 58, 62, 68, 73, 74, 75, 81, 83, 85, 86, 87, 88, 94], "multipl": [2, 3, 4, 10, 11, 30, 36, 44, 50, 51, 52, 54, 57, 58, 62, 72, 75, 76, 81, 82, 84, 86, 87, 90], "g": [2, 3, 4, 8, 10, 20, 30, 31, 35, 36, 42, 45, 52, 53, 55, 58, 59, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "manual": [2, 62, 74, 81, 88, 89, 90, 92, 93, 94], "pytorch": [2, 31, 32, 35, 62, 72, 74, 81, 84, 86, 91], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 45, 49, 59, 62, 74, 75, 76, 79, 81, 83, 86, 88, 89, 91, 93, 94], "__init__": [2, 32, 62, 82], "independ": [2, 3, 8, 51, 62, 79, 89, 94], "compat": [2, 31, 34, 35, 49, 62, 63, 66, 70, 72, 81, 89, 90, 92, 93], "neural": [2, 32, 49, 59, 62, 74, 81, 82, 86, 88], "network": [2, 31, 32, 35, 49, 59, 62, 74, 79, 81, 82, 86, 88, 93], "typic": [2, 31, 35, 59, 62, 74, 76, 78, 79, 82, 88, 89, 92, 93], "initi": [2, 3, 11, 16, 31, 35, 50, 62, 79, 81, 92], "insid": [2, 35, 62, 81, 83], "There": [2, 3, 72, 83, 85], "two": [2, 3, 8, 16, 22, 30, 31, 34, 35, 42, 45, 55, 57, 58, 73, 75, 76, 78, 79, 81, 82, 83, 86, 90, 91, 93, 94], "new": [2, 5, 12, 20, 31, 34, 35, 40, 44, 45, 50, 62, 74, 75, 79, 80, 81, 88, 89, 93, 94], "notion": 2, "confid": [2, 3, 8, 20, 30, 34, 36, 39, 41, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 66, 70, 72, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 94], "packag": [2, 4, 5, 7, 8, 9, 13, 29, 33, 36, 37, 45, 48, 55, 58, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "prune": [2, 3, 36, 52, 62, 73, 87], "everyth": [2, 58, 83], "els": [2, 58, 75, 80, 81, 82, 85, 86, 87], "mathemat": [2, 3, 8, 39], "keep": [2, 11, 12, 45, 72, 75, 80, 81, 91], "belong": [2, 3, 8, 30, 36, 38, 39, 51, 52, 53, 54, 59, 60, 64, 68, 70, 71, 76, 82, 83, 86, 88, 91, 94], "2": [2, 3, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 63, 67, 68, 70, 71, 80, 81, 89], "error": [2, 3, 4, 8, 31, 35, 36, 38, 39, 45, 51, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 70, 73, 74, 75, 76, 78, 79, 80, 84, 92], "erron": [2, 3, 30, 36, 39, 45, 51, 52, 60, 62, 63, 64, 88, 90], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 34, 41, 43, 44, 50, 54, 57, 62, 63, 68, 70, 71, 72, 78, 79, 81, 86, 87, 88, 90, 91, 92, 93, 94], "linear_model": [2, 4, 30, 45, 62, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logisticregress": [2, 3, 4, 30, 45, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logreg": 2, "cl": [2, 12, 26, 62, 72, 81, 83, 90, 92, 93], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 31, 34, 35, 36, 40, 41, 45, 49, 50, 52, 59, 60, 62, 68, 72, 74, 75, 76, 79, 80, 81, 83, 85, 87, 88, 90, 93], "x_train": [2, 75, 76, 83, 85, 86, 90, 92], "labels_maybe_with_error": 2, "had": [2, 3, 62, 87], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 33, 34, 35, 36, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 84, 85, 89, 90, 93], "pred": [2, 36, 45, 89, 90, 92, 93], "x_test": [2, 75, 76, 83, 86, 90, 92], "might": [2, 50, 62, 67, 75, 76, 81, 82, 87, 92, 93], "case": [2, 3, 11, 30, 41, 50, 62, 74, 75, 76, 78, 80, 81, 82, 83, 88, 90, 92, 93, 94], "standard": [2, 3, 4, 26, 30, 36, 49, 51, 52, 54, 60, 62, 72, 75, 76, 78, 80, 83, 87, 92], "adapt": [2, 31, 33, 45, 48, 62, 88], "skorch": [2, 62, 72, 81], "kera": [2, 48, 55, 58, 62, 72, 81, 87], "scikera": [2, 49, 62, 81], "open": [2, 34, 80, 87, 94], "doesn": [2, 62, 72], "t": [2, 3, 8, 15, 23, 31, 32, 34, 35, 36, 41, 43, 44, 54, 59, 60, 62, 68, 70, 71, 72, 75, 76, 78, 79, 80, 82, 83, 86, 87, 94], "alreadi": [2, 4, 8, 14, 31, 34, 35, 39, 49, 50, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 92, 93], "exist": [2, 4, 8, 10, 16, 31, 34, 35, 44, 49, 55, 57, 59, 62, 72, 73, 75, 76, 79, 85, 93, 94], "made": [2, 4, 14, 31, 35, 62, 79, 81, 82, 85, 87, 89, 90, 92, 93], "easi": [2, 39, 62, 75, 76, 80, 81, 83, 86], "inherit": [2, 5, 32, 62], "baseestim": [2, 35, 62], "yourmodel": [2, 62], "def": [2, 5, 12, 31, 35, 49, 62, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 31, 32, 34, 35, 36, 41, 59, 60, 62, 75, 79, 80, 82, 86, 91, 92, 93, 94], "refer": [2, 8, 14, 31, 35, 51, 52, 54, 55, 57, 58, 62, 66, 67, 75, 76, 78, 79, 81, 82, 83, 86, 89, 90], "origin": [2, 4, 8, 35, 36, 44, 45, 49, 51, 52, 55, 58, 59, 62, 63, 66, 68, 70, 75, 78, 79, 81, 82, 83, 87, 88, 90, 92, 93, 94], "total": [2, 3, 30, 34, 45, 51, 71, 81, 82, 91], "state": [2, 3, 4, 31, 32, 35, 40, 62, 83, 86, 87, 94], "art": [2, 32, 83, 86], "northcutt": [2, 3, 30, 59, 60], "et": [2, 3, 30, 32, 59, 60], "al": [2, 3, 30, 32, 59, 60], "2021": [2, 3, 30, 59, 60], "weak": [2, 58], "supervis": [2, 8, 75, 76, 81, 85], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 33, 34, 35, 36, 40, 44, 45, 48, 55, 58, 59, 60, 62, 64, 68, 70, 73, 75, 84, 89], "uncertainti": [2, 8, 38, 59, 62, 81, 88, 90], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 31, 35, 36, 39, 41, 50, 57, 58, 62, 72, 75, 76, 79, 81, 82, 83, 86, 89, 93], "work": [2, 3, 4, 5, 8, 10, 26, 30, 31, 34, 35, 36, 39, 44, 45, 46, 49, 50, 60, 62, 72, 73, 75, 76, 80, 88, 90, 93], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 35, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 94], "deep": [2, 33, 35, 48, 49, 62, 79], "see": [2, 3, 4, 11, 30, 31, 34, 35, 36, 41, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "subfield": 2, "theori": [2, 83], "machin": [2, 4, 12, 14, 28, 33, 48, 62, 75, 76, 80, 85], "across": [2, 3, 4, 5, 8, 11, 20, 30, 34, 41, 51, 58, 59, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 89], "varieti": [2, 81, 92, 93], "like": [2, 3, 4, 5, 8, 12, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 51, 54, 55, 57, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "pu": [2, 45], "input": [2, 3, 4, 8, 14, 22, 30, 31, 34, 35, 39, 41, 44, 45, 46, 49, 58, 62, 72, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "discret": [2, 36, 39, 45, 59, 60, 64, 66, 67], "vector": [2, 3, 4, 8, 14, 36, 39, 41, 42, 45, 59, 60, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 93, 94], "would": [2, 3, 4, 31, 34, 35, 36, 45, 52, 62, 72, 75, 81, 82, 83, 88, 90, 93, 94], "obtain": [2, 4, 6, 8, 14, 36, 50, 52, 55, 58, 60, 63, 74, 76, 79, 81, 85, 87, 89, 91, 94], "been": [2, 30, 36, 39, 44, 45, 50, 51, 55, 57, 59, 60, 62, 74, 75, 78, 81, 83, 85, 86, 87, 88, 91, 94], "dure": [2, 8, 14, 59, 62, 74, 78, 79, 81, 83, 86, 89, 90, 92, 93, 94], "denot": [2, 3, 39, 41, 45, 52, 59, 60, 70], "tild": 2, "paper": [2, 8, 50, 59, 68, 70, 80, 83, 85, 88, 90, 94], "cv_n_fold": [2, 3, 62, 93], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 35, 36, 38, 40, 41, 45, 50, 51, 54, 55, 58, 62, 63, 70, 75, 79, 80, 81, 86, 87, 88, 89, 91, 93, 94], "converge_latent_estim": [2, 3], "pulearn": [2, 45], "find_label_issues_kwarg": [2, 8, 62, 73, 81, 83], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 52, 68, 81], "clean": [2, 57, 60, 62, 63, 72, 75, 76, 80, 90, 92, 93], "even": [2, 3, 30, 34, 38, 39, 45, 62, 74, 81, 83, 85, 86, 87], "messi": [2, 62, 83], "ridden": [2, 62], "autom": [2, 62, 72, 76, 80, 81], "robust": [2, 39, 62, 76, 81], "prone": [2, 62], "out": [2, 3, 4, 8, 14, 24, 31, 35, 36, 41, 49, 52, 53, 55, 58, 59, 60, 62, 63, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94], "current": [2, 3, 5, 8, 11, 12, 20, 31, 35, 36, 41, 50, 57, 62, 75, 76, 81, 85, 87], "intend": [2, 11, 12, 13, 14, 28, 37, 50, 66, 70, 74, 75, 76, 79, 83], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 54, 57, 58, 59, 60, 62, 64, 66, 67, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 87, 89, 92, 93, 94], "follow": [2, 3, 8, 12, 26, 30, 31, 34, 35, 41, 43, 50, 51, 55, 57, 58, 59, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "experiment": [2, 31, 32, 34, 35, 52, 73, 81], "wrapper": [2, 4, 49, 74, 90, 92, 93], "around": [2, 4, 57, 75, 76, 87, 88, 94], "fasttext": [2, 48], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 59, 62, 78, 79, 80, 81, 91, 92, 93, 94], "along": [2, 41, 52, 70, 75, 76, 81, 82, 88], "dimens": [2, 45, 64, 67, 81, 82, 88, 91], "select": [2, 7, 8, 22, 50, 60, 81, 82, 85, 88], "split": [2, 3, 4, 8, 10, 34, 41, 44, 45, 62, 74, 75, 76, 78, 79, 80, 82, 83, 86, 89, 92, 94], "cross": [2, 3, 8, 30, 36, 39, 40, 41, 52, 55, 58, 60, 62, 63, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "fold": [2, 3, 30, 36, 39, 62, 74, 78, 80, 81, 87, 91, 92], "By": [2, 4, 30, 51, 52, 62, 75, 81, 91], "need": [2, 3, 8, 30, 31, 34, 35, 36, 51, 52, 54, 59, 62, 72, 74, 75, 76, 79, 81, 83, 85, 86, 87, 91, 93], "holdout": [2, 3, 62], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 45, 50, 51, 52, 54, 57, 58, 59, 60, 62, 63, 64, 66, 72, 73, 75, 76, 80, 83, 84, 87, 88, 90, 91, 93], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 29, 31, 33, 34, 35, 36, 48, 50, 59, 62, 73, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 91, 92, 93, 94], "numer": [2, 3, 4, 8, 11, 20, 26, 41, 57, 59, 62, 67, 72, 73, 74, 75, 76, 77, 79, 82, 83, 85, 86, 88, 90, 92, 93], "consist": [2, 3, 31, 35, 45, 50, 91, 94], "latent": [2, 3, 39], "thei": [2, 3, 4, 13, 19, 22, 25, 31, 32, 33, 35, 36, 37, 43, 45, 49, 52, 57, 60, 62, 63, 66, 70, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93, 94], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 39, 45, 51, 62, 76, 79], "close": [2, 3, 8, 34, 39, 59, 74, 75, 76, 78, 79, 81, 82, 83, 87], "form": [2, 3, 8, 31, 32, 35, 39, 44, 45, 60, 62, 81], "equival": [2, 3, 31, 35, 39, 59, 88], "iter": [2, 3, 30, 31, 35, 36, 45, 51, 52, 62, 81, 85, 91], "enforc": [2, 31, 35, 45], "perfectli": [2, 30, 51, 83], "certain": [2, 3, 4, 31, 35, 49, 58, 62, 75, 76, 80, 87, 88], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 40, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 70, 75, 76, 81, 82, 94], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 31, 34, 35, 36, 38, 41, 44, 49, 50, 52, 59, 60, 62, 68, 70, 75], "filter": [2, 3, 8, 34, 44, 51, 53, 54, 56, 58, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81, 82, 87, 90, 91, 92, 93, 94], "find_label_issu": [2, 3, 8, 26, 34, 36, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 81, 87, 90, 91, 92, 93, 94], "particularli": [2, 72, 85, 88], "filter_bi": [2, 3, 34, 36, 52, 73, 81], "frac_nois": [2, 36, 52, 68, 81], "min_examples_per_class": [2, 36, 52, 76, 81, 83], "impact": [2, 8, 75, 76, 82], "ml": [2, 4, 8, 13, 62, 72, 75, 76, 78, 79, 82, 85, 86, 92, 93], "accuraci": [2, 32, 60, 74, 81, 82, 83, 85, 88, 90, 91, 92, 93], "n_job": [2, 34, 36, 52, 64, 66, 68, 81, 88, 91], "disabl": [2, 31, 35, 36, 88], "process": [2, 3, 5, 11, 14, 31, 34, 35, 36, 44, 50, 52, 58, 64, 66, 68, 74, 75, 81, 85, 89, 93], "caus": [2, 36, 41, 75, 76, 81], "rank": [2, 3, 8, 30, 34, 36, 41, 51, 52, 53, 55, 56, 58, 59, 61, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 87, 88, 90, 91, 92, 93, 94], "get_label_quality_scor": [2, 34, 36, 37, 41, 50, 52, 53, 54, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 70, 73, 83, 87, 90, 91, 94], "adjust_pred_prob": [2, 8, 54, 59, 60, 83], "control": [2, 4, 7, 8, 14, 34, 36, 50, 58, 59, 62, 68, 70, 75, 76, 80, 81], "how": [2, 3, 4, 8, 11, 12, 14, 20, 30, 31, 32, 34, 35, 39, 45, 50, 51, 54, 55, 57, 59, 60, 62, 66, 70, 72, 75, 76, 78, 79, 80, 82, 87, 88, 89, 90, 91, 92, 93], "much": [2, 8, 30, 34, 36, 62, 81, 83, 85, 88], "output": [2, 3, 4, 8, 14, 31, 32, 35, 39, 45, 49, 50, 51, 55, 57, 58, 59, 62, 66, 67, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 87, 88, 89, 90, 93], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 45, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "suppress": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67, 91, 94], "statement": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67], "big": [2, 34, 52, 58, 62, 83], "limit": [2, 4, 14, 34, 52, 87, 91, 94], "memori": [2, 31, 34, 35, 52, 58, 64, 66, 75, 91], "label_issues_batch": [2, 33, 52, 81], "find_label_issues_batch": [2, 33, 34, 52, 81], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 45, 46, 50, 51, 52, 54, 55, 58, 59, 60, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 92, 93], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 34, 57, 58, 59, 60, 66, 70, 75, 87, 88, 91, 94], "inverse_noise_matrix": [2, 3, 8, 39, 45, 73, 83], "label_issu": [2, 34, 36, 52, 55, 62, 64, 73, 74, 79, 81, 82, 83, 86, 90, 92, 93], "clf_kwarg": [2, 3, 8, 62], "clf_final_kwarg": [2, 62], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 30, 34, 36, 38, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 66, 70, 72, 74, 78, 79, 82, 83, 85, 87, 89, 90], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 34, 35, 36, 38, 43, 45, 52, 54, 55, 58, 60, 62, 63, 64, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 90, 91, 92, 93, 94], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 30, 34, 36, 52, 55, 58, 60, 62, 63, 64, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 90, 91, 92, 93, 94], "final": [2, 8, 62, 78, 87, 89, 90, 92], "remain": [2, 62, 73, 82, 86, 90, 92, 93, 94], "datasetlik": [2, 45, 62], "beyond": [2, 4, 5, 7, 9, 29, 72, 91], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 40, 49, 50, 51, 62, 70, 74, 75, 76, 78, 79, 81, 83, 85, 90, 92, 93, 94], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 40, 45, 46, 49, 50, 51, 62, 67, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 93, 94], "scipi": [2, 4, 11, 45], "spars": [2, 4, 8, 11, 14, 16, 27, 45, 46, 78], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 31, 32, 35, 74, 79, 80, 82, 88, 93], "util": [2, 4, 8, 14, 28, 31, 32, 35, 37, 50, 55, 58, 62, 72, 73, 74, 75, 76, 81, 82, 83, 88], "tensorflow": [2, 45, 49, 72, 74, 81], "object": [2, 4, 8, 10, 11, 14, 28, 31, 32, 34, 35, 41, 45, 46, 49, 52, 55, 56, 57, 58, 59, 62, 70, 72, 74, 76, 78, 82, 83, 84, 86, 90, 93], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 66, 67, 68, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 86, 87, 90, 93, 94], "index_list": 2, "subset": [2, 3, 4, 14, 30, 34, 36, 45, 60, 67, 71, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 92, 93, 94], "wa": [2, 3, 10, 12, 34, 45, 50, 51, 57, 59, 71, 74, 75, 76, 78, 79, 81, 83, 86, 87, 89, 91, 92, 93, 94], "abl": [2, 3, 8, 62, 74, 81, 83, 85, 86], "format": [2, 3, 4, 8, 10, 31, 34, 35, 36, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 70, 71, 74, 75, 76, 78, 80, 82, 85, 90, 91, 92, 94], "make": [2, 3, 16, 31, 34, 35, 41, 49, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "sure": [2, 34, 36, 41, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 92, 93], "shuffl": [2, 8, 45, 74, 79, 82, 86, 88], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 35, 39, 41, 44, 45, 50, 55, 57, 62, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "batch": [2, 34, 45, 49, 50, 64, 66, 81, 82, 88], "order": [2, 4, 8, 30, 31, 35, 36, 39, 40, 41, 45, 50, 51, 52, 55, 58, 59, 60, 64, 67, 68, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 87, 90, 91, 93, 94], "destroi": [2, 45], "oper": [2, 31, 34, 35, 45, 49, 60, 72, 79, 81, 88, 92, 93], "eg": [2, 8, 45, 55, 58, 75, 76, 81], "repeat": [2, 45, 50, 85, 88], "appli": [2, 31, 33, 35, 36, 41, 42, 44, 45, 54, 59, 68, 74, 75, 76, 78, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93], "array_lik": [2, 3, 30, 36, 45, 52, 59, 63], "some": [2, 3, 4, 8, 12, 20, 30, 31, 33, 35, 36, 39, 44, 45, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "seri": [2, 3, 34, 45, 46, 62, 70, 81], "row": [2, 3, 4, 8, 11, 23, 30, 34, 36, 38, 39, 45, 50, 51, 52, 54, 59, 60, 62, 67, 68, 70, 71, 74, 75, 78, 79, 80, 81, 82, 85, 86, 88, 92, 94], "rather": [2, 3, 22, 30, 45, 49, 50, 57, 66, 70, 85, 89, 91, 93, 94], "leav": [2, 36], "per": [2, 3, 11, 30, 34, 36, 41, 44, 50, 51, 52, 54, 57, 58, 60, 63, 64, 66, 70, 76, 81, 87, 94], "determin": [2, 3, 8, 14, 20, 22, 26, 30, 34, 36, 41, 45, 50, 52, 55, 57, 60, 66, 70, 75, 81, 85, 87, 88, 90], "cutoff": [2, 3, 88], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 30, 31, 35, 36, 45, 50, 57, 59, 60, 63, 66, 70, 74, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93], "section": [2, 3, 5, 8, 73, 78, 82, 87], "3": [2, 3, 4, 5, 8, 30, 31, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 52, 59, 60, 62, 63, 68, 70, 80, 81, 89], "equat": [2, 3, 39], "advanc": [2, 3, 4, 7, 8, 14, 57, 59, 70, 73, 76, 77, 83], "user": [2, 3, 4, 8, 12, 14, 23, 28, 31, 35, 36, 57, 59, 60, 62, 66, 70, 83], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 31, 34, 35, 36, 41, 44, 50, 51, 52, 55, 57, 59, 60, 62, 63, 71, 73, 74, 76, 79, 82, 85, 87, 90, 93], "automat": [2, 3, 4, 22, 30, 72, 78, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "greater": [2, 3, 4, 7, 8, 24, 34, 45, 57, 76, 80, 81, 94], "count": [2, 20, 22, 30, 34, 36, 39, 45, 51, 52, 58, 73, 81, 82, 87], "observ": [2, 3, 39, 74, 75, 76, 85, 88, 90], "mislabel": [2, 8, 30, 34, 36, 39, 50, 51, 52, 55, 57, 60, 66, 68, 70, 72, 74, 78, 79, 81, 82, 83, 86, 87, 90, 92, 93], "one": [2, 3, 4, 8, 22, 30, 31, 34, 35, 36, 41, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 82, 85, 88, 89, 90, 92, 93, 94], "get_label_issu": [2, 33, 34, 61, 62, 83, 90, 92, 93], "either": [2, 3, 5, 8, 31, 34, 35, 36, 50, 52, 57, 59, 60, 64, 66, 76, 81, 86, 87], "boolean": [2, 5, 8, 20, 34, 36, 44, 50, 52, 55, 60, 62, 64, 66, 67, 72, 74, 76, 79, 81, 82, 87, 90, 91, 93], "label_issues_mask": [2, 36, 60, 62, 73], "indic": [2, 3, 4, 5, 8, 11, 20, 30, 34, 35, 36, 38, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "its": [2, 4, 7, 8, 14, 31, 34, 35, 36, 43, 44, 52, 55, 58, 59, 60, 62, 64, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94], "return_indices_ranked_bi": [2, 34, 36, 52, 68, 73, 81, 83, 92, 93], "significantli": [2, 82, 83, 85, 89], "reduc": [2, 34, 36, 45, 74, 81], "time": [2, 8, 31, 34, 35, 45, 50, 73, 75, 80, 81, 82, 83, 87, 88, 90, 91, 92, 93, 94], "take": [2, 4, 8, 30, 31, 35, 40, 41, 45, 49, 60, 78, 82, 85, 86, 87, 92, 94], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 29, 31, 34, 35, 62, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "skip": [2, 8, 31, 35, 62, 74, 81, 86, 94], "slow": [2, 3], "step": [2, 5, 22, 41, 58, 81, 82, 83, 85, 89], "caution": [2, 4, 81], "previous": [2, 4, 11, 45, 59, 62, 73, 74, 75, 78, 79, 85, 89, 92], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 40, 41, 45, 62, 75, 78, 81, 82, 90, 91, 92, 94], "individu": [2, 8, 11, 22, 31, 35, 50, 54, 57, 60, 62, 68, 70, 73, 76, 78, 81, 85, 86, 87, 92, 94], "still": [2, 34, 35, 45, 59, 74, 81, 82, 88, 92], "extra": [2, 31, 35, 45, 49, 50, 51, 62, 79, 81, 82, 85, 88], "receiv": [2, 8, 31, 35, 51, 54, 55, 62, 64, 68, 76, 87], "overwritten": [2, 62], "callabl": [2, 3, 31, 35, 41, 44, 49, 54, 81], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 34, 35, 37, 40, 44, 45, 58, 60, 62, 67, 74, 75, 76, 81, 82, 83, 86, 94], "appropri": [2, 8, 14, 52, 60, 75, 78, 86, 87], "earli": [2, 82], "stop": [2, 82], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 30, 45, 59, 75, 78, 82, 86, 90, 92, 94], "f": [2, 5, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "ignor": [2, 31, 35, 44, 49, 62, 67, 71, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "allow": [2, 30, 31, 34, 35, 38, 45, 50, 58, 59, 62, 64, 66, 74, 81, 82, 89, 91, 93], "access": [2, 8, 11, 31, 35, 62, 76, 79, 82, 86, 93], "hyperparamet": [2, 54, 59, 82], "purpos": [2, 75, 76, 81, 86, 90], "want": [2, 4, 8, 30, 34, 46, 50, 52, 62, 75, 79, 80, 82, 85, 87, 88, 89, 91, 93, 94], "explicitli": [2, 6, 8, 35, 62, 81], "yourself": [2, 4, 34, 76], "altern": [2, 5, 8, 41, 45, 49, 50, 60, 73, 74, 78, 79, 81, 82, 83, 85, 86, 88, 90, 93], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 31, 34, 35, 36, 45, 49, 50, 52, 59, 60, 62, 66, 67, 70, 71, 72, 75, 76, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93], "effect": [2, 8, 23, 31, 35, 50, 59, 62, 78, 79, 81, 82, 88], "offer": [2, 4, 74, 75, 76, 79, 81, 83, 86, 93], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 50, 62, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 59, 62, 75, 92], "label_issues_df": [2, 62, 82], "similar": [2, 8, 30, 31, 35, 45, 50, 54, 55, 57, 59, 62, 66, 70, 75, 76, 78, 79, 81, 82, 83, 87, 88, 91], "document": [2, 3, 4, 8, 12, 14, 30, 31, 34, 35, 36, 41, 44, 49, 51, 52, 54, 57, 58, 59, 62, 66, 67, 68, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 45, 55, 62, 75, 76], "were": [2, 3, 4, 30, 35, 51, 57, 70, 74, 78, 81, 83, 85, 87, 89, 91, 92], "present": [2, 3, 4, 8, 10, 11, 18, 30, 45, 59, 67, 72, 78, 81, 82, 88], "actual": [2, 3, 4, 30, 50, 51, 60, 76, 81, 83, 94], "num_class": [2, 30, 34, 45, 49, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 92, 93], "uniqu": [2, 27, 45, 67, 75, 81, 86, 88], "given_label": [2, 4, 26, 30, 39, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93, 94], "normal": [2, 3, 16, 22, 27, 36, 38, 41, 43, 44, 45, 60, 81, 83, 88], "trick": [2, 81], "distribut": [2, 3, 4, 8, 22, 24, 30, 35, 36, 40, 43, 50, 58, 59, 60, 72, 75, 76, 78, 79, 82, 87, 88], "account": [2, 30, 50, 54, 59, 60, 79, 81, 83, 85, 86, 88, 90, 93], "word": [2, 3, 44, 70, 71, 81], "remov": [2, 8, 27, 30, 31, 35, 36, 62, 72, 79, 80, 81, 82, 86, 88, 90, 92, 93], "so": [2, 3, 4, 5, 8, 12, 22, 30, 31, 34, 35, 36, 45, 50, 51, 57, 60, 62, 66, 70, 74, 75, 76, 79, 82, 83, 88, 91], "proportion": [2, 8, 36], "just": [2, 3, 4, 8, 11, 30, 32, 34, 45, 49, 60, 62, 64, 72, 73, 74, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 31, 32, 35, 36, 41, 44, 45, 50, 52, 54, 59, 60, 62, 63, 64, 72, 74, 79, 80, 81, 82, 83, 88, 89, 90, 92, 93], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 43, 53, 55, 56, 57, 58, 59, 60, 61, 62, 65, 69, 72, 75, 77, 82, 84, 86, 90, 91, 92, 93, 94], "arg": [2, 10, 20, 23, 27, 31, 32, 35, 41, 45, 60, 62], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 49, 62, 64, 66, 68, 81], "test": [2, 8, 22, 35, 41, 49, 62, 72, 75, 76, 78, 79, 82, 89, 90, 92, 93, 94], "expect": [2, 3, 31, 35, 36, 41, 50, 59, 60, 62, 81, 83, 85, 86, 87, 90, 92, 93, 94], "class_predict": 2, "evalu": [2, 8, 31, 32, 33, 34, 35, 58, 62, 74, 75, 76, 81, 82, 83, 85, 89, 90, 91, 92, 93], "simpli": [2, 30, 60, 75, 76, 78, 79, 81, 83, 86, 90, 91, 93, 94], "quantifi": [2, 4, 5, 8, 11, 36, 54, 59, 62, 72, 76, 78, 79, 82, 83, 87], "save_spac": [2, 8, 61, 62], "potenti": [2, 8, 30, 36, 44, 52, 55, 58, 60, 62, 64, 66, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "cach": [2, 79, 93], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 45, 46, 49, 50, 51, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 90, 91, 92, 93], "unlik": [2, 8, 36, 38, 41, 49, 51, 52, 54, 70, 75, 85, 86, 88, 90], "both": [2, 4, 8, 14, 22, 30, 31, 35, 36, 45, 50, 52, 60, 64, 66, 71, 72, 75, 81, 82, 83, 85, 94], "mask": [2, 34, 36, 44, 45, 52, 55, 60, 62, 64, 66, 67, 72, 80, 81, 85, 87, 91, 94], "prefer": [2, 60, 68], "plan": 2, "subsequ": [2, 3, 31, 35, 79, 81, 83, 87, 93], "invok": [2, 31, 35, 83, 89], "scratch": [2, 62], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 29, 31, 34, 35, 36, 49, 50, 52, 54, 58, 59, 60, 62, 63, 64, 66, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "share": [2, 60, 62], "mostli": [2, 45, 57, 62, 86], "longer": [2, 40, 41, 44, 62, 73, 79, 81, 87, 93], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 62, 70, 75, 76, 80, 81, 94], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 38, 50, 51, 54, 58, 62, 67, 70, 74, 75, 78, 79, 80, 81, 82, 83, 85, 88], "docstr": [2, 30, 31, 35, 45, 62, 80, 83], "unless": [2, 31, 35, 62, 81], "our": [2, 3, 8, 49, 50, 60, 62, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "is_label_issu": [2, 26, 62, 74, 75, 76, 78, 79, 82, 83, 86, 90, 93], "entir": [2, 8, 22, 34, 36, 39, 51, 52, 57, 60, 62, 64, 66, 67, 72, 75, 76, 81, 87, 88, 89, 91, 94], "accur": [2, 3, 4, 8, 14, 30, 34, 36, 50, 51, 52, 55, 58, 60, 62, 63, 64, 66, 67, 73, 76, 78, 79, 81, 82, 85, 90], "label_qu": [2, 50, 62, 83, 85, 90, 93], "measur": [2, 30, 50, 51, 62, 72, 80, 81, 83, 85, 86, 91, 92, 94], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 30, 34, 36, 38, 41, 50, 51, 52, 54, 55, 57, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 90, 92, 93], "lower": [2, 4, 5, 8, 11, 24, 34, 41, 43, 50, 51, 54, 57, 58, 60, 62, 63, 66, 70, 74, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 93, 94], "eas": 2, "comparison": [2, 31, 35, 58, 83, 85, 87, 90], "against": [2, 31, 35, 75, 78, 81, 85, 86], "predicted_label": [2, 4, 26, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93], "ad": [2, 31, 35, 76, 85, 90], "precis": [2, 52, 55, 58, 81, 83, 91, 94], "definit": [2, 5, 41, 62, 78, 92], "accessor": [2, 62], "describ": [2, 8, 16, 50, 59, 60, 62, 68, 70, 83, 85, 86, 87, 89, 94], "precomput": [2, 4, 39, 62, 80], "clear": [2, 31, 35, 62, 79, 90, 93], "save": [2, 4, 14, 31, 34, 35, 58, 62, 81, 87, 91, 94], "space": [2, 8, 59, 62, 78, 80, 82], "place": [2, 31, 35, 45, 62, 85, 92], "larg": [2, 34, 62, 78, 79, 81, 82, 87, 88, 91, 94], "deploi": [2, 62, 78, 79, 81, 82], "care": [2, 8, 31, 35, 62, 79, 81, 83], "avail": [2, 4, 5, 10, 12, 28, 35, 62, 81, 83, 85, 87, 90], "cannot": [2, 4, 10, 12, 45, 89, 94], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 41, 62], "__init_subclass__": [2, 33, 35, 61, 62], "set_": [2, 35, 62], "_request": [2, 35, 62], "pep": [2, 35, 62], "487": [2, 35, 62], "look": [2, 4, 5, 14, 31, 35, 45, 62, 67, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 91, 92, 94], "inform": [2, 4, 5, 8, 11, 14, 28, 31, 35, 45, 50, 51, 55, 58, 62, 67, 70, 71, 72, 74, 75, 78, 79, 83, 85, 88, 91, 94], "__metadata_request__": [2, 35, 62], "infer": [2, 35, 45, 62, 67, 71, 82, 85, 86, 90, 92, 93], "signatur": [2, 31, 35, 62], "accept": [2, 31, 35, 60, 62, 75, 76], "metadata": [2, 35, 62, 78, 79, 82, 94], "through": [2, 4, 5, 35, 62, 74, 76, 79, 80, 81, 85, 87, 88, 90, 93], "develop": [2, 7, 35, 62, 81, 83, 94], "request": [2, 35, 62, 76, 79, 80, 86, 92, 93, 94], "those": [2, 3, 8, 34, 35, 36, 49, 50, 52, 58, 62, 66, 70, 71, 72, 74, 81, 82, 87, 91], "http": [2, 4, 5, 7, 8, 9, 16, 29, 31, 32, 34, 35, 38, 45, 55, 58, 59, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "www": [2, 35, 62, 88], "org": [2, 16, 31, 32, 35, 45, 59, 62, 81, 83, 94], "dev": [2, 35, 62], "0487": [2, 35, 62], "get_metadata_rout": [2, 33, 35, 61, 62], "rout": [2, 35, 62], "pleas": [2, 31, 35, 49, 62, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "guid": [2, 5, 35, 62, 73, 82], "mechan": [2, 31, 35, 62], "metadatarequest": [2, 35, 62], "encapsul": [2, 14, 35, 57, 62], "get_param": [2, 33, 35, 48, 49, 61, 62], "subobject": [2, 35, 62], "param": [2, 8, 31, 35, 49, 59, 62, 81], "name": [2, 4, 5, 8, 10, 11, 30, 31, 35, 40, 41, 45, 49, 50, 51, 58, 62, 67, 71, 74, 76, 79, 80, 81, 82, 83, 86, 91, 93, 94], "set_fit_request": [2, 33, 35, 61, 62], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 39, 41, 44, 45, 49, 50, 51, 55, 57, 58, 60, 62, 67, 71, 74, 75, 81, 85, 86, 87, 94], "unchang": [2, 31, 35, 62, 94], "relev": [2, 14, 22, 35, 62, 82], "enable_metadata_rout": [2, 35, 62], "set_config": [2, 35, 62], "meta": [2, 35, 62], "rais": [2, 4, 10, 11, 31, 35, 38, 41, 62, 74, 81], "alia": [2, 31, 35, 62], "metadata_rout": [2, 35, 62], "retain": [2, 35, 45, 62], "chang": [2, 31, 34, 35, 38, 62, 70, 74, 75, 79, 81, 87, 88, 93, 94], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 29, 31, 33, 35, 37, 38, 45, 48, 49, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "sub": [2, 35, 57, 62], "pipelin": [2, 35, 62], "otherwis": [2, 8, 30, 31, 34, 35, 36, 42, 44, 45, 52, 59, 62, 64, 66, 67, 71, 79, 81, 93], "updat": [2, 11, 31, 34, 35, 62, 73, 75, 82], "set_param": [2, 33, 35, 48, 49, 61, 62], "simpl": [2, 31, 35, 36, 50, 60, 62, 75, 76, 78, 79, 82, 85, 88, 90, 92, 93], "well": [2, 3, 8, 31, 35, 38, 39, 50, 52, 58, 60, 62, 67, 70, 71, 73, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88], "nest": [2, 31, 35, 46, 62, 68, 70, 71, 94], "latter": [2, 31, 35, 62, 88], "compon": [2, 35, 62], "__": [2, 35, 62], "set_score_request": [2, 61, 62], "structur": [3, 59, 78, 92], "unobserv": 3, "less": [3, 4, 8, 27, 34, 41, 50, 59, 60, 64, 66, 70, 76, 78, 80, 81, 82, 83, 87, 94], "channel": [3, 74, 83], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 30, 39, 45, 51, 76, 80, 93], "inv": 3, "confident_joint": [3, 20, 30, 36, 45, 51, 52, 73, 81, 83], "un": 3, "under": [3, 8, 31, 35, 51, 58, 59, 76, 88], "joint": [3, 30, 36, 39, 45, 51, 52, 80], "num_label_issu": [3, 34, 36, 52, 67, 71, 73], "estimation_method": [3, 34], "off_diagon": 3, "multi_label": [3, 30, 36, 45, 46, 52, 86], "don": [3, 72, 76, 78, 79, 82, 83, 87], "statis": 3, "compute_confident_joint": [3, 30, 36, 45, 52, 83], "off": [3, 36, 45, 57, 82, 83, 87, 88], "j": [3, 4, 30, 31, 35, 36, 52, 55, 58, 59, 68, 70, 71, 75, 76, 83, 91, 94], "confident_learn": [3, 36, 52, 83], "off_diagonal_calibr": 3, "calibr": [3, 36, 45, 50, 85], "cj": [3, 39, 45], "axi": [3, 27, 39, 41, 43, 64, 67, 74, 75, 76, 81, 82, 83, 85, 86, 88, 90, 91], "bincount": [3, 75, 76, 83, 85, 86], "alwai": [3, 8, 31, 35, 45, 74, 83, 90, 92, 93], "estimate_issu": 3, "over": [3, 8, 31, 34, 35, 57, 58, 64, 66, 76, 78, 80, 81, 82, 83, 88, 90, 92], "As": [3, 5, 72, 75, 76, 79, 83, 90, 94], "add": [3, 4, 5, 10, 11, 31, 35, 49, 58, 74, 75, 76, 79, 81, 82, 83, 86, 93], "approach": [3, 30, 34, 36, 78, 83, 86, 88, 90, 92], "custom": [3, 5, 8, 9, 26, 31, 34, 35, 41, 44, 60, 76, 79, 83, 93], "know": [3, 75, 76, 78, 79, 81, 82, 83, 85], "cut": [3, 57, 72, 83], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 88, 94], "underestim": 3, "few": [3, 58, 72, 76, 81, 85, 86, 87, 88, 94], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 40, 41, 44, 54, 55, 57, 58, 60, 63, 70, 80, 81, 86, 91, 94], "detail": [3, 4, 8, 12, 14, 30, 31, 35, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 66, 67, 68, 72, 73, 74, 86, 88, 94], "num_issu": [3, 5, 34, 74, 75, 76, 78, 79, 82, 83], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 36, 41, 50, 80, 81, 87, 90, 93, 94], "p_": [3, 30, 36], "pair": [3, 4, 8, 30, 36, 83], "v": [3, 8, 34, 51, 52, 54, 60, 75, 76, 86, 87, 88, 89], "rest": [3, 4, 5, 7, 8, 9, 29, 51, 52, 54, 62, 75, 76, 78, 79, 81, 82, 83, 85, 90, 92, 93], "fashion": [3, 4, 64, 92], "2x2": 3, "incorrectli": [3, 30, 51, 52, 55, 78, 94], "calibrated_cj": 3, "c": [3, 8, 44, 52, 60, 72, 74, 75, 76, 78, 79, 81, 83, 86, 87, 88, 89, 90, 92], "whose": [3, 4, 8, 24, 31, 35, 39, 44, 50, 54, 57, 63, 66, 70, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 91, 94], "truli": [3, 88, 91], "estimate_joint": [3, 30, 83], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 52, 58, 83, 87, 89, 91, 94], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 50, 51, 58, 67, 87, 88], "done": [3, 8, 62, 75, 81, 83, 86, 88, 89], "overfit": [3, 8, 55, 58, 74, 75, 76, 78, 79, 82, 89, 92], "classifict": 3, "singl": [3, 4, 22, 30, 31, 35, 41, 42, 45, 50, 51, 57, 58, 59, 60, 70, 74, 75, 81, 83, 86, 87, 92], "baselin": [3, 31, 36, 88, 90, 93], "proxi": 3, "union": [3, 4, 10, 41, 45, 46, 52, 58, 62, 66, 70, 81], "tupl": [3, 27, 31, 35, 39, 40, 42, 44, 45, 50, 52, 58, 66, 68, 70, 71, 74, 94], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 34, 39, 50, 64, 66, 72, 81, 82, 91, 93], "practic": [3, 76, 82, 83, 88, 90, 92, 93], "complet": [3, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "gist": 3, "cj_ish": 3, "guess": [3, 39, 83, 85], "8": [3, 4, 5, 6, 40, 41, 42, 44, 54, 68, 70, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "parallel": [3, 36, 58, 68, 80], "again": [3, 49, 81, 88, 92], "simplifi": [3, 12], "understand": [3, 7, 30, 51, 58, 76, 83, 90, 91, 94], "100": [3, 31, 35, 60, 75, 76, 78, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94], "optim": [3, 31, 32, 35, 49, 82, 85], "speed": [3, 36, 80, 81, 90, 93], "dtype": [3, 21, 22, 27, 31, 35, 44, 45, 54, 70, 74, 87], "enumer": [3, 31, 35, 74, 75, 76, 82, 94], "s_label": 3, "confident_bin": 3, "6": [3, 4, 35, 41, 45, 70, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "num_confident_bin": 3, "argmax": [3, 36, 60, 64, 67, 74, 81, 83, 87, 88, 91], "elif": 3, "estimate_lat": 3, "py_method": [3, 39], "cnt": [3, 39], "1d": [3, 4, 14, 34, 36, 41, 42, 45, 46, 54, 63, 74, 92], "eqn": [3, 39], "margin": [3, 36, 39, 41, 60], "marginal_p": [3, 39], "shorthand": [3, 11], "proport": [3, 8, 30, 51, 83, 89], "poorli": [3, 39, 92], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 83], "variabl": [3, 5, 12, 23, 45, 62, 63, 74, 75, 78, 83, 86, 90], "exact": [3, 39, 75, 76, 78, 82, 92], "within": [3, 4, 8, 13, 31, 32, 35, 37, 52, 57, 66, 68, 70, 75, 76, 81, 82, 87, 91], "percent": 3, "often": [3, 30, 39, 51, 81, 83, 89, 91], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 45, 46, 58, 74, 75, 78, 79, 81, 82, 86, 87, 88, 93], "wai": [3, 4, 49, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 89, 92, 93], "pro": 3, "con": 3, "pred_proba": [3, 89], "combin": [3, 30, 75, 80, 81, 82, 83, 89, 90], "becaus": [3, 39, 45, 57, 79, 81, 83, 85, 87], "littl": [3, 34, 80, 87, 94], "uniform": [3, 60, 80, 81, 83], "20": [3, 5, 71, 74, 79, 80, 81, 82, 83, 87, 88, 91, 94], "Such": [3, 82, 88], "bound": [3, 21, 31, 35, 44, 54, 55, 57, 58, 87], "reason": [3, 20, 31, 35], "comment": [3, 44, 94], "end": [3, 4, 31, 35, 58, 82, 88, 91, 94], "file": [3, 4, 10, 33, 34, 48, 58, 74, 75, 78, 79, 80, 81, 87, 88, 91, 92, 94], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 83], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 73, 75, 76, 78, 79, 82, 83, 91, 92, 94], "five": [3, 55, 58, 83, 87], "estimate_cv_predicted_prob": [3, 83], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33, 34], "amongst": [3, 8, 87], "confident_threshold": [3, 8, 20, 34, 59], "unifi": 4, "audit": [4, 7, 10, 11, 14, 74, 77, 78, 79, 81, 82, 83, 86, 87], "kind": [4, 5, 74, 75, 78, 79, 80, 82, 83], "addit": [4, 5, 7, 8, 9, 11, 28, 29, 31, 35, 41, 46, 50, 58, 68, 74, 75, 78, 79, 83, 85, 88, 89, 92, 93], "depend": [4, 5, 7, 8, 9, 10, 11, 29, 33, 36, 38, 45, 48, 52, 59, 62, 63, 72], "instal": [4, 5, 7, 8, 9, 29, 31, 33, 34, 35, 36, 48, 49, 64, 66], "pip": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "development": [4, 5, 7, 9, 29], "git": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "github": [4, 5, 7, 9, 29, 31, 32, 45, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "com": [4, 5, 7, 9, 29, 31, 32, 34, 38, 45, 59, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "egg": [4, 5, 7, 9, 29, 72, 80], "label_nam": [4, 5, 6, 8, 10, 16, 27, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "image_kei": [4, 82], "interfac": [4, 72, 81, 83], "librari": [4, 8, 35, 55, 58, 59, 72, 75, 79, 80, 81, 93], "goal": 4, "track": [4, 11, 12, 72, 75, 80, 81, 83], "intermedi": [4, 7, 76], "statist": [4, 8, 11, 20, 22, 30, 50, 51, 58, 76, 78, 79, 83], "convert": [4, 10, 31, 35, 42, 43, 46, 50, 57, 66, 70, 73, 74, 79, 80, 81, 82, 85, 86, 87, 93], "hug": [4, 10, 82], "face": [4, 10, 14, 80, 82, 86], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 41, 50, 51, 57, 59, 75, 76, 79, 81, 82, 83, 85, 87], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 35, 45, 50, 51, 63, 67, 70, 71, 78, 79, 81, 85, 86, 93, 94], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 40, 45, 50, 51, 54, 55, 57, 58, 75, 76, 78, 79, 83, 85, 86, 87], "path": [4, 10, 31, 34, 35, 58, 74, 75, 81, 87], "local": [4, 10, 31, 32, 35, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 41, 59, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 84, 85, 88], "txt": [4, 10, 94], "csv": [4, 10, 78, 79, 90, 92, 93], "json": [4, 10], "hub": [4, 10], "regress": [4, 5, 10, 12, 14, 19, 26, 28, 75, 76, 79, 84, 85, 88, 93], "imag": [4, 7, 30, 35, 55, 57, 58, 59, 64, 66, 67, 72, 75, 76, 80, 81, 84, 85, 86, 87, 89, 91], "point": [4, 5, 8, 16, 22, 31, 35, 75, 76, 78, 79, 81, 82, 83, 85], "field": [4, 8, 31, 35], "themselv": [4, 90, 92, 93], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 44, 68, 70, 76, 82, 84, 91], "load_dataset": [4, 10, 82], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 31, 35], "has_label": [4, 10], "class_nam": [4, 10, 18, 30, 51, 58, 67, 71, 72, 80, 83, 87, 91, 94], "empti": [4, 10, 39, 50, 76, 81, 86], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 78], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 74, 75, 76, 78, 79, 81, 82, 83, 86], "sort": [4, 14, 34, 36, 41, 50, 52, 55, 57, 58, 60, 66, 68, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "common": [4, 11, 14, 76, 77, 80, 81, 83, 86, 87, 91], "real": [4, 14, 72, 75, 76, 81, 83, 85, 86, 90, 91], "world": [4, 14, 72, 75, 76, 81, 83, 85, 90, 91], "interact": [4, 14, 79, 81], "embed": [4, 8, 14, 59, 72, 74, 75, 76, 78, 79, 83, 86, 93], "thereof": [4, 14], "insight": [4, 14, 58, 85], "act": [4, 8, 57, 75], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 34, 36, 64, 66], "best": [4, 14, 40, 50, 60, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 92, 93, 94], "2d": [4, 14, 34, 41, 42, 44, 45, 50, 74, 86, 92], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 51, 74, 75, 76, 78, 79, 82, 83], "represent": [4, 8, 14, 31, 35, 42, 52, 72, 74, 75, 76, 79, 81, 82, 83, 88, 93], "num_featur": [4, 14, 31, 35, 49], "distanc": [4, 8, 14, 16, 22, 24, 27, 43, 57, 59, 78, 88], "nearest": [4, 8, 14, 21, 22, 24, 43, 59, 76, 79, 88], "neighbor": [4, 8, 14, 16, 21, 22, 24, 43, 59, 75, 76, 78, 79, 81, 82, 88], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 45, 62, 80, 90], "csr": 4, "evenli": 4, "omit": [4, 57, 58, 82, 87], "itself": [4, 31, 35, 87], "three": [4, 8, 30, 50, 51, 62, 67, 74, 75, 76, 78, 80, 83, 85, 89, 90, 91, 92, 94], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 32, 35, 41, 72, 78, 86, 94], "th": [4, 40, 44, 45, 50, 52, 55, 57, 58, 59, 68, 70, 71, 79, 86, 87, 94], "ascend": [4, 30, 51, 82, 83], "segment": [4, 64, 66, 67, 84], "reflect": [4, 78, 79, 85, 87, 88, 90, 92, 93], "maintain": 4, "posit": [4, 31, 35, 43, 45, 58, 80, 88], "nearestneighbor": [4, 8, 16, 59, 78, 88], "kneighbors_graph": [4, 16, 78], "illustr": 4, "todens": 4, "second": [4, 41, 45, 58, 60, 75, 81, 83, 94], "duplic": [4, 7, 19, 20, 31, 35, 72, 75, 83, 86], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49], "neither": [4, 8, 12, 87], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 50, 81, 85, 94], "unspecifi": [4, 14, 36, 52], "interest": [4, 14, 20, 67, 71, 79, 83, 91, 92, 93, 94], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 62, 63, 80, 90, 94], "random_st": [4, 74, 75, 76, 82, 83, 86, 88, 92], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 34, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86], "comprehens": [4, 72, 82, 86], "nbr": 4, "n_neighbor": [4, 8, 16, 59], "metric": [4, 8, 17, 22, 27, 45, 49, 58, 59, 74, 78, 79, 82, 83, 90, 92, 93], "euclidean": [4, 8, 57, 59, 78], "mode": [4, 16, 31, 34, 35, 88], "4x4": 4, "float64": [4, 22, 31, 35, 70], "compress": [4, 8, 45, 64, 66], "toarrai": 4, "NOT": [4, 34, 79], "23606798": 4, "41421356": 4, "configur": [4, 14, 41, 76], "suppos": [4, 8, 55, 88, 90, 92, 93], "who": [4, 57, 78, 83, 92, 94], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "clean_learning_kwarg": [4, 8, 21, 26], "labelissuemanag": [4, 8, 19, 21], "prune_method": [4, 73], "prune_by_noise_r": [4, 36, 52, 83], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 71, 72, 74, 75, 76, 78, 79, 83, 86, 94], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 48, 49, 51, 56, 65, 66, 68, 69, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 87, 91, 94], "show": [4, 22, 31, 35, 40, 45, 58, 67, 71, 76, 78, 79, 80, 81, 82, 83, 85, 88, 90, 91, 92, 94], "top": [4, 8, 30, 34, 36, 45, 52, 55, 58, 60, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 90, 93, 94], "suffer": [4, 8, 11, 20, 52, 60, 71, 94], "onc": [4, 20, 30, 31, 35, 75, 81, 83, 86, 87, 92], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 41, 50, 51, 54, 57, 58, 62, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87, 94], "sever": [4, 5, 8, 10, 11, 20, 31, 34, 35, 36, 54, 57, 59, 60, 66, 70, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 92, 93, 94], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 72, 74, 75, 76, 78, 79, 81, 82, 86, 88, 90, 92, 93, 94], "With": [4, 34, 79, 83, 85, 90, 91, 93, 94], "usag": [4, 34, 49], "issue_summari": [4, 8, 11, 75], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 37, 60, 72, 75, 76, 83, 84, 86], "someth": [4, 5, 31, 35, 60, 87], "123": [4, 75, 76], "456": [4, 74, 92, 93], "nearest_neighbor": 4, "7": [4, 41, 42, 49, 68, 70, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93, 94], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 54, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "distance_to_nearest_neighbor": [4, 75, 76, 78, 79, 82, 83], "789": 4, "get_issu": [4, 8, 11, 74, 76, 78, 79, 81, 82, 86], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75, 76], "focu": [4, 11, 79, 91, 94], "full": [4, 8, 11, 34, 58, 82, 94], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 67, 71, 72, 91], "valueerror": [4, 10, 11, 38, 41, 81], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 67, 76, 78, 79, 82, 83, 87], "lie": [4, 8, 59, 60, 74, 75, 76, 78, 79, 82, 83, 93], "directli": [4, 12, 14, 28, 34, 49, 50, 76, 79, 87, 90, 93], "compar": [4, 50, 59, 70, 75, 76, 78, 83, 87], "get_issue_summari": [4, 11, 76], "get_info": [4, 11, 76, 79], "yet": [4, 15, 19, 23, 80, 85], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 31, 35, 75], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 74, 75, 82], "load": [4, 10, 34, 58, 80, 81, 82, 83, 87, 88, 91, 94], "futur": [4, 8, 20, 31, 35, 50, 72, 74, 75, 79, 81, 93], "overwrit": [4, 75], "separ": [4, 30, 41, 54, 75, 76, 81, 82, 87, 89], "static": 4, "rememb": [4, 79, 81, 83], "part": [4, 8, 31, 35, 36, 55, 57, 58, 74, 75, 80, 91, 94], "ident": [4, 8, 20, 45, 79], "walk": 5, "alongsid": [5, 31, 35, 75, 81], "pre": [5, 6, 8, 31, 35, 75, 76, 82, 91, 94], "runtim": [5, 31, 34, 35, 62, 64, 66, 74, 81, 82], "issue_manager_factori": [5, 12, 75], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "thing": [5, 35, 83, 90, 93], "next": [5, 50, 72, 74, 78, 79, 81, 85, 87, 90, 92, 93, 94], "dummi": 5, "randint": [5, 27, 41, 75, 76, 81], "mark": [5, 8, 73, 87, 88, 90], "regard": [5, 76, 83], "rand": [5, 41, 75, 76], "is_": [5, 8, 75], "_issu": [5, 8, 75], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "whole": [5, 22, 31, 35, 76], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "popul": [5, 76, 79], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": [5, 87], "raw_scor": 5, "bit": 5, "involv": [5, 34, 67, 71, 81, 86], "intermediate_arg": 5, "min": [5, 41, 57, 70, 75, 81, 88], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 75], "instanti": [5, 14, 34, 49, 59, 74, 76, 78, 93], "477762": 5, "286455": 5, "term": [5, 8, 39, 45, 58, 74, 75, 76, 78, 79, 82, 83], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "003042": 5, "058117": 5, "11": [5, 49, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "121908": 5, "15": [5, 43, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "169312": 5, "17": [5, 74, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 75, 76, 80, 83], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 80, 87, 94], "dbscan": [6, 8, 27, 81], "hdbscan": [6, 81], "etc": [6, 8, 20, 31, 35, 39, 49, 50, 68, 72, 75, 76, 78, 79, 81, 83, 86], "sensit": [6, 8, 43], "ep": [6, 27, 58], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 72, 74, 81, 82, 85, 86, 92, 93], "kmean": [6, 81], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 81], "cluster_id": [6, 8, 27, 81], "labels_": 6, "underperforming_group": [6, 8, 19, 81], "search": [7, 8, 18, 22, 23, 44, 62, 81, 89], "nondefault": 7, "Near": [7, 81], "iid": [7, 22, 78, 83], "imbal": [7, 19, 54, 59, 60, 76], "null": [7, 19, 76, 79, 82, 83], "valuat": [7, 16], "togeth": [7, 8, 39, 75, 76, 78, 79, 82, 83, 90, 93, 94], "built": [7, 41], "own": [7, 31, 33, 35, 48, 54, 55, 58, 64, 68, 74, 76, 78, 79, 81, 82, 85, 86, 90, 91, 92, 93, 94], "prerequisit": 7, "basic": [7, 35, 49, 78, 79, 88], "page": [8, 76, 81, 83], "variou": [8, 11, 26, 33, 46, 48, 72, 75, 76, 78, 79, 80, 83, 85, 87, 92], "sai": [8, 31, 35, 86, 91], "why": [8, 79], "matter": [8, 30, 51, 79, 93], "_score": 8, "flag": [8, 20, 22, 36, 41, 51, 52, 55, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 90, 91, 93], "badli": [8, 57, 94], "code": [8, 31, 35, 39, 45, 49, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "issue_scor": 8, "outlier_scor": [8, 24, 75, 76, 78, 79, 82, 83, 88], "atyp": [8, 59, 75, 76, 78, 79, 82, 83, 88], "datapoint": [8, 27, 36, 41, 45, 60, 63, 72, 74, 75, 76, 78, 79, 81, 89, 90, 92, 93], "is_issu": [8, 20], "is_outlier_issu": [8, 75, 76, 78, 79, 82, 83], "annot": [8, 30, 40, 50, 51, 52, 54, 55, 57, 58, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91], "transform": [8, 41, 43, 45, 59, 60, 76, 79, 82, 88, 92, 93, 94], "dissimilar": [8, 78, 79], "preced": 8, "cosin": [8, 59, 88], "incorrect": [8, 57, 60, 63, 74, 75, 76, 78, 79, 82, 83, 87, 90, 92], "due": [8, 34, 36, 60, 64, 66, 74, 75, 76, 78, 79, 82, 83], "appear": [8, 30, 40, 51, 52, 55, 63, 76, 78, 79, 82, 90, 91], "likelihood": [8, 34, 36, 52, 57, 59, 60, 64, 68], "now": [8, 34, 73, 74, 76, 85, 87, 88, 90, 92, 93, 94], "u": [8, 74, 75, 78, 81, 82, 83, 85, 86, 89, 90, 91, 92, 93, 94], "token": [8, 44, 66, 67, 68, 69, 70, 71, 81, 83, 84], "calcul": [8, 16, 22, 34, 41, 50, 54, 55, 57, 58, 59, 62, 66, 80, 82], "hamper": [8, 80, 82], "analyt": [8, 72, 81, 85], "lead": [8, 57, 60, 82, 87], "draw": [8, 75, 76], "conclus": [8, 79], "try": [8, 34, 36, 49, 50, 64, 66, 72, 76, 78, 79, 81, 82, 83, 91], "veri": [8, 30, 51, 55, 57, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93], "rare": [8, 36, 58, 75, 76, 78, 79, 81, 82, 83], "anomal": [8, 60, 75, 76, 78, 79, 82, 83], "articl": [8, 34, 81], "ai": [8, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94], "blog": 8, "unexpect": [8, 31, 35, 79], "consequ": 8, "inspect": [8, 74, 76, 82, 83, 87, 90, 93], "neg": [8, 57, 58, 75, 76, 80], "affect": [8, 31, 35, 64, 70, 79, 81], "extrem": [8, 75, 76, 78, 79, 81, 82, 83], "rel": [8, 30, 50, 51, 59, 75, 76, 78, 79, 82, 83, 88], "record": [8, 31, 35, 74, 78, 90], "abbrevi": 8, "misspel": 8, "typo": [8, 71], "resolut": 8, "video": [8, 80], "audio": [8, 75, 76, 81, 84], "minor": [8, 44], "variat": 8, "translat": 8, "d": [8, 43, 78, 79, 83, 86, 92, 94], "constant": [8, 27, 62], "median": [8, 26, 43], "question": [8, 20, 72, 83], "nearli": [8, 20, 76, 78, 79, 82], "awar": [8, 73, 83], "presenc": [8, 83], "signific": [8, 78, 79, 83], "violat": [8, 78, 79, 83], "assumpt": [8, 78, 79, 83], "changepoint": [8, 78, 79, 83], "shift": [8, 78, 79, 83], "drift": [8, 76, 78, 83], "autocorrel": [8, 78, 79, 83], "almost": [8, 78, 79, 83], "adjac": [8, 78, 79, 83], "tend": [8, 30, 39, 78, 79, 83, 91, 94], "sequenti": [8, 31, 35, 49, 82], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 44, 45, 70, 78, 79, 80, 83, 89, 92, 94], "x1": [8, 55, 58, 87], "x2": [8, 55, 58, 87], "10th": 8, "100th": 8, "90": [8, 70, 78, 82, 83, 88, 89, 90, 91, 92], "similarli": [8, 31, 35, 75, 78, 81, 82, 87], "math": [8, 82], "behind": [8, 59, 83], "fundament": 8, "proper": [8, 45, 50, 55, 58, 79, 82, 85, 87, 92], "closer": [8, 57, 87], "scenario": [8, 60, 75, 76], "underli": [8, 59, 68, 70, 94], "stem": [8, 59, 88], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 86, 88], "partit": [8, 89], "ahead": 8, "good": [8, 31, 35, 43, 49, 51, 57, 60, 64, 66, 67, 72, 78, 79, 82], "fix": [8, 50, 79, 83, 90, 93], "problem": [8, 34, 41, 67, 72, 75, 76, 79, 81, 82], "deploy": [8, 83, 90, 92, 93], "overlook": [8, 57, 87], "fact": 8, "thu": [8, 30, 35, 51, 74, 78, 79, 83, 89, 92, 94], "diagnos": [8, 76, 81], "rarest": [8, 76], "q": [8, 87], "fall": [8, 57, 66, 70, 83, 87, 88], "subpar": 8, "special": [8, 44], "techniqu": [8, 87], "smote": 8, "asymmetr": [8, 30], "properli": [8, 34, 40, 45, 46, 64, 81, 86, 88, 90, 91], "too": [8, 36, 41, 59, 76, 81, 82, 87], "dark": [8, 91], "bright": [8, 94], "blurri": [8, 82], "abnorm": [8, 58, 82, 87], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 50, 58, 76, 81, 82, 85, 86, 87, 91], "get_self_confidence_for_each_label": [8, 41, 60], "power": [8, 78, 79, 80, 82, 83, 94], "r": [8, 34, 62, 75, 76, 90, 91], "tabular": [8, 72, 75, 76, 77, 81, 84, 85], "categor": [8, 59, 75, 76, 77, 81, 90, 92], "encod": [8, 42, 58, 64, 67, 78, 79, 81, 90, 91, 92, 93], "miss": [8, 23, 31, 35, 45, 55, 57, 78, 81, 87, 90], "pattern": 8, "contribut": [8, 16, 87], "isn": [8, 15, 23], "approxim": [8, 16, 34, 59, 85], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 59, 78, 88], "scalabl": 8, "sacrific": 8, "One": [8, 45, 59, 81], "quantif": 8, "exert": [8, 76], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 75, 76, 78, 79, 81, 82, 83], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 76, 78, 79, 82, 83], "non_iid_kwarg": 8, "class_imbal": [8, 18, 76, 78, 79, 82, 83], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 30, 72, 80], "health_summary_kwarg": 8, "tandem": [8, 80], "view": [8, 31, 35, 36, 66, 68, 70, 72, 74, 75, 76, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "ood_kwarg": 8, "outofdistribut": [8, 24, 59, 88], "outsid": 8, "outlierissuemanag": [8, 12, 19, 24, 75], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 18, 19], "underperforminggroupissuemanag": [8, 19, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 72, 76, 78, 79, 82, 84], "nullissuemanag": [8, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 19], "datavaluationissuemanag": [8, 16, 19], "codeblock": 8, "demonstr": [8, 34, 75, 76, 79, 81, 82, 83, 85, 86, 87, 90, 91], "howev": [8, 31, 35, 45, 74, 78, 79, 82, 85, 89, 91, 92, 93], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 75, 80, 82, 85, 87, 91], "fewer": [8, 36, 45, 87], "vice": [8, 51], "versa": [8, 51], "light": [8, 80, 82, 87, 91], "29": [8, 80, 82, 85, 86, 87, 91, 94], "low_inform": [8, 82], "odd_aspect_ratio": [8, 82], "35": [8, 75, 80, 82, 85, 86, 87, 91], "odd_siz": [8, 82], "10": [8, 16, 17, 21, 22, 27, 31, 32, 58, 59, 60, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "doc": [8, 31, 35, 72, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "data_issu": [9, 13, 14, 28, 75], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 31, 35, 49, 60, 75, 76, 82, 85], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 82, 85, 90], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "map_to_int": 10, "is_multilabel": 10, "hold": 10, "abc": [10, 20], "is_avail": [10, 82], "multilabel": [10, 13, 42, 86], "multiclass": [10, 13, 41, 45, 50, 86], "serv": [11, 14, 85], "central": [11, 94], "repositori": 11, "strategi": [11, 41, 81], "being": [11, 30, 31, 35, 36, 41, 44, 45, 60, 78, 81, 83, 90, 91, 92], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 31, 34, 35, 36, 45, 52, 55, 58, 62, 64, 66, 75, 76, 81], "recomput": [11, 93], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 30, 51, 72], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 31, 35, 59, 75], "my_issu": 12, "stabl": [13, 19, 25, 33, 37, 45, 48, 59, 73], "unregist": 13, "instati": 14, "public": [14, 83, 87, 91, 94], "creation": [14, 35], "execut": [14, 31, 35, 75, 81, 87], "coordin": [14, 55, 57, 58, 87, 94], "behavior": [14, 30, 31, 35, 58, 81], "At": [14, 58, 81], "associ": [14, 31, 35, 58, 85], "get_available_issue_typ": 14, "direct": [15, 23, 31, 35], "valuabl": 16, "vstack": [16, 45, 80, 81, 82, 83, 85, 86], "25": [16, 22, 31, 41, 43, 76, 80, 82, 83, 85, 86, 87, 91, 94], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 44, 45], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 75, 76, 81, 82, 83, 85, 86], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 83], "ab": [16, 83, 87], "1911": 16, "07128": 16, "larger": [16, 62, 64, 66, 79, 80, 81, 82], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 35, 79, 88, 93], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 41, 44, 45, 74, 75, 80, 82, 83, 86, 92], "near_duplicate_set": [17, 19, 75, 76, 78, 79, 81, 82, 83], "occurr": [17, 18, 20, 22, 23, 24, 27, 44], "median_nn_dist": 17, "near_duplicate_scor": [17, 75, 76, 78, 79, 81, 82, 83], "class_imbalance_scor": [18, 76], "bleed": [19, 25, 33], "edg": [19, 25, 33, 57, 72, 83, 94], "sharp": [19, 25, 33], "get_health_summari": [19, 21], "ood": [19, 24, 59, 60, 75, 76, 79, 82, 83, 88], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "regressionlabelissuemanag": [19, 25, 26], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 91], "priori": [20, 83], "global": [20, 31, 35], "anoth": [20, 30, 34, 44, 57, 60, 78, 79, 81, 83, 85, 88, 93], "abstract": 20, "applic": [21, 50, 81, 83, 85, 86, 94], "typevar": [21, 31, 35, 44, 54, 57, 58], "scalartyp": 21, "covari": [21, 62, 90], "summary_dict": 21, "label_scor": [21, 26, 74, 75, 76, 78, 79, 82, 83, 86], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 34, 41, 60, 64, 66, 87, 91], "empir": [22, 40, 50], "cumul": 22, "ecdf": 22, "histogram": [22, 78, 90], "absolut": [22, 26], "dimension": [22, 45, 74, 83, 88], "trial": 22, "non_iid_scor": [22, 76, 78, 79, 83], "null_track": 23, "extend": [23, 42, 82, 87, 88, 94], "superclass": 23, "arbitrari": [23, 30, 66, 70, 75, 88, 90], "prompt": 23, "address": [23, 75, 76, 79, 81, 93], "enabl": [23, 35], "null_scor": [23, 76], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 30, 31, 35, 36, 45, 58, 93, 94], "50": [27, 35, 81, 82, 83, 85, 87, 88, 91, 94], "keepdim": [27, 81], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 74, 85], "npt": 27, "int_": 27, "id": [27, 50, 75, 81, 82, 85], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": 27, "exclud": [28, 67, 71, 75, 81, 94], "get_report": 28, "overview": [30, 74, 76, 78, 79, 82, 85, 87, 88, 90, 92, 93, 94], "modifi": [30, 31, 34, 35, 45, 81, 83], "help": [30, 31, 35, 58, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "rank_classes_by_label_qu": [30, 76], "merg": [30, 44, 72, 80, 81, 94], "find_overlapping_class": [30, 81, 83], "problemat": [30, 51, 67, 71, 74, 87, 94], "unnorm": [30, 51, 83], "abov": [30, 31, 34, 35, 45, 50, 57, 58, 60, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "model_select": [30, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 90, 92, 93], "cross_val_predict": [30, 35, 74, 75, 76, 78, 79, 81, 83, 85, 89, 90, 92, 93], "get_data_labels_from_dataset": 30, "yourfavoritemodel": [30, 83], "cv": [30, 41, 74, 75, 76, 78, 83, 85, 92], "df": [30, 45, 71, 74, 81], "overall_label_qu": [30, 51], "col": 30, "prob": [30, 44, 83, 89], "divid": [30, 51, 60], "label_nois": [30, 51], "human": [30, 80, 91, 94], "clearli": [30, 60, 82, 87, 91], "num": [30, 51, 80, 83], "overlap": [30, 72, 80, 81, 83], "ontolog": 30, "publish": [30, 94], "therefor": [30, 60], "vehicl": [30, 80], "truck": [30, 80, 88, 91], "intuit": [30, 51], "car": [30, 80, 87, 91], "frequent": [30, 50, 78, 81, 90], "characterist": 30, "l": [30, 31, 35, 55, 57, 58], "class1": 30, "class2": 30, "relationship": 30, "match": [30, 31, 35, 36, 41, 50, 51, 60, 75, 76, 80, 82, 87, 89, 91], "dog": [30, 45, 51, 53, 67, 80, 81, 88, 89, 94], "cat": [30, 45, 51, 53, 80, 81, 88, 89], "captur": [30, 74, 87, 88, 91], "co": [30, 31, 32], "noisy_label": [30, 75, 76, 86], "overlapping_class": 30, "descend": [30, 31, 35, 41, 51, 58], "overall_label_health_scor": [30, 51, 83], "suggest": [30, 50, 51, 57, 79, 81, 82, 90, 93], "half": [30, 31, 33, 35, 51, 80, 94], "health_scor": [30, 51], "classes_by_label_qu": [30, 76], "cnn": [31, 33, 35, 82], "cifar": [31, 32, 80, 88], "teach": [31, 32], "bhanml": 31, "blob": 31, "master": [31, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "call_bn": [31, 33], "bn": 31, "input_channel": 31, "n_output": 31, "dropout_r": 31, "top_bn": 31, "architectur": [31, 35], "shown": [31, 58, 75, 81, 85, 88, 89, 91, 94], "forward": [31, 32, 33, 35, 82, 85], "overridden": [31, 35], "although": [31, 35, 59, 78, 92], "recip": [31, 35], "afterward": [31, 35], "sinc": [31, 35, 38, 46, 51, 58, 66, 70, 81, 85, 86, 87, 89, 94], "former": [31, 35], "hook": [31, 35, 80], "silent": [31, 34, 35], "t_destin": [31, 33, 35], "__call__": [31, 33, 35, 37, 41], "add_modul": [31, 33, 35], "child": [31, 35], "fn": [31, 35, 58], "recurs": [31, 35, 41], "submodul": [31, 35], "children": [31, 33, 35, 94], "nn": [31, 32, 35, 82], "init": [31, 35, 83], "no_grad": [31, 35, 82, 88], "init_weight": [31, 35], "linear": [31, 35, 79, 82, 93], "fill_": [31, 35], "net": [31, 35, 74, 80, 82], "in_featur": [31, 35], "out_featur": [31, 35], "bia": [31, 35, 82], "tensor": [31, 32, 35, 74, 79, 82, 88, 93], "requires_grad": [31, 35], "bfloat16": [31, 33, 35], "cast": [31, 35, 74], "buffer": [31, 33, 35], "datatyp": [31, 35], "member": [31, 35, 41, 75, 76], "xdoctest": [31, 35], "undefin": [31, 35], "var": [31, 35], "buf": [31, 35], "20l": [31, 35], "1l": [31, 35], "5l": [31, 35], "call_super_init": [31, 33, 35], "immedi": [31, 35, 88], "compil": [31, 33, 35, 49], "cpu": [31, 33, 35, 36, 74, 82], "move": [31, 35, 41, 73, 80], "cuda": [31, 33, 35, 74, 82], "devic": [31, 35, 74, 82], "gpu": [31, 35, 74, 79, 93], "live": [31, 35], "copi": [31, 35, 62, 74, 75, 76, 78, 81, 86, 89, 90, 92], "doubl": [31, 33, 35], "dump_patch": [31, 33, 35], "eval": [31, 33, 35, 82, 86, 88], "dropout": [31, 35], "batchnorm": [31, 35], "grad": [31, 35], "extra_repr": [31, 33, 35], "line": [31, 35, 72, 75, 80, 85, 88, 94], "get_buff": [31, 33, 35], "target": [31, 32, 35, 62, 63, 88, 90], "throw": [31, 35], "get_submodul": [31, 33, 35], "explan": [31, 35], "fulli": [31, 35, 49, 81], "qualifi": [31, 35], "referenc": [31, 35], "attributeerror": [31, 35], "invalid": [31, 35, 79], "resolv": [31, 35, 94], "get_extra_st": [31, 33, 35], "state_dict": [31, 33, 35], "set_extra_st": [31, 33, 35], "build": [31, 35, 82, 91], "picklabl": [31, 35], "serial": [31, 35], "backward": [31, 35, 82], "break": [31, 35, 82, 87], "pickl": [31, 35, 87], "get_paramet": [31, 33, 35], "let": [31, 35, 59, 60, 74, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "net_b": [31, 35], "net_c": [31, 35], "conv": [31, 35], "conv2d": [31, 35, 82], "16": [31, 35, 41, 66, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "33": [31, 35, 80, 87, 91], "kernel_s": [31, 35], "stride": [31, 35], "200": [31, 35, 60, 80, 87, 94], "diagram": [31, 35, 89], "degre": [31, 35, 90], "queri": [31, 35, 76, 81, 82, 86], "named_modul": [31, 33, 35], "o": [31, 35, 43, 44, 74, 75, 76, 80, 81, 83, 86, 87, 94], "transit": [31, 35], "ipu": [31, 33, 35], "load_state_dict": [31, 33, 35], "strict": [31, 35, 41], "persist": [31, 35], "strictli": [31, 35], "inplac": [31, 35, 85], "preserv": [31, 35, 45], "namedtupl": [31, 35], "missing_kei": [31, 35], "unexpected_kei": [31, 35], "runtimeerror": [31, 35], "idx": [31, 35, 45, 46, 58, 75, 81, 82, 83, 85, 87, 88], "named_buff": [31, 33, 35], "prefix": [31, 35, 74, 94], "remove_dupl": [31, 35], "prepend": [31, 35], "running_var": [31, 35], "named_children": [31, 33, 35], "conv4": [31, 35], "conv5": [31, 35], "memo": [31, 35], "named_paramet": [31, 33, 35], "register_backward_hook": [31, 33, 35], "deprec": [31, 35, 38, 74, 79, 81, 93], "favor": [31, 35], "register_full_backward_hook": [31, 33, 35], "removablehandl": [31, 35], "register_buff": [31, 33, 35], "running_mean": [31, 35], "register_forward_hook": [31, 33, 35], "with_kwarg": [31, 35], "always_cal": [31, 35], "won": [31, 35, 75, 76, 81, 86], "possibli": [31, 35, 78, 92], "fire": [31, 35, 80], "register_module_forward_hook": [31, 35], "regardless": [31, 35, 75, 76], "register_forward_pre_hook": [31, 33, 35], "And": [31, 35], "forward_pr": [31, 35], "register_module_forward_pre_hook": [31, 35], "gradient": [31, 35, 78, 82, 90], "respect": [31, 35, 55, 58, 83, 87], "grad_input": [31, 35], "grad_output": [31, 35], "technic": [31, 35], "caller": [31, 35], "register_module_full_backward_hook": [31, 35], "register_full_backward_pre_hook": [31, 33, 35], "backward_pr": [31, 35], "register_module_full_backward_pre_hook": [31, 35], "register_load_state_dict_post_hook": [31, 33, 35], "post": [31, 35], "incompatible_kei": [31, 35], "modif": [31, 35], "thrown": [31, 35], "register_modul": [31, 33, 35], "register_paramet": [31, 33, 35], "register_state_dict_pre_hook": [31, 33, 35], "keep_var": [31, 35], "requires_grad_": [31, 33, 35], "autograd": [31, 35], "freez": [31, 35, 74, 79, 93], "finetun": [31, 35], "gan": [31, 35], "share_memori": [31, 33, 35], "share_memory_": [31, 35], "destin": [31, 35], "shallow": [31, 35], "releas": [31, 35, 73, 74, 81], "design": [31, 35], "ordereddict": [31, 35], "detach": [31, 35, 82], "non_block": [31, 35], "memory_format": [31, 35], "channels_last": [31, 35], "Its": [31, 35, 41, 51, 57], "complex": [31, 35, 74], "integr": [31, 35, 72], "asynchron": [31, 35], "host": [31, 35], "pin": [31, 35, 79, 80, 93], "desir": [31, 35, 44, 58], "4d": [31, 35], "ignore_w": [31, 35], "determinist": [31, 35, 74], "1913": [31, 35], "3420": [31, 35], "5113": [31, 35], "2325": [31, 35], "env": [31, 35], "torch_doctest_cuda1": [31, 35], "gpu1": [31, 35], "1914": [31, 35], "5112": [31, 35], "2324": [31, 35], "float16": [31, 35], "cdoubl": [31, 35], "3741": [31, 35], "2382": [31, 35], "5593": [31, 35], "4443": [31, 35], "complex128": [31, 35], "6122": [31, 35], "1150": [31, 35], "to_empti": [31, 33, 35], "storag": [31, 35, 79, 93], "dst_type": [31, 35], "xpu": [31, 33, 35], "zero_grad": [31, 33, 35, 82], "set_to_non": [31, 35], "reset": [31, 35], "context": [31, 35, 87], "noisili": [32, 83], "han": 32, "2018": 32, "cifar_cnn": [32, 33], "loss_coteach": [32, 33], "y_1": 32, "y_2": 32, "forget_r": 32, "class_weight": 32, "logit": [32, 49, 82], "decim": [32, 45], "quickli": [32, 74, 78, 79, 81, 82, 86, 88, 91, 92, 94], "forget": [32, 41, 94], "rate_schedul": 32, "epoch": [32, 33, 35, 81, 82], "initialize_lr_schedul": [32, 33], "lr": [32, 33, 35], "001": [32, 60, 81], "250": [32, 75, 76, 83, 87], "epoch_decay_start": 32, "80": [32, 78, 86, 90, 91, 92], "schedul": 32, "adjust": [32, 36, 54, 59, 60, 72, 83], "beta": 32, "adam": 32, "adjust_learning_r": [32, 33], "alpha_plan": 32, "beta1_plan": 32, "forget_rate_schedul": [32, 33], "num_gradu": 32, "expon": 32, "tell": [32, 79, 82, 83, 93], "train_load": [32, 35], "model1": [32, 83], "optimizer1": 32, "model2": [32, 83], "optimizer2": 32, "dataload": [32, 82, 88], "parser": 32, "parse_arg": 32, "num_iter_per_epoch": 32, "print_freq": 32, "topk": 32, "top1": 32, "top5": 32, "test_load": 32, "offici": [33, 48, 94], "wish": [33, 48, 88, 91, 94], "adj_confident_thresholds_shar": [33, 34], "labels_shar": [33, 34], "pred_probs_shar": [33, 34], "labelinspector": [33, 34, 81], "get_num_issu": [33, 34], "get_quality_scor": [33, 34], "update_confident_threshold": [33, 34], "score_label_qu": [33, 34], "split_arr": [33, 34], "mnist_pytorch": 33, "get_mnist_dataset": [33, 35], "get_sklearn_digits_dataset": [33, 35], "simplenet": [33, 35], "batch_siz": [33, 34, 35, 64, 66, 81, 82, 88, 91], "log_interv": [33, 35], "momentum": [33, 35], "no_cuda": [33, 35], "test_batch_s": [33, 35, 82], "loader": [33, 35, 82], "set_predict_proba_request": [33, 35], "set_predict_request": [33, 35], "coteach": [33, 73], "mini": [34, 64, 66, 81], "low_self_confid": [34, 36, 52], "self_confid": [34, 36, 37, 41, 52, 54, 60, 68, 70, 81, 83, 92, 93], "conveni": [34, 74, 79, 93], "script": 34, "labels_fil": [34, 81], "pred_probs_fil": [34, 81], "quality_score_kwarg": 34, "num_issue_kwarg": 34, "return_mask": 34, "variant": [34, 50, 91], "read": [34, 38, 76, 81, 83, 88, 94], "zarr": [34, 81], "memmap": [34, 91], "pythonspe": 34, "mmap": [34, 81], "hdf5": 34, "further": [34, 51, 52, 54, 57, 58, 66, 67, 74, 81], "yourfil": 34, "npy": [34, 80, 81, 91], "mmap_mod": [34, 91], "tip": [34, 36, 49, 81], "save_arrai": 34, "your_arrai": 34, "disk": [34, 80, 81], "npz": [34, 94], "maxim": [34, 50, 64, 66, 91], "multiprocess": [34, 36, 52, 64, 66, 81, 82], "linux": [34, 64, 66], "physic": [34, 36, 64, 66, 87], "psutil": [34, 36, 64, 66], "labels_arrai": [34, 46], "predprob": 34, "pred_probs_arrai": 34, "back": [34, 58, 75, 81, 87, 88], "store_result": 34, "becom": [34, 88], "verifi": [34, 81, 85, 88], "long": [34, 50, 59, 85], "enough": [34, 45, 81], "chunk": [34, 89], "ram": [34, 80], "faster": [34, 59, 62, 64, 66, 81, 83], "end_index": 34, "labels_batch": 34, "pred_probs_batch": 34, "batch_result": 34, "indices_of_examples_with_issu": [34, 81], "shortcut": 34, "encount": [34, 36, 64], "1000": [34, 74, 79, 81, 88], "aggreg": [34, 37, 41, 50, 54, 57, 60, 70, 81, 83, 85], "fetch": [34, 74, 76], "seen": [34, 81, 88, 94], "far": [34, 50], "label_quality_scor": [34, 54, 57, 60, 63, 83, 87, 90], "method1": 34, "method2": 34, "normalized_margin": [34, 36, 37, 41, 52, 54, 60, 68, 70], "low_normalized_margin": [34, 36, 52], "issue_indic": [34, 57, 82], "update_num_issu": 34, "arr": [34, 81], "chunksiz": 34, "convnet": 35, "bespok": [35, 49], "download": [35, 74, 81, 88], "mnist": [35, 72, 74, 80], "handwritten": 35, "digit": [35, 74, 80], "last": [35, 41, 55, 58, 75, 76, 81, 85, 87, 94], "sklearn_digits_test_s": 35, "hard": [35, 80, 88], "64": [35, 78, 82, 83, 87, 91, 92], "01": [35, 60, 62, 74, 83, 86, 87, 88, 91], "templat": 35, "flexibli": 35, "among": [35, 50, 83], "test_set": 35, "Be": 35, "overrid": 35, "train_idx": [35, 45, 88], "train_label": [35, 88, 93], "scikit": [35, 45, 59, 72, 74, 75, 76, 78, 79, 81, 84, 90, 93], "encourag": [36, 52, 60, 63], "multilabel_classif": [36, 51, 52, 54, 60, 81], "pred_probs_by_class": 36, "prune_count_matrix_col": 36, "rank_by_kwarg": [36, 52, 60, 83], "num_to_remove_per_class": [36, 52], "bad": [36, 52, 57, 60, 79, 81, 93], "seem": [36, 83, 86], "aren": 36, "confidence_weighted_entropi": [36, 37, 41, 52, 54, 60, 68, 70], "label_issues_idx": [36, 60], "entropi": [36, 38, 40, 41, 59, 60], "prune_by_class": [36, 52, 83], "predicted_neq_given": [36, 52, 83], "prune_counts_matrix": 36, "smallest": [36, 60], "unus": 36, "number_of_mislabeled_examples_in_class_k": 36, "delet": [36, 72, 81, 93], "thread": [36, 52], "window": [36, 74, 80], "shorter": [36, 55], "find_predicted_neq_given": 36, "find_label_issues_using_argmax_confusion_matrix": 36, "remove_noise_from_class": [37, 45], "clip_noise_r": [37, 45], "clip_valu": [37, 45], "value_count": [37, 45, 81], "value_counts_fill_missing_class": [37, 45], "get_missing_class": [37, 45], "round_preserving_sum": [37, 45], "round_preserving_row_tot": [37, 45], "estimate_pu_f1": [37, 45], "confusion_matrix": [37, 45], "print_square_matrix": [37, 45], "print_noise_matrix": [37, 45, 83], "print_inverse_noise_matrix": [37, 45], "print_joint_matrix": [37, 45, 83], "compress_int_arrai": [37, 45], "train_val_split": [37, 45], "subset_x_i": [37, 45], "subset_label": [37, 45], "subset_data": [37, 45], "extract_indices_tf": [37, 45], "unshuffle_tensorflow_dataset": [37, 45], "is_torch_dataset": [37, 45], "is_tensorflow_dataset": [37, 45], "csr_vstack": [37, 45], "append_extra_datapoint": [37, 45], "get_num_class": [37, 45], "num_unique_class": [37, 45], "get_unique_class": [37, 45], "format_label": [37, 45], "smart_display_datafram": [37, 45], "force_two_dimens": [37, 45], "latent_algebra": [37, 73], "compute_ps_py_inv_noise_matrix": [37, 39], "compute_py_inv_noise_matrix": [37, 39], "compute_inv_noise_matrix": [37, 39], "compute_noise_matrix_from_invers": [37, 39], "compute_pi": [37, 39], "compute_pyx": [37, 39], "label_quality_util": 37, "get_normalized_entropi": [37, 38], "multilabel_util": [37, 86], "stack_compl": [37, 42], "get_onehot_num_class": [37, 42], "int2onehot": [37, 42, 86], "onehot2int": [37, 42, 86], "multilabel_scor": [37, 54], "classlabelscor": [37, 41], "from_str": [37, 41], "__contains__": [37, 41], "__getitem__": [37, 41], "__iter__": [37, 41], "__len__": [37, 41], "exponential_moving_averag": [37, 41, 54], "softmin": [37, 41, 54, 57, 66, 70], "possible_method": [37, 41], "multilabelscor": [37, 41], "get_class_label_quality_scor": [37, 41], "multilabel_pi": [37, 41], "get_cross_validated_multilabel_pred_prob": [37, 41], "transform_distances_to_scor": [37, 43], "token_classification_util": [37, 94], "get_sent": [37, 44, 94], "filter_sent": [37, 44, 94], "process_token": [37, 44], "merge_prob": [37, 44], "color_sent": [37, 44], "assert_valid_input": [37, 46], "assert_valid_class_label": [37, 46], "assert_nonempty_input": [37, 46], "assert_indexing_work": [37, 46], "labels_to_arrai": [37, 46], "labels_to_list_multilabel": [37, 46], "min_allowed_prob": 38, "wikipedia": 38, "activ": [38, 40, 50, 72, 85], "towardsdatasci": 38, "cheatsheet": 38, "ec57bc067c0b": 38, "clip": [38, 45, 74], "behav": 38, "unnecessari": [38, 81], "slightli": [38, 92, 93], "interv": [38, 41, 88], "herein": 39, "inexact": 39, "cours": 39, "propag": 39, "throughout": [39, 45, 62, 74, 85, 91, 94], "easili": [39, 73, 74, 76, 78, 79, 83, 85, 86, 88, 89, 90, 91, 92, 93], "increas": [39, 57, 59, 60, 74, 75, 81, 85, 86, 94], "dot": [39, 70, 81], "true_labels_class_count": 39, "pyx": 39, "multiannot": 40, "assert_valid_inputs_multiannot": 40, "labels_multiannot": [40, 50], "ensembl": [40, 41, 50, 60, 78, 81, 86, 88, 90, 92], "allow_single_label": 40, "annotator_id": 40, "assert_valid_pred_prob": 40, "pred_probs_unlabel": [40, 50], "format_multiannotator_label": [40, 50, 85], "lexicograph": [40, 45], "formatted_label": [40, 45], "old": [40, 45, 73, 74, 80], "check_consensus_label_class": 40, "consensus_label": [40, 50, 85], "consensus_method": [40, 50], "consensu": [40, 50, 72, 84, 94], "establish": [40, 90, 93], "compute_soft_cross_entropi": 40, "soft": [40, 80], "find_best_temp_scal": 40, "coarse_search_rang": [40, 62, 81], "fine_search_s": [40, 62, 81], "temperatur": [40, 41, 57, 66, 70], "scale": [40, 43, 80, 81, 88, 91, 92], "factor": [40, 41, 43, 64, 66], "minim": [40, 57, 88], "temp_scale_pred_prob": 40, "temp": 40, "sharpen": [40, 80], "smoothen": 40, "qualnam": 41, "boundari": [41, 75, 76], "enum": 41, "get_normalized_margin_for_each_label": [41, 60], "get_confidence_weighted_entropy_for_each_label": [41, 60], "75": [41, 75, 76, 80, 85, 86, 87, 90, 91, 94], "scorer": 41, "typeerror": 41, "12": [41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "alias": 41, "alpha": [41, 54, 57, 75, 76, 83, 86, 90], "exponenti": 41, "ema": 41, "s_1": 41, "s_k": 41, "ema_k": 41, "accord": [41, 52, 78, 79, 83, 94], "formula": [41, 43], "_t": 41, "cdot": 41, "s_t": 41, "qquad": 41, "leq": 41, "_1": 41, "give": [41, 60, 83, 85, 91], "recent": [41, 94], "success": 41, "previou": [41, 81, 82, 87], "discount": 41, "s_ema": 41, "175": [41, 82, 83, 87], "underflow": 41, "nan": [41, 50, 78, 85, 90, 92], "aggregated_scor": 41, "base_scor": 41, "base_scorer_kwarg": 41, "aggregator_kwarg": [41, 54], "n_sampl": 41, "n_label": 41, "binari": [41, 45, 52, 54, 83, 94], "worst": [41, 85], "class_label_quality_scor": 41, "42": [41, 79, 80, 87, 88, 91, 94], "452": 41, "new_scor": 41, "575": 41, "get_label_quality_scores_per_class": [41, 53, 54], "ml_scorer": 41, "binar": [41, 42], "reformat": [41, 74], "wider": 41, "splitter": 41, "kfold": [41, 82], "onevsrestclassifi": [41, 86], "randomforestclassifi": [41, 83, 86], "n_split": [41, 76, 82, 86], "pred_prob_slic": 42, "onehot": 42, "hot": [42, 52, 58, 64, 67, 78, 80, 81, 90, 91, 92], "onehot_matrix": 42, "avg_dist": 43, "scaling_factor": 43, "exp": [43, 59, 60, 75], "dt": 43, "right": [43, 55, 58, 79, 86, 87, 88, 93], "strength": [43, 58], "pronounc": 43, "differenti": 43, "ly": 43, "rule": [43, 44, 80], "thumb": 43, "ood_features_scor": [43, 59, 88], "88988177": 43, "80519832": 43, "token_classif": [44, 68, 70, 71, 81], "sentenc": [44, 68, 70, 71, 79, 93], "readabl": 44, "lambda": [44, 74, 75, 81, 85], "long_sent": 44, "headlin": 44, "charact": [44, 45], "s1": 44, "s2": 44, "processed_token": 44, "alecnlcb": 44, "entiti": [44, 72, 81, 94], "mapped_ent": 44, "unique_ident": 44, "loc": [44, 75, 76, 82, 94], "nbitbas": [44, 54], "probs_merg": 44, "55": [44, 80, 82, 87, 91], "0125": [44, 70], "0375": 44, "075": 44, "025": 44, "color": [44, 67, 75, 76, 78, 83, 86, 88, 90, 91], "red": [44, 58, 75, 76, 80, 83, 86, 87, 88, 91], "colored_sent": 44, "termcolor": 44, "31msentenc": 44, "0m": 44, "ancillari": 45, "class_without_nois": 45, "any_other_class": 45, "choos": [45, 60, 78, 81, 83, 90, 92], "tradition": 45, "new_sum": 45, "fill": 45, "wherea": [45, 52, 89], "come": [45, 75, 76, 81, 82, 88, 91], "major": [45, 50, 73, 82, 88], "versu": [45, 83], "obviou": 45, "cgdeboer": 45, "iteround": 45, "reach": 45, "prob_s_eq_1": 45, "claesen": 45, "f1": [45, 58, 79, 83], "BE": 45, "left_nam": 45, "top_nam": 45, "titl": [45, 75, 76, 83, 86, 88], "short_titl": 45, "round_plac": 45, "pretti": [45, 83], "joint_matrix": 45, "num_possible_valu": 45, "holdout_idx": 45, "extract": [45, 59, 74, 79, 85, 88, 91, 93], "allow_shuffl": 45, "turn": [45, 72, 87], "shuffledataset": 45, "histori": 45, "pre_x": 45, "buffer_s": 45, "csr_matric": 45, "append": [45, 74, 80, 81, 82, 83, 85, 86, 87, 88, 94], "bottom": [45, 55, 58, 87], "to_data": 45, "from_data": 45, "taken": 45, "label_matrix": 45, "canon": 45, "displai": [45, 58, 67, 71, 74, 79, 83, 93, 94], "jupyt": [45, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "notebook": [45, 50, 74, 76, 80, 81, 83, 85, 86, 87, 91, 94], "consol": 45, "html": [45, 55, 58, 59, 78, 81, 83], "allow_missing_class": 46, "allow_one_class": 46, "length_x": 46, "labellik": 46, "labels_list": [46, 52], "keraswrappermodel": [48, 49, 72], "keraswrappersequenti": [48, 49], "tf": [49, 74], "legaci": 49, "lack": 49, "keraswrapp": 49, "huggingface_keras_imdb": 49, "unit": [49, 94], "model_kwarg": [49, 62], "compile_kwarg": 49, "sparsecategoricalcrossentropi": 49, "layer": [49, 74, 79, 88, 93], "dens": 49, "my_keras_model": 49, "from_logit": 49, "declar": 49, "apply_softmax": 49, "analysi": 50, "analyz": [50, 72, 83, 85, 86], "get_label_quality_multiannot": [50, 85], "vote": 50, "crowdsourc": [50, 72, 85], "dawid": [50, 85], "skene": [50, 85], "analog": [50, 80, 85], "chosen": [50, 60, 81, 85], "crowdlab": [50, 85], "unlabel": [50, 78, 79, 82, 85, 88, 91], "decid": [50, 79, 80, 85, 90, 93, 94], "get_active_learning_scor": [50, 85], "activelab": [50, 85], "priorit": [50, 57, 87, 91, 94], "showcas": 50, "main": 50, "best_qual": 50, "quality_method": 50, "calibrate_prob": 50, "return_detailed_qu": 50, "return_annotator_stat": 50, "return_weight": 50, "label_quality_score_kwarg": 50, "necessarili": [50, 58, 79, 83], "did": [50, 51, 74, 78, 83, 85, 90, 92, 93], "majority_vot": 50, "ti": 50, "broken": [50, 58, 80], "highest": [50, 58, 75, 82, 89], "0th": 50, "consensus_quality_scor": [50, 85], "annotator_agr": [50, 85], "reman": 50, "1st": 50, "2nd": [50, 64], "3rd": 50, "consensus_label_suffix": 50, "consensus_quality_score_suffix": 50, "suffix": 50, "emsembl": 50, "weigh": [50, 80], "agreement": [50, 85], "agre": 50, "prevent": [50, 81], "overconfid": [50, 89], "wrong": [50, 55, 57, 73, 75, 76, 79, 81, 83, 87, 93], "detailed_label_qu": [50, 85], "annotator_stat": [50, 85], "model_weight": 50, "annotator_weight": 50, "warn": [50, 75, 76, 81], "labels_info": 50, "num_annot": [50, 85], "deriv": [50, 85], "quality_annotator_1": 50, "quality_annotator_2": 50, "quality_annotator_m": 50, "annotator_qu": [50, 85], "num_examples_label": [50, 85], "agreement_with_consensu": [50, 85], "worst_class": [50, 85], "trustworthi": [50, 85, 90], "get_label_quality_multiannotator_ensembl": 50, "weigtht": 50, "budget": 50, "retrain": [50, 90, 93], "active_learning_scor": 50, "improv": [50, 76, 80, 81, 82, 83, 90, 91, 92, 93], "active_learning_scores_unlabel": 50, "get_active_learning_scores_ensembl": 50, "henc": [50, 74, 75, 85], "get_majority_vote_label": [50, 85], "event": 50, "lastli": [50, 78], "convert_long_to_wide_dataset": 50, "labels_multiannotator_long": 50, "wide": [50, 74, 92, 93], "suitabl": [50, 78, 92], "labels_multiannotator_wid": 50, "common_multilabel_issu": [51, 53], "mutual": [51, 86], "exclus": [51, 86], "rank_classes_by_multilabel_qu": [51, 53], "overall_multilabel_health_scor": [51, 53], "multilabel_health_summari": [51, 53], "classes_by_multilabel_qu": 51, "inner": [52, 66], "find_multilabel_issues_per_class": [52, 53], "per_class_label_issu": 52, "label_issues_list": 52, "pred_probs_list": [52, 60, 82, 83], "anim": [53, 88], "rat": 53, "predat": 53, "pet": 53, "reptil": 53, "manner": [54, 85, 90, 92, 93], "box": [55, 57, 58, 80, 87], "object_detect": [55, 57, 58, 87], "return_indices_ranked_by_scor": [55, 87], "overlapping_label_check": [55, 57], "suboptim": [55, 57], "locat": [55, 57, 87, 91, 94], "bbox": [55, 58, 87], "image_nam": [55, 58], "y1": [55, 58, 87], "y2": [55, 58, 87], "later": [55, 58, 59, 93, 94], "corner": [55, 58, 87], "xyxi": [55, 58, 87], "io": [55, 58, 74, 80], "keras_cv": [55, 58], "bounding_box": [55, 58, 87], "detectron": [55, 58, 87], "detectron2": [55, 58, 87], "readthedoc": [55, 58], "en": [55, 58], "latest": [55, 58], "visual": [55, 56, 58, 75, 76, 82, 90, 92, 94], "draw_box": [55, 58], "mmdetect": [55, 58, 87], "swap": [55, 57, 67, 71], "penal": [55, 57], "concern": [55, 57, 72, 76], "issues_from_scor": [56, 57, 65, 66, 67, 69, 70, 71, 87, 91, 94], "compute_overlooked_box_scor": [56, 57], "compute_badloc_box_scor": [56, 57], "compute_swap_box_scor": [56, 57], "pool_box_scores_per_imag": [56, 57], "object_counts_per_imag": [56, 58, 87], "bounding_box_size_distribut": [56, 58, 87], "class_label_distribut": [56, 58, 87], "get_sorted_bbox_count_idx": [56, 58], "plot_class_size_distribut": [56, 58], "plot_class_distribut": [56, 58], "get_average_per_class_confusion_matrix": [56, 58], "calculate_per_class_metr": [56, 58], "aggregation_weight": 57, "imperfect": [57, 81], "chose": [57, 85, 87], "imperfectli": [57, 87], "dirti": [57, 60, 63, 90], "subtyp": 57, "badloc": 57, "nonneg": 57, "high_probability_threshold": 57, "auxiliary_input": [57, 58], "vari": [57, 76], "iou": [57, 58], "heavili": 57, "auxiliarytypesdict": 57, "pred_label": [57, 93], "pred_label_prob": 57, "pred_bbox": 57, "lab_label": 57, "lab_bbox": 57, "similarity_matrix": 57, "min_possible_similar": 57, "scores_overlook": 57, "low_probability_threshold": 57, "scores_badloc": 57, "accident": [57, 78, 79, 81, 93], "scores_swap": 57, "box_scor": 57, "image_scor": [57, 66, 91], "discov": [58, 76, 94], "auxiliari": [58, 88, 91], "_get_valid_inputs_for_compute_scor": 58, "object_count": 58, "down": 58, "bbox_siz": 58, "class_distribut": 58, "plot": [58, 75, 76, 83, 86, 88, 90, 91], "sorted_idx": [58, 88], "class_to_show": 58, "hidden": [58, 88], "max_class_to_show": 58, "prediction_threshold": 58, "overlai": [58, 87], "figsiz": [58, 75, 76, 82, 83, 86, 88], "save_path": [58, 87], "blue": [58, 80, 83, 87], "overlaid": 58, "side": [58, 80, 87], "figur": [58, 83, 86, 88, 90], "extens": [58, 83, 85], "png": [58, 87], "pdf": [58, 59], "svg": 58, "matplotlib": [58, 75, 76, 82, 83, 86, 87, 88, 90], "num_proc": [58, 82], "intersect": [58, 81], "tp": 58, "fp": 58, "ground": [58, 80, 83, 85, 90], "truth": [58, 83, 85, 90], "bias": 58, "avg_metr": 58, "distionari": 58, "95": [58, 68, 70, 78, 80, 83, 88, 90, 91], "per_class_metr": 58, "Of": 59, "li": 59, "smaller": [59, 86, 87], "find_top_issu": [59, 60, 88], "reli": [59, 74, 75, 76, 79, 87, 88, 93], "dist_metr": 59, "dim": [59, 82, 91], "subtract": [59, 60], "renorm": [59, 60, 81], "least_confid": 59, "sum_": 59, "log": [59, 60, 73], "softmax": [59, 66, 70, 82], "literatur": 59, "gen": 59, "liu": 59, "lochman": 59, "zach": 59, "openaccess": 59, "thecvf": 59, "content": [59, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "cvpr2023": 59, "liu_gen_pushing_the_limits_of_softmax": 59, "based_out": 59, "distribution_detection_cvpr_2023_pap": 59, "fit_scor": [59, 88], "ood_predictions_scor": 59, "pretrain": [59, 74, 79, 88, 93], "adjust_confident_threshold": 59, "probabilist": [59, 74, 75, 76, 78, 79, 88, 89, 92], "order_label_issu": [60, 73], "whichev": [60, 89], "argsort": [60, 79, 82, 83, 87, 88, 90, 93], "max_": 60, "get_label_quality_ensemble_scor": [60, 81, 83], "weight_ensemble_members_bi": 60, "custom_weight": 60, "log_loss_search_t_valu": 60, "0001": [60, 80], "scheme": 60, "log_loss_search": 60, "log_loss": [60, 79], "1e0": 60, "1e1": 60, "1e2": 60, "2e2": 60, "quality_scor": [60, 88], "forth": 60, "top_issue_indic": 60, "rank_bi": [60, 73], "weird": [60, 71], "minu": 60, "prob_label": 60, "max_prob_not_label": 60, "idea": [60, 87], "AND": [60, 79], "get_epistemic_uncertainti": [61, 62], "get_aleatoric_uncertainti": [61, 62], "corrupt": [62, 90], "linearregress": [62, 81, 90], "y_with_nois": 62, "n_boot": [62, 81], "include_aleatoric_uncertainti": [62, 81], "sole": [62, 75, 85, 88, 92], "bootstrap": [62, 81, 90], "resampl": [62, 74, 81], "epistem": [62, 81, 88, 90], "aleator": [62, 81, 90], "model_final_kwarg": 62, "coars": 62, "thorough": [62, 81], "fine": [62, 74, 79, 88, 93], "grain": 62, "grid": 62, "varianc": [62, 83], "epistemic_uncertainti": 62, "residu": [62, 63, 81], "deviat": [62, 87, 90], "ie": 62, "aleatoric_uncertainti": 62, "outr": 63, "contin": 63, "raw": [63, 72, 73, 76, 80, 82, 85, 87, 88], "aka": [63, 74, 83, 87, 94], "00323821": 63, "33692597": 63, "00191686": 63, "semant": [64, 66, 67, 84], "pixel": [64, 66, 67, 88, 91], "h": [64, 66, 67, 91], "height": [64, 66, 67, 91], "w": [64, 66, 67, 91], "width": [64, 66, 67, 91], "labels_one_hot": [64, 67, 91], "stream": [64, 88, 94], "downsampl": [64, 66, 91], "shrink": [64, 66], "divis": [64, 66, 75], "display_issu": [65, 66, 67, 68, 69, 70, 71, 91, 94], "common_label_issu": [65, 67, 69, 71, 91, 94], "filter_by_class": [65, 67, 91], "segmant": [66, 67], "num_pixel_issu": [66, 91], "product": [66, 81, 82], "pixel_scor": [66, 91], "highlight": [67, 71, 75, 76, 78, 87, 91], "enter": 67, "legend": [67, 75, 76, 86, 87, 90, 91], "colormap": 67, "background": 67, "person": [67, 81, 87, 91, 94], "ambigu": [67, 71, 74, 79, 80, 83, 93, 94], "systemat": [67, 71, 85], "misunderstood": [67, 71], "issues_df": [67, 82], "class_index": 67, "issues_subset": [67, 71], "filter_by_token": [69, 71, 94], "token_score_method": 70, "sentence_score_method": 70, "sentence_score_kwarg": 70, "compris": [70, 71], "token_scor": [70, 94], "converg": 70, "toward": 70, "_softmin_sentence_scor": 70, "sentence_scor": [70, 94], "token_info": 70, "70": [70, 78, 82, 88, 91], "02": [70, 75, 76, 82, 83, 87, 88, 91, 94], "03": [70, 78, 80, 83, 87, 88, 91, 94], "04": [70, 78, 82, 87, 88, 91], "08": [70, 83, 87, 91, 94], "commonli": [71, 73, 75, 76, 86, 94], "But": [71, 79, 83, 94], "restrict": [71, 81], "reliabl": [72, 74, 81, 85, 91, 92], "thousand": 72, "imagenet": [72, 80], "popular": [72, 85, 87], "centric": [72, 78, 79, 82, 84], "capabl": 72, "minut": [72, 74, 78, 79, 80, 85, 86, 87, 90, 91, 92, 93, 94], "conda": 72, "feature_embed": [72, 88], "Then": [72, 81, 82, 90, 92, 93], "your_dataset": [72, 74, 75, 76, 78, 79, 81, 82], "column_name_of_label": [72, 74, 75, 76, 78, 79, 82], "plagu": [72, 76], "untrain": 72, "\u30c4": 72, "label_issues_info": [72, 76], "sklearn_compatible_model": 72, "framework": [72, 86, 87], "complianc": 72, "tag": [72, 86, 94], "sequenc": 72, "recognit": [72, 74, 81, 94], "train_data": [72, 88, 90, 92, 93], "gotten": 72, "test_data": [72, 83, 86, 88, 90, 92, 93], "deal": [72, 76], "tutori": [72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "feel": [72, 74, 76, 81], "free": [72, 74, 76, 78, 79, 81, 82, 83], "ask": [72, 81], "slack": [72, 81], "project": [72, 90], "welcom": 72, "commun": [72, 81], "guidelin": [72, 87], "piec": 72, "studio": [72, 76, 78, 79, 81, 82], "platform": [72, 78, 79, 81, 82], "automl": [72, 81], "foundat": 72, "smart": [72, 78, 79, 81, 82], "edit": [72, 81], "easier": [72, 83], "unreli": [72, 74, 78, 79, 92], "link": [72, 74, 80, 87], "older": 73, "outlin": 73, "substitut": 73, "v2": [73, 78, 92], "get_noise_indic": 73, "psx": 73, "sorted_index_method": 73, "order_label_error": 73, "label_errors_bool": 73, "latent_estim": 73, "num_label_error": 73, "learningwithnoisylabel": 73, "neatli": 73, "organ": [73, 78, 80, 92, 94], "reorgan": 73, "baseline_method": 73, "incorpor": [73, 83], "research": [73, 83], "polyplex": 73, "terminologi": 73, "label_error": 73, "quickstart": [74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "spoken": 74, "500": [74, 88, 94], "english": [74, 80], "pronunci": 74, "wav": 74, "huggingfac": [74, 75, 76, 82], "voxceleb": 74, "speech": [74, 94], "your_pred_prob": [74, 75, 76, 78, 79], "tensorflow_io": 74, "huggingface_hub": 74, "branch": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "reproduc": [74, 78, 83, 85], "command": 74, "wget": [74, 87, 91, 94], "navig": 74, "browser": 74, "jakobovski": 74, "archiv": [74, 94], "v1": 74, "tar": [74, 88], "gz": [74, 88], "mkdir": [74, 94], "spoken_digit": 74, "xf": 74, "6_nicolas_32": 74, "data_path": 74, "listdir": 74, "nondeterminist": 74, "file_nam": 74, "endswith": 74, "file_path": 74, "join": [74, 81, 82], "39": [74, 75, 79, 80, 81, 82, 87, 88, 90, 91, 93, 94], "7_george_26": 74, "0_nicolas_24": 74, "0_nicolas_6": 74, "listen": 74, "display_exampl": 74, "click": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "expand": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "pulldown": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "colab": [74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "tfio": 74, "pathlib": 74, "ipython": 74, "load_wav_16k_mono": 74, "filenam": 74, "khz": 74, "file_cont": 74, "read_fil": 74, "sample_r": 74, "decode_wav": 74, "desired_channel": 74, "squeez": 74, "rate_in": 74, "rate_out": 74, "16000": 74, "wav_file_nam": 74, "audio_r": 74, "wav_file_exampl": 74, "plai": [74, 80, 81], "button": 74, "wav_file_name_exampl": 74, "7_jackson_43": 74, "hear": 74, "extractor": 74, "encoderclassifi": 74, "spkrec": 74, "xvect": 74, "feature_extractor": 74, "from_hparam": 74, "run_opt": 74, "uncom": 74, "ffmpeg": 74, "system": [74, 78, 79, 82, 91], "backend": 74, "wav_audio_file_path": 74, "head": [74, 76, 78, 79, 80, 82, 83, 85, 90, 92, 93], "torchaudio": 74, "extract_audio_embed": 74, "emb": [74, 82], "signal": 74, "encode_batch": 74, "embeddings_list": [74, 82], "embeddings_arrai": 74, "opt": [74, 76, 79, 93], "hostedtoolcach": [74, 76, 79, 93], "x64": [74, 76, 79, 93], "lib": [74, 76, 79, 93], "python3": [74, 76, 79, 93], "site": [74, 76, 79, 93], "650": 74, "userwarn": [74, 75, 76, 79, 93], "stft": 74, "return_complex": 74, "view_as_r": 74, "recov": 74, "trigger": 74, "aten": 74, "src": 74, "nativ": 74, "spectralop": 74, "cpp": 74, "863": [74, 93], "_vf": 74, "n_fft": 74, "hop_length": 74, "win_length": 74, "attr": 74, "512": [74, 82], "14": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "196311": 74, "319459": 74, "478975": 74, "2890875": 74, "8170238": 74, "89265": 74, "24": [74, 80, 83, 85, 87, 91], "898056": 74, "256195": 74, "559641": 74, "559721": 74, "62067": 74, "285245": 74, "21": [74, 75, 80, 81, 82, 83, 87, 91, 94], "709627": 74, "5033693": 74, "913803": 74, "819831": 74, "1831515": 74, "208763": 74, "084257": 74, "3210397": 74, "005453": 74, "216152": 74, "478235": 74, "6821785": 74, "053807": 74, "242471": 74, "091424": 74, "78334856": 74, "03954": 74, "23": [74, 80, 82, 83, 87, 88, 91, 94], "569176": 74, "19": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93], "761097": 74, "1258295": 74, "753237": 74, "3508866": 74, "598274": 74, "23712": 74, "2500": 74, "leverag": [74, 79, 81, 83, 85, 93], "tune": [74, 79, 80, 88, 93], "computation": [74, 79, 93], "intens": [74, 79, 93], "held": [74, 78, 79, 80, 87, 88, 89, 92], "straightforward": [74, 78, 92], "benefit": [74, 89, 91, 92], "tol": 74, "num_crossval_fold": [74, 78, 85, 92], "decreas": [74, 81], "never": [74, 83, 86, 88, 89], "accuracy_scor": [74, 79, 83, 92, 93], "cv_accuraci": 74, "9708": 74, "probabilit": [74, 93], "9976": 74, "986": 74, "002161": 74, "176": [74, 80, 83, 86], "002483": 74, "2318": 74, "004411": 74, "1005": 74, "004857": 74, "1871": 74, "007494": 74, "investig": 74, "040587": 74, "999207": 74, "999377": 74, "975220": 74, "999367": 74, "18": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93], "identified_label_issu": [74, 79], "lowest_quality_label": [74, 79, 83, 90, 93], "sort_valu": [74, 76, 78, 79, 81, 82, 83, 85, 86], "516": 74, "1946": 74, "469": 74, "2132": 74, "worth": [74, 83], "iloc": [74, 78, 79, 90, 92, 93], "6_yweweler_25": 74, "7_nicolas_43": 74, "6_theo_27": 74, "6_yweweler_36": 74, "6_yweweler_14": 74, "6_yweweler_35": 74, "6_nicolas_8": 74, "sound": 74, "quit": [74, 88], "22": [74, 75, 80, 82, 83, 86, 87, 91, 94], "blindli": [74, 81, 90, 92, 93], "trust": [74, 81, 83, 85, 89, 90, 92, 93], "underneath": 75, "hood": 75, "alert": 75, "introduct": 75, "mayb": [75, 76, 79], "examin": [75, 76, 78, 87, 92], "your_feature_matrix": [75, 76], "toi": [75, 76, 80, 82, 83, 85], "train_test_split": [75, 76, 88, 92, 93], "inf": [75, 76], "mid": [75, 76], "bins_map": [75, 76], "create_data": [75, 76], "y_bin": [75, 76], "y_i": [75, 76], "y_bin_idx": [75, 76], "y_train": [75, 76, 83, 90], "y_test": [75, 76, 83, 90], "y_train_idx": [75, 76], "y_test_idx": [75, 76], "test_siz": [75, 76, 92, 93], "slide": [75, 76, 80], "decis": [75, 76, 92], "frame": [75, 76], "x_out": [75, 76], "tini": [75, 76], "concaten": [75, 76, 81, 89], "y_out": [75, 76], "y_out_bin": [75, 76], "y_out_bin_idx": [75, 76], "exact_duplicate_idx": [75, 76], "x_duplic": [75, 76], "y_duplic": [75, 76], "y_duplicate_idx": [75, 76], "noisy_labels_idx": [75, 76, 86], "scatter": [75, 76, 83, 86, 90], "black": [75, 76, 80, 90], "cyan": [75, 76], "pyplot": [75, 76, 82, 83, 86, 88, 90], "plt": [75, 76, 82, 83, 86, 88, 90], "plot_data": [75, 76, 83, 86, 90], "fig": [75, 76, 80, 82, 88, 90], "ax": [75, 76, 82, 88, 90], "subplot": [75, 76, 82, 88], "set_titl": [75, 76, 82, 88], "set_xlabel": [75, 76], "x_1": [75, 76], "fontsiz": [75, 76, 82, 83, 86], "set_ylabel": [75, 76], "x_2": [75, 76], "set_xlim": [75, 76], "set_ylim": [75, 76], "linestyl": [75, 76], "circl": [75, 76, 83, 86], "misclassifi": [75, 76], "zip": [75, 76, 82, 87, 94], "label_err": [75, 76], "180": [75, 76, 87], "marker": [75, 76], "facecolor": [75, 76], "edgecolor": [75, 76], "linewidth": [75, 76, 88], "dup": [75, 76], "first_legend": [75, 76], "align": [75, 76], "title_fontproperti": [75, 76], "semibold": [75, 76], "second_legend": [75, 76], "45": [75, 76, 80, 82, 83, 87, 88, 91], "gca": [75, 76], "add_artist": [75, 76], "tight_layout": [75, 76], "ideal": [75, 76], "logist": [75, 76, 79, 85, 88, 93], "remaind": 75, "modal": [75, 76, 81, 85], "132": [75, 76, 83, 87], "9318": 75, "77": [75, 76, 78, 87, 91, 92], "006940": 75, "007830": 75, "40": [75, 76, 79, 80, 82, 91], "014828": 75, "107": [75, 76, 83, 86], "021241": 75, "120": [75, 76, 92], "026407": 75, "notic": [75, 83, 85, 87], "3558": [75, 76], "126": [75, 76, 83, 87], "006636": [75, 76], "130": [75, 76], "012571": [75, 76], "129": [75, 76], "127": [75, 76], "014909": [75, 76], "128": [75, 76, 82], "017443": [75, 76], "6160": [75, 76], "is_near_duplicate_issu": [75, 76, 78, 79, 81, 82, 83], "131": [75, 76, 91], "000000e": [75, 76], "00": [75, 76, 78, 80, 82, 88, 91, 92], "000002": [75, 76], "463180e": [75, 76], "07": [75, 76, 78, 82, 83, 87, 88, 91], "51": [75, 76, 78, 80, 82, 83, 87, 88, 91, 94], "161148": [75, 76], "859087e": [75, 76], "30": [75, 76, 80, 81, 82, 86, 91, 94], "3453": 75, "029542": 75, "031182": 75, "057961": 75, "058244": 75, "home": [75, 76, 79, 80, 93], "runner": [75, 76, 79, 93], "329": [75, 82, 87], "359": 75, "338": 75, "34": [75, 80, 82, 83, 85, 87, 88, 91, 94], "54": [75, 80, 82, 83, 87, 88, 91], "039122": 75, "53": [75, 76, 78, 80, 82, 86, 87, 91, 92], "044598": 75, "105": [75, 87], "105196": 75, "133654": 75, "43": [75, 80, 83, 87, 91], "168033": 75, "125": 75, "101107": 75, "37": [75, 80, 82, 88, 91], "183382": 75, "109": [75, 80, 87, 94], "209259": 75, "211042": 75, "221316": 75, "average_ood_scor": 75, "34530442089193386": 75, "52": [75, 80, 82, 87, 91, 94], "169820": 75, "087324e": 75, "89": [75, 78, 87, 90, 91, 93, 94], "92": [75, 83, 87, 88, 91, 92, 94], "259024": 75, "583757e": 75, "91": [75, 87, 91, 94], "346458": 75, "341292e": 75, "specfi": 75, "new_lab": 75, "scoring_funct": 75, "div": 75, "rem": 75, "inv_scal": 75, "49": [75, 80, 83, 87, 91], "superstitionissuemanag": 75, "unlucki": 75, "superstit": 75, "to_seri": 75, "issues_mask": 75, "summary_scor": 75, "9242": 75, "is_superstition_issu": 75, "superstition_scor": 75, "26": [75, 80, 82, 83, 85, 87, 88, 91], "047581": 75, "090635": 75, "129591": 75, "65": [75, 87, 88, 91, 92], "164840": 75, "demo": [76, 78, 86, 92], "lurk": [76, 82, 83], "_split": 76, "737": 76, "thoroughli": 76, "preprocess": [76, 78, 88, 90, 92, 93], "904": 76, "review": [76, 78, 79, 80, 81, 83, 87, 90, 91, 92, 93, 94], "8561": 76, "001908": 76, "58": [76, 78, 80, 82, 83, 87, 91, 92], "003564": 76, "007331": 76, "008963": 76, "009664": 76, "0227": 76, "is_class_imbalance_issu": 76, "022727": 76, "86": [76, 78, 82, 83, 87, 90, 91, 92], "87": [76, 82, 87, 88, 90, 91, 93], "auto": [76, 80, 81, 90, 92, 93], "conceptu": 76, "856061": 76, "355772": 76, "616034": 76, "821750": 76, "betweeen": 76, "is_null_issu": 76, "is_non_iid_issu": [76, 78, 79, 83], "859131": 76, "417707": 76, "664083": 76, "970324": 76, "816953": 76, "375317": 76, "641516": 76, "890575": 76, "531021": 76, "460593": 76, "601188": 76, "826147": 76, "752808": 76, "321635": 76, "562539": 76, "948362": 76, "090243": 76, "472909": 76, "746763": 76, "878267": 76, "examples_w_issu": [76, 81], "013445": 76, "025184": 76, "026376": 76, "inde": [76, 79], "miscellan": [76, 94], "428571": 76, "111111": 76, "571429": 76, "407407": 76, "592593": 76, "337838": 76, "092593": 76, "662162": 76, "333333": [76, 80], "952381": 76, "666667": 76, "portion": 76, "huge": [76, 83], "worri": [76, 79], "critic": 76, "highli": [76, 82], "sql": [78, 92], "databas": [78, 92], "excel": [78, 92], "parquet": [78, 92], "student": [78, 90, 92, 94], "grade": [78, 90, 92], "900": [78, 90, 92], "exam": [78, 90, 92], "letter": [78, 92, 94], "hundr": [78, 92], "histgradientboostingclassifi": 78, "standardscal": [78, 88, 92], "grades_data": [78, 92], "read_csv": [78, 79, 90, 92, 93], "stud_id": [78, 92], "exam_1": [78, 90, 92], "exam_2": [78, 90, 92], "exam_3": [78, 90, 92], "letter_grad": [78, 92], "f48f73": [78, 92], "0bd4e7": [78, 92], "81": [78, 79, 87, 88, 90, 91, 92, 94], "great": [78, 80, 92], "particip": [78, 92], "cb9d7a": [78, 92], "61": [78, 83, 87, 90, 91, 92], "94": [78, 80, 83, 87, 90, 91, 92], "78": [78, 80, 83, 87, 90, 91, 92], "9acca4": [78, 92], "48": [78, 80, 83, 87, 88, 91, 92], "x_raw": [78, 92], "cat_featur": 78, "x_encod": [78, 92], "get_dummi": [78, 90, 92], "drop_first": [78, 92], "numeric_featur": [78, 92], "scaler": [78, 88, 92], "x_process": [78, 92], "fit_transform": [78, 92], "bring": [78, 79, 82, 85, 90, 92, 93], "byod": [78, 79, 82, 85, 90, 92, 93], "boost": [78, 81, 85, 90], "xgboost": [78, 81, 90], "think": [78, 79, 81, 86, 91, 94], "carefulli": [78, 79, 82, 92], "nonzero": 78, "suspici": [78, 92], "tabl": [78, 80, 85, 92], "358": 78, "294": [78, 87], "46": [78, 80, 82, 83, 87, 91], "941": 78, "7109": 78, "000005": [78, 79], "886": 78, "000059": 78, "709": 78, "000104": 78, "723": 78, "000169": 78, "689": 78, "000181": 78, "3590": 78, "051882e": 78, "683133e": 78, "536582e": 78, "406589e": 78, "324246e": 78, "6165": 78, "582": 78, "185": [78, 80, 87], "187": [78, 80], "27": [78, 80, 82, 83, 87, 91, 94], "898": 78, "637": [78, 92], "0014": [78, 80], "595": 78, "702427": 78, "147": [78, 83, 87], "711186": 78, "157": [78, 83], "721394": 78, "771": 78, "731979": 78, "740335": 78, "0014153602099278074": 78, "issue_result": 78, "000842": 78, "555944": 78, "004374": 78, "sorted_issu": 78, "73": [78, 80, 86, 87, 88, 90, 91], "deserv": 78, "outlier_result": 78, "sorted_outli": 78, "56": [78, 80, 82, 88, 90, 91], "96": [78, 80, 83, 86, 87, 90, 91], "lt": [78, 79, 80, 82, 85, 88, 91], "style": [78, 91], "font": 78, "18px": 78, "ff00ff": 78, "bac": 78, "unintend": [78, 79], "mistak": [78, 79, 82, 92, 93], "duplicate_result": 78, "690": 78, "246": [78, 87], "perhap": [78, 83, 85], "twice": 78, "67": [78, 80, 87, 88, 90, 91], "wari": [78, 79, 81], "super": [78, 79, 82], "intent": [79, 93], "servic": [79, 81, 93], "onlin": [79, 93], "bank": [79, 80, 93], "banking77": [79, 93], "oo": [79, 93], "000": [79, 80, 82, 93, 94], "categori": [79, 82, 93], "scope": [79, 93], "dive": 79, "your_featur": 79, "sentence_transform": [79, 93], "sentencetransform": [79, 93], "payment": [79, 93], "cancel_transf": [79, 93], "transfer": [79, 93], "fund": [79, 93], "cancel": [79, 93], "transact": [79, 93], "my": [79, 93], "revert": [79, 93], "morn": [79, 93], "realis": [79, 93], "yesterdai": [79, 93], "rent": [79, 93], "realli": [79, 85, 91, 93], "tomorrow": [79, 93], "raw_text": [79, 93], "apple_pay_or_google_pai": [79, 93], "change_pin": [79, 93], "beneficiary_not_allow": [79, 93], "supported_cards_and_curr": [79, 93], "card_payment_fee_charg": [79, 93], "lost_or_stolen_phon": [79, 93], "visa_or_mastercard": [79, 93], "getting_spare_card": [79, 93], "card_about_to_expir": [79, 93], "utter": [79, 93], "continu": [79, 81, 82, 85, 87, 90, 92, 93, 94], "suit": [79, 80, 81, 93], "electra": [79, 93], "discrimin": [79, 93], "googl": [79, 93], "text_embed": 79, "No": [79, 81, 93], "google_electra": [79, 93], "pool": [79, 81, 88, 93], "_util": [79, 93], "831": [79, 93], "typedstorag": [79, 93], "untypedstorag": [79, 93], "untyped_storag": [79, 93], "fget": [79, 93], "__get__": [79, 93], "owner": [79, 93], "400": [79, 93], "data_dict": [79, 83, 85], "85": [79, 82, 87, 91], "38": [79, 80, 82, 87, 91], "9710": 79, "981": 79, "974": 79, "000146": 79, "982": [79, 80], "000224": 79, "971": 79, "000507": 79, "980": [79, 80], "000960": 79, "3584": 79, "994": 79, "009642": 79, "999": 79, "013067": 79, "013841": 79, "433": 79, "014722": 79, "989": 79, "018224": 79, "6070": 79, "160": [79, 90], "095724": 79, "148": 79, "006237": 79, "546": 79, "099341": 79, "514": 79, "006485": 79, "481": 79, "123418": 79, "008165": 79, "0000": [79, 80, 83], "313": [79, 87], "564102": 79, "572258": 79, "28": [79, 80, 82, 83, 85, 88, 91, 94], "574915": 79, "31": [79, 80, 83, 85, 87, 88, 91], "575507": 79, "575874": 79, "792090": 79, "257611": 79, "698710": 79, "182121": 79, "771619": 79, "to_numpi": [79, 81, 90, 93], "data_with_suggested_label": 79, "suggested_label": 79, "charg": [79, 93], "cash": [79, 93], "holidai": [79, 93], "sent": [79, 93, 94], "card": [79, 80, 93], "mine": [79, 93], "expir": [79, 93], "me": [79, 93], "withdraw": 79, "monei": 79, "whoever": [79, 93], "outlier_issu": [79, 82], "lowest_quality_outli": 79, "OR": 79, "636c65616e6c616220697320617765736f6d6521": 79, "phone": [79, 80], "gone": 79, "gt": [79, 85, 94], "samp": 79, "br": 79, "press": [79, 94], "nonsens": 79, "sens": 79, "detriment": 79, "duplicate_issu": 79, "fee": 79, "pai": 79, "go": [79, 80, 83], "strongli": 79, "p_valu": 79, "benign": 79, "shortlist": [79, 90, 93], "curat": [79, 84], "mnist_test_set": 80, "imagenet_val_set": 80, "tench": 80, "goldfish": 80, "white": [80, 94], "shark": 80, "tiger": 80, "hammerhead": 80, "electr": 80, "rai": 80, "stingrai": 80, "cock": 80, "hen": 80, "ostrich": 80, "brambl": 80, "goldfinch": 80, "hous": 80, "finch": 80, "junco": 80, "indigo": 80, "bunt": 80, "american": [80, 94], "robin": 80, "bulbul": 80, "jai": 80, "magpi": 80, "chickade": 80, "dipper": 80, "kite": 80, "bald": 80, "eagl": 80, "vultur": 80, "grei": 80, "owl": 80, "salamand": 80, "smooth": 80, "newt": 80, "spot": [80, 87], "axolotl": 80, "bullfrog": 80, "tree": 80, "frog": [80, 88], "tail": 80, "loggerhead": 80, "sea": 80, "turtl": 80, "leatherback": 80, "mud": 80, "terrapin": 80, "band": 80, "gecko": 80, "green": [80, 94], "iguana": 80, "carolina": 80, "anol": 80, "desert": 80, "grassland": 80, "whiptail": 80, "lizard": 80, "agama": 80, "frill": 80, "neck": 80, "allig": 80, "gila": 80, "monster": 80, "european": 80, "chameleon": 80, "komodo": 80, "dragon": 80, "nile": 80, "crocodil": 80, "triceratop": 80, "worm": 80, "snake": 80, "ring": 80, "eastern": 80, "hog": 80, "nose": 80, "kingsnak": 80, "garter": 80, "water": 80, "vine": 80, "night": 80, "boa": 80, "constrictor": 80, "african": 80, "rock": 80, "indian": 80, "cobra": 80, "mamba": 80, "saharan": 80, "horn": 80, "viper": 80, "diamondback": 80, "rattlesnak": 80, "sidewind": 80, "trilobit": 80, "harvestman": 80, "scorpion": 80, "yellow": 80, "garden": 80, "spider": 80, "barn": 80, "southern": 80, "widow": 80, "tarantula": 80, "wolf": 80, "tick": 80, "centiped": 80, "grous": 80, "ptarmigan": 80, "ruf": 80, "prairi": 80, "peacock": 80, "quail": 80, "partridg": 80, "parrot": 80, "macaw": 80, "sulphur": 80, "crest": 80, "cockatoo": 80, "lorikeet": 80, "coucal": 80, "bee": 80, "eater": 80, "hornbil": 80, "hummingbird": 80, "jacamar": 80, "toucan": 80, "duck": [80, 93], "breast": 80, "mergans": 80, "goos": 80, "swan": 80, "tusker": 80, "echidna": 80, "platypu": 80, "wallabi": 80, "koala": 80, "wombat": 80, "jellyfish": 80, "anemon": 80, "brain": 80, "coral": 80, "flatworm": 80, "nematod": 80, "conch": 80, "snail": 80, "slug": 80, "chiton": 80, "chamber": 80, "nautilu": 80, "dung": 80, "crab": 80, "fiddler": 80, "king": 80, "lobster": 80, "spini": 80, "crayfish": 80, "hermit": 80, "isopod": 80, "stork": 80, "spoonbil": 80, "flamingo": 80, "heron": 80, "egret": 80, "bittern": 80, "crane": 80, "bird": [80, 88], "limpkin": 80, "gallinul": 80, "coot": 80, "bustard": 80, "ruddi": 80, "turnston": 80, "dunlin": 80, "redshank": 80, "dowitch": 80, "oystercatch": 80, "pelican": 80, "penguin": 80, "albatross": 80, "whale": 80, "killer": 80, "dugong": 80, "lion": 80, "chihuahua": 80, "japanes": 80, "chin": 80, "maltes": 80, "pekinges": 80, "shih": 80, "tzu": 80, "charl": 80, "spaniel": 80, "papillon": 80, "terrier": 80, "rhodesian": 80, "ridgeback": 80, "afghan": [80, 94], "hound": 80, "basset": 80, "beagl": 80, "bloodhound": 80, "bluetick": 80, "coonhound": 80, "tan": 80, "walker": 80, "foxhound": 80, "redbon": 80, "borzoi": 80, "irish": 80, "wolfhound": 80, "italian": 80, "greyhound": 80, "whippet": 80, "ibizan": 80, "norwegian": 80, "elkhound": 80, "otterhound": 80, "saluki": 80, "scottish": 80, "deerhound": 80, "weimaran": 80, "staffordshir": 80, "bull": 80, "bedlington": 80, "border": 80, "kerri": 80, "norfolk": 80, "norwich": 80, "yorkshir": 80, "wire": 80, "fox": 80, "lakeland": 80, "sealyham": 80, "airedal": 80, "cairn": 80, "australian": 80, "dandi": 80, "dinmont": 80, "boston": 80, "miniatur": 80, "schnauzer": 80, "giant": 80, "tibetan": 80, "silki": 80, "coat": [80, 82], "wheaten": 80, "west": 80, "highland": 80, "lhasa": 80, "apso": 80, "flat": 80, "retriev": 80, "curli": 80, "golden": 80, "labrador": 80, "chesapeak": 80, "bai": 80, "german": [80, 94], "shorthair": 80, "pointer": 80, "vizsla": 80, "setter": 80, "gordon": 80, "brittani": 80, "clumber": 80, "springer": 80, "welsh": 80, "cocker": 80, "sussex": 80, "kuvasz": 80, "schipperk": 80, "groenendael": 80, "malinoi": 80, "briard": 80, "kelpi": 80, "komondor": 80, "sheepdog": 80, "shetland": 80, "colli": 80, "bouvier": 80, "de": 80, "flandr": 80, "rottweil": 80, "shepherd": 80, "dobermann": 80, "pinscher": 80, "swiss": [80, 94], "mountain": 80, "bernes": 80, "appenzel": 80, "sennenhund": 80, "entlebuch": 80, "boxer": 80, "bullmastiff": 80, "mastiff": 80, "french": 80, "bulldog": 80, "dane": 80, "st": 80, "bernard": 80, "huski": 80, "alaskan": 80, "malamut": 80, "siberian": 80, "dalmatian": 80, "affenpinsch": 80, "basenji": 80, "pug": 80, "leonberg": 80, "newfoundland": 80, "pyrenean": 80, "samoi": 80, "pomeranian": 80, "chow": 80, "keeshond": 80, "griffon": 80, "bruxelloi": 80, "pembrok": 80, "corgi": 80, "cardigan": 80, "poodl": 80, "mexican": 80, "hairless": 80, "tundra": 80, "coyot": 80, "dingo": 80, "dhole": 80, "wild": 80, "hyena": 80, "kit": 80, "arctic": 80, "tabbi": 80, "persian": 80, "siames": 80, "egyptian": 80, "mau": 80, "cougar": 80, "lynx": 80, "leopard": 80, "snow": 80, "jaguar": 80, "cheetah": 80, "brown": [80, 91], "bear": 80, "polar": 80, "sloth": 80, "mongoos": 80, "meerkat": 80, "beetl": 80, "ladybug": 80, "longhorn": 80, "leaf": 80, "rhinocero": 80, "weevil": 80, "fly": 80, "ant": 80, "grasshopp": 80, "cricket": 80, "stick": 80, "insect": 80, "cockroach": 80, "manti": 80, "cicada": 80, "leafhopp": 80, "lacew": 80, "dragonfli": 80, "damselfli": 80, "admir": 80, "ringlet": 80, "monarch": 80, "butterfli": 80, "gossam": 80, "wing": 80, "starfish": 80, "urchin": 80, "cucumb": 80, "cottontail": 80, "rabbit": 80, "hare": 80, "angora": 80, "hamster": 80, "porcupin": 80, "squirrel": 80, "marmot": 80, "beaver": 80, "guinea": 80, "pig": 80, "sorrel": 80, "zebra": 80, "boar": 80, "warthog": 80, "hippopotamu": 80, "ox": 80, "buffalo": 80, "bison": 80, "bighorn": 80, "sheep": 80, "alpin": 80, "ibex": 80, "hartebeest": 80, "impala": 80, "gazel": 80, "dromedari": 80, "llama": 80, "weasel": 80, "mink": 80, "polecat": 80, "foot": 80, "ferret": 80, "otter": 80, "skunk": 80, "badger": 80, "armadillo": 80, "toed": 80, "orangutan": 80, "gorilla": 80, "chimpanze": 80, "gibbon": 80, "siamang": 80, "guenon": 80, "pata": 80, "monkei": 80, "baboon": 80, "macaqu": 80, "langur": 80, "colobu": 80, "probosci": 80, "marmoset": 80, "capuchin": 80, "howler": 80, "titi": 80, "geoffroi": 80, "lemur": 80, "indri": 80, "asian": 80, "eleph": 80, "bush": 80, "snoek": 80, "eel": 80, "coho": 80, "salmon": 80, "beauti": 80, "clownfish": 80, "sturgeon": 80, "garfish": 80, "lionfish": 80, "pufferfish": 80, "abacu": 80, "abaya": 80, "academ": 80, "gown": 80, "accordion": 80, "acoust": 80, "guitar": 80, "aircraft": 80, "carrier": 80, "airlin": 80, "airship": 80, "altar": 80, "ambul": 80, "amphibi": 80, "clock": [80, 94], "apiari": 80, "apron": 80, "wast": 80, "assault": 80, "rifl": 80, "backpack": 80, "bakeri": 80, "balanc": 80, "beam": 80, "balloon": 80, "ballpoint": 80, "pen": 80, "aid": 80, "banjo": 80, "balust": 80, "barbel": 80, "barber": 80, "chair": [80, 87], "barbershop": 80, "baromet": 80, "barrel": 80, "wheelbarrow": 80, "basebal": 80, "basketbal": 80, "bassinet": 80, "bassoon": 80, "swim": 80, "cap": 80, "bath": 80, "towel": 80, "bathtub": 80, "station": 80, "wagon": 80, "lighthous": 80, "beaker": 80, "militari": 80, "beer": 80, "bottl": 80, "glass": 80, "bell": 80, "cot": 80, "bib": 80, "bicycl": [80, 91], "bikini": 80, "binder": 80, "binocular": 80, "birdhous": 80, "boathous": 80, "bobsleigh": 80, "bolo": 80, "tie": 80, "poke": 80, "bonnet": 80, "bookcas": 80, "bookstor": 80, "bow": 80, "brass": 80, "bra": 80, "breakwat": 80, "breastplat": 80, "broom": 80, "bucket": 80, "buckl": 80, "bulletproof": 80, "vest": 80, "butcher": 80, "shop": 80, "taxicab": 80, "cauldron": 80, "candl": 80, "cannon": 80, "cano": 80, "mirror": [80, 87], "carousel": 80, "tool": [80, 83, 85], "carton": 80, "wheel": 80, "teller": 80, "cassett": 80, "player": 80, "castl": 80, "catamaran": 80, "cd": 80, "cello": 80, "mobil": [80, 94], "chain": 80, "fenc": [80, 91], "mail": 80, "chainsaw": 80, "chest": 80, "chiffoni": 80, "chime": 80, "china": 80, "cabinet": 80, "christma": 80, "stock": 80, "church": 80, "movi": 80, "theater": 80, "cleaver": 80, "cliff": 80, "dwell": 80, "cloak": 80, "clog": 80, "cocktail": 80, "shaker": 80, "coffe": 80, "mug": 80, "coffeemak": 80, "coil": 80, "lock": 80, "keyboard": 80, "confectioneri": 80, "ship": [80, 88], "corkscrew": 80, "cornet": 80, "cowboi": 80, "boot": 80, "hat": 80, "cradl": 80, "crash": 80, "helmet": 80, "crate": 80, "infant": 80, "bed": 80, "crock": 80, "pot": 80, "croquet": 80, "crutch": 80, "cuirass": 80, "dam": 80, "desk": 80, "desktop": 80, "rotari": 80, "dial": 80, "telephon": 80, "diaper": 80, "watch": 80, "dine": 80, "dishcloth": 80, "dishwash": 80, "disc": 80, "brake": 80, "dock": 80, "sled": 80, "dome": 80, "doormat": 80, "drill": 80, "rig": 80, "drum": 80, "drumstick": 80, "dumbbel": 80, "dutch": 80, "oven": 80, "fan": 80, "locomot": 80, "entertain": 80, "center": 80, "envelop": 80, "espresso": 80, "powder": 80, "feather": 80, "fireboat": 80, "engin": [80, 91], "screen": 80, "sheet": 80, "flagpol": 80, "flute": 80, "footbal": 80, "forklift": 80, "fountain": 80, "poster": 80, "freight": 80, "fry": 80, "pan": 80, "fur": 80, "garbag": 80, "ga": 80, "pump": 80, "goblet": 80, "kart": 80, "golf": 80, "cart": 80, "gondola": 80, "gong": 80, "grand": 80, "piano": 80, "greenhous": 80, "grill": 80, "groceri": 80, "guillotin": 80, "barrett": 80, "hair": 80, "sprai": 80, "hammer": 80, "dryer": 80, "hand": [80, 83], "handkerchief": 80, "drive": 80, "harmonica": 80, "harp": 80, "harvest": 80, "hatchet": 80, "holster": 80, "honeycomb": 80, "hoop": 80, "skirt": 80, "horizont": 80, "bar": 80, "hors": [80, 88, 93], "drawn": 80, "hourglass": 80, "ipod": 80, "cloth": 80, "iron": 80, "jack": 80, "lantern": 80, "jean": 80, "jeep": 80, "shirt": [80, 82], "jigsaw": 80, "puzzl": 80, "pull": 80, "rickshaw": 80, "joystick": 80, "kimono": 80, "knee": 80, "pad": 80, "knot": 80, "ladl": 80, "lampshad": 80, "laptop": 80, "lawn": 80, "mower": 80, "knife": 80, "lifeboat": 80, "lighter": 80, "limousin": 80, "ocean": 80, "liner": 80, "lipstick": 80, "slip": 80, "shoe": 80, "lotion": 80, "speaker": 80, "loup": 80, "sawmil": 80, "magnet": 80, "compass": 80, "bag": [80, 82, 88, 89], "mailbox": 80, "tight": 80, "tank": 80, "manhol": 80, "maraca": 80, "marimba": 80, "maypol": 80, "maze": 80, "cup": [80, 87], "medicin": 80, "megalith": 80, "microphon": 80, "microwav": 80, "milk": 80, "minibu": 80, "miniskirt": 80, "minivan": 80, "missil": 80, "mitten": 80, "mix": 80, "bowl": 80, "modem": 80, "monasteri": 80, "monitor": 80, "mope": 80, "mortar": 80, "mosqu": 80, "mosquito": 80, "scooter": 80, "bike": 80, "tent": 80, "mous": [80, 81], "mousetrap": 80, "van": 80, "muzzl": 80, "nail": 80, "brace": 80, "necklac": 80, "nippl": 80, "obelisk": 80, "obo": 80, "ocarina": 80, "odomet": 80, "oil": 80, "oscilloscop": 80, "overskirt": 80, "bullock": 80, "oxygen": 80, "packet": 80, "paddl": 80, "padlock": 80, "paintbrush": 80, "pajama": 80, "palac": [80, 94], "parachut": 80, "park": 80, "bench": 80, "meter": 80, "passeng": 80, "patio": 80, "payphon": 80, "pedest": 80, "pencil": 80, "perfum": 80, "petri": 80, "dish": 80, "photocopi": 80, "plectrum": 80, "pickelhaub": 80, "picket": 80, "pickup": 80, "pier": 80, "piggi": 80, "pill": 80, "pillow": 80, "ping": 80, "pong": 80, "pinwheel": 80, "pirat": 80, "pitcher": 80, "plane": 80, "planetarium": 80, "plastic": 80, "plate": 80, "rack": 80, "plow": 80, "plunger": 80, "polaroid": 80, "camera": 80, "pole": [80, 91], "polic": 80, "poncho": 80, "billiard": 80, "soda": 80, "potter": 80, "prayer": 80, "rug": 80, "printer": 80, "prison": 80, "projectil": 80, "projector": 80, "hockei": 80, "puck": 80, "punch": 80, "purs": 80, "quill": 80, "quilt": 80, "race": 80, "racket": 80, "radiat": 80, "radio": 80, "telescop": 80, "rain": 80, "recreat": 80, "reel": 80, "reflex": 80, "refriger": 80, "remot": 80, "restaur": 80, "revolv": 80, "rotisseri": 80, "eras": 80, "rugbi": 80, "ruler": 80, "safe": 80, "safeti": 80, "salt": 80, "sandal": [80, 82], "sarong": 80, "saxophon": 80, "scabbard": 80, "school": 80, "bu": [80, 91], "schooner": 80, "scoreboard": 80, "crt": 80, "screw": 80, "screwdriv": 80, "seat": 80, "belt": 80, "sew": 80, "shield": 80, "shoji": 80, "basket": 80, "shovel": 80, "shower": 80, "curtain": 80, "ski": 80, "sleep": 80, "door": 80, "slot": 80, "snorkel": 80, "snowmobil": 80, "snowplow": 80, "soap": 80, "dispens": 80, "soccer": [80, 94], "sock": 80, "solar": 80, "thermal": 80, "collector": 80, "sombrero": 80, "soup": 80, "heater": 80, "shuttl": 80, "spatula": 80, "motorboat": 80, "web": 80, "spindl": 80, "sport": [80, 94], "spotlight": 80, "stage": 80, "steam": 80, "arch": 80, "bridg": 80, "steel": 80, "stethoscop": 80, "scarf": 80, "stone": 80, "wall": [80, 91], "stopwatch": 80, "stove": 80, "strainer": 80, "tram": 80, "stretcher": 80, "couch": 80, "stupa": 80, "submarin": 80, "sundial": 80, "sunglass": 80, "sunscreen": 80, "suspens": 80, "mop": 80, "sweatshirt": 80, "swimsuit": 80, "swing": 80, "switch": 80, "syring": 80, "lamp": 80, "tape": 80, "teapot": 80, "teddi": 80, "televis": [80, 94], "tenni": 80, "thatch": 80, "roof": 80, "front": 80, "thimbl": 80, "thresh": 80, "throne": 80, "tile": 80, "toaster": 80, "tobacco": 80, "toilet": 80, "totem": 80, "tow": 80, "tractor": 80, "semi": 80, "trailer": 80, "trai": 80, "trench": 80, "tricycl": 80, "trimaran": 80, "tripod": 80, "triumphal": 80, "trolleybu": 80, "trombon": 80, "tub": 80, "turnstil": 80, "typewrit": 80, "umbrella": 80, "unicycl": 80, "upright": 80, "vacuum": 80, "cleaner": 80, "vase": 80, "vault": 80, "velvet": 80, "vend": 80, "vestment": 80, "viaduct": 80, "violin": 80, "volleybal": 80, "waffl": 80, "wallet": 80, "wardrob": 80, "sink": 80, "wash": 80, "jug": 80, "tower": 80, "whiskei": 80, "whistl": 80, "wig": 80, "shade": [80, 91], "windsor": 80, "wine": 80, "wok": 80, "wooden": 80, "spoon": 80, "wool": 80, "rail": 80, "shipwreck": 80, "yawl": 80, "yurt": 80, "websit": 80, "comic": 80, "book": 80, "crossword": 80, "traffic": [80, 87, 91], "sign": [80, 91, 94], "dust": 80, "jacket": [80, 87], "menu": 80, "guacamol": 80, "consomm": 80, "trifl": 80, "ic": 80, "cream": 80, "pop": 80, "baguett": 80, "bagel": 80, "pretzel": 80, "cheeseburg": 80, "mash": 80, "potato": 80, "cabbag": 80, "broccoli": 80, "cauliflow": 80, "zucchini": 80, "spaghetti": 80, "squash": 80, "acorn": 80, "butternut": 80, "artichok": 80, "pepper": 80, "cardoon": 80, "mushroom": 80, "granni": 80, "smith": 80, "strawberri": 80, "orang": 80, "lemon": 80, "pineappl": 80, "banana": 80, "jackfruit": 80, "custard": 80, "appl": 80, "pomegran": 80, "hai": 80, "carbonara": 80, "chocol": 80, "syrup": 80, "dough": 80, "meatloaf": 80, "pizza": 80, "pie": 80, "burrito": 80, "eggnog": 80, "alp": 80, "bubbl": 80, "reef": 80, "geyser": 80, "lakeshor": 80, "promontori": 80, "shoal": 80, "seashor": 80, "vallei": 80, "volcano": 80, "bridegroom": 80, "scuba": 80, "diver": 80, "rapese": 80, "daisi": 80, "ladi": 80, "slipper": 80, "corn": 80, "rose": 80, "hip": 80, "chestnut": 80, "fungu": 80, "agar": 80, "gyromitra": 80, "stinkhorn": 80, "earth": 80, "star": 80, "wood": 80, "bolet": 80, "ear": 80, "cifar10_test_set": 80, "airplan": [80, 88], "automobil": [80, 88], "deer": [80, 88], "cifar100_test_set": 80, "aquarium_fish": 80, "babi": 80, "boi": 80, "camel": 80, "caterpillar": 80, "cattl": [80, 94], "cloud": 80, "dinosaur": 80, "dolphin": 80, "flatfish": 80, "forest": 80, "girl": 80, "kangaroo": 80, "lawn_mow": 80, "man": 80, "maple_tre": 80, "motorcycl": [80, 91], "oak_tre": 80, "orchid": 80, "palm_tre": 80, "pear": 80, "pickup_truck": 80, "pine_tre": 80, "plain": 80, "poppi": 80, "possum": 80, "raccoon": 80, "road": [80, 91], "rocket": 80, "seal": 80, "shrew": 80, "skyscrap": 80, "streetcar": 80, "sunflow": 80, "sweet_pepp": 80, "trout": 80, "tulip": 80, "willow_tre": 80, "woman": [80, 87], "caltech256": 80, "ak47": 80, "bat": 80, "glove": 80, "birdbath": 80, "blimp": 80, "bonsai": 80, "boom": 80, "breadmak": 80, "buddha": 80, "bulldoz": 80, "cactu": 80, "cake": 80, "tire": 80, "cartman": 80, "cereal": 80, "chandeli": 80, "chess": 80, "board": 80, "chimp": 80, "chopstick": 80, "coffin": 80, "coin": 80, "comet": 80, "cormor": 80, "globe": 80, "diamond": 80, "dice": 80, "doorknob": 80, "drink": 80, "straw": 80, "dumb": 80, "eiffel": 80, "elk": 80, "ewer": 80, "eyeglass": 80, "fern": 80, "fighter": 80, "jet": [80, 90], "extinguish": 80, "hydrant": 80, "firework": 80, "flashlight": 80, "floppi": 80, "fri": 80, "frisbe": 80, "galaxi": 80, "giraff": 80, "goat": 80, "gate": 80, "grape": 80, "pick": [80, 81], "hamburg": 80, "hammock": 80, "harpsichord": 80, "hawksbil": 80, "helicopt": 80, "hibiscu": 80, "homer": 80, "simpson": 80, "horsesho": 80, "air": 80, "skeleton": 80, "ibi": 80, "cone": 80, "iri": 80, "jesu": 80, "christ": 80, "joi": 80, "kayak": 80, "ketch": 80, "ladder": 80, "lath": 80, "licens": 80, "lightbulb": 80, "lightn": 80, "mandolin": 80, "mar": 80, "mattress": 80, "megaphon": 80, "menorah": 80, "microscop": 80, "minaret": 80, "minotaur": 80, "motorbik": 80, "mussel": 80, "neckti": 80, "octopu": 80, "palm": 80, "pilot": 80, "paperclip": 80, "shredder": 80, "pci": 80, "peopl": [80, 87], "pez": 80, "picnic": 80, "pram": 80, "prai": 80, "pyramid": 80, "rainbow": 80, "roulett": 80, "saddl": 80, "saturn": 80, "segwai": 80, "propel": 80, "sextant": 80, "music": 80, "skateboard": 80, "smokestack": 80, "sneaker": 80, "boat": 80, "stain": 80, "steer": 80, "stirrup": 80, "superman": 80, "sushi": 80, "armi": [80, 94], "sword": 80, "tambourin": 80, "teepe": 80, "court": 80, "theodolit": 80, "tomato": 80, "tombston": 80, "tour": 80, "pisa": 80, "treadmil": 80, "fork": 80, "tweezer": 80, "unicorn": 80, "vcr": 80, "waterfal": 80, "watermelon": 80, "weld": 80, "windmil": 80, "xylophon": 80, "yarmulk": 80, "yo": 80, "toad": 80, "twenty_news_test_set": 80, "alt": 80, "atheism": 80, "comp": 80, "graphic": [80, 91], "misc": [80, 94], "sy": 80, "ibm": 80, "pc": 80, "hardwar": 80, "mac": 80, "forsal": 80, "rec": 80, "sci": 80, "crypt": 80, "electron": 80, "med": 80, "soc": 80, "religion": 80, "christian": [80, 94], "talk": [80, 94], "polit": 80, "gun": 80, "mideast": 80, "amazon": 80, "neutral": 80, "imdb_test_set": 80, "all_class": 80, "20news_test_set": 80, "_load_classes_predprobs_label": 80, "dataset_nam": 80, "labelerror": 80, "url_bas": 80, "5392f6c71473055060be3044becdde1cbc18284d": 80, "url_label": 80, "original_test_label": 80, "_original_label": 80, "url_prob": 80, "cross_validated_predicted_prob": 80, "_pyx": 80, "num_part": 80, "datatset": 80, "bytesio": 80, "allow_pickl": 80, "pred_probs_part": 80, "url": 80, "_of_": 80, "nload": 80, "imdb": 80, "ve": [80, 81, 83, 85, 87], "interpret": [80, 81, 83, 86], "capit": 80, "29780": 80, "256": [80, 81, 87], "780": 80, "medic": [80, 94], "doctor": 80, "254": [80, 87], "359223": 80, "640777": 80, "184": [80, 83], "258427": 80, "341176": 80, "263158": 80, "658824": 80, "337349": 80, "246575": 80, "662651": 80, "248": 80, "330000": 80, "355769": 80, "670000": 80, "251": [80, 87], "167": [80, 83, 87], "252": 80, "112": 80, "253": [80, 87], "022989": 80, "255": [80, 82], "049505": 80, "190": [80, 83, 87], "66": [80, 91], "002216": 80, "000974": 80, "59": [80, 82, 87, 88, 91], "88": [80, 81, 82, 83, 86, 87, 90, 91], "000873": 80, "000739": 80, "79": [80, 87, 88, 91, 92], "32635": 80, "32636": 80, "47": [80, 82, 87, 91], "32637": 80, "32638": 80, "32639": 80, "32640": 80, "051": 80, "93": [80, 87, 90, 91, 92], "002242": 80, "997758": 80, "002088": 80, "001045": 80, "997912": 80, "002053": 80, "997947": 80, "001980": 80, "000991": 80, "998020": 80, "001946": 80, "002915": 80, "998054": 80, "001938": 80, "002904": 80, "998062": 80, "001020": 80, "998980": 80, "001018": 80, "002035": 80, "998982": 80, "999009": 80, "0003": 80, "0002": 80, "36": [80, 82, 91, 94], "41": [80, 82, 87, 90, 91], "44": [80, 86, 87, 91, 93], "71": [80, 83, 87, 90, 91], "071": 80, "067269": 80, "929": 80, "046": 80, "058243": 80, "954": [80, 94], "035": [80, 82], "032096": 80, "965": 80, "031": 80, "012232": 80, "969": 80, "022": 80, "025896": 80, "978": 80, "020": [80, 83], "013092": 80, "018": 80, "013065": 80, "016": 80, "030542": 80, "984": 80, "013": 80, "020833": 80, "987": 80, "012": 80, "010020": 80, "988": 80, "0073": 80, "0020": 80, "0016": 80, "0015": 80, "0013": 80, "0012": 80, "0010": 80, "0008": 80, "0007": 80, "0006": 80, "0005": 80, "0004": 80, "244": [80, 87, 94], "98": [80, 81, 88, 90, 91], "452381": 80, "459770": 80, "72": [80, 82, 83, 86, 90, 91], "523364": 80, "460784": 80, "446602": 80, "57": [80, 82, 83, 91], "68": [80, 82, 83, 87, 91, 92], "103774": 80, "030612": 80, "97": [80, 81, 83, 87, 90, 91, 92, 94], "110092": 80, "049020": 80, "99": [80, 83, 91, 92], "0034": 80, "0032": 80, "0026": 80, "0025": 80, "4945": 80, "4946": 80, "4947": 80, "4948": 80, "4949": 80, "4950": 80, "846": 80, "82": [80, 83, 87, 90, 91], "7532": 80, "532": 80, "034483": 80, "009646": 80, "965517": 80, "030457": 80, "020513": 80, "969543": 80, "028061": 80, "035443": 80, "971939": 80, "025316": 80, "005168": 80, "974684": 80, "049751": 80, "979487": 80, "019920": 80, "042802": 80, "980080": 80, "017677": 80, "005115": 80, "982323": 80, "012987": 80, "005236": 80, "987013": 80, "012723": 80, "025126": 80, "987277": 80, "010989": 80, "008264": 80, "989011": 80, "010283": 80, "027778": 80, "989717": 80, "009677": 80, "990323": 80, "007614": 80, "010127": 80, "992386": 80, "005051": 80, "994949": 80, "005025": 80, "994975": 80, "005013": 80, "994987": 80, "001859": 80, "001328": 80, "000929": 80, "000664": 80, "186": [80, 83], "188": [80, 83, 86], "189": [80, 83], "snippet": 81, "nlp": [81, 94], "mind": [81, 83], "number_of_class": 81, "total_number_of_data_point": 81, "drop": [81, 85, 90, 93], "feed": 81, "alphabet": 81, "labels_proper_format": 81, "your_classifi": 81, "issues_datafram": 81, "class_predicted_for_flagged_exampl": 81, "class_predicted_for_all_exampl": 81, "grant": 81, "datataset": 81, "fair": [81, 83], "game": 81, "speedup": [81, 88], "flexibl": 81, "tempfil": 81, "mkdtemp": 81, "sped": 81, "anywai": 81, "pred_probs_merg": 81, "merge_rare_class": 81, "count_threshold": 81, "class_mapping_orig2new": 81, "heath_summari": 81, "num_examples_per_class": 81, "rare_class": 81, "num_classes_merg": 81, "other_class": 81, "labels_merg": 81, "new_c": 81, "merged_prob": 81, "hstack": [81, 82, 83, 85], "new_class": 81, "original_class": 81, "num_check": 81, "ones_array_ref": 81, "isclos": 81, "though": [81, 83, 94], "successfulli": 81, "meaning": [81, 88], "virtuou": [81, 85], "cycl": [81, 85], "jointli": 81, "junk": 81, "clutter": 81, "unknown": 81, "caltech": 81, "combined_boolean_mask": 81, "mask1": 81, "mask2": 81, "gradientboostingclassifi": [81, 83], "true_error": [81, 83, 86], "101": [81, 87], "102": [81, 86, 87], "104": [81, 83, 87], "model_to_find_error": 81, "model_to_return": 81, "cl0": 81, "randomizedsearchcv": 81, "expens": 81, "param_distribut": 81, "learning_r": [81, 83], "max_depth": [81, 83], "magnitud": 81, "coeffici": [81, 90], "optin": 81, "environ": [81, 83], "rerun": [81, 83], "cell": [81, 83], "On": [81, 83, 87], "unabl": [81, 83], "render": [81, 83], "nbviewer": [81, 83], "nbsp": [81, 83], "cleanlearninginot": [81, 83], "fittedcleanlearn": [81, 83], "linearregressionlinearregress": 81, "n_init": 81, "fit_predict": 81, "continuous_column": 81, "categorical_column": 81, "data_df": 81, "feature_a": 81, "feature_b": 81, "unexpectedli": 81, "emphas": 81, "especi": [81, 82, 90, 92, 93], "crucial": 81, "merge_duplicate_set": 81, "merge_kei": 81, "construct_group_kei": 81, "merged_set": 81, "consolidate_set": 81, "tolist": [81, 86], "issubset": 81, "frozenset": 81, "sets_list": 81, "mutabl": 81, "new_set": 81, "current_set": 81, "intersecting_set": 81, "lowest_score_strategi": 81, "sub_df": 81, "idxmin": 81, "filter_near_dupl": 81, "strategy_fn": 81, "strategy_kwarg": 81, "duplicate_row": 81, "group_kei": 81, "to_keep_indic": 81, "groupbi": 81, "explod": 81, "to_remov": 81, "isin": [81, 88], "kept": 81, "near_duplicate_issu": [81, 82], "ids_to_remove_seri": 81, "tmp": 81, "ipykernel_6088": 81, "1995098996": 81, "deprecationwarn": 81, "dataframegroupbi": 81, "include_group": 81, "silenc": 81, "assist": 81, "streamlin": 81, "ux": 81, "agpl": 81, "compani": 81, "commerci": 81, "alter": 81, "email": 81, "discuss": 81, "anywher": 81, "profession": 81, "expert": 81, "60": [82, 83, 91], "excess": 82, "torchvis": [82, 88], "tensordataset": 82, "stratifiedkfold": [82, 86], "tqdm": 82, "fashion_mnist": 82, "num_row": 82, "60000": 82, "pil": 82, "transformed_dataset": 82, "with_format": 82, "unsqueez": 82, "cpu_count": 82, "torch_dataset": 82, "quick": [82, 86], "relu": 82, "batchnorm2d": 82, "maxpool2d": 82, "lazylinear": 82, "flatten": 82, "get_test_accuraci": 82, "testload": [82, 88], "energi": 82, "trainload": [82, 88], "n_epoch": 82, "patienc": 82, "criterion": 82, "crossentropyloss": 82, "adamw": 82, "best_test_accuraci": 82, "start_epoch": 82, "running_loss": 82, "best_epoch": 82, "end_epoch": 82, "3f": [82, 90], "acc": [82, 83], "time_taken": 82, "compute_embed": 82, "compute_pred_prob": 82, "train_batch_s": 82, "num_work": 82, "worker": [82, 94], "train_id_list": 82, "test_id_list": 82, "train_id": 82, "test_id": 82, "embeddings_model": 82, "ntrain": 82, "trainset": 82, "testset": 82, "pin_memori": 82, "fold_embed": 82, "fold_pred_prob": 82, "finish": 82, "482": 82, "720": 82, "393": 82, "195": 82, "stderr": [82, 88, 91], "sphinxverbatim": [82, 88, 91, 94], "39it": [82, 91], "50it": [82, 88, 91], "73it": [82, 91], "72it": [82, 88, 91], "38it": 82, "69it": [82, 88, 91], "11it": [82, 91], "60it": [82, 91], "19it": [82, 91], "79it": [82, 91], "06it": [82, 88, 91], "66it": [82, 88, 91], "55it": [82, 91], "493": 82, "060": 82, "153": [82, 87], "330": [82, 87], "505": 82, "956": 82, "09it": [82, 88, 91], "71it": [82, 91], "00it": [82, 88, 91], "81it": [82, 88, 91], "74it": [82, 88, 91], "08it": [82, 91], "35it": [82, 91], "07it": [82, 91], "05it": [82, 88], "32it": [82, 91], "52it": [82, 91], "476": 82, "340": 82, "328": [82, 87], "310": 82, "675": 82, "42it": [82, 91], "21it": [82, 91], "70it": [82, 88, 91], "57it": [82, 91], "62": [82, 83, 87, 88, 90, 91], "30it": [82, 91], "64it": [82, 88, 91], "86it": [82, 91], "53it": [82, 91], "27it": [82, 88, 91], "88it": [82, 91], "33it": [82, 91], "15it": [82, 91], "reorder": 82, "vision": 82, "grayscal": 82, "exce": 82, "max_preval": 82, "7714": 82, "3772": 82, "3585": 82, "166": 82, "3651": 82, "27080": 82, "873833e": 82, "40378": 82, "915575e": 82, "25316": 82, "390277e": 82, "06": [82, 83, 87, 91, 94], "2090": 82, "751164e": 82, "14999": 82, "881301e": 82, "9569": 82, "11262": 82, "000003": 82, "19228": 82, "000010": 82, "dress": 82, "32657": 82, "000013": 82, "21282": 82, "000016": 82, "53564": 82, "000018": 82, "pullov": 82, "6321": 82, "30968": 82, "001267": 82, "30659": 82, "000022": [82, 94], "47824": 82, "001454": 82, "3370": 82, "000026": 82, "54565": 82, "001854": 82, "9762": 82, "258": 82, "47139": 82, "000033": 82, "166980": 82, "986195": 82, "997205": 82, "948781": 82, "999358": 82, "54078": 82, "17371": 82, "000025": 82, "plot_label_issue_exampl": 82, "ncol": [82, 88], "nrow": [82, 88], "ceil": 82, "axes_list": 82, "label_issue_indic": 82, "gl": 82, "sl": 82, "fontdict": 82, "imshow": [82, 88], "cmap": [82, 90], "grai": 82, "subplots_adjust": 82, "hspace": 82, "outsiz": 82, "outlier_issues_df": 82, "depict": [82, 86, 87, 88, 89, 91], "plot_outlier_issues_exampl": 82, "n_comparison_imag": 82, "sample_from_class": 82, "number_of_sampl": 82, "non_outlier_indic": 82, "isnul": 82, "non_outlier_indices_excluding_curr": 82, "sampled_indic": 82, "label_scores_of_sampl": 82, "top_score_indic": 82, "top_label_indic": 82, "sampled_imag": 82, "get_image_given_label_and_sampl": 82, "image_from_dataset": 82, "corresponding_label": 82, "comparison_imag": 82, "images_to_plot": 82, "idlist": 82, "iterrow": 82, "closest": 82, "counterpart": 82, "near_duplicate_issues_df": 82, "plot_near_duplicate_issue_exampl": 82, "seen_id_pair": 82, "get_image_and_given_label_and_predicted_label": 82, "duplicate_imag": 82, "nd_set": 82, "challeng": 82, "dark_issu": 82, "reveal": [82, 87, 91], "dark_scor": 82, "dark_issues_df": 82, "is_dark_issu": 82, "34848": 82, "203922": 82, "50270": 82, "204588": 82, "3936": 82, "213098": 82, "733": 82, "217686": 82, "8094": 82, "230118": 82, "plot_image_issue_exampl": 82, "difficult": 82, "disproportion": 82, "lowinfo_issu": 82, "low_information_scor": 82, "lowinfo_issues_df": 82, "is_low_information_issu": 82, "53050": 82, "067975": 82, "40875": 82, "089929": 82, "9594": 82, "092601": 82, "34825": 82, "107744": 82, "37530": 82, "108516": 82, "lot": 82, "depth": 83, "survei": [83, 94], "focus": [83, 85, 86, 87], "scienc": 83, "multivariate_norm": [83, 85, 86], "make_data": [83, 85], "cov": [83, 85, 86], "avg_trac": [83, 86], "test_label": [83, 86, 88, 93], "py_tru": 83, "noise_matrix_tru": 83, "noise_marix": 83, "s_test": 83, "noisy_test_label": 83, "purpl": 83, "val": 83, "namespac": 83, "exec": 83, "markerfacecolor": [83, 86], "markeredgecolor": [83, 86, 90], "markers": [83, 86, 90], "markeredgewidth": [83, 86, 90], "realist": 83, "7560": 83, "637318e": 83, "896262e": 83, "548391e": 83, "923417e": 83, "375075e": 83, "3454": 83, "014051": 83, "020451": 83, "249": [83, 87], "042594": 83, "043859": 83, "045954": 83, "6120": 83, "023714": 83, "007136": 83, "119": [83, 87], "107266": 83, "103": [83, 87], "033738": 83, "238": [83, 87], "119505": 83, "236": [83, 87], "037843": 83, "222": 83, "614915": 83, "122": [83, 87], "624422": 83, "625965": 83, "626079": 83, "118": 83, "627675": 83, "695223": 83, "323529": 83, "523015": 83, "013720": 83, "675727": 83, "646521": 83, "anyth": 83, "enhanc": [83, 85, 87], "magic": 83, "83": [83, 87, 90, 91, 92, 94], "liter": 83, "identif": 83, "x27": 83, "logisticregressionlogisticregress": 83, "ever": 83, "092": 83, "040": 83, "024": 83, "004": 83, "surpris": 83, "1705": 83, "01936": 83, "ton": 83, "yourfavoritemodel1": 83, "merged_label": 83, "merged_test_label": 83, "newli": [83, 85], "yourfavoritemodel2": 83, "yourfavoritemodel3": 83, "cl3": 83, "takeawai": 83, "That": [83, 86], "randomli": 83, "my_test_pred_prob": 83, "my_test_pr": 83, "issues_test": 83, "corrected_test_label": 83, "pretend": 83, "cl_test_pr": 83, "69": [83, 90, 91], "fairli": 83, "label_acc": 83, "percentag": 83, "offset": 83, "nquestion": 83, "overestim": 83, "answer": 83, "experienc": 83, "76": [83, 86, 87, 88, 90, 91, 92], "knowledg": 83, "quantiti": [83, 90], "prioiri": 83, "known": 83, "versatil": 83, "label_issues_indic": 83, "213": [83, 87], "212": [83, 92], "218": [83, 87], "152": 83, "197": [83, 87], "196": [83, 87], "170": 83, "214": 83, "164": [83, 86], "198": [83, 87], "191": [83, 87], "63": [83, 87, 90, 91], "121": [83, 93], "117": [83, 90], "206": [83, 87], "115": [83, 87], "193": [83, 94], "194": 83, "201": [83, 87], "174": 83, "163": 83, "150": [83, 85, 87], "169": 83, "151": [83, 87], "168": 83, "precision_scor": 83, "recall_scor": 83, "f1_score": 83, "true_label_issu": 83, "filter_by_list": 83, "718750": [83, 85], "807018": 83, "912": 83, "733333": 83, "800000": 83, "721311": 83, "792793": 83, "908": 83, "676923": 83, "765217": 83, "892": 83, "567901": 83, "702290": 83, "844": 83, "gaug": 83, "label_issues_count": 83, "155": [83, 87], "156": 83, "172": [83, 86], "easiest": 83, "modular": 83, "penalti": 83, "l2": 83, "model3": 83, "n_estim": 83, "cv_pred_probs_1": 83, "cv_pred_probs_2": 83, "cv_pred_probs_3": 83, "label_quality_scores_best": 83, "cv_pred_probs_ensembl": 83, "label_quality_scores_bett": 83, "superior": [83, 89], "workflow": [84, 90], "speechbrain": 84, "timm": 84, "glad": 85, "multiannotator_label": 85, "300": [85, 94], "noisier": 85, "111": [85, 90], "local_data": [85, 86], "true_labels_train": [85, 86], "noise_matrix_bett": 85, "noise_matrix_wors": 85, "transpos": [85, 88], "dropna": 85, "zfill": 85, "row_na_check": 85, "notna": 85, "reset_index": 85, "a0001": 85, "a0002": 85, "a0003": 85, "a0004": 85, "a0005": 85, "a0006": 85, "a0007": 85, "a0008": 85, "a0009": 85, "a0010": 85, "a0041": 85, "a0042": 85, "a0043": 85, "a0044": 85, "a0045": 85, "a0046": 85, "a0047": 85, "a0048": 85, "a0049": 85, "a0050": 85, "na": 85, "60856743": 85, "41693214": 85, "40908785": 85, "87147629": 85, "64941785": 85, "10774851": 85, "0524466": 85, "71853246": 85, "37169848": 85, "66031048": 85, "multiannotator_util": 85, "crude": 85, "straight": 85, "majority_vote_label": 85, "736118": 85, "757751": 85, "782232": 85, "715565": 85, "824256": 85, "quality_annotator_a0001": 85, "quality_annotator_a0002": 85, "quality_annotator_a0003": 85, "quality_annotator_a0004": 85, "quality_annotator_a0005": 85, "quality_annotator_a0006": 85, "quality_annotator_a0007": 85, "quality_annotator_a0008": 85, "quality_annotator_a0009": 85, "quality_annotator_a0010": 85, "quality_annotator_a0041": 85, "quality_annotator_a0042": 85, "quality_annotator_a0043": 85, "quality_annotator_a0044": 85, "quality_annotator_a0045": 85, "quality_annotator_a0046": 85, "quality_annotator_a0047": 85, "quality_annotator_a0048": 85, "quality_annotator_a0049": 85, "quality_annotator_a0050": 85, "070564": 85, "216078": 85, "119188": 85, "alongisd": 85, "244981": 85, "208333": 85, "295979": 85, "294118": 85, "324197": 85, "310345": 85, "355316": 85, "346154": 85, "439732": 85, "480000": 85, "a0031": 85, "523205": 85, "580645": 85, "a0034": 85, "535313": 85, "607143": 85, "a0021": 85, "606999": 85, "a0015": 85, "609526": 85, "678571": 85, "a0011": 85, "621103": 85, "692308": 85, "wors": 85, "improved_consensus_label": 85, "majority_vote_accuraci": 85, "cleanlab_label_accuraci": 85, "8581081081081081": 85, "9797297297297297": 85, "besid": 85, "sorted_consensus_quality_scor": 85, "worst_qual": 85, "better_qu": 85, "worst_quality_accuraci": 85, "better_quality_accuraci": 85, "9893238434163701": 85, "improved_pred_prob": 85, "treat": [85, 86, 90, 94], "analzi": 85, "copyright": 86, "advertis": 86, "violenc": 86, "nsfw": 86, "suppli": [86, 87], "celeba": 86, "make_multilabel_data": 86, "boxes_coordin": 86, "box_multilabel": 86, "make_multi": 86, "bx1": 86, "by1": 86, "bx2": 86, "by2": 86, "label_list": 86, "ur": 86, "upper": 86, "inidx": 86, "logical_and": 86, "inv_d": 86, "labels_idx": 86, "true_labels_test": 86, "dict_unique_label": 86, "get_color_arrai": 86, "dcolor": 86, "aa4400": 86, "55227f": 86, "55a100": 86, "00ff00": 86, "007f7f": 86, "386b55": 86, "0000ff": 86, "simplic": 86, "advis": 86, "y_onehot": 86, "single_class_label": 86, "stratifi": [86, 89], "kf": 86, "train_index": 86, "test_index": 86, "clf_cv": 86, "x_train_cv": 86, "x_test_cv": 86, "y_train_cv": 86, "y_test_cv": 86, "y_pred_cv": 86, "saw": 86, "num_to_displai": 86, "09": [86, 87, 91], "275": 86, "267": 86, "225": 86, "171": 86, "234": 86, "165": [86, 94], "227": [86, 87], "262": [86, 87], "263": [86, 87], "266": [86, 87], "139": 86, "143": [86, 87, 94], "216": [86, 87, 94], "265": 86, "159": [86, 87], "despit": [86, 94], "suspect": 86, "888": 86, "8224": 86, "9632": 86, "968": 86, "6512": 86, "0444": 86, "774": 86, "labels_binary_format": 86, "labels_list_format": 86, "surround": 87, "scene": 87, "coco": 87, "everydai": 87, "has_label_issu": 87, "insal": 87, "nc": [87, 91, 94], "s3": [87, 91, 94], "amazonaw": [87, 91, 94], "objectdetectionbenchmark": 87, "tutorial_obj": 87, "pkl": 87, "example_imag": 87, "unzip": [87, 94], "_separate_label": 87, "_separate_predict": 87, "begin": 87, "image_path": 87, "rb": 87, "image_to_visu": 87, "seg_map": 87, "334": 87, "float32": 87, "bboxes_ignor": 87, "290": 87, "286": 87, "285": 87, "224": 87, "231": 87, "293": 87, "235": 87, "289": 87, "282": 87, "74": [87, 90, 91, 92], "281": 87, "271": 87, "280": 87, "277": 87, "279": 87, "287": 87, "299": 87, "276": 87, "307": 87, "321": 87, "326": 87, "333": 87, "261": 87, "319": 87, "257": 87, "295": 87, "283": 87, "243": [87, 94], "303": 87, "316": 87, "247": 87, "323": 87, "327": 87, "226": 87, "228": 87, "232": 87, "219": 87, "239": 87, "240": 87, "209": 87, "242": 87, "202": 87, "230": 87, "215": 87, "220": 87, "229": 87, "217": 87, "237": 87, "207": 87, "204": 87, "84": [87, 88, 90, 91], "205": 87, "223": 87, "149": 87, "140": 87, "124": 87, "268": 87, "273": 87, "108": 87, "284": 87, "110": 87, "136": 87, "145": [87, 94], "173": 87, "297": 87, "317": 87, "192": 87, "332": 87, "324": 87, "203": 87, "320": 87, "314": 87, "199": 87, "291": 87, "000000481413": 87, "jpg": 87, "42398": 87, "44503": 87, "337": [87, 93], "29968": 87, "336": 87, "21005": 87, "9978472": 87, "forgot": 87, "drew": 87, "label_issue_idx": 87, "num_examples_to_show": 87, "138": 87, "candid": 87, "97489622": 87, "70610878": 87, "98764951": 87, "88899237": 87, "99085805": 87, "issue_idx": 87, "95569726e": 87, "03354841e": 87, "57510169e": 87, "58447666e": 87, "39755858e": 87, "issue_to_visu": 87, "000000009483": 87, "95569726168054e": 87, "addition": [87, 91], "visibl": 87, "missmatch": 87, "likelei": 87, "agnost": 87, "vaidat": 87, "inconsist": 87, "000000395701": 87, "033548411774308e": 87, "armchair": 87, "tv": 87, "000000154004": 87, "38300759625496356": 87, "foreground": 87, "000000448410": 87, "0008575101690203273": 87, "crowd": 87, "alon": 87, "explor": [87, 88], "resembl": [87, 88], "000000499768": 87, "9748962231208227": 87, "000000521141": 87, "8889923658893665": 87, "000000143931": 87, "9876495074395956": 87, "uncov": 87, "irregular": 87, "aim": [87, 91, 94], "anomali": 87, "unusu": [87, 88], "object_detection_util": 87, "calculate_bounding_box_area": 87, "num_imgs_to_show": 87, "lab_object_count": 87, "pred_object_count": 87, "000000430073": 87, "000000183709": 87, "000000189475": 87, "studi": 87, "label_norm": 87, "pred_norm": 87, "area": [87, 91], "lab_area": 87, "pred_area": 87, "lab_area_mean": 87, "lab_area_std": 87, "max_deviation_valu": 87, "max_deviation_class": 87, "deviation_valu": 87, "deviation_class": 87, "mean_area": 87, "std_area": 87, "class_area": 87, "deviations_awai": 87, "max_deviation_index": 87, "num_imgs_to_show_per_class": 87, "class_num": 87, "sorted_indic": 87, "000000422886": 87, "000000341828": 87, "000000461009": 87, "train_feature_embed": 88, "ood_train_feature_scor": 88, "test_feature_embed": 88, "ood_test_feature_scor": 88, "ood_train_predictions_scor": 88, "train_pred_prob": 88, "ood_test_predictions_scor": 88, "test_pred_prob": 88, "pylab": 88, "rcparam": 88, "baggingclassifi": 88, "therebi": 88, "rescal": 88, "transform_norm": 88, "totensor": 88, "root": 88, "animal_class": 88, "non_animal_class": 88, "animal_idx": 88, "test_idx": 88, "toronto": 88, "edu": 88, "kriz": 88, "170498071": 88, "32768": 88, "253804": 88, "229376": 88, "993776": 88, "884736": 88, "2843619": 88, "98it": [88, 91], "3604480": 88, "9937863": 88, "9568256": 88, "22733434": 88, "15532032": 88, "33124010": 88, "85it": [88, 91], "19070976": 88, "33331594": 88, "97it": [88, 91], "25001984": 88, "38542476": 88, "29491200": 88, "40313666": 88, "10it": [88, 91], "34439168": 88, "42784554": 88, "31it": [88, 91], "38797312": 88, "42575855": 88, "01it": [88, 91], "43909120": 88, "44133340": 88, "46it": [88, 91], "48365568": 88, "44213290": 88, "62it": [88, 91], "53280768": 88, "45603815": 88, "57868288": 88, "44811305": 88, "61it": [88, 91], "62685184": 88, "45437448": 88, "67272704": 88, "45126177": 88, "72122368": 88, "46040805": 88, "76742656": 88, "45311156": 88, "87it": [88, 91], "81854464": 88, "46283694": 88, "59it": [88, 91], "86507520": 88, "45720127": 88, "96it": [88, 91], "91455488": 88, "46807783": 88, "76it": [88, 91], "96174080": 88, "45884858": 88, "100892672": 88, "45622214": 88, "20it": [88, 91], "105480192": 88, "45635391": 88, "110297088": 88, "45956041": 88, "49it": [88, 91], "114917376": 88, "45582206": 88, "119799808": 88, "46514478": 88, "124485632": 88, "45639548": 88, "48it": [88, 91], "129335296": 88, "46446998": 88, "37it": [88, 91], "133988352": 88, "45593760": 88, "138739712": 88, "46153655": 88, "26it": [88, 91], "143392768": 88, "45504976": 88, "148209664": 88, "46079464": 88, "34it": [88, 91], "152829952": 88, "45516536": 88, "157646848": 88, "46018066": 88, "162267136": 88, "45503104": 88, "22it": 88, "167280640": 88, "46441485": 88, "40it": [88, 91], "41107986": 88, "54it": [88, 91], "5000": 88, "plot_imag": 88, "visualize_outli": 88, "txt_class": 88, "img": [88, 90], "npimg": 88, "show_label": 88, "data_subset": 88, "resnet50": 88, "corpu": 88, "2048": 88, "embed_imag": 88, "create_model": 88, "strang": 88, "odd": 88, "train_ood_features_scor": 88, "top_train_ood_features_idx": 88, "fun": 88, "negat": 88, "homogen": 88, "bottom_train_ood_features_idx": 88, "test_ood_features_scor": 88, "top_ood_features_idx": 88, "inevit": 88, "trade": 88, "5th": 88, "percentil": 88, "fifth_percentil": 88, "plt_rang": 88, "hist": 88, "train_outlier_scor": 88, "ylabel": 88, "axvlin": 88, "test_outlier_scor": 88, "ood_features_indic": 88, "revisit": 88, "return_invers": 88, "train_feature_embeddings_sc": 88, "test_feature_embeddings_sc": 88, "train_pred_label": 88, "9702": 88, "train_ood_predictions_scor": 88, "test_ood_predictions_scor": 88, "mainli": [88, 94], "lost": 88, "unsuit": 89, "ok": [89, 94], "convention": 89, "aforement": 89, "hypothet": 89, "contrast": 89, "tradit": 89, "disjoint": 89, "out_of_sample_pred_probs_for_a": 89, "out_of_sample_pred_probs_for_b": 89, "out_of_sample_pred_probs_for_c": 89, "out_of_sample_pred_prob": 89, "price": 90, "incom": 90, "ag": 90, "histgradientboostingregressor": 90, "r2_score": 90, "student_grades_r": 90, "final_scor": 90, "true_final_scor": 90, "homework": 90, "3d": 90, "hue": 90, "mpl_toolkit": 90, "mplot3d": 90, "axes3d": 90, "errors_idx": 90, "add_subplot": 90, "z": 90, "colorbar": 90, "errors_mask": 90, "feature_column": 90, "predicted_column": 90, "x_train_raw": 90, "x_test_raw": 90, "categorical_featur": [90, 92], "randomforestregressor": 90, "636197": 90, "499503": 90, "843478": 90, "776647": 90, "350358": 90, "170547": 90, "706969": 90, "984759": 90, "812515": 90, "795928": 90, "identified_issu": [90, 93], "141": 90, "659": 90, "367": 90, "318": 90, "305": 90, "560": 90, "657": 90, "688": 90, "view_datapoint": 90, "concat": 90, "consum": [90, 93], "baseline_model": [90, 93], "preds_og": 90, "r2_og": 90, "838": 90, "robustli": [90, 92, 93], "acceler": [90, 93], "found_label_issu": 90, "preds_cl": 90, "r2_cl": 90, "926": 90, "effort": [90, 92, 93], "favorit": 90, "13091885": 90, "48412548": 90, "00695165": 90, "44421119": 90, "43029854": 90, "synthia": 91, "imagesegment": 91, "given_mask": 91, "predicted_mask": 91, "set_printopt": [91, 94], "sky": 91, "sidewalk": 91, "veget": 91, "terrain": 91, "rider": 91, "pred_probs_filepath": 91, "1088": 91, "1920": 91, "label_filepath": 91, "synthia_class": 91, "maunal": 91, "100000": 91, "244800": 91, "leftmost": 91, "middl": [91, 94], "infact": 91, "rightmost": 91, "discrep": 91, "4997817": 91, "15219": 91, "152175": 91, "63it": 91, "30515": 91, "152628": 91, "45778": 91, "152070": 91, "29it": 91, "60986": 91, "151671": 91, "76154": 91, "151334": 91, "04it": 91, "91408": 91, "151739": 91, "106583": 91, "151262": 91, "121799": 91, "151497": 91, "136950": 91, "151116": 91, "12it": 91, "152062": 91, "150719": 91, "47it": 91, "167152": 91, "150772": 91, "182311": 91, "151017": 91, "94it": 91, "197414": 91, "149004": 91, "91it": 91, "212321": 91, "148494": 91, "227688": 91, "150033": 91, "242927": 91, "150733": 91, "258207": 91, "151349": 91, "273519": 91, "151877": 91, "288818": 91, "152206": 91, "304086": 91, "152346": 91, "319322": 91, "152226": 91, "334625": 91, "152465": 91, "349873": 91, "152288": 91, "365103": 91, "149042": 91, "380408": 91, "150221": 91, "43it": 91, "395607": 91, "150742": 91, "410867": 91, "151292": 91, "426153": 91, "151755": 91, "441466": 91, "152163": 91, "456687": 91, "152154": 91, "472009": 91, "152471": 91, "487319": 91, "152657": 91, "18it": 91, "502587": 91, "152587": 91, "517878": 91, "152680": 91, "533228": 91, "152922": 91, "25it": 91, "548521": 91, "152579": 91, "563780": 91, "152366": 91, "579068": 91, "152516": 91, "68it": 91, "594320": 91, "152104": 91, "13it": 91, "609531": 91, "152101": 91, "624752": 91, "152131": 91, "639966": 91, "151079": 91, "655076": 91, "151049": 91, "89it": 91, "670183": 91, "143565": 91, "685377": 91, "145979": 91, "700538": 91, "147618": 91, "75it": 91, "715680": 91, "148734": 91, "730868": 91, "149661": 91, "746099": 91, "150444": 91, "761372": 91, "151122": 91, "776857": 91, "152232": 91, "792347": 91, "153026": 91, "807768": 91, "153377": 91, "03it": 91, "823303": 91, "153966": 91, "838868": 91, "154469": 91, "02it": 91, "854393": 91, "154699": 91, "869879": 91, "154744": 91, "14it": 91, "885355": 91, "154662": 91, "900823": 91, "154618": 91, "28it": 91, "916286": 91, "154561": 91, "931866": 91, "154930": 91, "84it": 91, "947360": 91, "154896": 91, "962850": 91, "154866": 91, "978337": 91, "154782": 91, "993816": 91, "154378": 91, "1009295": 91, "154498": 91, "77it": 91, "1024770": 91, "154570": 91, "1040292": 91, "154762": 91, "1055833": 91, "154953": 91, "1071368": 91, "155068": 91, "1086875": 91, "154910": 91, "1102367": 91, "154771": 91, "95it": 91, "1117845": 91, "154473": 91, "1133293": 91, "153830": 91, "1148677": 91, "152795": 91, "1164033": 91, "153020": 91, "1179445": 91, "153346": 91, "1194827": 91, "153485": 91, "1210177": 91, "153406": 91, "1225519": 91, "153329": 91, "1240853": 91, "152990": 91, "1256153": 91, "152916": 91, "1271445": 91, "152236": 91, "93it": 91, "1286713": 91, "152365": 91, "67it": 91, "1302067": 91, "152714": 91, "1317531": 91, "153287": 91, "1332993": 91, "153682": 91, "36it": 91, "1348485": 91, "154049": 91, "1363898": 91, "154071": 91, "65it": 91, "1379399": 91, "154351": 91, "1394835": 91, "154191": 91, "1410321": 91, "154389": 91, "90it": 91, "1425761": 91, "154373": 91, "1441199": 91, "154033": 91, "1456681": 91, "154241": 91, "1472106": 91, "149708": 91, "1487442": 91, "150778": 91, "1502934": 91, "151998": 91, "1518481": 91, "1533971": 91, "153580": 91, "1549477": 91, "154018": 91, "1564939": 91, "154195": 91, "1580364": 91, "153889": 91, "1595792": 91, "154004": 91, "1611227": 91, "154106": 91, "1626640": 91, "153914": 91, "83it": 91, "1642067": 91, "154017": 91, "1657470": 91, "153883": 91, "1672885": 91, "153960": 91, "1688410": 91, "154345": 91, "1703989": 91, "154777": 91, "1719468": 91, "154729": 91, "80it": 91, "1734942": 91, "154566": 91, "1750507": 91, "154890": 91, "1766005": 91, "154914": 91, "1781497": 91, "147546": 91, "1796958": 91, "149591": 91, "1812454": 91, "151160": 91, "1827877": 91, "152061": 91, "1843464": 91, "153189": 91, "44it": 91, "1858984": 91, "153786": 91, "1874464": 91, "154084": 91, "92it": 91, "1889886": 91, "154001": 91, "1905352": 91, "154197": 91, "1920784": 91, "154230": 91, "24it": 91, "1936212": 91, "148546": 91, "1951414": 91, "149557": 91, "1966912": 91, "151149": 91, "78it": 91, "1982262": 91, "151843": 91, "1997680": 91, "152533": 91, "2012949": 91, "152506": 91, "2028211": 91, "152396": 91, "45it": 91, "2043459": 91, "152411": 91, "2058765": 91, "152604": 91, "2074030": 91, "152499": 91, "2089285": 91, "152513": 91, "2104539": 91, "151666": 91, "2119708": 91, "151082": 91, "2134819": 91, "150954": 91, "2149966": 91, "151105": 91, "2165078": 91, "150864": 91, "2180212": 91, "151004": 91, "51it": 91, "2195377": 91, "151195": 91, "99it": 91, "2210676": 91, "151731": 91, "2225850": 91, "151531": 91, "2241004": 91, "151333": 91, "2256138": 91, "150729": 91, "2271212": 91, "150197": 91, "2286233": 91, "150187": 91, "2301330": 91, "150418": 91, "2316399": 91, "150498": 91, "2331548": 91, "150793": 91, "2346781": 91, "151253": 91, "2362004": 91, "151542": 91, "2377162": 91, "151551": 91, "2392436": 91, "151906": 91, "2407643": 91, "151953": 91, "2423011": 91, "152469": 91, "2438258": 91, "152457": 91, "2453589": 91, "152711": 91, "2468861": 91, "152406": 91, "2484102": 91, "152383": 91, "2499341": 91, "152361": 91, "2514736": 91, "152835": 91, "2530062": 91, "152961": 91, "2545402": 91, "153090": 91, "2560712": 91, "152472": 91, "2576006": 91, "152608": 91, "2591361": 91, "152887": 91, "2606651": 91, "152751": 91, "2621927": 91, "152635": 91, "2637191": 91, "152547": 91, "2652472": 91, "152623": 91, "2667735": 91, "152574": 91, "2682993": 91, "152551": 91, "2698249": 91, "152430": 91, "2713493": 91, "152302": 91, "2728724": 91, "151063": 91, "2743939": 91, "151383": 91, "2759158": 91, "151621": 91, "2774348": 91, "151702": 91, "2789597": 91, "151936": 91, "2804823": 91, "152032": 91, "2820027": 91, "152028": 91, "2835231": 91, "151863": 91, "2850481": 91, "152051": 91, "2865687": 91, "152021": 91, "2880890": 91, "151948": 91, "23it": 91, "2896119": 91, "152047": 91, "2911324": 91, "151894": 91, "2926514": 91, "151707": 91, "2941685": 91, "151331": 91, "2956862": 91, "151461": 91, "2972034": 91, "151534": 91, "2987200": 91, "151569": 91, "3002482": 91, "151940": 91, "3017677": 91, "151819": 91, "3032885": 91, "3048113": 91, "152008": 91, "3063393": 91, "152242": 91, "3078624": 91, "152259": 91, "82it": 91, "3093999": 91, "152703": 91, "3109270": 91, "152597": 91, "3124545": 91, "152640": 91, "3139820": 91, "152672": 91, "3155088": 91, "152185": 91, "3170307": 91, "152112": 91, "3185530": 91, "152144": 91, "3200769": 91, "152215": 91, "3215991": 91, "3231212": 91, "152132": 91, "3246456": 91, "152222": 91, "3261753": 91, "152443": 91, "3277013": 91, "152488": 91, "3292262": 91, "152111": 91, "3307474": 91, "151890": 91, "3322664": 91, "151792": 91, "3338019": 91, "152314": 91, "3353323": 91, "152529": 91, "3368577": 91, "152460": 91, "16it": 91, "3383824": 91, "152309": 91, "3399056": 91, "151943": 91, "3414251": 91, "151765": 91, "3429493": 91, "151958": 91, "3444690": 91, "151836": 91, "3459874": 91, "151774": 91, "3475111": 91, "151949": 91, "3490307": 91, "151945": 91, "3505502": 91, "149425": 91, "3520675": 91, "150104": 91, "3536035": 91, "151141": 91, "3551305": 91, "151603": 91, "3566631": 91, "152096": 91, "3582057": 91, "152739": 91, "3597451": 91, "153097": 91, "3612812": 91, "153248": 91, "3628145": 91, "153269": 91, "3643473": 91, "153075": 91, "3658782": 91, "152987": 91, "3674219": 91, "153400": 91, "3689609": 91, "153548": 91, "3704965": 91, "153215": 91, "3720330": 91, "153308": 91, "3735745": 91, "153557": 91, "3751101": 91, "153486": 91, "3766504": 91, "153647": 91, "3781869": 91, "153439": 91, "3797284": 91, "153648": 91, "41it": 91, "3812649": 91, "153206": 91, "3828069": 91, "153502": 91, "3843420": 91, "153333": 91, "3858826": 91, "153549": 91, "3874182": 91, "153524": 91, "3889575": 91, "153644": 91, "3904940": 91, "153484": 91, "3920289": 91, "153285": 91, "3935618": 91, "153225": 91, "3951084": 91, "153653": 91, "3966477": 91, "153733": 91, "3981879": 91, "153815": 91, "3997261": 91, "153450": 91, "4012607": 91, "153340": 91, "4027942": 91, "153204": 91, "17it": 91, "4043263": 91, "153101": 91, "4058574": 91, "152649": 91, "4073840": 91, "152492": 91, "4089090": 91, "152227": 91, "4104313": 91, "150900": 91, "4119406": 91, "150874": 91, "4134496": 91, "150440": 91, "4149652": 91, "4164918": 91, "4180089": 91, "151445": 91, "4195260": 91, "151520": 91, "4210505": 91, "151795": 91, "4225702": 91, "151845": 91, "4240887": 91, "151794": 91, "4256251": 91, "152343": 91, "4271644": 91, "152816": 91, "4286926": 91, "151759": 91, "4302104": 91, "151725": 91, "4317364": 91, "151983": 91, "4332692": 91, "152369": 91, "4347991": 91, "152552": 91, "4363327": 91, "152790": 91, "4378607": 91, "148458": 91, "4393480": 91, "142262": 91, "4408792": 91, "145373": 91, "58it": 91, "4424149": 91, "147753": 91, "4439438": 91, "149259": 91, "4454678": 91, "150183": 91, "4469725": 91, "143754": 91, "4484985": 91, "146305": 91, "4500321": 91, "148363": 91, "4515705": 91, "149972": 91, "4530858": 91, "150429": 91, "4546128": 91, "151102": 91, "4561495": 91, "151865": 91, "4576696": 91, "151896": 91, "4591896": 91, "151748": 91, "4607105": 91, "151849": 91, "4622426": 91, "152253": 91, "4637655": 91, "4652942": 91, "152435": 91, "4668228": 91, "152559": 91, "4683506": 91, "152624": 91, "4698770": 91, "152408": 91, "4714012": 91, "4729244": 91, "4744470": 91, "148906": 91, "4759678": 91, "149840": 91, "4774923": 91, "150611": 91, "4790208": 91, "151275": 91, "4805406": 91, "151482": 91, "4820694": 91, "4836084": 91, "4851423": 91, "152757": 91, "4866834": 91, "153161": 91, "56it": 91, "4882152": 91, "153112": 91, "4897502": 91, "153224": 91, "4912826": 91, "151174": 91, "4928122": 91, "151703": 91, "4943431": 91, "152115": 91, "4958721": 91, "152348": 91, "4973960": 91, "152357": 91, "4989221": 91, "152431": 91, "152152": 91, "3263230": 91, "783379": 91, "275110": 91, "255792": 91, "78225": 91, "55990": 91, "54427": 91, "33591": 91, "24645": 91, "21308": 91, "15045": 91, "14171": 91, "13832": 91, "13498": 91, "11490": 91, "9164": 91, "8769": 91, "6999": 91, "6031": 91, "5011": 91, "mistakenli": 91, "class_issu": 91, "domin": 91, "extratreesclassifi": 92, "extratre": 92, "ranked_label_issu": [92, 93], "labelencod": [92, 93], "labels_raw": 92, "interg": [92, 93], "tress": 92, "827": 92, "cheat": 92, "0pt": 92, "233": 92, "labels_train": 92, "labels_test": 92, "acc_og": [92, 93], "783068783068783": 92, "acc_cl": [92, 93], "8095238095238095": 92, "earlier": [93, 94], "raw_label": 93, "raw_train_text": 93, "raw_test_text": 93, "raw_train_label": 93, "raw_test_label": 93, "encond": 93, "train_text": 93, "test_text": 93, "858371": 93, "547274": 93, "826228": 93, "966008": 93, "792449": 93, "646": 93, "390": 93, "628": 93, "702": 93, "135": 93, "735": 93, "print_as_df": 93, "inverse_transform": 93, "fight": 93, "bunch": 94, "conll": 94, "2003": 94, "love": 94, "n_i": 94, "optional_list_of_ordered_class_nam": 94, "deepai": 94, "conll2003": 94, "rm": 94, "tokenclassif": 94, "2024": 94, "2400": 94, "52e0": 94, "1a01": 94, "connect": 94, "443": 94, "await": 94, "982975": 94, "960k": 94, "kb": 94, "959": 94, "94k": 94, "92mb": 94, "mb": 94, "directori": 94, "inflat": 94, "17045998": 94, "16m": 94, "octet": 94, "53k": 94, "925kb": 94, "38m": 94, "07mb": 94, "89m": 94, "7mb": 94, "26m": 94, "5mb": 94, "bert": 94, "read_npz": 94, "filepath": 94, "corrsespond": 94, "iob2": 94, "given_ent": 94, "entity_map": 94, "readfil": 94, "sep": 94, "startswith": 94, "docstart": 94, "isalpha": 94, "isupp": 94, "indices_to_preview": 94, "nsentenc": 94, "eu": 94, "reject": 94, "boycott": 94, "british": 94, "lamb": 94, "00030412": 94, "00023826": 94, "99936208": 94, "00007009": 94, "00002545": 94, "99998795": 94, "00000401": 94, "00000218": 94, "00000455": 94, "00000131": 94, "00000749": 94, "99996115": 94, "00001371": 94, "0000087": 94, "00000895": 94, "99998936": 94, "00000382": 94, "00000178": 94, "00000366": 94, "00000137": 94, "99999101": 94, "00000266": 94, "00000174": 94, "0000035": 94, "00000109": 94, "99998768": 94, "00000482": 94, "00000202": 94, "00000438": 94, "0000011": 94, "00000465": 94, "99996392": 94, "00001105": 94, "0000116": 94, "00000878": 94, "99998671": 94, "00000364": 94, "00000213": 94, "00000472": 94, "00000281": 94, "99999073": 94, "00000211": 94, "00000159": 94, "00000442": 94, "00000115": 94, "peter": 94, "blackburn": 94, "00000358": 94, "00000529": 94, "99995623": 94, "0000129": 94, "0000024": 94, "00001812": 94, "99994141": 94, "00001645": 94, "00002162": 94, "brussel": 94, "1996": 94, "00001172": 94, "00000821": 94, "00004661": 94, "0000618": 94, "99987167": 94, "99999061": 94, "00000201": 94, "00000195": 94, "00000408": 94, "00000135": 94, "2254": 94, "2907": 94, "19392": 94, "9962": 94, "8904": 94, "19303": 94, "12918": 94, "9256": 94, "11855": 94, "18392": 94, "20426": 94, "19402": 94, "14744": 94, "19371": 94, "4645": 94, "10331": 94, "9430": 94, "6143": 94, "18367": 94, "12914": 94, "todai": 94, "weather": 94, "march": 94, "scalfaro": 94, "northern": 94, "himself": 94, "said": 94, "germani": 94, "nastja": 94, "rysich": 94, "north": 94, "spla": 94, "fought": 94, "khartoum": 94, "govern": 94, "south": 94, "1983": 94, "autonomi": 94, "animist": 94, "region": 94, "moslem": 94, "arabis": 94, "mayor": 94, "antonio": 94, "gonzalez": 94, "garcia": 94, "revolutionari": 94, "parti": 94, "wednesdai": 94, "troop": 94, "raid": 94, "farm": 94, "stole": 94, "rape": 94, "women": 94, "spring": 94, "chg": 94, "hrw": 94, "12pct": 94, "princ": 94, "photo": 94, "moment": 94, "spokeswoman": 94, "rainier": 94, "told": 94, "reuter": 94, "danila": 94, "carib": 94, "w224": 94, "equip": 94, "radiomet": 94, "earn": 94, "19996": 94, "london": 94, "denom": 94, "sale": 94, "uk": 94, "jp": 94, "fr": 94, "maccabi": 94, "hapoel": 94, "haifa": 94, "tel": 94, "aviv": 94, "hospit": 94, "rever": 94, "roman": 94, "cathol": 94, "nun": 94, "admit": 94, "calcutta": 94, "week": 94, "ago": 94, "fever": 94, "vomit": 94, "allianc": 94, "embattl": 94, "kabul": 94, "salang": 94, "highwai": 94, "mondai": 94, "tuesdai": 94, "suprem": 94, "council": 94, "led": 94, "jumbish": 94, "milli": 94, "movement": 94, "warlord": 94, "abdul": 94, "rashid": 94, "dostum": 94, "dollar": 94, "exchang": 94, "3570": 94, "12049": 94, "born": 94, "1937": 94, "provinc": 94, "anhui": 94, "dai": 94, "came": 94, "shanghai": 94, "citi": 94, "prolif": 94, "author": 94, "teacher": 94, "chines": 94, "16764": 94, "1990": 94, "historian": 94, "alan": 94, "john": 94, "percival": 94, "taylor": 94, "di": 94, "20446": 94, "pace": 94, "bowler": 94, "ian": 94, "harvei": 94, "claim": 94, "victoria": 94, "15514": 94, "cotti": 94, "osc": 94, "foreign": 94, "minist": 94, "7525": 94, "sultan": 94, "specter": 94, "met": 94, "crown": 94, "abdullah": 94, "defenc": 94, "aviat": 94, "jeddah": 94, "saudi": 94, "agenc": 94, "2288": 94, "hi": 94, "customari": 94, "outfit": 94, "champion": 94, "damp": 94, "scalp": 94, "canada": 94, "reign": 94, "olymp": 94, "donovan": 94, "bailei": 94, "1992": 94, "linford": 94, "christi": 94, "britain": 94, "1984": 94, "1988": 94, "carl": 94, "lewi": 94, "ambigi": 94, "punctuat": 94, "chicago": 94, "digest": 94, "philadelphia": 94, "usda": 94, "york": 94, "token_issu": 94, "471": 94, "kean": 94, "year": 94, "contract": 94, "manchest": 94, "19072": 94, "societi": 94, "million": 94, "bite": 94, "deliv": 94, "19910": 94, "father": 94, "clarenc": 94, "woolmer": 94, "renam": 94, "uttar": 94, "pradesh": 94, "india": 94, "ranji": 94, "trophi": 94, "nation": 94, "championship": 94, "captain": 94, "1949": 94, "15658": 94, "19879": 94, "iii": 94, "brian": 94, "shimer": 94, "randi": 94, "jone": 94, "19104": 94}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [30, 0, 0, "-", "dataset"], [33, 0, 0, "-", "experimental"], [36, 0, 0, "-", "filter"], [37, 0, 0, "-", "internal"], [48, 0, 0, "-", "models"], [50, 0, 0, "-", "multiannotator"], [53, 0, 0, "-", "multilabel_classification"], [56, 0, 0, "-", "object_detection"], [59, 0, 0, "-", "outlier"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "regression"], [65, 0, 0, "-", "segmentation"], [69, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.dataset": [[30, 1, 1, "", "find_overlapping_classes"], [30, 1, 1, "", "health_summary"], [30, 1, 1, "", "overall_label_health_score"], [30, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[31, 0, 0, "-", "cifar_cnn"], [32, 0, 0, "-", "coteaching"], [34, 0, 0, "-", "label_issues_batched"], [35, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[31, 2, 1, "", "CNN"], [31, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[31, 6, 1, "", "T_destination"], [31, 3, 1, "", "__call__"], [31, 3, 1, "", "add_module"], [31, 3, 1, "", "apply"], [31, 3, 1, "", "bfloat16"], [31, 3, 1, "", "buffers"], [31, 6, 1, "", "call_super_init"], [31, 3, 1, "", "children"], [31, 3, 1, "", "compile"], [31, 3, 1, "", "cpu"], [31, 3, 1, "", "cuda"], [31, 3, 1, "", "double"], [31, 6, 1, "", "dump_patches"], [31, 3, 1, "", "eval"], [31, 3, 1, "", "extra_repr"], [31, 3, 1, "", "float"], [31, 3, 1, "id0", "forward"], [31, 3, 1, "", "get_buffer"], [31, 3, 1, "", "get_extra_state"], [31, 3, 1, "", "get_parameter"], [31, 3, 1, "", "get_submodule"], [31, 3, 1, "", "half"], [31, 3, 1, "", "ipu"], [31, 3, 1, "", "load_state_dict"], [31, 3, 1, "", "modules"], [31, 3, 1, "", "named_buffers"], [31, 3, 1, "", "named_children"], [31, 3, 1, "", "named_modules"], [31, 3, 1, "", "named_parameters"], [31, 3, 1, "", "parameters"], [31, 3, 1, "", "register_backward_hook"], [31, 3, 1, "", "register_buffer"], [31, 3, 1, "", "register_forward_hook"], [31, 3, 1, "", "register_forward_pre_hook"], [31, 3, 1, "", "register_full_backward_hook"], [31, 3, 1, "", "register_full_backward_pre_hook"], [31, 3, 1, "", "register_load_state_dict_post_hook"], [31, 3, 1, "", "register_module"], [31, 3, 1, "", "register_parameter"], [31, 3, 1, "", "register_state_dict_pre_hook"], [31, 3, 1, "", "requires_grad_"], [31, 3, 1, "", "set_extra_state"], [31, 3, 1, "", "share_memory"], [31, 3, 1, "", "state_dict"], [31, 3, 1, "", "to"], [31, 3, 1, "", "to_empty"], [31, 3, 1, "", "train"], [31, 6, 1, "", "training"], [31, 3, 1, "", "type"], [31, 3, 1, "", "xpu"], [31, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[32, 1, 1, "", "adjust_learning_rate"], [32, 1, 1, "", "evaluate"], [32, 1, 1, "", "forget_rate_scheduler"], [32, 1, 1, "", "initialize_lr_scheduler"], [32, 1, 1, "", "loss_coteaching"], [32, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[34, 2, 1, "", "LabelInspector"], [34, 7, 1, "", "adj_confident_thresholds_shared"], [34, 1, 1, "", "find_label_issues_batched"], [34, 7, 1, "", "labels_shared"], [34, 7, 1, "", "pred_probs_shared"], [34, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[34, 3, 1, "", "get_confident_thresholds"], [34, 3, 1, "", "get_label_issues"], [34, 3, 1, "", "get_num_issues"], [34, 3, 1, "", "get_quality_scores"], [34, 3, 1, "", "score_label_quality"], [34, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[35, 2, 1, "", "CNN"], [35, 2, 1, "", "SimpleNet"], [35, 1, 1, "", "get_mnist_dataset"], [35, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[35, 3, 1, "", "__init_subclass__"], [35, 6, 1, "", "batch_size"], [35, 6, 1, "", "dataset"], [35, 6, 1, "", "epochs"], [35, 3, 1, "id0", "fit"], [35, 3, 1, "", "get_metadata_routing"], [35, 3, 1, "", "get_params"], [35, 6, 1, "", "loader"], [35, 6, 1, "", "log_interval"], [35, 6, 1, "", "lr"], [35, 6, 1, "", "momentum"], [35, 6, 1, "", "no_cuda"], [35, 3, 1, "id1", "predict"], [35, 3, 1, "id4", "predict_proba"], [35, 6, 1, "", "seed"], [35, 3, 1, "", "set_fit_request"], [35, 3, 1, "", "set_params"], [35, 3, 1, "", "set_predict_proba_request"], [35, 3, 1, "", "set_predict_request"], [35, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[35, 6, 1, "", "T_destination"], [35, 3, 1, "", "__call__"], [35, 3, 1, "", "add_module"], [35, 3, 1, "", "apply"], [35, 3, 1, "", "bfloat16"], [35, 3, 1, "", "buffers"], [35, 6, 1, "", "call_super_init"], [35, 3, 1, "", "children"], [35, 3, 1, "", "compile"], [35, 3, 1, "", "cpu"], [35, 3, 1, "", "cuda"], [35, 3, 1, "", "double"], [35, 6, 1, "", "dump_patches"], [35, 3, 1, "", "eval"], [35, 3, 1, "", "extra_repr"], [35, 3, 1, "", "float"], [35, 3, 1, "", "forward"], [35, 3, 1, "", "get_buffer"], [35, 3, 1, "", "get_extra_state"], [35, 3, 1, "", "get_parameter"], [35, 3, 1, "", "get_submodule"], [35, 3, 1, "", "half"], [35, 3, 1, "", "ipu"], [35, 3, 1, "", "load_state_dict"], [35, 3, 1, "", "modules"], [35, 3, 1, "", "named_buffers"], [35, 3, 1, "", "named_children"], [35, 3, 1, "", "named_modules"], [35, 3, 1, "", "named_parameters"], [35, 3, 1, "", "parameters"], [35, 3, 1, "", "register_backward_hook"], [35, 3, 1, "", "register_buffer"], [35, 3, 1, "", "register_forward_hook"], [35, 3, 1, "", "register_forward_pre_hook"], [35, 3, 1, "", "register_full_backward_hook"], [35, 3, 1, "", "register_full_backward_pre_hook"], [35, 3, 1, "", "register_load_state_dict_post_hook"], [35, 3, 1, "", "register_module"], [35, 3, 1, "", "register_parameter"], [35, 3, 1, "", "register_state_dict_pre_hook"], [35, 3, 1, "", "requires_grad_"], [35, 3, 1, "", "set_extra_state"], [35, 3, 1, "", "share_memory"], [35, 3, 1, "", "state_dict"], [35, 3, 1, "", "to"], [35, 3, 1, "", "to_empty"], [35, 3, 1, "", "train"], [35, 6, 1, "", "training"], [35, 3, 1, "", "type"], [35, 3, 1, "", "xpu"], [35, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[36, 1, 1, "", "find_label_issues"], [36, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [36, 1, 1, "", "find_predicted_neq_given"], [36, 7, 1, "", "pred_probs_by_class"], [36, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[38, 0, 0, "-", "label_quality_utils"], [39, 0, 0, "-", "latent_algebra"], [40, 0, 0, "-", "multiannotator_utils"], [41, 0, 0, "-", "multilabel_scorer"], [42, 0, 0, "-", "multilabel_utils"], [43, 0, 0, "-", "outlier"], [44, 0, 0, "-", "token_classification_utils"], [45, 0, 0, "-", "util"], [46, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[38, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, 1, 1, "", "compute_inv_noise_matrix"], [39, 1, 1, "", "compute_noise_matrix_from_inverse"], [39, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [39, 1, 1, "", "compute_py"], [39, 1, 1, "", "compute_py_inv_noise_matrix"], [39, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[40, 1, 1, "", "assert_valid_inputs_multiannotator"], [40, 1, 1, "", "assert_valid_pred_probs"], [40, 1, 1, "", "check_consensus_label_classes"], [40, 1, 1, "", "compute_soft_cross_entropy"], [40, 1, 1, "", "find_best_temp_scaler"], [40, 1, 1, "", "format_multiannotator_labels"], [40, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[41, 2, 1, "", "Aggregator"], [41, 2, 1, "", "ClassLabelScorer"], [41, 2, 1, "", "MultilabelScorer"], [41, 1, 1, "", "exponential_moving_average"], [41, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [41, 1, 1, "", "get_label_quality_scores"], [41, 1, 1, "", "multilabel_py"], [41, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[41, 3, 1, "", "__call__"], [41, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[41, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [41, 6, 1, "", "NORMALIZED_MARGIN"], [41, 6, 1, "", "SELF_CONFIDENCE"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "__contains__"], [41, 3, 1, "", "__getitem__"], [41, 3, 1, "", "__iter__"], [41, 3, 1, "", "__len__"], [41, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[41, 3, 1, "", "__call__"], [41, 3, 1, "", "aggregate"], [41, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[42, 1, 1, "", "get_onehot_num_classes"], [42, 1, 1, "", "int2onehot"], [42, 1, 1, "", "onehot2int"], [42, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[43, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, 1, 1, "", "color_sentence"], [44, 1, 1, "", "filter_sentence"], [44, 1, 1, "", "get_sentence"], [44, 1, 1, "", "mapping"], [44, 1, 1, "", "merge_probs"], [44, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[45, 1, 1, "", "append_extra_datapoint"], [45, 1, 1, "", "clip_noise_rates"], [45, 1, 1, "", "clip_values"], [45, 1, 1, "", "compress_int_array"], [45, 1, 1, "", "confusion_matrix"], [45, 1, 1, "", "csr_vstack"], [45, 1, 1, "", "estimate_pu_f1"], [45, 1, 1, "", "extract_indices_tf"], [45, 1, 1, "", "force_two_dimensions"], [45, 1, 1, "", "format_labels"], [45, 1, 1, "", "get_missing_classes"], [45, 1, 1, "", "get_num_classes"], [45, 1, 1, "", "get_unique_classes"], [45, 1, 1, "", "is_tensorflow_dataset"], [45, 1, 1, "", "is_torch_dataset"], [45, 1, 1, "", "num_unique_classes"], [45, 1, 1, "", "print_inverse_noise_matrix"], [45, 1, 1, "", "print_joint_matrix"], [45, 1, 1, "", "print_noise_matrix"], [45, 1, 1, "", "print_square_matrix"], [45, 1, 1, "", "remove_noise_from_class"], [45, 1, 1, "", "round_preserving_row_totals"], [45, 1, 1, "", "round_preserving_sum"], [45, 1, 1, "", "smart_display_dataframe"], [45, 1, 1, "", "subset_X_y"], [45, 1, 1, "", "subset_data"], [45, 1, 1, "", "subset_labels"], [45, 1, 1, "", "train_val_split"], [45, 1, 1, "", "unshuffle_tensorflow_dataset"], [45, 1, 1, "", "value_counts"], [45, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[46, 1, 1, "", "assert_indexing_works"], [46, 1, 1, "", "assert_nonempty_input"], [46, 1, 1, "", "assert_valid_class_labels"], [46, 1, 1, "", "assert_valid_inputs"], [46, 1, 1, "", "labels_to_array"], [46, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[49, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[49, 2, 1, "", "KerasWrapperModel"], [49, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[50, 1, 1, "", "convert_long_to_wide_dataset"], [50, 1, 1, "", "get_active_learning_scores"], [50, 1, 1, "", "get_active_learning_scores_ensemble"], [50, 1, 1, "", "get_label_quality_multiannotator"], [50, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [50, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[51, 0, 0, "-", "dataset"], [52, 0, 0, "-", "filter"], [54, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[51, 1, 1, "", "common_multilabel_issues"], [51, 1, 1, "", "multilabel_health_summary"], [51, 1, 1, "", "overall_multilabel_health_score"], [51, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, 1, 1, "", "find_label_issues"], [52, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[54, 1, 1, "", "get_label_quality_scores"], [54, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"], [58, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[55, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[57, 1, 1, "", "compute_badloc_box_scores"], [57, 1, 1, "", "compute_overlooked_box_scores"], [57, 1, 1, "", "compute_swap_box_scores"], [57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "issues_from_scores"], [57, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[58, 1, 1, "", "bounding_box_size_distribution"], [58, 1, 1, "", "calculate_per_class_metrics"], [58, 1, 1, "", "class_label_distribution"], [58, 1, 1, "", "get_average_per_class_confusion_matrix"], [58, 1, 1, "", "get_sorted_bbox_count_idxs"], [58, 1, 1, "", "object_counts_per_image"], [58, 1, 1, "", "plot_class_distribution"], [58, 1, 1, "", "plot_class_size_distributions"], [58, 1, 1, "", "visualize"]], "cleanlab.outlier": [[59, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[59, 3, 1, "", "fit"], [59, 3, 1, "", "fit_score"], [59, 3, 1, "", "score"]], "cleanlab.rank": [[60, 1, 1, "", "find_top_issues"], [60, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [60, 1, 1, "", "get_label_quality_ensemble_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "get_normalized_margin_for_each_label"], [60, 1, 1, "", "get_self_confidence_for_each_label"], [60, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[62, 0, 0, "-", "learn"], [63, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[62, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[62, 3, 1, "", "__init_subclass__"], [62, 3, 1, "", "find_label_issues"], [62, 3, 1, "", "fit"], [62, 3, 1, "", "get_aleatoric_uncertainty"], [62, 3, 1, "", "get_epistemic_uncertainty"], [62, 3, 1, "", "get_label_issues"], [62, 3, 1, "", "get_metadata_routing"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "save_space"], [62, 3, 1, "", "score"], [62, 3, 1, "", "set_fit_request"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[63, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"], [67, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[64, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[67, 1, 1, "", "common_label_issues"], [67, 1, 1, "", "display_issues"], [67, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[71, 1, 1, "", "common_label_issues"], [71, 1, 1, "", "display_issues"], [71, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 74, 78, 79, 81, 82, 83, 86, 92, 93, 94], "count": [3, 83], "datalab": [4, 5, 7, 8, 9, 75, 76, 77, 78, 79, 83], "creat": [5, 75, 76, 83, 85], "your": [5, 72, 75, 76, 79, 81, 83], "own": 5, "issu": [5, 7, 8, 19, 26, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 75], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 75], "us": [5, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "gener": 6, "cluster": [6, 81], "id": 6, "guid": [7, 9], "type": [7, 8, 83], "custom": [7, 75], "can": [8, 76, 80, 81, 83, 85], "detect": [8, 76, 78, 79, 81, 83, 87, 88], "estim": [8, 83, 85], "each": 8, "label": [8, 21, 26, 72, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "outlier": [8, 24, 43, 59, 78, 79, 82, 88], "Near": [8, 76, 78, 79, 82], "duplic": [8, 17, 76, 78, 79, 81, 82], "non": [8, 79], "iid": [8, 79], "class": [8, 73, 83, 91], "imbal": [8, 18], "imag": [8, 82, 88], "specif": [8, 19, 91], "underperform": [8, 81], "group": [8, 81], "null": [8, 23], "data": [8, 10, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87, 88, 90, 91, 92, 94], "valuat": 8, "option": 8, "paramet": [8, 83], "get": [9, 75, 76, 85, 86, 87, 91, 94], "start": [9, 80], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 37], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 81, 83], "task": 19, "noniid": 22, "regress": [25, 61, 62, 63, 81, 90], "prioriti": 26, "order": 26, "find": [26, 72, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "underperforming_group": 27, "report": [28, 82], "dataset": [30, 51, 72, 76, 79, 80, 81, 82, 83, 86, 87, 88, 90, 91, 93, 94], "cifar_cnn": 31, "coteach": 32, "experiment": 33, "label_issues_batch": 34, "mnist_pytorch": 35, "filter": [36, 52, 55, 64, 68, 83], "label_quality_util": 38, "latent_algebra": 39, "multiannotator_util": 40, "multilabel_scor": 41, "multilabel_util": 42, "token_classification_util": 44, "util": 45, "valid": [46, 82, 89], "fasttext": 47, "model": [48, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "kera": 49, "multiannot": [50, 85], "multilabel_classif": 53, "rank": [54, 57, 60, 63, 66, 70, 83], "object_detect": 56, "summari": [58, 67, 71], "learn": [62, 76, 81, 83, 92], "segment": [65, 91], "token_classif": [69, 94], "cleanlab": [72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "open": [72, 81], "sourc": [72, 81], "document": 72, "quickstart": 72, "1": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "instal": [72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "2": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "common": [72, 73, 94], "3": [72, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "handl": [72, 81], "error": [72, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "train": [72, 74, 81, 88, 90, 92, 93], "robust": [72, 83, 90, 92, 93], "noisi": [72, 83, 90, 92, 93], "4": [72, 74, 75, 76, 78, 79, 82, 83, 85, 87, 88, 90, 92, 93], "curat": [72, 80], "fix": [72, 81], "level": [72, 80, 83, 94], "5": [72, 74, 76, 78, 82, 83, 85, 90, 92], "improv": [72, 85], "via": [72, 83, 85], "mani": [72, 83], "other": [72, 85, 87, 90], "techniqu": 72, "contribut": 72, "easi": [72, 78, 79, 82], "mode": [72, 78, 79, 82], "how": [73, 81, 83, 85, 86, 94], "migrat": 73, "version": 73, "0": 73, "from": [73, 75, 76, 83, 90, 92, 93], "pre": [73, 74, 81, 88], "function": [73, 75], "name": 73, "chang": 73, "modul": [73, 83], "new": 73, "remov": 73, "argument": [73, 75], "variabl": 73, "audio": 74, "speechbrain": 74, "depend": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "import": [74, 75, 76, 80, 82, 83, 85], "them": [74, 80, 83], "load": [74, 75, 76, 78, 79, 90, 92, 93], "featur": [74, 82, 88], "fit": 74, "linear": 74, "comput": [74, 78, 79, 81, 82, 85, 89, 92], "out": [74, 75, 76, 78, 79, 82, 85, 89, 92], "sampl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "predict": [74, 75, 76, 78, 79, 82, 85, 86, 87, 89, 92], "probabl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "workflow": [75, 83], "audit": [75, 76], "requir": [75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "classifi": [75, 76], "instanti": 75, "object": [75, 87], "increment": 75, "search": 75, "specifi": [75, 81], "nondefault": 75, "save": 75, "ad": 75, "A": 76, "unifi": 76, "all": [76, 83], "kind": [76, 87], "skip": [76, 80, 83, 85], "detail": [76, 80, 83, 85], "more": [76, 83, 90, 92, 93], "about": 76, "addit": 76, "inform": [76, 82], "tutori": [77, 80, 84], "tabular": [78, 92], "numer": 78, "categor": 78, "column": 78, "process": [78, 88, 90, 92], "select": [78, 92], "construct": 78, "k": [78, 82, 89], "nearest": 78, "neighbour": 78, "graph": 78, "text": [79, 93, 94], "format": [79, 81, 86, 87, 93], "defin": [79, 82, 90, 93], "drift": 79, "fetch": [80, 82], "evalu": 80, "health": [80, 83], "8": [80, 83], "popular": 80, "faq": 81, "what": [81, 83, 89], "do": [81, 83], "i": [81, 83, 89], "infer": 81, "correct": 81, "exampl": [81, 82, 83, 88], "ha": 81, "flag": 81, "should": 81, "v": 81, "test": [81, 83, 88], "big": 81, "limit": 81, "memori": 81, "why": 81, "isn": 81, "t": 81, "cleanlearn": [81, 83], "work": [81, 83, 85, 94], "me": 81, "differ": [81, 87], "clean": [81, 83], "final": 81, "hyperparamet": 81, "tune": 81, "onli": 81, "one": [81, 83, 86, 91], "doe": [81, 85, 94], "take": 81, "so": 81, "long": 81, "slice": 81, "when": [81, 83], "identifi": [81, 87], "run": 81, "licens": 81, "under": 81, "an": 81, "answer": 81, "question": 81, "pytorch": [82, 88], "normal": 82, "fashion": 82, "mnist": 82, "prepar": 82, "fold": [82, 89], "cross": [82, 89], "embed": [82, 88], "7": [82, 83], "view": 82, "most": [82, 94], "like": 82, "sever": 82, "set": [82, 83], "dark": 82, "top": [82, 91], "low": 82, "The": 83, "centric": 83, "ai": 83, "machin": 83, "find_label_issu": 83, "line": 83, "code": 83, "visual": [83, 87, 88, 91], "twenti": 83, "lowest": 83, "qualiti": [83, 85, 86, 87, 91, 94], "see": 83, "now": 83, "let": 83, "": 83, "happen": 83, "we": 83, "merg": 83, "seafoam": 83, "green": 83, "yellow": 83, "too": 83, "you": 83, "re": 83, "6": 83, "One": 83, "score": [83, 85, 86, 87, 91, 94], "rule": 83, "overal": [83, 91], "accur": 83, "thi": 83, "directli": 83, "fulli": 83, "character": 83, "nois": 83, "matrix": [83, 86], "joint": 83, "prior": 83, "true": 83, "distribut": 83, "flip": 83, "rate": 83, "ani": 83, "again": 83, "support": 83, "lot": 83, "method": 83, "filter_bi": 83, "automat": 83, "everi": 83, "uniqu": 83, "num_label_issu": 83, "threshold": 83, "found": 83, "Not": 83, "sure": 83, "ensembl": 83, "multipl": [83, 85], "predictor": 83, "consensu": 85, "annot": 85, "initi": 85, "major": 85, "vote": 85, "better": 85, "statist": 85, "compar": 85, "inspect": 85, "potenti": [85, 90, 93], "retrain": 85, "further": 85, "multi": 86, "given": 86, "hot": 86, "binari": 86, "download": [87, 91, 94], "objectlab": 87, "exploratori": 87, "analysi": 87, "timm": 88, "cifar10": 88, "some": 88, "pred_prob": [88, 91, 94], "wai": 90, "semant": 91, "which": 91, "ar": 91, "commonli": 91, "mislabel": [91, 94], "focus": 91, "scikit": 92, "token": 94, "word": 94, "sentenc": 94, "contain": 94, "particular": 94}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [37, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [43, "module-cleanlab.internal.outlier"], [59, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [61, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "dataset": [[30, "module-cleanlab.dataset"], [51, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "experimental": [[33, "experimental"]], "label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[36, "module-cleanlab.filter"], [52, "module-cleanlab.multilabel_classification.filter"], [55, "filter"], [64, "filter"], [68, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "util": [[45, "module-cleanlab.internal.util"]], "validation": [[46, "module-cleanlab.internal.validation"]], "fasttext": [[47, "fasttext"]], "models": [[48, "models"]], "keras": [[49, "module-cleanlab.models.keras"]], "multiannotator": [[50, "module-cleanlab.multiannotator"]], "multilabel_classification": [[53, "multilabel-classification"]], "rank": [[54, "module-cleanlab.multilabel_classification.rank"], [57, "module-cleanlab.object_detection.rank"], [60, "module-cleanlab.rank"], [66, "module-cleanlab.segmentation.rank"], [70, "module-cleanlab.token_classification.rank"]], "object_detection": [[56, "object-detection"]], "summary": [[58, "summary"], [67, "module-cleanlab.segmentation.summary"], [71, "module-cleanlab.token_classification.summary"]], "regression.learn": [[62, "module-cleanlab.regression.learn"]], "regression.rank": [[63, "module-cleanlab.regression.rank"]], "segmentation": [[65, "segmentation"]], "token_classification": [[69, "token-classification"]], "cleanlab open-source documentation": [[72, "cleanlab-open-source-documentation"]], "Quickstart": [[72, "quickstart"]], "1. Install cleanlab": [[72, "install-cleanlab"]], "2. Find common issues in your data": [[72, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[72, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[72, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[72, "improve-your-data-via-many-other-techniques"]], "Contributing": [[72, "contributing"]], "Easy Mode": [[72, "easy-mode"], [78, "Easy-Mode"], [79, "Easy-Mode"], [82, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[73, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[73, "function-and-class-name-changes"]], "Module name changes": [[73, "module-name-changes"]], "New modules": [[73, "new-modules"]], "Removed modules": [[73, "removed-modules"]], "Common argument and variable name changes": [[73, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[74, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[74, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[74, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[74, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[74, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[74, "5.-Use-cleanlab-to-find-label-issues"], [78, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[75, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[75, "Install-and-import-required-dependencies"]], "Create and load the data": [[75, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[75, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[75, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[75, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[75, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[75, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[75, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[76, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[76, "1.-Install-and-import-required-dependencies"], [82, "1.-Install-and-import-required-dependencies"], [85, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[76, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[76, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[76, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[76, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[76, "Get-additional-information"]], "Near duplicate issues": [[76, "Near-duplicate-issues"], [82, "Near-duplicate-issues"]], "Datalab Tutorials": [[77, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[78, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[78, "1.-Install-required-dependencies"], [79, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [92, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"]], "2. Load and process the data": [[78, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [92, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[78, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [92, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[78, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[78, "Label-issues"], [79, "Label-issues"], [82, "Label-issues"]], "Outlier issues": [[78, "Outlier-issues"], [79, "Outlier-issues"], [82, "Outlier-issues"]], "Near-duplicate issues": [[78, "Near-duplicate-issues"], [79, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[79, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[79, "2.-Load-and-format-the-text-dataset"], [93, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[79, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[79, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[80, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[80, "Install-dependencies-and-import-them"], [83, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[80, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[80, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[81, "FAQ"]], "What data can cleanlab detect issues in?": [[81, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[81, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[81, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[81, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[81, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[81, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[81, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[81, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[81, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[81, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[81, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[81, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[81, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[81, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[82, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[82, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[82, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[82, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[82, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[82, "7.-Use-cleanlab-to-find-issues"]], "View report": [[82, "View-report"]], "View most likely examples with label errors": [[82, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[82, "View-most-severe-outliers"]], "View sets of near duplicate images": [[82, "View-sets-of-near-duplicate-images"]], "Dark images": [[82, "Dark-images"]], "View top examples of dark images": [[82, "View-top-examples-of-dark-images"]], "Low information images": [[82, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[83, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[83, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[83, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[83, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[83, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[83, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[83, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[83, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[83, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[83, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[83, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[83, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[83, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[83, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[83, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[83, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[83, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[83, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[83, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[84, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[85, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[85, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[85, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[85, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[85, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[85, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[85, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[85, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[85, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[86, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[86, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[86, "2.-Format-data,-labels,-and-model-predictions"], [87, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[86, "3.-Use-cleanlab-to-find-label-issues"], [87, "3.-Use-cleanlab-to-find-label-issues"], [91, "3.-Use-cleanlab-to-find-label-issues"], [94, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[86, "Label-quality-scores"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[86, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Finding Label Errors in Object Detection Datasets": [[87, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[87, "1.-Install-required-dependencies-and-download-data"], [91, "1.-Install-required-dependencies-and-download-data"], [94, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[87, "Get-label-quality-scores"], [91, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[87, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[87, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[87, "Other-uses-of-visualize"]], "Exploratory data analysys": [[87, "Exploratory-data-analysys"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[88, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[88, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[88, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[88, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[88, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[88, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[89, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[89, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[89, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[90, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[90, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[90, "4.-Train-a-more-robust-model-from-noisy-labels"], [93, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[90, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[91, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[91, "2.-Get-data,-labels,-and-pred_probs"], [94, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[91, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[91, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[91, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[92, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[92, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[92, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[93, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[93, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[94, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[94, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[94, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[94, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[94, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [30, "module-cleanlab.dataset"], [31, "module-cleanlab.experimental.cifar_cnn"], [32, "module-cleanlab.experimental.coteaching"], [33, "module-cleanlab.experimental"], [34, "module-cleanlab.experimental.label_issues_batched"], [35, "module-cleanlab.experimental.mnist_pytorch"], [36, "module-cleanlab.filter"], [37, "module-cleanlab.internal"], [38, "module-cleanlab.internal.label_quality_utils"], [39, "module-cleanlab.internal.latent_algebra"], [40, "module-cleanlab.internal.multiannotator_utils"], [41, "module-cleanlab.internal.multilabel_scorer"], [42, "module-cleanlab.internal.multilabel_utils"], [43, "module-cleanlab.internal.outlier"], [44, "module-cleanlab.internal.token_classification_utils"], [45, "module-cleanlab.internal.util"], [46, "module-cleanlab.internal.validation"], [48, "module-cleanlab.models"], [49, "module-cleanlab.models.keras"], [50, "module-cleanlab.multiannotator"], [51, "module-cleanlab.multilabel_classification.dataset"], [52, "module-cleanlab.multilabel_classification.filter"], [53, "module-cleanlab.multilabel_classification"], [54, "module-cleanlab.multilabel_classification.rank"], [55, "module-cleanlab.object_detection.filter"], [56, "module-cleanlab.object_detection"], [57, "module-cleanlab.object_detection.rank"], [58, "module-cleanlab.object_detection.summary"], [59, "module-cleanlab.outlier"], [60, "module-cleanlab.rank"], [61, "module-cleanlab.regression"], [62, "module-cleanlab.regression.learn"], [63, "module-cleanlab.regression.rank"], [64, "module-cleanlab.segmentation.filter"], [65, "module-cleanlab.segmentation"], [66, "module-cleanlab.segmentation.rank"], [67, "module-cleanlab.segmentation.summary"], [68, "module-cleanlab.token_classification.filter"], [69, "module-cleanlab.token_classification"], [70, "module-cleanlab.token_classification.rank"], [71, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "cleanlab.dataset": [[30, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.forward"], [31, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[33, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [35, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [35, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [35, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[36, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[36, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[36, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[37, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[38, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[43, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[43, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[45, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[46, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[48, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[49, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[50, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[51, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[53, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[54, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[55, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[55, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[56, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[57, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[58, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[59, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[59, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[60, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[61, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[62, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[62, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[62, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[63, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[63, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[64, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[64, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[65, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[66, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[67, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[68, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[68, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[69, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[70, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[71, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index 1d70ca23e..be4f89e6a 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1274,7 +1274,7 @@

    5. Use cleanlab to find label issues -{"state": {"0be9a5582bed44899891990cf3b7e6ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4cb8607f3082430cb1873a8893f0bfbb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1110dbf49ecd4529bda8ae5a8f1dd895": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0be9a5582bed44899891990cf3b7e6ca", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4cb8607f3082430cb1873a8893f0bfbb", "tabbable": null, "tooltip": null, "value": 2041.0}}, "1e00641d45664cf3bcf25bfd9ded9aae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09e345de2ab44e64aa9dda42f354fc5e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f90e0c618515482bb424955efd1b841c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1e00641d45664cf3bcf25bfd9ded9aae", "placeholder": "\u200b", "style": "IPY_MODEL_09e345de2ab44e64aa9dda42f354fc5e", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%"}}, "5caf5e5f16c249e691706889447f5f3c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73cc609051ff4efd9ad519ad7af38b33": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c5d242464a974d22a0e52330a3d839ba": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5caf5e5f16c249e691706889447f5f3c", "placeholder": "\u200b", "style": "IPY_MODEL_73cc609051ff4efd9ad519ad7af38b33", "tabbable": null, "tooltip": null, "value": " 2.04k/2.04k [00:00<00:00, 511kB/s]"}}, "401ef1f8383c4157b95e9dbec0a569d9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12e8df3144be4da9a72db0291005881b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f90e0c618515482bb424955efd1b841c", "IPY_MODEL_1110dbf49ecd4529bda8ae5a8f1dd895", "IPY_MODEL_c5d242464a974d22a0e52330a3d839ba"], "layout": "IPY_MODEL_401ef1f8383c4157b95e9dbec0a569d9", "tabbable": null, "tooltip": null}}, "8f947cac1dfb4430998c372771ae7550": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "922b4f4a09394610b8567cb628b3761d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "25967dd471d241868b18aacfad2f80ad": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f947cac1dfb4430998c372771ae7550", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_922b4f4a09394610b8567cb628b3761d", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "6055405df1504056b09b8a4f02683e06": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c1ac0d0617f94eb1a3de23bded46234e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bd8756a5451d4230a2e3c764128f0e61": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6055405df1504056b09b8a4f02683e06", "placeholder": "\u200b", "style": "IPY_MODEL_c1ac0d0617f94eb1a3de23bded46234e", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt: 100%"}}, "9c694de214f04369bdf84ea2a4a53820": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d909c5854a6419d8bf46d1b34d4bfc1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "00caf2fa7ce94a1ca1af3fc608cdd874": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9c694de214f04369bdf84ea2a4a53820", "placeholder": "\u200b", "style": "IPY_MODEL_0d909c5854a6419d8bf46d1b34d4bfc1", "tabbable": null, "tooltip": null, "value": " 16.9M/16.9M [00:00<00:00, 140MB/s]"}}, "de8656deecc2472a95cfa864289cf715": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1387ef86e738414faeab3ad3904caf0b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bd8756a5451d4230a2e3c764128f0e61", "IPY_MODEL_25967dd471d241868b18aacfad2f80ad", "IPY_MODEL_00caf2fa7ce94a1ca1af3fc608cdd874"], "layout": "IPY_MODEL_de8656deecc2472a95cfa864289cf715", "tabbable": null, "tooltip": null}}, "919fe5295cc140a0beeb66a390a5cd37": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d76f3855ae764e8c8b350d2f8f3fe336": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f72c8b8bccda4a1ea70840ece3838d42": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_919fe5295cc140a0beeb66a390a5cd37", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d76f3855ae764e8c8b350d2f8f3fe336", "tabbable": null, "tooltip": null, "value": 3201.0}}, "1dae0c9337fd4ae691ff8244f130ae56": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26df8d002b6e4defaa70711eea5f0fd4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f514a3b00a1b490b87e1057c9111a96f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1dae0c9337fd4ae691ff8244f130ae56", "placeholder": "\u200b", "style": "IPY_MODEL_26df8d002b6e4defaa70711eea5f0fd4", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt: 100%"}}, "3e8471b7623e49e9ba8a7f609b92d206": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "88a22d3905da41bd811a099ebd0345f2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dabd132f187041fca1e66330d4fee9b3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3e8471b7623e49e9ba8a7f609b92d206", "placeholder": "\u200b", "style": "IPY_MODEL_88a22d3905da41bd811a099ebd0345f2", "tabbable": null, "tooltip": null, "value": " 3.20k/3.20k [00:00<00:00, 821kB/s]"}}, "367b28a197ef4109b62bef2f8702343f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7dc19e1157c147fa87d344fd7e0eabf6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f514a3b00a1b490b87e1057c9111a96f", "IPY_MODEL_f72c8b8bccda4a1ea70840ece3838d42", "IPY_MODEL_dabd132f187041fca1e66330d4fee9b3"], "layout": "IPY_MODEL_367b28a197ef4109b62bef2f8702343f", "tabbable": null, "tooltip": null}}, "1797bdb86d8e4d4082f9e097a4986ecf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79dabf647200462baaf9667d1281752a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "782dc84a5c5f4cef9c80909afe6e60d4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1797bdb86d8e4d4082f9e097a4986ecf", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_79dabf647200462baaf9667d1281752a", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "c5b79d34ba494a079c8e8003c353bd42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a72ed5077eff484fb5f20f78db412029": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "df6d32468abb43dead6ed88e8e3cd4dd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c5b79d34ba494a079c8e8003c353bd42", "placeholder": "\u200b", "style": "IPY_MODEL_a72ed5077eff484fb5f20f78db412029", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%"}}, "8d514a589a884efaac95c4764d625669": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58ce53aea9f5489d8d630f058e577b43": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e21a8880e0be40d59186e562f368c4ab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d514a589a884efaac95c4764d625669", "placeholder": "\u200b", "style": "IPY_MODEL_58ce53aea9f5489d8d630f058e577b43", "tabbable": null, "tooltip": null, "value": " 15.9M/15.9M [00:00<00:00, 223MB/s]"}}, "6bab66ef9ab2415aa6ab316dc2c12977": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99ad1c23d83a4fdda42df4558f2b566e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_df6d32468abb43dead6ed88e8e3cd4dd", "IPY_MODEL_782dc84a5c5f4cef9c80909afe6e60d4", "IPY_MODEL_e21a8880e0be40d59186e562f368c4ab"], "layout": "IPY_MODEL_6bab66ef9ab2415aa6ab316dc2c12977", "tabbable": null, "tooltip": null}}, "cf8efc4c9cb84399a37464a1e187f6eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8bf3fcd1affe4651b2701906f33f4629": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "50b3b8ea8e764cdbb9e5d6f2db55f8f2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf8efc4c9cb84399a37464a1e187f6eb", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8bf3fcd1affe4651b2701906f33f4629", "tabbable": null, "tooltip": null, "value": 128619.0}}, "7ddf581b1db042f8bf8b87912a9d17b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa1bb1fa7d6d4fb5ba176d8faeeeba30": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a38d3e354f2448dca3a03b59c80e419d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ddf581b1db042f8bf8b87912a9d17b7", "placeholder": "\u200b", "style": "IPY_MODEL_fa1bb1fa7d6d4fb5ba176d8faeeeba30", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%"}}, "27adc94a126e42eca62c7fbb62d37a05": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72d82241972f41698dafa969085decb4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "541613fe9afc46ebb8739e58d48f3708": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_27adc94a126e42eca62c7fbb62d37a05", "placeholder": "\u200b", "style": "IPY_MODEL_72d82241972f41698dafa969085decb4", "tabbable": null, "tooltip": null, "value": " 129k/129k [00:00<00:00, 16.9MB/s]"}}, "2fe86a5a6d75463ba4a135d1958734d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b1479cd4d034d77b4fb136713b4747b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a38d3e354f2448dca3a03b59c80e419d", "IPY_MODEL_50b3b8ea8e764cdbb9e5d6f2db55f8f2", "IPY_MODEL_541613fe9afc46ebb8739e58d48f3708"], "layout": "IPY_MODEL_2fe86a5a6d75463ba4a135d1958734d3", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"cf0f6cfeecb944bbbf95b51dab7ffe38": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79aa5a4217f24706a0c8acdccb83bc89": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7c86a16b43104acd82b6c23963847f61": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf0f6cfeecb944bbbf95b51dab7ffe38", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_79aa5a4217f24706a0c8acdccb83bc89", "tabbable": null, "tooltip": null, "value": 2041.0}}, "9c110ecb4a3142bd8978bd7c56eeac1c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9a3626c114b4cc3a8e6528b82f7edc2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5c914c53cb5e4cdeb6d61f06b845f822": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9c110ecb4a3142bd8978bd7c56eeac1c", "placeholder": "\u200b", "style": "IPY_MODEL_f9a3626c114b4cc3a8e6528b82f7edc2", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%"}}, "9640155152bb442393cce4d5448854aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e47ddeb6ba8434bacbf51fc5e3ebc23": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d6b0edcd2bb8437a89117c17518bed85": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9640155152bb442393cce4d5448854aa", "placeholder": "\u200b", "style": "IPY_MODEL_9e47ddeb6ba8434bacbf51fc5e3ebc23", "tabbable": null, "tooltip": null, "value": " 2.04k/2.04k [00:00<00:00, 473kB/s]"}}, "44f0a77ddead4cd08e63f03a0b101c14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "19c14e16922c46539429b0f3c76cc36d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5c914c53cb5e4cdeb6d61f06b845f822", "IPY_MODEL_7c86a16b43104acd82b6c23963847f61", "IPY_MODEL_d6b0edcd2bb8437a89117c17518bed85"], "layout": "IPY_MODEL_44f0a77ddead4cd08e63f03a0b101c14", "tabbable": null, "tooltip": null}}, "6b7457ca391342d69cbcfbb176ed3816": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c331c9cb15e400daf71dc964257ce69": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "be64c269bd864fd49e046244b585ce34": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6b7457ca391342d69cbcfbb176ed3816", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6c331c9cb15e400daf71dc964257ce69", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "09d99afba1d74d0a910126e1b1c28c9d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b784011f16db4888b20527c0b09c7995": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "00322415c3084906aed3bfc0fc4137e3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_09d99afba1d74d0a910126e1b1c28c9d", "placeholder": "\u200b", "style": "IPY_MODEL_b784011f16db4888b20527c0b09c7995", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt: 100%"}}, "02cba719e59748a9a093722bb87ad7bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ddd689d4714483c82a417f4068e0d50": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9341551bd3c14f019a521b285c7176d3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_02cba719e59748a9a093722bb87ad7bc", "placeholder": "\u200b", "style": "IPY_MODEL_7ddd689d4714483c82a417f4068e0d50", "tabbable": null, "tooltip": null, "value": " 16.9M/16.9M [00:00<00:00, 143MB/s]"}}, "a655f7d4b9274d3281e939b9574224e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "535dd9db9e9f4ca3b4e7ad45fce08903": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_00322415c3084906aed3bfc0fc4137e3", "IPY_MODEL_be64c269bd864fd49e046244b585ce34", "IPY_MODEL_9341551bd3c14f019a521b285c7176d3"], "layout": "IPY_MODEL_a655f7d4b9274d3281e939b9574224e3", "tabbable": null, "tooltip": null}}, "6366025152fb4914943ecbce38e36e06": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc74ddb244b84b949aced140694f4ce9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bdbb6dec26e24b4798b6f5d0034262d3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6366025152fb4914943ecbce38e36e06", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fc74ddb244b84b949aced140694f4ce9", "tabbable": null, "tooltip": null, "value": 3201.0}}, "5bb47e01ccd4433e9fb490ca2d72e174": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "16faa3717ace402099c0af876b0ea972": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9845814b2c264618ad67b3fec548ab50": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5bb47e01ccd4433e9fb490ca2d72e174", "placeholder": "\u200b", "style": "IPY_MODEL_16faa3717ace402099c0af876b0ea972", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt: 100%"}}, "7f90fa8070f24b898cb5d2e09fde3135": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25545b6369f7469b8496bbc09b87b003": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "44cbf671229d421a9d727694cb483666": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7f90fa8070f24b898cb5d2e09fde3135", "placeholder": "\u200b", "style": "IPY_MODEL_25545b6369f7469b8496bbc09b87b003", "tabbable": null, "tooltip": null, "value": " 3.20k/3.20k [00:00<00:00, 777kB/s]"}}, "fcef3c54ae3a4557aa447cc447b97160": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e1de5a271a36422ba42b39bbb19705be": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9845814b2c264618ad67b3fec548ab50", "IPY_MODEL_bdbb6dec26e24b4798b6f5d0034262d3", "IPY_MODEL_44cbf671229d421a9d727694cb483666"], "layout": "IPY_MODEL_fcef3c54ae3a4557aa447cc447b97160", "tabbable": null, "tooltip": null}}, "58a6d115314141608cead05e9bc4b0fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d8cede267b5b4bf2ae4853e192b8dcf0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "af3da7864071482eb20d1495b6d5e485": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58a6d115314141608cead05e9bc4b0fc", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d8cede267b5b4bf2ae4853e192b8dcf0", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "96370a4da75f4d0cacf1c8ce1744a33a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f2159690386f475092a493a5820f3be5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8e6b9c284e804d2eb99f19f579ad1b9e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_96370a4da75f4d0cacf1c8ce1744a33a", "placeholder": "\u200b", "style": "IPY_MODEL_f2159690386f475092a493a5820f3be5", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%"}}, "8eacd088a4794ed59341ed053be2eca2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc6713ec7b094832b9d6d7bc983795fd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aa1c73555d2745d78847a90e52a17ef8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8eacd088a4794ed59341ed053be2eca2", "placeholder": "\u200b", "style": "IPY_MODEL_bc6713ec7b094832b9d6d7bc983795fd", "tabbable": null, "tooltip": null, "value": " 15.9M/15.9M [00:00<00:00, 43.6MB/s]"}}, "3153aabcab854857ad16e19942f577de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35c3def975d846cb8e9657d130bb2053": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8e6b9c284e804d2eb99f19f579ad1b9e", "IPY_MODEL_af3da7864071482eb20d1495b6d5e485", "IPY_MODEL_aa1c73555d2745d78847a90e52a17ef8"], "layout": "IPY_MODEL_3153aabcab854857ad16e19942f577de", "tabbable": null, "tooltip": null}}, "28bfb0ec8bbf4ed9ad9e36c10a711209": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "67d8683d19954d26967f3928959517c7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d9e6ae1680db4f439f491945b731959c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_28bfb0ec8bbf4ed9ad9e36c10a711209", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_67d8683d19954d26967f3928959517c7", "tabbable": null, "tooltip": null, "value": 128619.0}}, "52b60c8257c44b00bff406d89f218b97": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d296361623744768ba3fb4c5a26a3376": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f105df57e4d44ad0b56e4c0d23447c9c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_52b60c8257c44b00bff406d89f218b97", "placeholder": "\u200b", "style": "IPY_MODEL_d296361623744768ba3fb4c5a26a3376", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%"}}, "fb90d513176f4f53baa7d68bd99c706d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a986303e55648439d134870cc6dc1f0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "05133e7fc5b549e896b19ea17c0a9470": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fb90d513176f4f53baa7d68bd99c706d", "placeholder": "\u200b", "style": "IPY_MODEL_6a986303e55648439d134870cc6dc1f0", "tabbable": null, "tooltip": null, "value": " 129k/129k [00:00<00:00, 2.12MB/s]"}}, "2d6e768687dc4dc28928ce8924d56bcd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "17e351c1dd3a43838b0c813f1d1792ea": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f105df57e4d44ad0b56e4c0d23447c9c", "IPY_MODEL_d9e6ae1680db4f439f491945b731959c", "IPY_MODEL_05133e7fc5b549e896b19ea17c0a9470"], "layout": "IPY_MODEL_2d6e768687dc4dc28928ce8924d56bcd", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index ce2daded3..690988462 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:37.437869Z", - "iopub.status.busy": "2024-02-08T04:23:37.437704Z", - "iopub.status.idle": "2024-02-08T04:23:42.061386Z", - "shell.execute_reply": "2024-02-08T04:23:42.060834Z" + "iopub.execute_input": "2024-02-08T05:10:02.917002Z", + "iopub.status.busy": "2024-02-08T05:10:02.916527Z", + "iopub.status.idle": "2024-02-08T05:10:07.657923Z", + "shell.execute_reply": "2024-02-08T05:10:07.657382Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:42.064278Z", - "iopub.status.busy": "2024-02-08T04:23:42.063634Z", - "iopub.status.idle": "2024-02-08T04:23:42.067011Z", - "shell.execute_reply": "2024-02-08T04:23:42.066572Z" + "iopub.execute_input": "2024-02-08T05:10:07.660471Z", + "iopub.status.busy": "2024-02-08T05:10:07.660125Z", + "iopub.status.idle": "2024-02-08T05:10:07.663317Z", + "shell.execute_reply": "2024-02-08T05:10:07.662893Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:42.069097Z", - "iopub.status.busy": "2024-02-08T04:23:42.068667Z", - "iopub.status.idle": "2024-02-08T04:23:42.072984Z", - "shell.execute_reply": "2024-02-08T04:23:42.072571Z" + "iopub.execute_input": "2024-02-08T05:10:07.665330Z", + "iopub.status.busy": "2024-02-08T05:10:07.665027Z", + "iopub.status.idle": "2024-02-08T05:10:07.669776Z", + "shell.execute_reply": "2024-02-08T05:10:07.669251Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:42.075051Z", - "iopub.status.busy": "2024-02-08T04:23:42.074736Z", - "iopub.status.idle": "2024-02-08T04:23:43.724199Z", - "shell.execute_reply": "2024-02-08T04:23:43.723557Z" + "iopub.execute_input": "2024-02-08T05:10:07.672050Z", + "iopub.status.busy": "2024-02-08T05:10:07.671631Z", + "iopub.status.idle": "2024-02-08T05:10:09.750342Z", + "shell.execute_reply": "2024-02-08T05:10:09.749629Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:43.726855Z", - "iopub.status.busy": "2024-02-08T04:23:43.726493Z", - "iopub.status.idle": "2024-02-08T04:23:43.737147Z", - "shell.execute_reply": "2024-02-08T04:23:43.736620Z" + "iopub.execute_input": "2024-02-08T05:10:09.753182Z", + "iopub.status.busy": "2024-02-08T05:10:09.752972Z", + "iopub.status.idle": "2024-02-08T05:10:09.763807Z", + "shell.execute_reply": "2024-02-08T05:10:09.763255Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:43.767830Z", - "iopub.status.busy": "2024-02-08T04:23:43.767487Z", - "iopub.status.idle": "2024-02-08T04:23:43.772841Z", - "shell.execute_reply": "2024-02-08T04:23:43.772416Z" + "iopub.execute_input": "2024-02-08T05:10:09.795006Z", + "iopub.status.busy": "2024-02-08T05:10:09.794780Z", + "iopub.status.idle": "2024-02-08T05:10:09.800317Z", + "shell.execute_reply": "2024-02-08T05:10:09.799889Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:43.774741Z", - "iopub.status.busy": "2024-02-08T04:23:43.774438Z", - "iopub.status.idle": "2024-02-08T04:23:44.224278Z", - "shell.execute_reply": "2024-02-08T04:23:44.223692Z" + "iopub.execute_input": "2024-02-08T05:10:09.802245Z", + "iopub.status.busy": "2024-02-08T05:10:09.801984Z", + "iopub.status.idle": "2024-02-08T05:10:10.244422Z", + "shell.execute_reply": "2024-02-08T05:10:10.243946Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:44.226457Z", - "iopub.status.busy": "2024-02-08T04:23:44.226155Z", - "iopub.status.idle": "2024-02-08T04:23:45.088191Z", - "shell.execute_reply": "2024-02-08T04:23:45.087551Z" + "iopub.execute_input": "2024-02-08T05:10:10.246554Z", + "iopub.status.busy": "2024-02-08T05:10:10.246209Z", + "iopub.status.idle": "2024-02-08T05:10:12.264120Z", + "shell.execute_reply": "2024-02-08T05:10:12.263508Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:45.090803Z", - "iopub.status.busy": "2024-02-08T04:23:45.090460Z", - "iopub.status.idle": "2024-02-08T04:23:45.111414Z", - "shell.execute_reply": "2024-02-08T04:23:45.110956Z" + "iopub.execute_input": "2024-02-08T05:10:12.266388Z", + "iopub.status.busy": "2024-02-08T05:10:12.266181Z", + "iopub.status.idle": "2024-02-08T05:10:12.286448Z", + "shell.execute_reply": "2024-02-08T05:10:12.285925Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:45.113435Z", - "iopub.status.busy": "2024-02-08T04:23:45.113098Z", - "iopub.status.idle": "2024-02-08T04:23:45.116173Z", - "shell.execute_reply": "2024-02-08T04:23:45.115668Z" + "iopub.execute_input": "2024-02-08T05:10:12.288404Z", + "iopub.status.busy": "2024-02-08T05:10:12.288148Z", + "iopub.status.idle": "2024-02-08T05:10:12.291115Z", + "shell.execute_reply": "2024-02-08T05:10:12.290695Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:45.118149Z", - "iopub.status.busy": "2024-02-08T04:23:45.117812Z", - "iopub.status.idle": "2024-02-08T04:23:59.306627Z", - "shell.execute_reply": "2024-02-08T04:23:59.306019Z" + "iopub.execute_input": "2024-02-08T05:10:12.293161Z", + "iopub.status.busy": "2024-02-08T05:10:12.292750Z", + "iopub.status.idle": "2024-02-08T05:10:27.611719Z", + "shell.execute_reply": "2024-02-08T05:10:27.611101Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:59.309354Z", - "iopub.status.busy": "2024-02-08T04:23:59.309011Z", - "iopub.status.idle": "2024-02-08T04:23:59.312813Z", - "shell.execute_reply": "2024-02-08T04:23:59.312348Z" + "iopub.execute_input": "2024-02-08T05:10:27.614471Z", + "iopub.status.busy": "2024-02-08T05:10:27.614135Z", + "iopub.status.idle": "2024-02-08T05:10:27.617829Z", + "shell.execute_reply": "2024-02-08T05:10:27.617331Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -689,10 +689,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:59.314928Z", - "iopub.status.busy": "2024-02-08T04:23:59.314501Z", - "iopub.status.idle": "2024-02-08T04:24:00.032474Z", - "shell.execute_reply": "2024-02-08T04:24:00.031862Z" + "iopub.execute_input": "2024-02-08T05:10:27.619869Z", + "iopub.status.busy": "2024-02-08T05:10:27.619513Z", + "iopub.status.idle": "2024-02-08T05:10:28.356958Z", + "shell.execute_reply": "2024-02-08T05:10:28.356238Z" }, "id": "i_drkY9YOcw4" }, @@ -726,10 +726,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.035309Z", - "iopub.status.busy": "2024-02-08T04:24:00.034952Z", - "iopub.status.idle": "2024-02-08T04:24:00.039558Z", - "shell.execute_reply": "2024-02-08T04:24:00.039087Z" + "iopub.execute_input": "2024-02-08T05:10:28.360007Z", + "iopub.status.busy": "2024-02-08T05:10:28.359524Z", + "iopub.status.idle": "2024-02-08T05:10:28.364554Z", + "shell.execute_reply": "2024-02-08T05:10:28.363944Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -776,10 +776,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.041924Z", - "iopub.status.busy": "2024-02-08T04:24:00.041579Z", - "iopub.status.idle": "2024-02-08T04:24:00.155311Z", - "shell.execute_reply": "2024-02-08T04:24:00.154672Z" + "iopub.execute_input": "2024-02-08T05:10:28.367123Z", + "iopub.status.busy": "2024-02-08T05:10:28.366593Z", + "iopub.status.idle": "2024-02-08T05:10:28.490652Z", + "shell.execute_reply": "2024-02-08T05:10:28.489988Z" } }, "outputs": [ @@ -816,10 +816,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.157926Z", - "iopub.status.busy": "2024-02-08T04:24:00.157470Z", - "iopub.status.idle": "2024-02-08T04:24:00.167299Z", - "shell.execute_reply": "2024-02-08T04:24:00.166840Z" + "iopub.execute_input": "2024-02-08T05:10:28.492892Z", + "iopub.status.busy": "2024-02-08T05:10:28.492640Z", + "iopub.status.idle": "2024-02-08T05:10:28.502745Z", + "shell.execute_reply": "2024-02-08T05:10:28.502187Z" }, "scrolled": true }, @@ -874,10 +874,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.169331Z", - "iopub.status.busy": "2024-02-08T04:24:00.168954Z", - "iopub.status.idle": "2024-02-08T04:24:00.176582Z", - "shell.execute_reply": "2024-02-08T04:24:00.176051Z" + "iopub.execute_input": "2024-02-08T05:10:28.504792Z", + "iopub.status.busy": "2024-02-08T05:10:28.504574Z", + "iopub.status.idle": "2024-02-08T05:10:28.512631Z", + "shell.execute_reply": "2024-02-08T05:10:28.512066Z" } }, "outputs": [ @@ -981,10 +981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.178497Z", - "iopub.status.busy": "2024-02-08T04:24:00.178235Z", - "iopub.status.idle": "2024-02-08T04:24:00.182121Z", - "shell.execute_reply": "2024-02-08T04:24:00.181573Z" + "iopub.execute_input": "2024-02-08T05:10:28.514750Z", + "iopub.status.busy": "2024-02-08T05:10:28.514376Z", + "iopub.status.idle": "2024-02-08T05:10:28.518724Z", + "shell.execute_reply": "2024-02-08T05:10:28.518182Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.184174Z", - "iopub.status.busy": "2024-02-08T04:24:00.183860Z", - "iopub.status.idle": "2024-02-08T04:24:00.189292Z", - "shell.execute_reply": "2024-02-08T04:24:00.188819Z" + "iopub.execute_input": "2024-02-08T05:10:28.520704Z", + "iopub.status.busy": "2024-02-08T05:10:28.520404Z", + "iopub.status.idle": "2024-02-08T05:10:28.525844Z", + "shell.execute_reply": "2024-02-08T05:10:28.525387Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1152,10 +1152,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.191324Z", - "iopub.status.busy": "2024-02-08T04:24:00.191003Z", - "iopub.status.idle": "2024-02-08T04:24:00.300680Z", - "shell.execute_reply": "2024-02-08T04:24:00.300220Z" + "iopub.execute_input": "2024-02-08T05:10:28.527919Z", + "iopub.status.busy": "2024-02-08T05:10:28.527730Z", + "iopub.status.idle": "2024-02-08T05:10:28.640795Z", + "shell.execute_reply": "2024-02-08T05:10:28.640230Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1209,10 +1209,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.302682Z", - "iopub.status.busy": "2024-02-08T04:24:00.302364Z", - "iopub.status.idle": "2024-02-08T04:24:00.405268Z", - "shell.execute_reply": "2024-02-08T04:24:00.404783Z" + "iopub.execute_input": "2024-02-08T05:10:28.643025Z", + "iopub.status.busy": "2024-02-08T05:10:28.642640Z", + "iopub.status.idle": "2024-02-08T05:10:28.750031Z", + "shell.execute_reply": "2024-02-08T05:10:28.749452Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1257,10 +1257,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.407387Z", - "iopub.status.busy": "2024-02-08T04:24:00.407045Z", - "iopub.status.idle": "2024-02-08T04:24:00.507174Z", - "shell.execute_reply": "2024-02-08T04:24:00.506629Z" + "iopub.execute_input": "2024-02-08T05:10:28.752108Z", + "iopub.status.busy": "2024-02-08T05:10:28.751895Z", + "iopub.status.idle": "2024-02-08T05:10:28.855700Z", + "shell.execute_reply": "2024-02-08T05:10:28.855171Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1301,10 +1301,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.509161Z", - "iopub.status.busy": "2024-02-08T04:24:00.508897Z", - "iopub.status.idle": "2024-02-08T04:24:00.609804Z", - "shell.execute_reply": "2024-02-08T04:24:00.609296Z" + "iopub.execute_input": "2024-02-08T05:10:28.857703Z", + "iopub.status.busy": "2024-02-08T05:10:28.857485Z", + "iopub.status.idle": "2024-02-08T05:10:28.964065Z", + "shell.execute_reply": "2024-02-08T05:10:28.963467Z" } }, "outputs": [ @@ -1352,10 +1352,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.611925Z", - "iopub.status.busy": "2024-02-08T04:24:00.611606Z", - "iopub.status.idle": "2024-02-08T04:24:00.615028Z", - "shell.execute_reply": "2024-02-08T04:24:00.614593Z" + "iopub.execute_input": "2024-02-08T05:10:28.966380Z", + "iopub.status.busy": "2024-02-08T05:10:28.966029Z", + "iopub.status.idle": "2024-02-08T05:10:28.969976Z", + "shell.execute_reply": "2024-02-08T05:10:28.969420Z" }, "nbsphinx": "hidden" }, @@ -1396,7 +1396,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00caf2fa7ce94a1ca1af3fc608cdd874": { + "00322415c3084906aed3bfc0fc4137e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1411,33 +1411,91 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9c694de214f04369bdf84ea2a4a53820", + "layout": "IPY_MODEL_09d99afba1d74d0a910126e1b1c28c9d", "placeholder": "​", - "style": "IPY_MODEL_0d909c5854a6419d8bf46d1b34d4bfc1", + "style": "IPY_MODEL_b784011f16db4888b20527c0b09c7995", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 140MB/s]" + "value": "embedding_model.ckpt: 100%" + } + }, + "02cba719e59748a9a093722bb87ad7bc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "09e345de2ab44e64aa9dda42f354fc5e": { + "05133e7fc5b549e896b19ea17c0a9470": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb90d513176f4f53baa7d68bd99c706d", + "placeholder": "​", + "style": "IPY_MODEL_6a986303e55648439d134870cc6dc1f0", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 2.12MB/s]" } }, - "0be9a5582bed44899891990cf3b7e6ca": { + "09d99afba1d74d0a910126e1b1c28c9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1490,7 +1548,7 @@ "width": null } }, - "0d909c5854a6419d8bf46d1b34d4bfc1": { + "16faa3717ace402099c0af876b0ea972": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1508,33 +1566,31 @@ "text_color": null } }, - "1110dbf49ecd4529bda8ae5a8f1dd895": { + "17e351c1dd3a43838b0c813f1d1792ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0be9a5582bed44899891990cf3b7e6ca", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4cb8607f3082430cb1873a8893f0bfbb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f105df57e4d44ad0b56e4c0d23447c9c", + "IPY_MODEL_d9e6ae1680db4f439f491945b731959c", + "IPY_MODEL_05133e7fc5b549e896b19ea17c0a9470" + ], + "layout": "IPY_MODEL_2d6e768687dc4dc28928ce8924d56bcd", "tabbable": null, - "tooltip": null, - "value": 2041.0 + "tooltip": null } }, - "12e8df3144be4da9a72db0291005881b": { + "19c14e16922c46539429b0f3c76cc36d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1549,40 +1605,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f90e0c618515482bb424955efd1b841c", - "IPY_MODEL_1110dbf49ecd4529bda8ae5a8f1dd895", - "IPY_MODEL_c5d242464a974d22a0e52330a3d839ba" + "IPY_MODEL_5c914c53cb5e4cdeb6d61f06b845f822", + "IPY_MODEL_7c86a16b43104acd82b6c23963847f61", + "IPY_MODEL_d6b0edcd2bb8437a89117c17518bed85" ], - "layout": "IPY_MODEL_401ef1f8383c4157b95e9dbec0a569d9", + "layout": "IPY_MODEL_44f0a77ddead4cd08e63f03a0b101c14", "tabbable": null, "tooltip": null } }, - "1387ef86e738414faeab3ad3904caf0b": { + "25545b6369f7469b8496bbc09b87b003": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bd8756a5451d4230a2e3c764128f0e61", - "IPY_MODEL_25967dd471d241868b18aacfad2f80ad", - "IPY_MODEL_00caf2fa7ce94a1ca1af3fc608cdd874" - ], - "layout": "IPY_MODEL_de8656deecc2472a95cfa864289cf715", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1797bdb86d8e4d4082f9e097a4986ecf": { + "28bfb0ec8bbf4ed9ad9e36c10a711209": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1635,7 +1685,7 @@ "width": null } }, - "1dae0c9337fd4ae691ff8244f130ae56": { + "2d6e768687dc4dc28928ce8924d56bcd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1688,7 +1738,7 @@ "width": null } }, - "1e00641d45664cf3bcf25bfd9ded9aae": { + "3153aabcab854857ad16e19942f577de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1741,51 +1791,54 @@ "width": null } }, - "25967dd471d241868b18aacfad2f80ad": { + "35c3def975d846cb8e9657d130bb2053": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8f947cac1dfb4430998c372771ae7550", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_922b4f4a09394610b8567cb628b3761d", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e6b9c284e804d2eb99f19f579ad1b9e", + "IPY_MODEL_af3da7864071482eb20d1495b6d5e485", + "IPY_MODEL_aa1c73555d2745d78847a90e52a17ef8" + ], + "layout": "IPY_MODEL_3153aabcab854857ad16e19942f577de", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "26df8d002b6e4defaa70711eea5f0fd4": { + "44cbf671229d421a9d727694cb483666": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f90fa8070f24b898cb5d2e09fde3135", + "placeholder": "​", + "style": "IPY_MODEL_25545b6369f7469b8496bbc09b87b003", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 777kB/s]" } }, - "27adc94a126e42eca62c7fbb62d37a05": { + "44f0a77ddead4cd08e63f03a0b101c14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1838,7 +1891,7 @@ "width": null } }, - "2fe86a5a6d75463ba4a135d1958734d3": { + "52b60c8257c44b00bff406d89f218b97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1891,7 +1944,31 @@ "width": null } }, - "367b28a197ef4109b62bef2f8702343f": { + "535dd9db9e9f4ca3b4e7ad45fce08903": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_00322415c3084906aed3bfc0fc4137e3", + "IPY_MODEL_be64c269bd864fd49e046244b585ce34", + "IPY_MODEL_9341551bd3c14f019a521b285c7176d3" + ], + "layout": "IPY_MODEL_a655f7d4b9274d3281e939b9574224e3", + "tabbable": null, + "tooltip": null + } + }, + "58a6d115314141608cead05e9bc4b0fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1944,7 +2021,7 @@ "width": null } }, - "3e8471b7623e49e9ba8a7f609b92d206": { + "5bb47e01ccd4433e9fb490ca2d72e174": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1997,7 +2074,30 @@ "width": null } }, - "401ef1f8383c4157b95e9dbec0a569d9": { + "5c914c53cb5e4cdeb6d61f06b845f822": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9c110ecb4a3142bd8978bd7c56eeac1c", + "placeholder": "​", + "style": "IPY_MODEL_f9a3626c114b4cc3a8e6528b82f7edc2", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "6366025152fb4914943ecbce38e36e06": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2050,7 +2150,7 @@ "width": null } }, - "4cb8607f3082430cb1873a8893f0bfbb": { + "67d8683d19954d26967f3928959517c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2066,56 +2166,7 @@ "description_width": "" } }, - "50b3b8ea8e764cdbb9e5d6f2db55f8f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cf8efc4c9cb84399a37464a1e187f6eb", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8bf3fcd1affe4651b2701906f33f4629", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "541613fe9afc46ebb8739e58d48f3708": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_27adc94a126e42eca62c7fbb62d37a05", - "placeholder": "​", - "style": "IPY_MODEL_72d82241972f41698dafa969085decb4", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 16.9MB/s]" - } - }, - "58ce53aea9f5489d8d630f058e577b43": { + "6a986303e55648439d134870cc6dc1f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2133,7 +2184,7 @@ "text_color": null } }, - "5caf5e5f16c249e691706889447f5f3c": { + "6b7457ca391342d69cbcfbb176ed3816": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,60 +2237,83 @@ "width": null } }, - "6055405df1504056b09b8a4f02683e06": { - "model_module": "@jupyter-widgets/base", + "6c331c9cb15e400daf71dc964257ce69": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "79aa5a4217f24706a0c8acdccb83bc89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7c86a16b43104acd82b6c23963847f61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cf0f6cfeecb944bbbf95b51dab7ffe38", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_79aa5a4217f24706a0c8acdccb83bc89", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "7ddd689d4714483c82a417f4068e0d50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6bab66ef9ab2415aa6ab316dc2c12977": { + "7f90fa8070f24b898cb5d2e09fde3135": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2292,133 +2366,30 @@ "width": null } }, - "72d82241972f41698dafa969085decb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "73cc609051ff4efd9ad519ad7af38b33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "782dc84a5c5f4cef9c80909afe6e60d4": { + "8e6b9c284e804d2eb99f19f579ad1b9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1797bdb86d8e4d4082f9e097a4986ecf", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_79dabf647200462baaf9667d1281752a", + "layout": "IPY_MODEL_96370a4da75f4d0cacf1c8ce1744a33a", + "placeholder": "​", + "style": "IPY_MODEL_f2159690386f475092a493a5820f3be5", "tabbable": null, "tooltip": null, - "value": 15856877.0 - } - }, - "79dabf647200462baaf9667d1281752a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7b1479cd4d034d77b4fb136713b4747b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a38d3e354f2448dca3a03b59c80e419d", - "IPY_MODEL_50b3b8ea8e764cdbb9e5d6f2db55f8f2", - "IPY_MODEL_541613fe9afc46ebb8739e58d48f3708" - ], - "layout": "IPY_MODEL_2fe86a5a6d75463ba4a135d1958734d3", - "tabbable": null, - "tooltip": null - } - }, - "7dc19e1157c147fa87d344fd7e0eabf6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f514a3b00a1b490b87e1057c9111a96f", - "IPY_MODEL_f72c8b8bccda4a1ea70840ece3838d42", - "IPY_MODEL_dabd132f187041fca1e66330d4fee9b3" - ], - "layout": "IPY_MODEL_367b28a197ef4109b62bef2f8702343f", - "tabbable": null, - "tooltip": null + "value": "classifier.ckpt: 100%" } }, - "7ddf581b1db042f8bf8b87912a9d17b7": { + "8eacd088a4794ed59341ed053be2eca2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2471,41 +2442,30 @@ "width": null } }, - "88a22d3905da41bd811a099ebd0345f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8bf3fcd1affe4651b2701906f33f4629": { + "9341551bd3c14f019a521b285c7176d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_02cba719e59748a9a093722bb87ad7bc", + "placeholder": "​", + "style": "IPY_MODEL_7ddd689d4714483c82a417f4068e0d50", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 143MB/s]" } }, - "8d514a589a884efaac95c4764d625669": { + "96370a4da75f4d0cacf1c8ce1744a33a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2558,7 +2518,7 @@ "width": null } }, - "8f947cac1dfb4430998c372771ae7550": { + "9640155152bb442393cce4d5448854aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2611,7 +2571,30 @@ "width": null } }, - "919fe5295cc140a0beeb66a390a5cd37": { + "9845814b2c264618ad67b3fec548ab50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5bb47e01ccd4433e9fb490ca2d72e174", + "placeholder": "​", + "style": "IPY_MODEL_16faa3717ace402099c0af876b0ea972", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "9c110ecb4a3142bd8978bd7c56eeac1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2664,47 +2647,25 @@ "width": null } }, - "922b4f4a09394610b8567cb628b3761d": { + "9e47ddeb6ba8434bacbf51fc5e3ebc23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "99ad1c23d83a4fdda42df4558f2b566e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_df6d32468abb43dead6ed88e8e3cd4dd", - "IPY_MODEL_782dc84a5c5f4cef9c80909afe6e60d4", - "IPY_MODEL_e21a8880e0be40d59186e562f368c4ab" - ], - "layout": "IPY_MODEL_6bab66ef9ab2415aa6ab316dc2c12977", - "tabbable": null, - "tooltip": null + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9c694de214f04369bdf84ea2a4a53820": { + "a655f7d4b9274d3281e939b9574224e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2757,7 +2718,7 @@ "width": null } }, - "a38d3e354f2448dca3a03b59c80e419d": { + "aa1c73555d2745d78847a90e52a17ef8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2772,15 +2733,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ddf581b1db042f8bf8b87912a9d17b7", + "layout": "IPY_MODEL_8eacd088a4794ed59341ed053be2eca2", "placeholder": "​", - "style": "IPY_MODEL_fa1bb1fa7d6d4fb5ba176d8faeeeba30", + "style": "IPY_MODEL_bc6713ec7b094832b9d6d7bc983795fd", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": " 15.9M/15.9M [00:00<00:00, 43.6MB/s]" } }, - "a72ed5077eff484fb5f20f78db412029": { + "af3da7864071482eb20d1495b6d5e485": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_58a6d115314141608cead05e9bc4b0fc", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d8cede267b5b4bf2ae4853e192b8dcf0", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "b784011f16db4888b20527c0b09c7995": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2798,48 +2785,77 @@ "text_color": null } }, - "bd8756a5451d4230a2e3c764128f0e61": { + "bc6713ec7b094832b9d6d7bc983795fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bdbb6dec26e24b4798b6f5d0034262d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6055405df1504056b09b8a4f02683e06", - "placeholder": "​", - "style": "IPY_MODEL_c1ac0d0617f94eb1a3de23bded46234e", + "layout": "IPY_MODEL_6366025152fb4914943ecbce38e36e06", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc74ddb244b84b949aced140694f4ce9", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": 3201.0 } }, - "c1ac0d0617f94eb1a3de23bded46234e": { + "be64c269bd864fd49e046244b585ce34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6b7457ca391342d69cbcfbb176ed3816", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6c331c9cb15e400daf71dc964257ce69", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 } }, - "c5b79d34ba494a079c8e8003c353bd42": { + "cf0f6cfeecb944bbbf95b51dab7ffe38": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2892,7 +2908,25 @@ "width": null } }, - "c5d242464a974d22a0e52330a3d839ba": { + "d296361623744768ba3fb4c5a26a3376": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d6b0edcd2bb8437a89117c17518bed85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2907,15 +2941,140 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5caf5e5f16c249e691706889447f5f3c", + "layout": "IPY_MODEL_9640155152bb442393cce4d5448854aa", "placeholder": "​", - "style": "IPY_MODEL_73cc609051ff4efd9ad519ad7af38b33", + "style": "IPY_MODEL_9e47ddeb6ba8434bacbf51fc5e3ebc23", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 511kB/s]" + "value": " 2.04k/2.04k [00:00<00:00, 473kB/s]" + } + }, + "d8cede267b5b4bf2ae4853e192b8dcf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d9e6ae1680db4f439f491945b731959c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_28bfb0ec8bbf4ed9ad9e36c10a711209", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67d8683d19954d26967f3928959517c7", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "e1de5a271a36422ba42b39bbb19705be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9845814b2c264618ad67b3fec548ab50", + "IPY_MODEL_bdbb6dec26e24b4798b6f5d0034262d3", + "IPY_MODEL_44cbf671229d421a9d727694cb483666" + ], + "layout": "IPY_MODEL_fcef3c54ae3a4557aa447cc447b97160", + "tabbable": null, + "tooltip": null + } + }, + "f105df57e4d44ad0b56e4c0d23447c9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52b60c8257c44b00bff406d89f218b97", + "placeholder": "​", + "style": "IPY_MODEL_d296361623744768ba3fb4c5a26a3376", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "f2159690386f475092a493a5820f3be5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cf8efc4c9cb84399a37464a1e187f6eb": { + "f9a3626c114b4cc3a8e6528b82f7edc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fb90d513176f4f53baa7d68bd99c706d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2968,7 +3127,7 @@ "width": null } }, - "d76f3855ae764e8c8b350d2f8f3fe336": { + "fc74ddb244b84b949aced140694f4ce9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2984,30 +3143,7 @@ "description_width": "" } }, - "dabd132f187041fca1e66330d4fee9b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3e8471b7623e49e9ba8a7f609b92d206", - "placeholder": "​", - "style": "IPY_MODEL_88a22d3905da41bd811a099ebd0345f2", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 821kB/s]" - } - }, - "de8656deecc2472a95cfa864289cf715": { + "fcef3c54ae3a4557aa447cc447b97160": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3059,142 +3195,6 @@ "visibility": null, "width": null } - }, - "df6d32468abb43dead6ed88e8e3cd4dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c5b79d34ba494a079c8e8003c353bd42", - "placeholder": "​", - "style": "IPY_MODEL_a72ed5077eff484fb5f20f78db412029", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "e21a8880e0be40d59186e562f368c4ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8d514a589a884efaac95c4764d625669", - "placeholder": "​", - "style": "IPY_MODEL_58ce53aea9f5489d8d630f058e577b43", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 223MB/s]" - } - }, - "f514a3b00a1b490b87e1057c9111a96f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1dae0c9337fd4ae691ff8244f130ae56", - "placeholder": "​", - "style": "IPY_MODEL_26df8d002b6e4defaa70711eea5f0fd4", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "f72c8b8bccda4a1ea70840ece3838d42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_919fe5295cc140a0beeb66a390a5cd37", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d76f3855ae764e8c8b350d2f8f3fe336", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "f90e0c618515482bb424955efd1b841c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1e00641d45664cf3bcf25bfd9ded9aae", - "placeholder": "​", - "style": "IPY_MODEL_09e345de2ab44e64aa9dda42f354fc5e", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "fa1bb1fa7d6d4fb5ba176d8faeeeba30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 11f86f2cd..ed634ab46 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1076,7 +1076,7 @@

    Functionality 2: Specifying nondefault arguments
    -
    +

    @@ -1472,7 +1472,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"290ef15ee3164f8bb629fc5c1469d79f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd9e34d2f6ae481eae9840f795c74766": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cba59804ba2948f097754d198de05ce6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_290ef15ee3164f8bb629fc5c1469d79f", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fd9e34d2f6ae481eae9840f795c74766", "tabbable": null, "tooltip": null, "value": 132.0}}, "9885a0d19caf4000841fe5d767b5faa6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "969462de888a4b3a9d8b18e1c4e88a9d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "08306504fafe48699a259796de09b33d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9885a0d19caf4000841fe5d767b5faa6", "placeholder": "\u200b", "style": "IPY_MODEL_969462de888a4b3a9d8b18e1c4e88a9d", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%"}}, "9f85b76337c34b79b5e6d1475d27f33f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3e6e876426fb437a83b89f3a9035d7b3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "66179e16e7cd44fda0c21fa2d600d51a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9f85b76337c34b79b5e6d1475d27f33f", "placeholder": "\u200b", "style": "IPY_MODEL_3e6e876426fb437a83b89f3a9035d7b3", "tabbable": null, "tooltip": null, "value": " 132/132 [00:00<00:00, 10263.01 examples/s]"}}, "9da003a7f5744b429af2bcf754a04312": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc5fad859ca84d33abae2fa882ff86d0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_08306504fafe48699a259796de09b33d", "IPY_MODEL_cba59804ba2948f097754d198de05ce6", "IPY_MODEL_66179e16e7cd44fda0c21fa2d600d51a"], "layout": "IPY_MODEL_9da003a7f5744b429af2bcf754a04312", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"7463d397fb66435b862c806752e8051f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dae2a3d3d8874a4ba9d1fa896add7e1c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "65ee8fb444c142abba93197926106271": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7463d397fb66435b862c806752e8051f", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dae2a3d3d8874a4ba9d1fa896add7e1c", "tabbable": null, "tooltip": null, "value": 132.0}}, "a2fc17fdc07f4cacbcd755f78b60a122": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5da09ac927b24c5ab3967a0c0d76acc7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9d1db50e4ed44d1191b342f425d4094f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a2fc17fdc07f4cacbcd755f78b60a122", "placeholder": "\u200b", "style": "IPY_MODEL_5da09ac927b24c5ab3967a0c0d76acc7", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%"}}, "76182b4915a146ceabb58afb55f55c48": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f4c70def822414b8adb927ca8035b20": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a248232e641849d5a815a4608c081bb3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_76182b4915a146ceabb58afb55f55c48", "placeholder": "\u200b", "style": "IPY_MODEL_3f4c70def822414b8adb927ca8035b20", "tabbable": null, "tooltip": null, "value": " 132/132 [00:00<00:00, 10475.25 examples/s]"}}, "5820d61831c54177ac9cbf05159b6638": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "856677d31c574d31b5d2d75aa30a01f8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9d1db50e4ed44d1191b342f425d4094f", "IPY_MODEL_65ee8fb444c142abba93197926106271", "IPY_MODEL_a248232e641849d5a815a4608c081bb3"], "layout": "IPY_MODEL_5820d61831c54177ac9cbf05159b6638", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 5b5b6c3f5..fc6778fa9 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:03.904942Z", - "iopub.status.busy": "2024-02-08T04:24:03.904776Z", - "iopub.status.idle": "2024-02-08T04:24:04.993867Z", - "shell.execute_reply": "2024-02-08T04:24:04.993384Z" + "iopub.execute_input": "2024-02-08T05:10:32.271252Z", + "iopub.status.busy": "2024-02-08T05:10:32.270834Z", + "iopub.status.idle": "2024-02-08T05:10:33.407899Z", + "shell.execute_reply": "2024-02-08T05:10:33.407308Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:04.996272Z", - "iopub.status.busy": "2024-02-08T04:24:04.996028Z", - "iopub.status.idle": "2024-02-08T04:24:04.999384Z", - "shell.execute_reply": "2024-02-08T04:24:04.998983Z" + "iopub.execute_input": "2024-02-08T05:10:33.410461Z", + "iopub.status.busy": "2024-02-08T05:10:33.410017Z", + "iopub.status.idle": "2024-02-08T05:10:33.413059Z", + "shell.execute_reply": "2024-02-08T05:10:33.412623Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.001458Z", - "iopub.status.busy": "2024-02-08T04:24:05.001094Z", - "iopub.status.idle": "2024-02-08T04:24:05.010073Z", - "shell.execute_reply": "2024-02-08T04:24:05.009530Z" + "iopub.execute_input": "2024-02-08T05:10:33.415134Z", + "iopub.status.busy": "2024-02-08T05:10:33.414806Z", + "iopub.status.idle": "2024-02-08T05:10:33.423477Z", + "shell.execute_reply": "2024-02-08T05:10:33.422903Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.012117Z", - "iopub.status.busy": "2024-02-08T04:24:05.011944Z", - "iopub.status.idle": "2024-02-08T04:24:05.016583Z", - "shell.execute_reply": "2024-02-08T04:24:05.016032Z" + "iopub.execute_input": "2024-02-08T05:10:33.425487Z", + "iopub.status.busy": "2024-02-08T05:10:33.425188Z", + "iopub.status.idle": "2024-02-08T05:10:33.430413Z", + "shell.execute_reply": "2024-02-08T05:10:33.429836Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.018843Z", - "iopub.status.busy": "2024-02-08T04:24:05.018524Z", - "iopub.status.idle": "2024-02-08T04:24:05.198798Z", - "shell.execute_reply": "2024-02-08T04:24:05.198324Z" + "iopub.execute_input": "2024-02-08T05:10:33.432570Z", + "iopub.status.busy": "2024-02-08T05:10:33.432244Z", + "iopub.status.idle": "2024-02-08T05:10:33.622201Z", + "shell.execute_reply": "2024-02-08T05:10:33.621689Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.201211Z", - "iopub.status.busy": "2024-02-08T04:24:05.200875Z", - "iopub.status.idle": "2024-02-08T04:24:05.514597Z", - "shell.execute_reply": "2024-02-08T04:24:05.514050Z" + "iopub.execute_input": "2024-02-08T05:10:33.624564Z", + "iopub.status.busy": "2024-02-08T05:10:33.624249Z", + "iopub.status.idle": "2024-02-08T05:10:34.001363Z", + "shell.execute_reply": "2024-02-08T05:10:34.000781Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.516964Z", - "iopub.status.busy": "2024-02-08T04:24:05.516580Z", - "iopub.status.idle": "2024-02-08T04:24:05.539784Z", - "shell.execute_reply": "2024-02-08T04:24:05.539227Z" + "iopub.execute_input": "2024-02-08T05:10:34.003609Z", + "iopub.status.busy": "2024-02-08T05:10:34.003270Z", + "iopub.status.idle": "2024-02-08T05:10:34.027061Z", + "shell.execute_reply": "2024-02-08T05:10:34.026619Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.541965Z", - "iopub.status.busy": "2024-02-08T04:24:05.541548Z", - "iopub.status.idle": "2024-02-08T04:24:05.555212Z", - "shell.execute_reply": "2024-02-08T04:24:05.554675Z" + "iopub.execute_input": "2024-02-08T05:10:34.029263Z", + "iopub.status.busy": "2024-02-08T05:10:34.028920Z", + "iopub.status.idle": "2024-02-08T05:10:34.043155Z", + "shell.execute_reply": "2024-02-08T05:10:34.042687Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.557355Z", - "iopub.status.busy": "2024-02-08T04:24:05.557068Z", - "iopub.status.idle": "2024-02-08T04:24:07.165049Z", - "shell.execute_reply": "2024-02-08T04:24:07.164421Z" + "iopub.execute_input": "2024-02-08T05:10:34.045627Z", + "iopub.status.busy": "2024-02-08T05:10:34.045279Z", + "iopub.status.idle": "2024-02-08T05:10:35.722412Z", + "shell.execute_reply": "2024-02-08T05:10:35.721793Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.167703Z", - "iopub.status.busy": "2024-02-08T04:24:07.167183Z", - "iopub.status.idle": "2024-02-08T04:24:07.189438Z", - "shell.execute_reply": "2024-02-08T04:24:07.188870Z" + "iopub.execute_input": "2024-02-08T05:10:35.725162Z", + "iopub.status.busy": "2024-02-08T05:10:35.724516Z", + "iopub.status.idle": "2024-02-08T05:10:35.746556Z", + "shell.execute_reply": "2024-02-08T05:10:35.746094Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.191375Z", - "iopub.status.busy": "2024-02-08T04:24:07.191196Z", - "iopub.status.idle": "2024-02-08T04:24:07.209755Z", - "shell.execute_reply": "2024-02-08T04:24:07.209149Z" + "iopub.execute_input": "2024-02-08T05:10:35.748643Z", + "iopub.status.busy": "2024-02-08T05:10:35.748321Z", + "iopub.status.idle": "2024-02-08T05:10:35.766887Z", + "shell.execute_reply": "2024-02-08T05:10:35.766296Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:359: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.211886Z", - "iopub.status.busy": "2024-02-08T04:24:07.211462Z", - "iopub.status.idle": "2024-02-08T04:24:07.224227Z", - "shell.execute_reply": "2024-02-08T04:24:07.223745Z" + "iopub.execute_input": "2024-02-08T05:10:35.769395Z", + "iopub.status.busy": "2024-02-08T05:10:35.769056Z", + "iopub.status.idle": "2024-02-08T05:10:35.781775Z", + "shell.execute_reply": "2024-02-08T05:10:35.781323Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.226230Z", - "iopub.status.busy": "2024-02-08T04:24:07.226057Z", - "iopub.status.idle": "2024-02-08T04:24:07.249153Z", - "shell.execute_reply": "2024-02-08T04:24:07.248627Z" + "iopub.execute_input": "2024-02-08T05:10:35.783779Z", + "iopub.status.busy": "2024-02-08T05:10:35.783449Z", + "iopub.status.idle": "2024-02-08T05:10:35.806063Z", + "shell.execute_reply": "2024-02-08T05:10:35.805517Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fc5fad859ca84d33abae2fa882ff86d0", + "model_id": "856677d31c574d31b5d2d75aa30a01f8", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.251221Z", - "iopub.status.busy": "2024-02-08T04:24:07.250904Z", - "iopub.status.idle": "2024-02-08T04:24:07.264933Z", - "shell.execute_reply": "2024-02-08T04:24:07.264401Z" + "iopub.execute_input": "2024-02-08T05:10:35.808253Z", + "iopub.status.busy": "2024-02-08T05:10:35.807946Z", + "iopub.status.idle": "2024-02-08T05:10:35.821040Z", + "shell.execute_reply": "2024-02-08T05:10:35.820504Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.266890Z", - "iopub.status.busy": "2024-02-08T04:24:07.266714Z", - "iopub.status.idle": "2024-02-08T04:24:07.272307Z", - "shell.execute_reply": "2024-02-08T04:24:07.271878Z" + "iopub.execute_input": "2024-02-08T05:10:35.823282Z", + "iopub.status.busy": "2024-02-08T05:10:35.822896Z", + "iopub.status.idle": "2024-02-08T05:10:35.828664Z", + "shell.execute_reply": "2024-02-08T05:10:35.828126Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.274386Z", - "iopub.status.busy": "2024-02-08T04:24:07.274018Z", - "iopub.status.idle": "2024-02-08T04:24:07.290456Z", - "shell.execute_reply": "2024-02-08T04:24:07.289903Z" + "iopub.execute_input": "2024-02-08T05:10:35.830614Z", + "iopub.status.busy": "2024-02-08T05:10:35.830437Z", + "iopub.status.idle": "2024-02-08T05:10:35.847232Z", + "shell.execute_reply": "2024-02-08T05:10:35.846723Z" } }, "outputs": [ @@ -1430,30 +1430,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08306504fafe48699a259796de09b33d": { + "3f4c70def822414b8adb927ca8035b20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9885a0d19caf4000841fe5d767b5faa6", - "placeholder": "​", - "style": "IPY_MODEL_969462de888a4b3a9d8b18e1c4e88a9d", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "290ef15ee3164f8bb629fc5c1469d79f": { + "5820d61831c54177ac9cbf05159b6638": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1506,7 +1501,7 @@ "width": null } }, - "3e6e876426fb437a83b89f3a9035d7b3": { + "5da09ac927b24c5ab3967a0c0d76acc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1524,48 +1519,33 @@ "text_color": null } }, - "66179e16e7cd44fda0c21fa2d600d51a": { + "65ee8fb444c142abba93197926106271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9f85b76337c34b79b5e6d1475d27f33f", - "placeholder": "​", - "style": "IPY_MODEL_3e6e876426fb437a83b89f3a9035d7b3", + "layout": "IPY_MODEL_7463d397fb66435b862c806752e8051f", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dae2a3d3d8874a4ba9d1fa896add7e1c", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 10263.01 examples/s]" - } - }, - "969462de888a4b3a9d8b18e1c4e88a9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 132.0 } }, - "9885a0d19caf4000841fe5d767b5faa6": { + "7463d397fb66435b862c806752e8051f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1618,7 +1598,7 @@ "width": null } }, - "9da003a7f5744b429af2bcf754a04312": { + "76182b4915a146ceabb58afb55f55c48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1671,7 +1651,77 @@ "width": null } }, - "9f85b76337c34b79b5e6d1475d27f33f": { + "856677d31c574d31b5d2d75aa30a01f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9d1db50e4ed44d1191b342f425d4094f", + "IPY_MODEL_65ee8fb444c142abba93197926106271", + "IPY_MODEL_a248232e641849d5a815a4608c081bb3" + ], + "layout": "IPY_MODEL_5820d61831c54177ac9cbf05159b6638", + "tabbable": null, + "tooltip": null + } + }, + "9d1db50e4ed44d1191b342f425d4094f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a2fc17fdc07f4cacbcd755f78b60a122", + "placeholder": "​", + "style": "IPY_MODEL_5da09ac927b24c5ab3967a0c0d76acc7", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "a248232e641849d5a815a4608c081bb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76182b4915a146ceabb58afb55f55c48", + "placeholder": "​", + "style": "IPY_MODEL_3f4c70def822414b8adb927ca8035b20", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 10475.25 examples/s]" + } + }, + "a2fc17fdc07f4cacbcd755f78b60a122": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1724,57 +1774,7 @@ "width": null } }, - "cba59804ba2948f097754d198de05ce6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_290ef15ee3164f8bb629fc5c1469d79f", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd9e34d2f6ae481eae9840f795c74766", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "fc5fad859ca84d33abae2fa882ff86d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_08306504fafe48699a259796de09b33d", - "IPY_MODEL_cba59804ba2948f097754d198de05ce6", - "IPY_MODEL_66179e16e7cd44fda0c21fa2d600d51a" - ], - "layout": "IPY_MODEL_9da003a7f5744b429af2bcf754a04312", - "tabbable": null, - "tooltip": null - } - }, - "fd9e34d2f6ae481eae9840f795c74766": { + "dae2a3d3d8874a4ba9d1fa896add7e1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index ddd9a0288..25e9067f2 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:10.077451Z", - "iopub.status.busy": "2024-02-08T04:24:10.077285Z", - "iopub.status.idle": "2024-02-08T04:24:11.155222Z", - "shell.execute_reply": "2024-02-08T04:24:11.154747Z" + "iopub.execute_input": "2024-02-08T05:10:38.472695Z", + "iopub.status.busy": "2024-02-08T05:10:38.472201Z", + "iopub.status.idle": "2024-02-08T05:10:39.611994Z", + "shell.execute_reply": "2024-02-08T05:10:39.611431Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.157851Z", - "iopub.status.busy": "2024-02-08T04:24:11.157344Z", - "iopub.status.idle": "2024-02-08T04:24:11.160350Z", - "shell.execute_reply": "2024-02-08T04:24:11.159894Z" + "iopub.execute_input": "2024-02-08T05:10:39.614554Z", + "iopub.status.busy": "2024-02-08T05:10:39.614141Z", + "iopub.status.idle": "2024-02-08T05:10:39.617072Z", + "shell.execute_reply": "2024-02-08T05:10:39.616573Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.162368Z", - "iopub.status.busy": "2024-02-08T04:24:11.162049Z", - "iopub.status.idle": "2024-02-08T04:24:11.171024Z", - "shell.execute_reply": "2024-02-08T04:24:11.170577Z" + "iopub.execute_input": "2024-02-08T05:10:39.619338Z", + "iopub.status.busy": "2024-02-08T05:10:39.618908Z", + "iopub.status.idle": "2024-02-08T05:10:39.627921Z", + "shell.execute_reply": "2024-02-08T05:10:39.627474Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.172948Z", - "iopub.status.busy": "2024-02-08T04:24:11.172636Z", - "iopub.status.idle": "2024-02-08T04:24:11.177558Z", - "shell.execute_reply": "2024-02-08T04:24:11.177025Z" + "iopub.execute_input": "2024-02-08T05:10:39.629787Z", + "iopub.status.busy": "2024-02-08T05:10:39.629608Z", + "iopub.status.idle": "2024-02-08T05:10:39.634350Z", + "shell.execute_reply": "2024-02-08T05:10:39.633956Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.179804Z", - "iopub.status.busy": "2024-02-08T04:24:11.179485Z", - "iopub.status.idle": "2024-02-08T04:24:11.359601Z", - "shell.execute_reply": "2024-02-08T04:24:11.359130Z" + "iopub.execute_input": "2024-02-08T05:10:39.636490Z", + "iopub.status.busy": "2024-02-08T05:10:39.636186Z", + "iopub.status.idle": "2024-02-08T05:10:39.818117Z", + "shell.execute_reply": "2024-02-08T05:10:39.817616Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.361673Z", - "iopub.status.busy": "2024-02-08T04:24:11.361342Z", - "iopub.status.idle": "2024-02-08T04:24:11.674092Z", - "shell.execute_reply": "2024-02-08T04:24:11.673528Z" + "iopub.execute_input": "2024-02-08T05:10:39.820529Z", + "iopub.status.busy": "2024-02-08T05:10:39.820250Z", + "iopub.status.idle": "2024-02-08T05:10:40.140880Z", + "shell.execute_reply": "2024-02-08T05:10:40.140326Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.676225Z", - "iopub.status.busy": "2024-02-08T04:24:11.675875Z", - "iopub.status.idle": "2024-02-08T04:24:11.678464Z", - "shell.execute_reply": "2024-02-08T04:24:11.678032Z" + "iopub.execute_input": "2024-02-08T05:10:40.142919Z", + "iopub.status.busy": "2024-02-08T05:10:40.142708Z", + "iopub.status.idle": "2024-02-08T05:10:40.145476Z", + "shell.execute_reply": "2024-02-08T05:10:40.144960Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.680597Z", - "iopub.status.busy": "2024-02-08T04:24:11.680276Z", - "iopub.status.idle": "2024-02-08T04:24:11.714901Z", - "shell.execute_reply": "2024-02-08T04:24:11.714446Z" + "iopub.execute_input": "2024-02-08T05:10:40.147667Z", + "iopub.status.busy": "2024-02-08T05:10:40.147230Z", + "iopub.status.idle": "2024-02-08T05:10:40.182705Z", + "shell.execute_reply": "2024-02-08T05:10:40.182059Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.716854Z", - "iopub.status.busy": "2024-02-08T04:24:11.716532Z", - "iopub.status.idle": "2024-02-08T04:24:13.336051Z", - "shell.execute_reply": "2024-02-08T04:24:13.335483Z" + "iopub.execute_input": "2024-02-08T05:10:40.184847Z", + "iopub.status.busy": "2024-02-08T05:10:40.184645Z", + "iopub.status.idle": "2024-02-08T05:10:41.854206Z", + "shell.execute_reply": "2024-02-08T05:10:41.853603Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.338787Z", - "iopub.status.busy": "2024-02-08T04:24:13.338148Z", - "iopub.status.idle": "2024-02-08T04:24:13.354146Z", - "shell.execute_reply": "2024-02-08T04:24:13.353618Z" + "iopub.execute_input": "2024-02-08T05:10:41.856606Z", + "iopub.status.busy": "2024-02-08T05:10:41.856141Z", + "iopub.status.idle": "2024-02-08T05:10:41.872507Z", + "shell.execute_reply": "2024-02-08T05:10:41.872075Z" } }, "outputs": [ @@ -834,10 +834,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.356249Z", - "iopub.status.busy": "2024-02-08T04:24:13.355807Z", - "iopub.status.idle": "2024-02-08T04:24:13.361997Z", - "shell.execute_reply": "2024-02-08T04:24:13.361579Z" + "iopub.execute_input": "2024-02-08T05:10:41.874528Z", + "iopub.status.busy": "2024-02-08T05:10:41.874207Z", + "iopub.status.idle": "2024-02-08T05:10:41.880746Z", + "shell.execute_reply": "2024-02-08T05:10:41.880305Z" } }, "outputs": [ @@ -941,10 +941,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.363802Z", - "iopub.status.busy": "2024-02-08T04:24:13.363629Z", - "iopub.status.idle": "2024-02-08T04:24:13.369247Z", - "shell.execute_reply": "2024-02-08T04:24:13.368746Z" + "iopub.execute_input": "2024-02-08T05:10:41.882767Z", + "iopub.status.busy": "2024-02-08T05:10:41.882376Z", + "iopub.status.idle": "2024-02-08T05:10:41.888174Z", + "shell.execute_reply": "2024-02-08T05:10:41.887623Z" } }, "outputs": [ @@ -1011,10 +1011,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.371215Z", - "iopub.status.busy": "2024-02-08T04:24:13.370889Z", - "iopub.status.idle": "2024-02-08T04:24:13.380285Z", - "shell.execute_reply": "2024-02-08T04:24:13.379818Z" + "iopub.execute_input": "2024-02-08T05:10:41.890106Z", + "iopub.status.busy": "2024-02-08T05:10:41.889803Z", + "iopub.status.idle": "2024-02-08T05:10:41.899337Z", + "shell.execute_reply": "2024-02-08T05:10:41.898883Z" } }, "outputs": [ @@ -1187,10 +1187,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.382328Z", - "iopub.status.busy": "2024-02-08T04:24:13.382008Z", - "iopub.status.idle": "2024-02-08T04:24:13.390350Z", - "shell.execute_reply": "2024-02-08T04:24:13.389806Z" + "iopub.execute_input": "2024-02-08T05:10:41.901301Z", + "iopub.status.busy": "2024-02-08T05:10:41.901001Z", + "iopub.status.idle": "2024-02-08T05:10:41.910010Z", + "shell.execute_reply": "2024-02-08T05:10:41.909474Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.392298Z", - "iopub.status.busy": "2024-02-08T04:24:13.392122Z", - "iopub.status.idle": "2024-02-08T04:24:13.398813Z", - "shell.execute_reply": "2024-02-08T04:24:13.398333Z" + "iopub.execute_input": "2024-02-08T05:10:41.912045Z", + "iopub.status.busy": "2024-02-08T05:10:41.911721Z", + "iopub.status.idle": "2024-02-08T05:10:41.918528Z", + "shell.execute_reply": "2024-02-08T05:10:41.917933Z" }, "scrolled": true }, @@ -1434,10 +1434,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.400635Z", - "iopub.status.busy": "2024-02-08T04:24:13.400463Z", - "iopub.status.idle": "2024-02-08T04:24:13.409484Z", - "shell.execute_reply": "2024-02-08T04:24:13.409030Z" + "iopub.execute_input": "2024-02-08T05:10:41.920453Z", + "iopub.status.busy": "2024-02-08T05:10:41.920278Z", + "iopub.status.idle": "2024-02-08T05:10:41.929219Z", + "shell.execute_reply": "2024-02-08T05:10:41.928680Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index c71974eb9..6558306c0 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:15.765748Z", - "iopub.status.busy": "2024-02-08T04:24:15.765574Z", - "iopub.status.idle": "2024-02-08T04:24:16.795070Z", - "shell.execute_reply": "2024-02-08T04:24:16.794525Z" + "iopub.execute_input": "2024-02-08T05:10:44.644313Z", + "iopub.status.busy": "2024-02-08T05:10:44.643965Z", + "iopub.status.idle": "2024-02-08T05:10:45.688616Z", + "shell.execute_reply": "2024-02-08T05:10:45.688118Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:16.797646Z", - "iopub.status.busy": "2024-02-08T04:24:16.797376Z", - "iopub.status.idle": "2024-02-08T04:24:16.830922Z", - "shell.execute_reply": "2024-02-08T04:24:16.830494Z" + "iopub.execute_input": "2024-02-08T05:10:45.691313Z", + "iopub.status.busy": "2024-02-08T05:10:45.690729Z", + "iopub.status.idle": "2024-02-08T05:10:45.724820Z", + "shell.execute_reply": "2024-02-08T05:10:45.724373Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:16.833228Z", - "iopub.status.busy": "2024-02-08T04:24:16.832829Z", - "iopub.status.idle": "2024-02-08T04:24:17.007557Z", - "shell.execute_reply": "2024-02-08T04:24:17.007108Z" + "iopub.execute_input": "2024-02-08T05:10:45.727160Z", + "iopub.status.busy": "2024-02-08T05:10:45.726886Z", + "iopub.status.idle": "2024-02-08T05:10:46.053280Z", + "shell.execute_reply": "2024-02-08T05:10:46.052685Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.009572Z", - "iopub.status.busy": "2024-02-08T04:24:17.009249Z", - "iopub.status.idle": "2024-02-08T04:24:17.013364Z", - "shell.execute_reply": "2024-02-08T04:24:17.012916Z" + "iopub.execute_input": "2024-02-08T05:10:46.055274Z", + "iopub.status.busy": "2024-02-08T05:10:46.055096Z", + "iopub.status.idle": "2024-02-08T05:10:46.059483Z", + "shell.execute_reply": "2024-02-08T05:10:46.059061Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.015436Z", - "iopub.status.busy": "2024-02-08T04:24:17.015052Z", - "iopub.status.idle": "2024-02-08T04:24:17.022947Z", - "shell.execute_reply": "2024-02-08T04:24:17.022532Z" + "iopub.execute_input": "2024-02-08T05:10:46.061356Z", + "iopub.status.busy": "2024-02-08T05:10:46.061180Z", + "iopub.status.idle": "2024-02-08T05:10:46.068998Z", + "shell.execute_reply": "2024-02-08T05:10:46.068462Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.025093Z", - "iopub.status.busy": "2024-02-08T04:24:17.024762Z", - "iopub.status.idle": "2024-02-08T04:24:17.027322Z", - "shell.execute_reply": "2024-02-08T04:24:17.026869Z" + "iopub.execute_input": "2024-02-08T05:10:46.071329Z", + "iopub.status.busy": "2024-02-08T05:10:46.070934Z", + "iopub.status.idle": "2024-02-08T05:10:46.073569Z", + "shell.execute_reply": "2024-02-08T05:10:46.073034Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.029290Z", - "iopub.status.busy": "2024-02-08T04:24:17.028919Z", - "iopub.status.idle": "2024-02-08T04:24:19.950389Z", - "shell.execute_reply": "2024-02-08T04:24:19.949778Z" + "iopub.execute_input": "2024-02-08T05:10:46.075693Z", + "iopub.status.busy": "2024-02-08T05:10:46.075311Z", + "iopub.status.idle": "2024-02-08T05:10:49.069168Z", + "shell.execute_reply": "2024-02-08T05:10:49.068529Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:19.952956Z", - "iopub.status.busy": "2024-02-08T04:24:19.952760Z", - "iopub.status.idle": "2024-02-08T04:24:19.961906Z", - "shell.execute_reply": "2024-02-08T04:24:19.961482Z" + "iopub.execute_input": "2024-02-08T05:10:49.072035Z", + "iopub.status.busy": "2024-02-08T05:10:49.071566Z", + "iopub.status.idle": "2024-02-08T05:10:49.081166Z", + "shell.execute_reply": "2024-02-08T05:10:49.080626Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:19.963757Z", - "iopub.status.busy": "2024-02-08T04:24:19.963583Z", - "iopub.status.idle": "2024-02-08T04:24:21.654271Z", - "shell.execute_reply": "2024-02-08T04:24:21.653591Z" + "iopub.execute_input": "2024-02-08T05:10:49.083306Z", + "iopub.status.busy": "2024-02-08T05:10:49.082938Z", + "iopub.status.idle": "2024-02-08T05:10:50.854706Z", + "shell.execute_reply": "2024-02-08T05:10:50.854101Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.658232Z", - "iopub.status.busy": "2024-02-08T04:24:21.656789Z", - "iopub.status.idle": "2024-02-08T04:24:21.678656Z", - "shell.execute_reply": "2024-02-08T04:24:21.678162Z" + "iopub.execute_input": "2024-02-08T05:10:50.858580Z", + "iopub.status.busy": "2024-02-08T05:10:50.857300Z", + "iopub.status.idle": "2024-02-08T05:10:50.879437Z", + "shell.execute_reply": "2024-02-08T05:10:50.878954Z" }, "scrolled": true }, @@ -604,10 +604,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.682071Z", - "iopub.status.busy": "2024-02-08T04:24:21.681164Z", - "iopub.status.idle": "2024-02-08T04:24:21.692054Z", - "shell.execute_reply": "2024-02-08T04:24:21.691557Z" + "iopub.execute_input": "2024-02-08T05:10:50.882938Z", + "iopub.status.busy": "2024-02-08T05:10:50.882032Z", + "iopub.status.idle": "2024-02-08T05:10:50.893041Z", + "shell.execute_reply": "2024-02-08T05:10:50.892562Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.695395Z", - "iopub.status.busy": "2024-02-08T04:24:21.694500Z", - "iopub.status.idle": "2024-02-08T04:24:21.706939Z", - "shell.execute_reply": "2024-02-08T04:24:21.706457Z" + "iopub.execute_input": "2024-02-08T05:10:50.896506Z", + "iopub.status.busy": "2024-02-08T05:10:50.895585Z", + "iopub.status.idle": "2024-02-08T05:10:50.908611Z", + "shell.execute_reply": "2024-02-08T05:10:50.908107Z" } }, "outputs": [ @@ -843,10 +843,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.710338Z", - "iopub.status.busy": "2024-02-08T04:24:21.709437Z", - "iopub.status.idle": "2024-02-08T04:24:21.720293Z", - "shell.execute_reply": "2024-02-08T04:24:21.719792Z" + "iopub.execute_input": "2024-02-08T05:10:50.912109Z", + "iopub.status.busy": "2024-02-08T05:10:50.911187Z", + "iopub.status.idle": "2024-02-08T05:10:50.922679Z", + "shell.execute_reply": "2024-02-08T05:10:50.922154Z" } }, "outputs": [ @@ -960,10 +960,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.723706Z", - "iopub.status.busy": "2024-02-08T04:24:21.722805Z", - "iopub.status.idle": "2024-02-08T04:24:21.735120Z", - "shell.execute_reply": "2024-02-08T04:24:21.734643Z" + "iopub.execute_input": "2024-02-08T05:10:50.926355Z", + "iopub.status.busy": "2024-02-08T05:10:50.925435Z", + "iopub.status.idle": "2024-02-08T05:10:50.938703Z", + "shell.execute_reply": "2024-02-08T05:10:50.938205Z" } }, "outputs": [ @@ -1074,10 +1074,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.738473Z", - "iopub.status.busy": "2024-02-08T04:24:21.737583Z", - "iopub.status.idle": "2024-02-08T04:24:21.746396Z", - "shell.execute_reply": "2024-02-08T04:24:21.745995Z" + "iopub.execute_input": "2024-02-08T05:10:50.942221Z", + "iopub.status.busy": "2024-02-08T05:10:50.941325Z", + "iopub.status.idle": "2024-02-08T05:10:50.949786Z", + "shell.execute_reply": "2024-02-08T05:10:50.949253Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.748522Z", - "iopub.status.busy": "2024-02-08T04:24:21.748205Z", - "iopub.status.idle": "2024-02-08T04:24:21.754462Z", - "shell.execute_reply": "2024-02-08T04:24:21.753990Z" + "iopub.execute_input": "2024-02-08T05:10:50.952037Z", + "iopub.status.busy": "2024-02-08T05:10:50.951863Z", + "iopub.status.idle": "2024-02-08T05:10:50.959214Z", + "shell.execute_reply": "2024-02-08T05:10:50.958580Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.756270Z", - "iopub.status.busy": "2024-02-08T04:24:21.756105Z", - "iopub.status.idle": "2024-02-08T04:24:21.762342Z", - "shell.execute_reply": "2024-02-08T04:24:21.761938Z" + "iopub.execute_input": "2024-02-08T05:10:50.961632Z", + "iopub.status.busy": "2024-02-08T05:10:50.961204Z", + "iopub.status.idle": "2024-02-08T05:10:50.967968Z", + "shell.execute_reply": "2024-02-08T05:10:50.967526Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 3c0a98ad6..c52d49783 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -706,7 +706,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'lost_or_stolen_phone', 'cancel_transfer', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_about_to_expire', 'change_pin', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies'}
    +Classes: {'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire'}
     

    Let’s view the i-th example in the dataset:

    @@ -753,43 +753,43 @@

    2. Load and format the text dataset

    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -1523,7 +1523,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index a343bc01a..cde728b85 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:24.152987Z", - "iopub.status.busy": "2024-02-08T04:24:24.152814Z", - "iopub.status.idle": "2024-02-08T04:24:26.979321Z", - "shell.execute_reply": "2024-02-08T04:24:26.978774Z" + "iopub.execute_input": "2024-02-08T05:10:53.675209Z", + "iopub.status.busy": "2024-02-08T05:10:53.675032Z", + "iopub.status.idle": "2024-02-08T05:10:56.695488Z", + "shell.execute_reply": "2024-02-08T05:10:56.694928Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:26.981942Z", - "iopub.status.busy": "2024-02-08T04:24:26.981501Z", - "iopub.status.idle": "2024-02-08T04:24:26.984680Z", - "shell.execute_reply": "2024-02-08T04:24:26.984235Z" + "iopub.execute_input": "2024-02-08T05:10:56.698110Z", + "iopub.status.busy": "2024-02-08T05:10:56.697686Z", + "iopub.status.idle": "2024-02-08T05:10:56.700966Z", + "shell.execute_reply": "2024-02-08T05:10:56.700494Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:26.986618Z", - "iopub.status.busy": "2024-02-08T04:24:26.986247Z", - "iopub.status.idle": "2024-02-08T04:24:26.989286Z", - "shell.execute_reply": "2024-02-08T04:24:26.988817Z" + "iopub.execute_input": "2024-02-08T05:10:56.702836Z", + "iopub.status.busy": "2024-02-08T05:10:56.702650Z", + "iopub.status.idle": "2024-02-08T05:10:56.705591Z", + "shell.execute_reply": "2024-02-08T05:10:56.705163Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:26.991314Z", - "iopub.status.busy": "2024-02-08T04:24:26.990931Z", - "iopub.status.idle": "2024-02-08T04:24:27.051017Z", - "shell.execute_reply": "2024-02-08T04:24:27.050487Z" + "iopub.execute_input": "2024-02-08T05:10:56.707443Z", + "iopub.status.busy": "2024-02-08T05:10:56.707266Z", + "iopub.status.idle": "2024-02-08T05:10:56.857130Z", + "shell.execute_reply": "2024-02-08T05:10:56.856557Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:27.053038Z", - "iopub.status.busy": "2024-02-08T04:24:27.052859Z", - "iopub.status.idle": "2024-02-08T04:24:27.056268Z", - "shell.execute_reply": "2024-02-08T04:24:27.055786Z" + "iopub.execute_input": "2024-02-08T05:10:56.859322Z", + "iopub.status.busy": "2024-02-08T05:10:56.858985Z", + "iopub.status.idle": "2024-02-08T05:10:56.862842Z", + "shell.execute_reply": "2024-02-08T05:10:56.862386Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'cancel_transfer', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_about_to_expire', 'change_pin', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies'}\n" + "Classes: {'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:27.058211Z", - "iopub.status.busy": "2024-02-08T04:24:27.057883Z", - "iopub.status.idle": "2024-02-08T04:24:27.060749Z", - "shell.execute_reply": "2024-02-08T04:24:27.060214Z" + "iopub.execute_input": "2024-02-08T05:10:56.864824Z", + "iopub.status.busy": "2024-02-08T05:10:56.864458Z", + "iopub.status.idle": "2024-02-08T05:10:56.867610Z", + "shell.execute_reply": "2024-02-08T05:10:56.867073Z" } }, "outputs": [ @@ -365,17 +365,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:27.062782Z", - "iopub.status.busy": "2024-02-08T04:24:27.062466Z", - "iopub.status.idle": "2024-02-08T04:24:31.950077Z", - "shell.execute_reply": "2024-02-08T04:24:31.949442Z" + "iopub.execute_input": "2024-02-08T05:10:56.869601Z", + "iopub.status.busy": "2024-02-08T05:10:56.869297Z", + "iopub.status.idle": "2024-02-08T05:11:02.417087Z", + "shell.execute_reply": "2024-02-08T05:11:02.416542Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ba2de796b6ed4818b29822ffacaae295", + "model_id": "1561e5b2c3da47e99d3e688471792ec4", "version_major": 2, "version_minor": 0 }, @@ -389,7 +389,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4574bf2f2f8949f3b77cc1ab937f6920", + "model_id": "a4eb983299e24e20b98bcf4edf3d6aaf", "version_major": 2, "version_minor": 0 }, @@ -403,7 +403,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "10b5d7ddf6054afe956c23786e03c318", + "model_id": "c9439b97c3f0411e89621bacc52530c7", "version_major": 2, "version_minor": 0 }, @@ -417,7 +417,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f9c8133b87d44842b1e686734c9decb9", + "model_id": "c97f0e01e42646d9806c02b4b3648039", "version_major": 2, "version_minor": 0 }, @@ -431,7 +431,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b0b654a2f5d4df683b8c7db2f3f5510", + "model_id": "68e65ef8220340c6ba1e341cc09d6c20", "version_major": 2, "version_minor": 0 }, @@ -445,7 +445,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7019ca693bd54e7ab35a34a117d0820f", + "model_id": "52d773e347a940bc9a6cb1f89db261e4", "version_major": 2, "version_minor": 0 }, @@ -459,7 +459,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e56eab34ca074b7fbf5139bd0c1f2101", + "model_id": "3da1dc1bde4241479e3e0b4387114890", "version_major": 2, "version_minor": 0 }, @@ -521,10 +521,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:31.952979Z", - "iopub.status.busy": "2024-02-08T04:24:31.952531Z", - "iopub.status.idle": "2024-02-08T04:24:32.835570Z", - "shell.execute_reply": "2024-02-08T04:24:32.835003Z" + "iopub.execute_input": "2024-02-08T05:11:02.419508Z", + "iopub.status.busy": "2024-02-08T05:11:02.419310Z", + "iopub.status.idle": "2024-02-08T05:11:03.316290Z", + "shell.execute_reply": "2024-02-08T05:11:03.315674Z" }, "scrolled": true }, @@ -556,10 +556,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:32.838391Z", - "iopub.status.busy": "2024-02-08T04:24:32.838002Z", - "iopub.status.idle": "2024-02-08T04:24:32.840844Z", - "shell.execute_reply": "2024-02-08T04:24:32.840362Z" + "iopub.execute_input": "2024-02-08T05:11:03.319079Z", + "iopub.status.busy": "2024-02-08T05:11:03.318700Z", + "iopub.status.idle": "2024-02-08T05:11:03.321774Z", + "shell.execute_reply": "2024-02-08T05:11:03.321271Z" } }, "outputs": [], @@ -579,10 +579,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:32.843133Z", - "iopub.status.busy": "2024-02-08T04:24:32.842775Z", - "iopub.status.idle": "2024-02-08T04:24:34.335068Z", - "shell.execute_reply": "2024-02-08T04:24:34.334411Z" + "iopub.execute_input": "2024-02-08T05:11:03.324095Z", + "iopub.status.busy": "2024-02-08T05:11:03.323754Z", + "iopub.status.idle": "2024-02-08T05:11:04.915071Z", + "shell.execute_reply": "2024-02-08T05:11:04.914354Z" }, "scrolled": true }, @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.338885Z", - "iopub.status.busy": "2024-02-08T04:24:34.337574Z", - "iopub.status.idle": "2024-02-08T04:24:34.360089Z", - "shell.execute_reply": "2024-02-08T04:24:34.359580Z" + "iopub.execute_input": "2024-02-08T05:11:04.919293Z", + "iopub.status.busy": "2024-02-08T05:11:04.917907Z", + "iopub.status.idle": "2024-02-08T05:11:04.942137Z", + "shell.execute_reply": "2024-02-08T05:11:04.941575Z" }, "scrolled": true }, @@ -756,10 +756,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.363544Z", - "iopub.status.busy": "2024-02-08T04:24:34.362642Z", - "iopub.status.idle": "2024-02-08T04:24:34.373982Z", - "shell.execute_reply": "2024-02-08T04:24:34.373506Z" + "iopub.execute_input": "2024-02-08T05:11:04.946098Z", + "iopub.status.busy": "2024-02-08T05:11:04.945114Z", + "iopub.status.idle": "2024-02-08T05:11:04.957782Z", + "shell.execute_reply": "2024-02-08T05:11:04.957252Z" }, "scrolled": true }, @@ -869,10 +869,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.377441Z", - "iopub.status.busy": "2024-02-08T04:24:34.376515Z", - "iopub.status.idle": "2024-02-08T04:24:34.382932Z", - "shell.execute_reply": "2024-02-08T04:24:34.382450Z" + "iopub.execute_input": "2024-02-08T05:11:04.961569Z", + "iopub.status.busy": "2024-02-08T05:11:04.960621Z", + "iopub.status.idle": "2024-02-08T05:11:04.967520Z", + "shell.execute_reply": "2024-02-08T05:11:04.967014Z" } }, "outputs": [ @@ -910,10 +910,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.386293Z", - "iopub.status.busy": "2024-02-08T04:24:34.385389Z", - "iopub.status.idle": "2024-02-08T04:24:34.394603Z", - "shell.execute_reply": "2024-02-08T04:24:34.394127Z" + "iopub.execute_input": "2024-02-08T05:11:04.971133Z", + "iopub.status.busy": "2024-02-08T05:11:04.970211Z", + "iopub.status.idle": "2024-02-08T05:11:04.978788Z", + "shell.execute_reply": "2024-02-08T05:11:04.978188Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.396961Z", - "iopub.status.busy": "2024-02-08T04:24:34.396785Z", - "iopub.status.idle": "2024-02-08T04:24:34.403612Z", - "shell.execute_reply": "2024-02-08T04:24:34.403006Z" + "iopub.execute_input": "2024-02-08T05:11:04.982203Z", + "iopub.status.busy": "2024-02-08T05:11:04.981338Z", + "iopub.status.idle": "2024-02-08T05:11:04.990596Z", + "shell.execute_reply": "2024-02-08T05:11:04.990084Z" } }, "outputs": [ @@ -1116,10 +1116,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.405547Z", - "iopub.status.busy": "2024-02-08T04:24:34.405371Z", - "iopub.status.idle": "2024-02-08T04:24:34.411086Z", - "shell.execute_reply": "2024-02-08T04:24:34.410666Z" + "iopub.execute_input": "2024-02-08T05:11:04.993201Z", + "iopub.status.busy": "2024-02-08T05:11:04.993026Z", + "iopub.status.idle": "2024-02-08T05:11:05.000226Z", + "shell.execute_reply": "2024-02-08T05:11:04.999728Z" } }, "outputs": [ @@ -1227,10 +1227,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.413062Z", - "iopub.status.busy": "2024-02-08T04:24:34.412900Z", - "iopub.status.idle": "2024-02-08T04:24:34.420696Z", - "shell.execute_reply": "2024-02-08T04:24:34.420267Z" + "iopub.execute_input": "2024-02-08T05:11:05.002754Z", + "iopub.status.busy": "2024-02-08T05:11:05.002368Z", + "iopub.status.idle": "2024-02-08T05:11:05.011438Z", + "shell.execute_reply": "2024-02-08T05:11:05.010975Z" } }, "outputs": [ @@ -1341,10 +1341,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.422520Z", - "iopub.status.busy": "2024-02-08T04:24:34.422362Z", - "iopub.status.idle": "2024-02-08T04:24:34.427469Z", - "shell.execute_reply": "2024-02-08T04:24:34.427041Z" + "iopub.execute_input": "2024-02-08T05:11:05.013621Z", + "iopub.status.busy": "2024-02-08T05:11:05.013249Z", + "iopub.status.idle": "2024-02-08T05:11:05.018790Z", + "shell.execute_reply": "2024-02-08T05:11:05.018344Z" } }, "outputs": [ @@ -1412,10 +1412,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.429343Z", - "iopub.status.busy": "2024-02-08T04:24:34.429011Z", - "iopub.status.idle": "2024-02-08T04:24:34.434283Z", - "shell.execute_reply": "2024-02-08T04:24:34.433845Z" + "iopub.execute_input": "2024-02-08T05:11:05.020936Z", + "iopub.status.busy": "2024-02-08T05:11:05.020551Z", + "iopub.status.idle": "2024-02-08T05:11:05.025962Z", + "shell.execute_reply": "2024-02-08T05:11:05.025517Z" } }, "outputs": [ @@ -1494,10 +1494,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.436413Z", - "iopub.status.busy": "2024-02-08T04:24:34.435990Z", - "iopub.status.idle": "2024-02-08T04:24:34.439751Z", - "shell.execute_reply": "2024-02-08T04:24:34.439222Z" + "iopub.execute_input": "2024-02-08T05:11:05.027877Z", + "iopub.status.busy": "2024-02-08T05:11:05.027706Z", + "iopub.status.idle": "2024-02-08T05:11:05.031250Z", + "shell.execute_reply": "2024-02-08T05:11:05.030709Z" } }, "outputs": [ @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.441782Z", - "iopub.status.busy": "2024-02-08T04:24:34.441474Z", - "iopub.status.idle": "2024-02-08T04:24:34.446432Z", - "shell.execute_reply": "2024-02-08T04:24:34.445983Z" + "iopub.execute_input": "2024-02-08T05:11:05.033433Z", + "iopub.status.busy": "2024-02-08T05:11:05.033066Z", + "iopub.status.idle": "2024-02-08T05:11:05.038420Z", + "shell.execute_reply": "2024-02-08T05:11:05.037871Z" }, "nbsphinx": "hidden" }, @@ -1598,7 +1598,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05c4c20c0f414059b04fba7c3e39c36a": { + "021198b4e2184745ad8e9d340795e5f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "034f8b8fe0644b18ac5cbfb4d3584f61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1613,15 +1631,205 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_65571ac378ca4e29b1c5fe7afe007ea7", + "layout": "IPY_MODEL_8df0484cfa9b424ab22b8a1849e82c2a", "placeholder": "​", - "style": "IPY_MODEL_a3708e09caf14f2d8d4e2a5dfa2171f1", + "style": "IPY_MODEL_20efd0ad14644e4cb0dce36ce1985cb2", "tabbable": null, "tooltip": null, - "value": " 29.0/29.0 [00:00<00:00, 5.25kB/s]" + "value": "README.md: 100%" + } + }, + "0a678dbddd0844d29b4063456c21ae5e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0bf57d0b8f494dc984ab26b4aec70f1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "150be0f12ac94160b1b133e904ecb773": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1561e5b2c3da47e99d3e688471792ec4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e8c173fbbec04416b425b2af5acba601", + "IPY_MODEL_4cb3e235fac24f308be3f8c0c953be68", + "IPY_MODEL_ed24934c745b4d7a8ee40e838fca4dc7" + ], + "layout": "IPY_MODEL_df7c804ca61045d6b8e804dc0c5237ef", + "tabbable": null, + "tooltip": null + } + }, + "15bdf18d041041fab23473fab02e001b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "179d5095bde749efa193ed2f47c8ec70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e67841585e944b4abee51a14c3f4974b", + "placeholder": "​", + "style": "IPY_MODEL_0bf57d0b8f494dc984ab26b4aec70f1b", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "20efd0ad14644e4cb0dce36ce1985cb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "061f9097694c43129b356c9dda2f5f71": { + "2b7da3f795724596a39004d4ad4e0875": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "32ec2141a8d34ff39c02c5c6dc5d8784": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1674,25 +1882,192 @@ "width": null } }, - "075b4af9c1314f79ae437f8439d5f210": { + "339dbdd8b9c14a5bae2e59d4b15170dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "33ff472c944a4e3fa09cbf5dff937efd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d4c7898a9054d71a0621a2241bf701e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3d74814d8dd046219675c5755734d26c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3da1dc1bde4241479e3e0b4387114890": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3383123e17340c2ae53e922a8e3b50a", + "IPY_MODEL_8e74cf17d07e42bd84667d021af6d281", + "IPY_MODEL_f55ce828192342cfa65c32e045d9377c" + ], + "layout": "IPY_MODEL_8ccf73de3ba640f4a80ddb7927580eee", + "tabbable": null, + "tooltip": null + } + }, + "3dd154ef46e44fad8478b9f32ddcb835": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "473968c7b6654e23a573dd157d6f1f94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b91bb0fea9e04d84980466addd8c63d7", + "placeholder": "​", + "style": "IPY_MODEL_339dbdd8b9c14a5bae2e59d4b15170dc", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "4cb3e235fac24f308be3f8c0c953be68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a678dbddd0844d29b4063456c21ae5e", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f332c40a8cc84586aad25981b95f6ba3", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "4fa6b9dd27e541b896fc7a803227f368": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52c1fdcd87c74502b3bd12991ce27b5f", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c87beb0959be477b8c92c1b99b66a07c", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 } }, - "0b08a7a68f914ed387d4aaa62ab2abd8": { + "52c1fdcd87c74502b3bd12991ce27b5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1745,7 +2120,7 @@ "width": null } }, - "10b5d7ddf6054afe956c23786e03c318": { + "52d773e347a940bc9a6cb1f89db261e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1760,16 +2135,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_79138260b27342f195f8b54c96dd483c", - "IPY_MODEL_cd554dcc01314a668bf9d656cce5bd93", - "IPY_MODEL_5c6eb32d6a1a4e98ae8e19843d60b9f7" + "IPY_MODEL_8923087f37a9438fade14e61742eedcb", + "IPY_MODEL_8d85a7f40fd44e318667c323829a686b", + "IPY_MODEL_d6021b0797cf47c48c12d441689b6ece" ], - "layout": "IPY_MODEL_dde8fea970f144168dd91614ad770704", + "layout": "IPY_MODEL_c7ac1f873cad47bb99c943d296a08dc1", "tabbable": null, "tooltip": null } }, - "12278ade8d774dda8b83ef62c46e7bf0": { + "53977efabf0e4fd1ac2cfbd8b9299909": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1822,25 +2197,30 @@ "width": null } }, - "16db3ef2563c428db07cc995720fd60b": { + "5421452619ca43e0ab75f9312bb9a823": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d6d6705b9b5043ab90499b9b2a133895", + "placeholder": "​", + "style": "IPY_MODEL_3d4c7898a9054d71a0621a2241bf701e", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 381kB/s]" } }, - "195f817102d9402794bf9079cb339a90": { + "57d8181ffdd349059b0f4e0d54bc0cb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1893,59 +2273,33 @@ "width": null } }, - "19cb55bf36d049979bad585cd893d6f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1bf632e19e5a41d9b6c1dbf693c60025": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "22882672743e4499852bcd1cfd04cb6b": { + "60595731b6234aa1b1eb99a96951403c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d2020abfbe0d42568b67dd48deaf5771", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_33ff472c944a4e3fa09cbf5dff937efd", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "25b6f96ef73046acb382e06eed95a9b0": { + "630fb1d285cc43858751a7ed03e13e05": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1998,49 +2352,31 @@ "width": null } }, - "28dc38fb62db403e916cf1901e0eac60": { + "68e65ef8220340c6ba1e341cc09d6c20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b43cc3cd831e41d5bd0e2b797f183eb9", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2940ba312bed4cf1aff01307ea6657aa", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7a308c84baf247668683c8cebafe5c45", + "IPY_MODEL_60595731b6234aa1b1eb99a96951403c", + "IPY_MODEL_7f8db454447c49a99d58e18d9e2dc015" + ], + "layout": "IPY_MODEL_8af64d45919a45faa0a9ae0ba2113bfd", "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "2940ba312bed4cf1aff01307ea6657aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "2a8e628f50e848f09a59bc9583fccd69": { + "72af7d9b06864cebac6ae80818fd6e87": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2093,7 +2429,7 @@ "width": null } }, - "33fb171f948b4fbebe522e82a8f635d1": { + "75d2d192ce0a455390c4c1bf23fd90da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2108,65 +2444,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5415141935c44abc987ba27b640a2433", + "layout": "IPY_MODEL_b5fd00bb16154423b6b98a26d77c3bfd", "placeholder": "​", - "style": "IPY_MODEL_80342bdf063c4c4fb28c363f53c55644", + "style": "IPY_MODEL_9ac05e21bf774897a30f0e7c05b5f113", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": " 665/665 [00:00<00:00, 118kB/s]" } }, - "3573ea7c7abb4e7486cbbf4c00dbb4db": { + "7a308c84baf247668683c8cebafe5c45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_99ff95ff62df4df5a3136dbd6ff0ae78", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cf499178cb734c8e8c234b0739f04a66", + "layout": "IPY_MODEL_87fd54e4e0464a2f821e735ff0611334", + "placeholder": "​", + "style": "IPY_MODEL_ef96e30fab324207af7282262beb8867", "tabbable": null, "tooltip": null, - "value": 29.0 - } - }, - "3b0b654a2f5d4df683b8c7db2f3f5510": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fdc9e70ed67143f387275b16b30cbda3", - "IPY_MODEL_6fe5933973794b19a7f9a80e2130021a", - "IPY_MODEL_4125b59d7dc448f1853daa7aa3d93360" - ], - "layout": "IPY_MODEL_aa3f806e308e4ce2989b693846b4b968", - "tabbable": null, - "tooltip": null + "value": "tokenizer.json: 100%" } }, - "4125b59d7dc448f1853daa7aa3d93360": { + "7f8db454447c49a99d58e18d9e2dc015": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2181,110 +2490,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a309f785c95443bba289aa8e622ca78e", + "layout": "IPY_MODEL_dd56037ea9b6486b9a8462712c62c9be", "placeholder": "​", - "style": "IPY_MODEL_ef691929a94f415c97369477aab5cd71", + "style": "IPY_MODEL_896ee48a8fd545a095b7fce02f5bfc9e", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 30.5MB/s]" + "value": " 466k/466k [00:00<00:00, 3.48MB/s]" } }, - "4574bf2f2f8949f3b77cc1ab937f6920": { + "855f54aac4c04821a51e3f5456d1068a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eafeb34886b74034a6acf024f5bc7361", - "IPY_MODEL_eafee4a7753b4b9698f2cc1a46fb2fe4", - "IPY_MODEL_fad1a62376234d9b8983f0689863a88c" - ], - "layout": "IPY_MODEL_77c63cc5f6434b90ad2d4f8c110acc68", - "tabbable": null, - "tooltip": null - } - }, - "51a821a454224f29b345ad1b44db7f93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "52fe4fe74b7f49a8b033e42c924759dc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72af7d9b06864cebac6ae80818fd6e87", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_eca03b5e8a384f24a8997238a61a9bde", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "5415141935c44abc987ba27b640a2433": { + "87fd54e4e0464a2f821e735ff0611334": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2337,7 +2577,30 @@ "width": null } }, - "548b8c27626b464d80039345e2d114cc": { + "8923087f37a9438fade14e61742eedcb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32ec2141a8d34ff39c02c5c6dc5d8784", + "placeholder": "​", + "style": "IPY_MODEL_2b7da3f795724596a39004d4ad4e0875", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "896ee48a8fd545a095b7fce02f5bfc9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2355,7 +2618,7 @@ "text_color": null } }, - "59845ff1092b4af19dcd613cab1e8a6d": { + "8af64d45919a45faa0a9ae0ba2113bfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2408,25 +2671,7 @@ "width": null } }, - "5b3f834098234540932bbc4f5a823968": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5c6eb32d6a1a4e98ae8e19843d60b9f7": { + "8bb5868373be4fb09ccacc52f8bb437b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2441,68 +2686,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c06dccdf657d431b821c7e05c56556d9", + "layout": "IPY_MODEL_c8e970c8f3b940708a6fd1296bb49f78", "placeholder": "​", - "style": "IPY_MODEL_1bf632e19e5a41d9b6c1dbf693c60025", + "style": "IPY_MODEL_a7fd97981111428eba3d4c09a94bfe9c", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 126kB/s]" - } - }, - "65571ac378ca4e29b1c5fe7afe007ea7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 54.2M/54.2M [00:00<00:00, 234MB/s]" } }, - "66c0667e63fe4f78b640204ef49db3f9": { + "8ccf73de3ba640f4a80ddb7927580eee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2555,30 +2747,7 @@ "width": null } }, - "6f991a9a36cb43d1a3a7d481a665d9b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b93f2d32038140118f50fe537e638b84", - "placeholder": "​", - "style": "IPY_MODEL_19cb55bf36d049979bad585cd893d6f1", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "6fe5933973794b19a7f9a80e2130021a": { + "8d85a7f40fd44e318667c323829a686b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2594,41 +2763,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_195f817102d9402794bf9079cb339a90", - "max": 466062.0, + "layout": "IPY_MODEL_9f573602185c474bb663c3946b8371c6", + "max": 29.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_22882672743e4499852bcd1cfd04cb6b", + "style": "IPY_MODEL_bd6009a6310e4144a110d0abce2d516c", "tabbable": null, "tooltip": null, - "value": 466062.0 - } - }, - "7019ca693bd54e7ab35a34a117d0820f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_33fb171f948b4fbebe522e82a8f635d1", - "IPY_MODEL_3573ea7c7abb4e7486cbbf4c00dbb4db", - "IPY_MODEL_05c4c20c0f414059b04fba7c3e39c36a" - ], - "layout": "IPY_MODEL_d4820887fab34d7aa5d017749535ca5a", - "tabbable": null, - "tooltip": null + "value": 29.0 } }, - "719a237222b54690a4fad2258458f5db": { + "8df0484cfa9b424ab22b8a1849e82c2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2681,7 +2826,7 @@ "width": null } }, - "727618f51486484ebf25abd7667d8585": { + "8e1ef3a403fd4439a965bdd4efc0b9bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2734,46 +2879,95 @@ "width": null } }, - "769ad2786fb94b64abd47d55a0185f89": { + "8e74cf17d07e42bd84667d021af6d281": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_66c0667e63fe4f78b640204ef49db3f9", - "placeholder": "​", - "style": "IPY_MODEL_548b8c27626b464d80039345e2d114cc", + "layout": "IPY_MODEL_57d8181ffdd349059b0f4e0d54bc0cb7", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c1e1f685331544929569f892e7b9ee1d", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 5.04MB/s]" + "value": 231508.0 } }, - "771a8766cdab4ad785bacfcb6678049a": { + "8f43c16335c540ab8f7a93bf771a579f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "993cbca4f53645b19626bd22f35ba7d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e4c71d2ff5d64eb6aa0d4662a386acc2", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3d74814d8dd046219675c5755734d26c", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "9ac05e21bf774897a30f0e7c05b5f113": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "77c63cc5f6434b90ad2d4f8c110acc68": { + "9f573602185c474bb663c3946b8371c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2807,67 +3001,26 @@ "grid_template_columns": null, "grid_template_rows": null, "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "79138260b27342f195f8b54c96dd483c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_84fcb9185cb24c2bb35cb63fc206306f", - "placeholder": "​", - "style": "IPY_MODEL_da0ad73cb5a4461da814a4966c49288b", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "80342bdf063c4c4fb28c363f53c55644": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "84fcb9185cb24c2bb35cb63fc206306f": { + "a1c6430a55e1404989798a6f9cab57f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2920,98 +3073,49 @@ "width": null } }, - "89e08a358e5343158f311de97e64e86f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_25b6f96ef73046acb382e06eed95a9b0", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c819332ea2af45bcb94184dff29e3992", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "8e235eab3f1a41e381934d3c0c4cc909": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_12278ade8d774dda8b83ef62c46e7bf0", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_980b57a51bd64aafb7274bbeef5aedbc", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "92d14363392d4016962ea3304006e83f": { + "a4eb983299e24e20b98bcf4edf3d6aaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_719a237222b54690a4fad2258458f5db", - "placeholder": "​", - "style": "IPY_MODEL_16db3ef2563c428db07cc995720fd60b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_034f8b8fe0644b18ac5cbfb4d3584f61", + "IPY_MODEL_993cbca4f53645b19626bd22f35ba7d2", + "IPY_MODEL_5421452619ca43e0ab75f9312bb9a823" + ], + "layout": "IPY_MODEL_fd746e8d6f214fb2851b8faf8ac27e12", "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" + "tooltip": null } }, - "980b57a51bd64aafb7274bbeef5aedbc": { + "a7fd97981111428eba3d4c09a94bfe9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "99ff95ff62df4df5a3136dbd6ff0ae78": { + "b5fd00bb16154423b6b98a26d77c3bfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3064,48 +3168,7 @@ "width": null } }, - "a03fce32c8334b4ca502e2c910e68cf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be8d6b4483874cfca87f9dd0bfd046b1", - "placeholder": "​", - "style": "IPY_MODEL_5b3f834098234540932bbc4f5a823968", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 73.2kB/s]" - } - }, - "a21d119ca8df41a58bf2b442dca19ee6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a309f785c95443bba289aa8e622ca78e": { + "b91bb0fea9e04d84980466addd8c63d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3158,48 +3221,39 @@ "width": null } }, - "a3708e09caf14f2d8d4e2a5dfa2171f1": { + "bd6009a6310e4144a110d0abce2d516c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "a4c82a9180ad4f978090dc6cfb8cfe36": { + "c1e1f685331544929569f892e7b9ee1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52fe4fe74b7f49a8b033e42c924759dc", - "placeholder": "​", - "style": "IPY_MODEL_075b4af9c1314f79ae437f8439d5f210", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "aa3f806e308e4ce2989b693846b4b968": { + "c7ac1f873cad47bb99c943d296a08dc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3252,7 +3306,23 @@ "width": null } }, - "ace1f49277f24628abeed56230d88df8": { + "c87beb0959be477b8c92c1b99b66a07c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c8e970c8f3b940708a6fd1296bb49f78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3305,7 +3375,55 @@ "width": null } }, - "b43cc3cd831e41d5bd0e2b797f183eb9": { + "c9439b97c3f0411e89621bacc52530c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_179d5095bde749efa193ed2f47c8ec70", + "IPY_MODEL_855f54aac4c04821a51e3f5456d1068a", + "IPY_MODEL_75d2d192ce0a455390c4c1bf23fd90da" + ], + "layout": "IPY_MODEL_dc599dc9e3a54add9467d2528fcf1736", + "tabbable": null, + "tooltip": null + } + }, + "c97f0e01e42646d9806c02b4b3648039": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_473968c7b6654e23a573dd157d6f1f94", + "IPY_MODEL_4fa6b9dd27e541b896fc7a803227f368", + "IPY_MODEL_8bb5868373be4fb09ccacc52f8bb437b" + ], + "layout": "IPY_MODEL_53977efabf0e4fd1ac2cfbd8b9299909", + "tabbable": null, + "tooltip": null + } + }, + "d2020abfbe0d42568b67dd48deaf5771": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3358,25 +3476,30 @@ "width": null } }, - "b7ecb1841b4049b6aa53b2a8d8f91012": { + "d6021b0797cf47c48c12d441689b6ece": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd50bba22beb482f9db42122f6ec0eb2", + "placeholder": "​", + "style": "IPY_MODEL_150be0f12ac94160b1b133e904ecb773", + "tabbable": null, + "tooltip": null, + "value": " 29.0/29.0 [00:00<00:00, 4.81kB/s]" } }, - "b93f2d32038140118f50fe537e638b84": { + "d6d6705b9b5043ab90499b9b2a133895": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3412,48 +3535,24 @@ "height": null, "justify_content": null, "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ba2de796b6ed4818b29822ffacaae295": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4c82a9180ad4f978090dc6cfb8cfe36", - "IPY_MODEL_89e08a358e5343158f311de97e64e86f", - "IPY_MODEL_a03fce32c8334b4ca502e2c910e68cf3" - ], - "layout": "IPY_MODEL_2a8e628f50e848f09a59bc9583fccd69", - "tabbable": null, - "tooltip": null + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "be8d6b4483874cfca87f9dd0bfd046b1": { + "d980c616b197411cb879c2eee14074f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3506,7 +3605,7 @@ "width": null } }, - "c06dccdf657d431b821c7e05c56556d9": { + "dc599dc9e3a54add9467d2528fcf1736": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3559,46 +3658,7 @@ "width": null } }, - "c819332ea2af45bcb94184dff29e3992": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cab475cc4878469a98fdbf2864a75825": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ccbee6a50109411d81c8cc8c15d7f4d4", - "placeholder": "​", - "style": "IPY_MODEL_b7ecb1841b4049b6aa53b2a8d8f91012", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 147MB/s]" - } - }, - "ccbee6a50109411d81c8cc8c15d7f4d4": { + "dd50bba22beb482f9db42122f6ec0eb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3651,33 +3711,7 @@ "width": null } }, - "cd554dcc01314a668bf9d656cce5bd93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_061f9097694c43129b356c9dda2f5f71", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_771a8766cdab4ad785bacfcb6678049a", - "tabbable": null, - "tooltip": null, - "value": 665.0 - } - }, - "cdcef8838f9847b8a6f388324f600c8b": { + "dd56037ea9b6486b9a8462712c62c9be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3730,23 +3764,7 @@ "width": null } }, - "cf499178cb734c8e8c234b0739f04a66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d4820887fab34d7aa5d017749535ca5a": { + "df7c804ca61045d6b8e804dc0c5237ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3799,59 +3817,30 @@ "width": null } }, - "d615c327f820490389d3a444df8d68f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d6bdbcbc558849e985053035358a37f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "da0ad73cb5a4461da814a4966c49288b": { + "e3383123e17340c2ae53e922a8e3b50a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e1ef3a403fd4439a965bdd4efc0b9bd", + "placeholder": "​", + "style": "IPY_MODEL_8f43c16335c540ab8f7a93bf771a579f", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "dde8fea970f144168dd91614ad770704": { + "e4c71d2ff5d64eb6aa0d4662a386acc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3904,7 +3893,7 @@ "width": null } }, - "e46151afb1e7450c8e8984491a7da0a1": { + "e67841585e944b4abee51a14c3f4974b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3957,80 +3946,69 @@ "width": null } }, - "e56eab34ca074b7fbf5139bd0c1f2101": { + "e8c173fbbec04416b425b2af5acba601": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_92d14363392d4016962ea3304006e83f", - "IPY_MODEL_28dc38fb62db403e916cf1901e0eac60", - "IPY_MODEL_769ad2786fb94b64abd47d55a0185f89" - ], - "layout": "IPY_MODEL_cdcef8838f9847b8a6f388324f600c8b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d980c616b197411cb879c2eee14074f0", + "placeholder": "​", + "style": "IPY_MODEL_3dd154ef46e44fad8478b9f32ddcb835", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "eafeb34886b74034a6acf024f5bc7361": { + "eca03b5e8a384f24a8997238a61a9bde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_727618f51486484ebf25abd7667d8585", - "placeholder": "​", - "style": "IPY_MODEL_d615c327f820490389d3a444df8d68f7", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eafee4a7753b4b9698f2cc1a46fb2fe4": { + "ed24934c745b4d7a8ee40e838fca4dc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_59845ff1092b4af19dcd613cab1e8a6d", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d6bdbcbc558849e985053035358a37f6", + "layout": "IPY_MODEL_630fb1d285cc43858751a7ed03e13e05", + "placeholder": "​", + "style": "IPY_MODEL_15bdf18d041041fab23473fab02e001b", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 391/391 [00:00<00:00, 66.1kB/s]" } }, - "ef691929a94f415c97369477aab5cd71": { + "ef96e30fab324207af7282262beb8867": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4048,31 +4026,23 @@ "text_color": null } }, - "f9c8133b87d44842b1e686734c9decb9": { + "f332c40a8cc84586aad25981b95f6ba3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6f991a9a36cb43d1a3a7d481a665d9b6", - "IPY_MODEL_8e235eab3f1a41e381934d3c0c4cc909", - "IPY_MODEL_cab475cc4878469a98fdbf2864a75825" - ], - "layout": "IPY_MODEL_ace1f49277f24628abeed56230d88df8", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fad1a62376234d9b8983f0689863a88c": { + "f55ce828192342cfa65c32e045d9377c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4087,35 +4057,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0b08a7a68f914ed387d4aaa62ab2abd8", + "layout": "IPY_MODEL_a1c6430a55e1404989798a6f9cab57f6", "placeholder": "​", - "style": "IPY_MODEL_a21d119ca8df41a58bf2b442dca19ee6", + "style": "IPY_MODEL_021198b4e2184745ad8e9d340795e5f3", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 405kB/s]" + "value": " 232k/232k [00:00<00:00, 1.94MB/s]" } }, - "fdc9e70ed67143f387275b16b30cbda3": { - "model_module": "@jupyter-widgets/controls", + "fd746e8d6f214fb2851b8faf8ac27e12": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e46151afb1e7450c8e8984491a7da0a1", - "placeholder": "​", - "style": "IPY_MODEL_51a821a454224f29b345ad1b44db7f93", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index cb94579f3..a78d1816e 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:37.613708Z", - "iopub.status.busy": "2024-02-08T04:24:37.613541Z", - "iopub.status.idle": "2024-02-08T04:24:38.638099Z", - "shell.execute_reply": "2024-02-08T04:24:38.637502Z" + "iopub.execute_input": "2024-02-08T05:11:08.323441Z", + "iopub.status.busy": "2024-02-08T05:11:08.323025Z", + "iopub.status.idle": "2024-02-08T05:11:09.474749Z", + "shell.execute_reply": "2024-02-08T05:11:09.474158Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:38.641015Z", - "iopub.status.busy": "2024-02-08T04:24:38.640442Z", - "iopub.status.idle": "2024-02-08T04:24:38.643303Z", - "shell.execute_reply": "2024-02-08T04:24:38.642787Z" + "iopub.execute_input": "2024-02-08T05:11:09.477547Z", + "iopub.status.busy": "2024-02-08T05:11:09.477141Z", + "iopub.status.idle": "2024-02-08T05:11:09.480630Z", + "shell.execute_reply": "2024-02-08T05:11:09.480196Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:38.645740Z", - "iopub.status.busy": "2024-02-08T04:24:38.645351Z", - "iopub.status.idle": "2024-02-08T04:24:38.657042Z", - "shell.execute_reply": "2024-02-08T04:24:38.656531Z" + "iopub.execute_input": "2024-02-08T05:11:09.482890Z", + "iopub.status.busy": "2024-02-08T05:11:09.482565Z", + "iopub.status.idle": "2024-02-08T05:11:09.494523Z", + "shell.execute_reply": "2024-02-08T05:11:09.494015Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:38.659120Z", - "iopub.status.busy": "2024-02-08T04:24:38.658837Z", - "iopub.status.idle": "2024-02-08T04:24:43.591617Z", - "shell.execute_reply": "2024-02-08T04:24:43.591122Z" + "iopub.execute_input": "2024-02-08T05:11:09.496748Z", + "iopub.status.busy": "2024-02-08T05:11:09.496386Z", + "iopub.status.idle": "2024-02-08T05:11:20.267416Z", + "shell.execute_reply": "2024-02-08T05:11:20.266899Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index b3ac26455..c0b62cf2b 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -700,13 +700,13 @@

    How can I find label issues in big datasets with limited memory?

    -
    +
    -
    +
    @@ -1620,7 +1620,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 01d99ce84..3305d8771 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:45.573789Z", - "iopub.status.busy": "2024-02-08T04:24:45.573620Z", - "iopub.status.idle": "2024-02-08T04:24:46.583993Z", - "shell.execute_reply": "2024-02-08T04:24:46.583448Z" + "iopub.execute_input": "2024-02-08T05:11:22.606201Z", + "iopub.status.busy": "2024-02-08T05:11:22.606025Z", + "iopub.status.idle": "2024-02-08T05:11:23.697394Z", + "shell.execute_reply": "2024-02-08T05:11:23.696773Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:46.586600Z", - "iopub.status.busy": "2024-02-08T04:24:46.586248Z", - "iopub.status.idle": "2024-02-08T04:24:46.590035Z", - "shell.execute_reply": "2024-02-08T04:24:46.589617Z" + "iopub.execute_input": "2024-02-08T05:11:23.700223Z", + "iopub.status.busy": "2024-02-08T05:11:23.699876Z", + "iopub.status.idle": "2024-02-08T05:11:23.703292Z", + "shell.execute_reply": "2024-02-08T05:11:23.702852Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:46.591939Z", - "iopub.status.busy": "2024-02-08T04:24:46.591737Z", - "iopub.status.idle": "2024-02-08T04:24:49.474373Z", - "shell.execute_reply": "2024-02-08T04:24:49.473737Z" + "iopub.execute_input": "2024-02-08T05:11:23.705486Z", + "iopub.status.busy": "2024-02-08T05:11:23.705156Z", + "iopub.status.idle": "2024-02-08T05:11:26.757434Z", + "shell.execute_reply": "2024-02-08T05:11:26.756799Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.477377Z", - "iopub.status.busy": "2024-02-08T04:24:49.476660Z", - "iopub.status.idle": "2024-02-08T04:24:49.508409Z", - "shell.execute_reply": "2024-02-08T04:24:49.507803Z" + "iopub.execute_input": "2024-02-08T05:11:26.760963Z", + "iopub.status.busy": "2024-02-08T05:11:26.759887Z", + "iopub.status.idle": "2024-02-08T05:11:26.801164Z", + "shell.execute_reply": "2024-02-08T05:11:26.800422Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.510776Z", - "iopub.status.busy": "2024-02-08T04:24:49.510550Z", - "iopub.status.idle": "2024-02-08T04:24:49.538544Z", - "shell.execute_reply": "2024-02-08T04:24:49.537958Z" + "iopub.execute_input": "2024-02-08T05:11:26.804151Z", + "iopub.status.busy": "2024-02-08T05:11:26.803670Z", + "iopub.status.idle": "2024-02-08T05:11:26.842192Z", + "shell.execute_reply": "2024-02-08T05:11:26.841538Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.541085Z", - "iopub.status.busy": "2024-02-08T04:24:49.540717Z", - "iopub.status.idle": "2024-02-08T04:24:49.543776Z", - "shell.execute_reply": "2024-02-08T04:24:49.543329Z" + "iopub.execute_input": "2024-02-08T05:11:26.845114Z", + "iopub.status.busy": "2024-02-08T05:11:26.844658Z", + "iopub.status.idle": "2024-02-08T05:11:26.847678Z", + "shell.execute_reply": "2024-02-08T05:11:26.847218Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.545731Z", - "iopub.status.busy": "2024-02-08T04:24:49.545364Z", - "iopub.status.idle": "2024-02-08T04:24:49.547897Z", - "shell.execute_reply": "2024-02-08T04:24:49.547441Z" + "iopub.execute_input": "2024-02-08T05:11:26.849841Z", + "iopub.status.busy": "2024-02-08T05:11:26.849441Z", + "iopub.status.idle": "2024-02-08T05:11:26.852121Z", + "shell.execute_reply": "2024-02-08T05:11:26.851641Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.549990Z", - "iopub.status.busy": "2024-02-08T04:24:49.549665Z", - "iopub.status.idle": "2024-02-08T04:24:49.572583Z", - "shell.execute_reply": "2024-02-08T04:24:49.572032Z" + "iopub.execute_input": "2024-02-08T05:11:26.854267Z", + "iopub.status.busy": "2024-02-08T05:11:26.853995Z", + "iopub.status.idle": "2024-02-08T05:11:26.880472Z", + "shell.execute_reply": "2024-02-08T05:11:26.879888Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5c0191b13eea419db01e0f9eecfae1ec", + "model_id": "78cba4b8da0f44b8997e2424fe19dbff", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "87fe2e877c264789adf23c7eddcce500", + "model_id": "be08b0354eb04e518b8a75f62d0d766e", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.579504Z", - "iopub.status.busy": "2024-02-08T04:24:49.579329Z", - "iopub.status.idle": "2024-02-08T04:24:49.585894Z", - "shell.execute_reply": "2024-02-08T04:24:49.585346Z" + "iopub.execute_input": "2024-02-08T05:11:26.886237Z", + "iopub.status.busy": "2024-02-08T05:11:26.885937Z", + "iopub.status.idle": "2024-02-08T05:11:26.892921Z", + "shell.execute_reply": "2024-02-08T05:11:26.892500Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.588062Z", - "iopub.status.busy": "2024-02-08T04:24:49.587674Z", - "iopub.status.idle": "2024-02-08T04:24:49.591088Z", - "shell.execute_reply": "2024-02-08T04:24:49.590626Z" + "iopub.execute_input": "2024-02-08T05:11:26.895076Z", + "iopub.status.busy": "2024-02-08T05:11:26.894752Z", + "iopub.status.idle": "2024-02-08T05:11:26.898037Z", + "shell.execute_reply": "2024-02-08T05:11:26.897543Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.593026Z", - "iopub.status.busy": "2024-02-08T04:24:49.592853Z", - "iopub.status.idle": "2024-02-08T04:24:49.599027Z", - "shell.execute_reply": "2024-02-08T04:24:49.598603Z" + "iopub.execute_input": "2024-02-08T05:11:26.900206Z", + "iopub.status.busy": "2024-02-08T05:11:26.899872Z", + "iopub.status.idle": "2024-02-08T05:11:26.906102Z", + "shell.execute_reply": "2024-02-08T05:11:26.905634Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.600879Z", - "iopub.status.busy": "2024-02-08T04:24:49.600710Z", - "iopub.status.idle": "2024-02-08T04:24:49.633862Z", - "shell.execute_reply": "2024-02-08T04:24:49.633169Z" + "iopub.execute_input": "2024-02-08T05:11:26.908120Z", + "iopub.status.busy": "2024-02-08T05:11:26.907792Z", + "iopub.status.idle": "2024-02-08T05:11:26.946506Z", + "shell.execute_reply": "2024-02-08T05:11:26.945866Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.636532Z", - "iopub.status.busy": "2024-02-08T04:24:49.636294Z", - "iopub.status.idle": "2024-02-08T04:24:49.666209Z", - "shell.execute_reply": "2024-02-08T04:24:49.665641Z" + "iopub.execute_input": "2024-02-08T05:11:26.949053Z", + "iopub.status.busy": "2024-02-08T05:11:26.948806Z", + "iopub.status.idle": "2024-02-08T05:11:26.989522Z", + "shell.execute_reply": "2024-02-08T05:11:26.988814Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.668847Z", - "iopub.status.busy": "2024-02-08T04:24:49.668487Z", - "iopub.status.idle": "2024-02-08T04:24:49.787733Z", - "shell.execute_reply": "2024-02-08T04:24:49.787119Z" + "iopub.execute_input": "2024-02-08T05:11:26.992540Z", + "iopub.status.busy": "2024-02-08T05:11:26.992114Z", + "iopub.status.idle": "2024-02-08T05:11:27.125524Z", + "shell.execute_reply": "2024-02-08T05:11:27.124909Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.790465Z", - "iopub.status.busy": "2024-02-08T04:24:49.789790Z", - "iopub.status.idle": "2024-02-08T04:24:52.854678Z", - "shell.execute_reply": "2024-02-08T04:24:52.853979Z" + "iopub.execute_input": "2024-02-08T05:11:27.128401Z", + "iopub.status.busy": "2024-02-08T05:11:27.127620Z", + "iopub.status.idle": "2024-02-08T05:11:30.193800Z", + "shell.execute_reply": "2024-02-08T05:11:30.193249Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:52.857015Z", - "iopub.status.busy": "2024-02-08T04:24:52.856827Z", - "iopub.status.idle": "2024-02-08T04:24:52.917026Z", - "shell.execute_reply": "2024-02-08T04:24:52.916549Z" + "iopub.execute_input": "2024-02-08T05:11:30.196165Z", + "iopub.status.busy": "2024-02-08T05:11:30.195794Z", + "iopub.status.idle": "2024-02-08T05:11:30.252447Z", + "shell.execute_reply": "2024-02-08T05:11:30.251888Z" } }, "outputs": [ @@ -1206,7 +1206,7 @@ }, { "cell_type": "markdown", - "id": "187c759b", + "id": "bfe43cbe", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "b9f3b94f", + "id": "20f126b1", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1227,13 +1227,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "a1c4f448", + "id": "16761bb6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:52.919102Z", - "iopub.status.busy": "2024-02-08T04:24:52.918777Z", - "iopub.status.idle": "2024-02-08T04:24:53.015984Z", - "shell.execute_reply": "2024-02-08T04:24:53.015447Z" + "iopub.execute_input": "2024-02-08T05:11:30.254698Z", + "iopub.status.busy": "2024-02-08T05:11:30.254370Z", + "iopub.status.idle": "2024-02-08T05:11:30.372246Z", + "shell.execute_reply": "2024-02-08T05:11:30.371679Z" } }, "outputs": [ @@ -1274,7 +1274,7 @@ }, { "cell_type": "markdown", - "id": "ca16f7a6", + "id": "856b641a", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1283,13 +1283,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "b7531f4e", + "id": "2aa056d4", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.018620Z", - "iopub.status.busy": "2024-02-08T04:24:53.018003Z", - "iopub.status.idle": "2024-02-08T04:24:53.093962Z", - "shell.execute_reply": "2024-02-08T04:24:53.093545Z" + "iopub.execute_input": "2024-02-08T05:11:30.375175Z", + "iopub.status.busy": "2024-02-08T05:11:30.374638Z", + "iopub.status.idle": "2024-02-08T05:11:30.437160Z", + "shell.execute_reply": "2024-02-08T05:11:30.436653Z" } }, "outputs": [ @@ -1325,7 +1325,7 @@ }, { "cell_type": "markdown", - "id": "73c03ed6", + "id": "ac654ffb", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1336,13 +1336,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "5dee6e03", + "id": "6706b5f4", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.096140Z", - "iopub.status.busy": "2024-02-08T04:24:53.095803Z", - "iopub.status.idle": "2024-02-08T04:24:53.103009Z", - "shell.execute_reply": "2024-02-08T04:24:53.102627Z" + "iopub.execute_input": "2024-02-08T05:11:30.439809Z", + "iopub.status.busy": "2024-02-08T05:11:30.439229Z", + "iopub.status.idle": "2024-02-08T05:11:30.447037Z", + "shell.execute_reply": "2024-02-08T05:11:30.446585Z" } }, "outputs": [], @@ -1444,7 +1444,7 @@ }, { "cell_type": "markdown", - "id": "b90c0ece", + "id": "5c1d612b", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1459,13 +1459,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "358dc020", + "id": "c1a1d9c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.105084Z", - "iopub.status.busy": "2024-02-08T04:24:53.104708Z", - "iopub.status.idle": "2024-02-08T04:24:53.124038Z", - "shell.execute_reply": "2024-02-08T04:24:53.123459Z" + "iopub.execute_input": "2024-02-08T05:11:30.449262Z", + "iopub.status.busy": "2024-02-08T05:11:30.448886Z", + "iopub.status.idle": "2024-02-08T05:11:30.470160Z", + "shell.execute_reply": "2024-02-08T05:11:30.469602Z" } }, "outputs": [ @@ -1482,7 +1482,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_5856/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_6088/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1516,13 +1516,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "00e7c49a", + "id": "9fb5b9a7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.125974Z", - "iopub.status.busy": "2024-02-08T04:24:53.125662Z", - "iopub.status.idle": "2024-02-08T04:24:53.128656Z", - "shell.execute_reply": "2024-02-08T04:24:53.128129Z" + "iopub.execute_input": "2024-02-08T05:11:30.472247Z", + "iopub.status.busy": "2024-02-08T05:11:30.471936Z", + "iopub.status.idle": "2024-02-08T05:11:30.475237Z", + "shell.execute_reply": "2024-02-08T05:11:30.474711Z" } }, "outputs": [ @@ -1617,60 +1617,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "015ef5b9c4e7426e8c19853cef8ae11f": { - "model_module": "@jupyter-widgets/base", + "05de50edb7344de49fc9a7e46146a0dc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1af8c90e7f0c44aea5a4c387ab84a8d8", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_77ad757771b14da99ddebe6c289b3a55", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "07139d1836db4802bef3d7af8515240e": { + "0a436d59bb2a44da9b77996fbb4f1350": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1688,7 +1661,7 @@ "text_color": null } }, - "0820f47cfe0b4a7980f5b74a53fbf2ce": { + "1af8c90e7f0c44aea5a4c387ab84a8d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1741,7 +1714,7 @@ "width": null } }, - "18531640627745059d5f010bdb7bd15d": { + "24876a59455840efb5334507693b3279": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1794,7 +1767,7 @@ "width": null } }, - "1947ea925a434cc286f1c01e91d3d6ce": { + "33e46e8ba5ca460a91916503bd38bfca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1847,7 +1820,7 @@ "width": null } }, - "1b89893bdf0b4718a7dbee8b73490988": { + "4b7e4a218ceb4e0199c05e6baf9563db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1865,7 +1838,7 @@ "text_color": null } }, - "2192c281f612451392e831350d44f234": { + "64188fff7d3b4928803ffdc0d6604409": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1881,141 +1854,74 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0820f47cfe0b4a7980f5b74a53fbf2ce", + "layout": "IPY_MODEL_33e46e8ba5ca460a91916503bd38bfca", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_cd4a1881ee4d4941911d65274d6cbec0", + "style": "IPY_MODEL_f5b660268d8b4fa98dc35fef101083e6", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "2db320790a99420bafd99e85985baec1": { + "6a7fd2b75cbb47cd9959697f813a7e15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24876a59455840efb5334507693b3279", + "placeholder": "​", + "style": "IPY_MODEL_4b7e4a218ceb4e0199c05e6baf9563db", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "2e68e04f2248495aa67f9947209a5a39": { - "model_module": "@jupyter-widgets/base", + "6f707802c6d94a6ebffdd90508ff706b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "445757af76f242048bbb86f1838b61a8": { - "model_module": "@jupyter-widgets/base", + "77ad757771b14da99ddebe6c289b3a55": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5c0191b13eea419db01e0f9eecfae1ec": { + "78cba4b8da0f44b8997e2424fe19dbff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2030,16 +1936,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9d4ac9b4b2794cc5b03c3f973ef0b271", - "IPY_MODEL_944841c00b3d4eb2b5bd71d1b09650b8", - "IPY_MODEL_ab568724990c41f38cb76413e1055586" + "IPY_MODEL_a6d12fb3e1e04e9181c76c877258b50b", + "IPY_MODEL_64188fff7d3b4928803ffdc0d6604409", + "IPY_MODEL_a280677f5a5746e5bd972a898597af15" ], - "layout": "IPY_MODEL_445757af76f242048bbb86f1838b61a8", + "layout": "IPY_MODEL_cfceb62eb6814512b4fcf377b41576c3", "tabbable": null, "tooltip": null } }, - "5cf06b9d4db141cbb8d2ec151a7a2fc3": { + "9113f59e9f8d4e9aa367f233fcdd78d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9ee53d1442404edfb08485845f6aedd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2092,57 +2016,30 @@ "width": null } }, - "87fe2e877c264789adf23c7eddcce500": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b990e7cad1234c46bbf220fbf0706a14", - "IPY_MODEL_2192c281f612451392e831350d44f234", - "IPY_MODEL_ac7c12a86b9445f49fb80f6d0e1b08e8" - ], - "layout": "IPY_MODEL_18531640627745059d5f010bdb7bd15d", - "tabbable": null, - "tooltip": null - } - }, - "944841c00b3d4eb2b5bd71d1b09650b8": { + "a280677f5a5746e5bd972a898597af15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1947ea925a434cc286f1c01e91d3d6ce", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cfee63cfdd5c4ce393aac7cb9a1c613f", + "layout": "IPY_MODEL_9ee53d1442404edfb08485845f6aedd1", + "placeholder": "​", + "style": "IPY_MODEL_6f707802c6d94a6ebffdd90508ff706b", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1037218.46it/s]" } }, - "9d4ac9b4b2794cc5b03c3f973ef0b271": { + "a6d12fb3e1e04e9181c76c877258b50b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2157,15 +2054,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e68e04f2248495aa67f9947209a5a39", + "layout": "IPY_MODEL_d3dda2aaa46a4d269cfd84ed685064f5", "placeholder": "​", - "style": "IPY_MODEL_1b89893bdf0b4718a7dbee8b73490988", + "style": "IPY_MODEL_9113f59e9f8d4e9aa367f233fcdd78d0", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "ab568724990c41f38cb76413e1055586": { + "b2680aa9e75c468cbb4efeebe945eea7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2180,95 +2077,198 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_015ef5b9c4e7426e8c19853cef8ae11f", + "layout": "IPY_MODEL_cfa42c442e2d40b5853652d9d73d091c", "placeholder": "​", - "style": "IPY_MODEL_c671d824811040228d0b53429fdbf8d7", + "style": "IPY_MODEL_0a436d59bb2a44da9b77996fbb4f1350", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1099597.32it/s]" + "value": " 10000/? [00:00<00:00, 1205398.32it/s]" } }, - "ac7c12a86b9445f49fb80f6d0e1b08e8": { + "be08b0354eb04e518b8a75f62d0d766e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5cf06b9d4db141cbb8d2ec151a7a2fc3", - "placeholder": "​", - "style": "IPY_MODEL_2db320790a99420bafd99e85985baec1", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6a7fd2b75cbb47cd9959697f813a7e15", + "IPY_MODEL_05de50edb7344de49fc9a7e46146a0dc", + "IPY_MODEL_b2680aa9e75c468cbb4efeebe945eea7" + ], + "layout": "IPY_MODEL_d8a8c3363a024dbdb7424268a378949d", "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1690910.70it/s]" + "tooltip": null } }, - "b990e7cad1234c46bbf220fbf0706a14": { - "model_module": "@jupyter-widgets/controls", + "cfa42c442e2d40b5853652d9d73d091c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cfb9b1763ab94885a6f99d429428964b", - "placeholder": "​", - "style": "IPY_MODEL_07139d1836db4802bef3d7af8515240e", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c671d824811040228d0b53429fdbf8d7": { - "model_module": "@jupyter-widgets/controls", + "cfceb62eb6814512b4fcf377b41576c3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cd4a1881ee4d4941911d65274d6cbec0": { - "model_module": "@jupyter-widgets/controls", + "d3dda2aaa46a4d269cfd84ed685064f5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cfb9b1763ab94885a6f99d429428964b": { + "d8a8c3363a024dbdb7424268a378949d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2321,7 +2321,7 @@ "width": null } }, - "cfee63cfdd5c4ce393aac7cb9a1c613f": { + "f5b660268d8b4fa98dc35fef101083e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", diff --git a/master/tutorials/image.html b/master/tutorials/image.html index 819732497..a717d5ddc 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -642,25 +642,25 @@

    2. Fetch and normalize the Fashion-MNIST dataset
    -
    +
    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1023,16 +1023,16 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    8%|▊ | 3/40 [00:00&lt;00:01, 27.78it/s]
    +
    5%|▌ | 2/40 [00:00&lt;00:02, 18.39it/s]

    </pre>

    -
    8%|▊ | 3/40 [00:00<00:01, 27.78it/s]
    +
    5%|▌ | 2/40 [00:00<00:02, 18.39it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 3/40 [00:00<00:01, 27.78it/s]

    +

    5%|▌ | 2/40 [00:00<00:02, 18.39it/s]

    -
    25%|██▌ | 10/40 [00:00&lt;00:00, 51.02it/s]
    +
    20%|██ | 8/40 [00:00&lt;00:00, 39.50it/s]

    </pre>

    -
    25%|██▌ | 10/40 [00:00<00:00, 51.02it/s]
    +
    20%|██ | 8/40 [00:00<00:00, 39.50it/s]

    end{sphinxVerbatim}

    -

    25%|██▌ | 10/40 [00:00<00:00, 51.02it/s]

    +

    20%|██ | 8/40 [00:00<00:00, 39.50it/s]

    -
    42%|████▎ | 17/40 [00:00&lt;00:00, 58.17it/s]
    +
    35%|███▌ | 14/40 [00:00&lt;00:00, 46.73it/s]

    </pre>

    -
    42%|████▎ | 17/40 [00:00<00:00, 58.17it/s]
    +
    35%|███▌ | 14/40 [00:00<00:00, 46.73it/s]

    end{sphinxVerbatim}

    -

    42%|████▎ | 17/40 [00:00<00:00, 58.17it/s]

    +

    35%|███▌ | 14/40 [00:00<00:00, 46.73it/s]

    -
    62%|██████▎ | 25/40 [00:00&lt;00:00, 63.86it/s]
    +
    52%|█████▎ | 21/40 [00:00&lt;00:00, 53.72it/s]

    </pre>

    -
    62%|██████▎ | 25/40 [00:00<00:00, 63.86it/s]
    +
    52%|█████▎ | 21/40 [00:00<00:00, 53.72it/s]

    end{sphinxVerbatim}

    -

    62%|██████▎ | 25/40 [00:00<00:00, 63.86it/s]

    +

    52%|█████▎ | 21/40 [00:00<00:00, 53.72it/s]

    -
    80%|████████ | 32/40 [00:00&lt;00:00, 62.77it/s]
    +
    70%|███████ | 28/40 [00:00&lt;00:00, 57.38it/s]

    </pre>

    -
    80%|████████ | 32/40 [00:00<00:00, 62.77it/s]
    +
    70%|███████ | 28/40 [00:00<00:00, 57.38it/s]

    end{sphinxVerbatim}

    -

    80%|████████ | 32/40 [00:00<00:00, 62.77it/s]

    +

    70%|███████ | 28/40 [00:00<00:00, 57.38it/s]

    + + +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    85%|████████▌ | 34/40 [00:00&lt;00:00, 57.39it/s]
    +

    </pre>

    +
    +
    +
    85%|████████▌ | 34/40 [00:00<00:00, 57.39it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    85%|████████▌ | 34/40 [00:00<00:00, 57.39it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 60.88it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 53.69it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 60.88it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 53.69it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 60.88it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 53.69it/s]

    -
    5%|▌ | 2/40 [00:00&lt;00:01, 19.05it/s]
    +
    2%|▎ | 1/40 [00:00&lt;00:04, 9.11it/s]
    +

    </pre>

    +
    +
    +
    2%|▎ | 1/40 [00:00<00:04, 9.11it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    2%|▎ | 1/40 [00:00<00:04, 9.11it/s]

    + + +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    18%|█▊ | 7/40 [00:00&lt;00:00, 37.60it/s]

    </pre>

    -
    5%|▌ | 2/40 [00:00<00:01, 19.05it/s]
    +
    18%|█▊ | 7/40 [00:00<00:00, 37.60it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 2/40 [00:00<00:01, 19.05it/s]

    +

    18%|█▊ | 7/40 [00:00<00:00, 37.60it/s]

    -
    22%|██▎ | 9/40 [00:00&lt;00:00, 48.24it/s]
    +
    32%|███▎ | 13/40 [00:00&lt;00:00, 45.19it/s]

    </pre>

    -
    22%|██▎ | 9/40 [00:00<00:00, 48.24it/s]
    +
    32%|███▎ | 13/40 [00:00<00:00, 45.19it/s]

    end{sphinxVerbatim}

    -

    22%|██▎ | 9/40 [00:00<00:00, 48.24it/s]

    +

    32%|███▎ | 13/40 [00:00<00:00, 45.19it/s]

    -
    40%|████ | 16/40 [00:00&lt;00:00, 56.60it/s]
    +
    50%|█████ | 20/40 [00:00&lt;00:00, 51.79it/s]

    </pre>

    -
    40%|████ | 16/40 [00:00<00:00, 56.60it/s]
    +
    50%|█████ | 20/40 [00:00<00:00, 51.79it/s]

    end{sphinxVerbatim}

    -

    40%|████ | 16/40 [00:00<00:00, 56.60it/s]

    +

    50%|█████ | 20/40 [00:00<00:00, 51.79it/s]

    -
    60%|██████ | 24/40 [00:00&lt;00:00, 62.68it/s]
    +
    68%|██████▊ | 27/40 [00:00&lt;00:00, 56.06it/s]

    </pre>

    -
    60%|██████ | 24/40 [00:00<00:00, 62.68it/s]
    +
    68%|██████▊ | 27/40 [00:00<00:00, 56.06it/s]

    end{sphinxVerbatim}

    -

    60%|██████ | 24/40 [00:00<00:00, 62.68it/s]

    +

    68%|██████▊ | 27/40 [00:00<00:00, 56.06it/s]

    -
    80%|████████ | 32/40 [00:00&lt;00:00, 66.11it/s]
    +
    85%|████████▌ | 34/40 [00:00&lt;00:00, 59.66it/s]

    </pre>

    -
    80%|████████ | 32/40 [00:00<00:00, 66.11it/s]
    +
    85%|████████▌ | 34/40 [00:00<00:00, 59.66it/s]

    end{sphinxVerbatim}

    -

    80%|████████ | 32/40 [00:00<00:00, 66.11it/s]

    +

    85%|████████▌ | 34/40 [00:00<00:00, 59.66it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 62.45it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 53.55it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 62.45it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 53.55it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 62.45it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 53.55it/s]

    -
    22%|██▎ | 9/40 [00:00&lt;00:00, 48.56it/s]
    +
    20%|██ | 8/40 [00:00&lt;00:00, 40.71it/s]

    </pre>

    -
    22%|██▎ | 9/40 [00:00<00:00, 48.56it/s]
    +
    20%|██ | 8/40 [00:00<00:00, 40.71it/s]

    end{sphinxVerbatim}

    -

    22%|██▎ | 9/40 [00:00<00:00, 48.56it/s]

    +

    20%|██ | 8/40 [00:00<00:00, 40.71it/s]

    -
    40%|████ | 16/40 [00:00&lt;00:00, 57.12it/s]
    +
    38%|███▊ | 15/40 [00:00&lt;00:00, 51.00it/s]

    </pre>

    -
    40%|████ | 16/40 [00:00<00:00, 57.12it/s]
    +
    38%|███▊ | 15/40 [00:00<00:00, 51.00it/s]

    end{sphinxVerbatim}

    -

    40%|████ | 16/40 [00:00<00:00, 57.12it/s]

    +

    38%|███▊ | 15/40 [00:00<00:00, 51.00it/s]

    -
    60%|██████ | 24/40 [00:00&lt;00:00, 63.37it/s]
    +
    52%|█████▎ | 21/40 [00:00&lt;00:00, 53.38it/s]

    </pre>

    -
    60%|██████ | 24/40 [00:00<00:00, 63.37it/s]
    +
    52%|█████▎ | 21/40 [00:00<00:00, 53.38it/s]

    end{sphinxVerbatim}

    -

    60%|██████ | 24/40 [00:00<00:00, 63.37it/s]

    +

    52%|█████▎ | 21/40 [00:00<00:00, 53.38it/s]

    -
    78%|███████▊ | 31/40 [00:00&lt;00:00, 64.97it/s]
    +
    68%|██████▊ | 27/40 [00:00&lt;00:00, 54.81it/s]

    </pre>

    -
    78%|███████▊ | 31/40 [00:00<00:00, 64.97it/s]
    +
    68%|██████▊ | 27/40 [00:00<00:00, 54.81it/s]

    end{sphinxVerbatim}

    -

    78%|███████▊ | 31/40 [00:00<00:00, 64.97it/s]

    +

    68%|██████▊ | 27/40 [00:00<00:00, 54.81it/s]

    -
    98%|█████████▊| 39/40 [00:00&lt;00:00, 68.47it/s]
    +
    85%|████████▌ | 34/40 [00:00&lt;00:00, 58.74it/s]

    </pre>

    -
    98%|█████████▊| 39/40 [00:00<00:00, 68.47it/s]
    +
    85%|████████▌ | 34/40 [00:00<00:00, 58.74it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 39/40 [00:00<00:00, 68.47it/s]

    +

    85%|████████▌ | 34/40 [00:00<00:00, 58.74it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 61.34it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 52.08it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 61.34it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 52.08it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 61.34it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 52.08it/s]

    -
    5%|▌ | 2/40 [00:00&lt;00:01, 19.37it/s]
    +
    2%|▎ | 1/40 [00:00&lt;00:04, 9.35it/s]

    </pre>

    -
    5%|▌ | 2/40 [00:00<00:01, 19.37it/s]
    +
    2%|▎ | 1/40 [00:00<00:04, 9.35it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 2/40 [00:00<00:01, 19.37it/s]

    +

    2%|▎ | 1/40 [00:00<00:04, 9.35it/s]

    -
    25%|██▌ | 10/40 [00:00&lt;00:00, 50.99it/s]
    +
    20%|██ | 8/40 [00:00&lt;00:00, 41.07it/s]

    </pre>

    -
    25%|██▌ | 10/40 [00:00<00:00, 50.99it/s]
    +
    20%|██ | 8/40 [00:00<00:00, 41.07it/s]

    end{sphinxVerbatim}

    -

    25%|██▌ | 10/40 [00:00<00:00, 50.99it/s]

    +

    20%|██ | 8/40 [00:00<00:00, 41.07it/s]

    -
    42%|████▎ | 17/40 [00:00&lt;00:00, 58.63it/s]
    +
    38%|███▊ | 15/40 [00:00&lt;00:00, 53.07it/s]

    </pre>

    -
    42%|████▎ | 17/40 [00:00<00:00, 58.63it/s]
    +
    38%|███▊ | 15/40 [00:00<00:00, 53.07it/s]

    end{sphinxVerbatim}

    -

    42%|████▎ | 17/40 [00:00<00:00, 58.63it/s]

    +

    38%|███▊ | 15/40 [00:00<00:00, 53.07it/s]

    -
    60%|██████ | 24/40 [00:00&lt;00:00, 62.58it/s]
    +
    55%|█████▌ | 22/40 [00:00&lt;00:00, 57.05it/s]

    </pre>

    -
    60%|██████ | 24/40 [00:00<00:00, 62.58it/s]
    +
    55%|█████▌ | 22/40 [00:00<00:00, 57.05it/s]

    end{sphinxVerbatim}

    -

    60%|██████ | 24/40 [00:00<00:00, 62.58it/s]

    +

    55%|█████▌ | 22/40 [00:00<00:00, 57.05it/s]

    -
    78%|███████▊ | 31/40 [00:00&lt;00:00, 65.07it/s]
    +
    72%|███████▎ | 29/40 [00:00&lt;00:00, 60.72it/s]

    </pre>

    -
    78%|███████▊ | 31/40 [00:00<00:00, 65.07it/s]
    +
    72%|███████▎ | 29/40 [00:00<00:00, 60.72it/s]

    end{sphinxVerbatim}

    -

    78%|███████▊ | 31/40 [00:00<00:00, 65.07it/s]

    +

    72%|███████▎ | 29/40 [00:00<00:00, 60.72it/s]

    -
    +
    -
    -
    -
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    -
    100%|██████████| 40/40 [00:00&lt;00:00, 73.11it/s]
    +
    90%|█████████ | 36/40 [00:00&lt;00:00, 60.32it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 73.11it/s]
    +
    90%|█████████ | 36/40 [00:00<00:00, 60.32it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 73.11it/s]

    +

    90%|█████████ | 36/40 [00:00<00:00, 60.32it/s]

    +
    +
    -
    100%|██████████| 40/40 [00:00&lt;00:00, 62.41it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 55.52it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 62.41it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 55.52it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 62.41it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 55.52it/s]

    @@ -1858,16 +1919,16 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    2%|▎ | 1/40 [00:00&lt;00:04, 9.70it/s]
    +
    2%|▎ | 1/40 [00:00&lt;00:04, 8.42it/s]

    </pre>

    -
    2%|▎ | 1/40 [00:00<00:04, 9.70it/s]
    +
    2%|▎ | 1/40 [00:00<00:04, 8.42it/s]

    end{sphinxVerbatim}

    -

    2%|▎ | 1/40 [00:00<00:04, 9.70it/s]

    +

    2%|▎ | 1/40 [00:00<00:04, 8.42it/s]

    -
    20%|██ | 8/40 [00:00&lt;00:00, 44.22it/s]
    +
    18%|█▊ | 7/40 [00:00&lt;00:00, 34.21it/s]

    </pre>

    -
    20%|██ | 8/40 [00:00<00:00, 44.22it/s]
    +
    18%|█▊ | 7/40 [00:00<00:00, 34.21it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 8/40 [00:00<00:00, 44.22it/s]

    +

    18%|█▊ | 7/40 [00:00<00:00, 34.21it/s]

    -
    38%|███▊ | 15/40 [00:00&lt;00:00, 55.41it/s]
    +
    35%|███▌ | 14/40 [00:00&lt;00:00, 47.70it/s]

    </pre>

    -
    38%|███▊ | 15/40 [00:00<00:00, 55.41it/s]
    +
    35%|███▌ | 14/40 [00:00<00:00, 47.70it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 15/40 [00:00<00:00, 55.41it/s]

    +

    35%|███▌ | 14/40 [00:00<00:00, 47.70it/s]

    -
    55%|█████▌ | 22/40 [00:00&lt;00:00, 60.21it/s]
    +
    52%|█████▎ | 21/40 [00:00&lt;00:00, 55.32it/s]

    </pre>

    -
    55%|█████▌ | 22/40 [00:00<00:00, 60.21it/s]
    +
    52%|█████▎ | 21/40 [00:00<00:00, 55.32it/s]

    end{sphinxVerbatim}

    -

    55%|█████▌ | 22/40 [00:00<00:00, 60.21it/s]

    +

    52%|█████▎ | 21/40 [00:00<00:00, 55.32it/s]

    -
    72%|███████▎ | 29/40 [00:00&lt;00:00, 63.53it/s]
    +
    68%|██████▊ | 27/40 [00:00&lt;00:00, 56.57it/s]

    </pre>

    -
    72%|███████▎ | 29/40 [00:00<00:00, 63.53it/s]
    +
    68%|██████▊ | 27/40 [00:00<00:00, 56.57it/s]

    end{sphinxVerbatim}

    -

    72%|███████▎ | 29/40 [00:00<00:00, 63.53it/s]

    +

    68%|██████▊ | 27/40 [00:00<00:00, 56.57it/s]

    -
    90%|█████████ | 36/40 [00:00&lt;00:00, 64.28it/s]
    +
    88%|████████▊ | 35/40 [00:00&lt;00:00, 62.30it/s]

    </pre>

    -
    90%|█████████ | 36/40 [00:00<00:00, 64.28it/s]
    +
    88%|████████▊ | 35/40 [00:00<00:00, 62.30it/s]

    end{sphinxVerbatim}

    -

    90%|█████████ | 36/40 [00:00<00:00, 64.28it/s]

    +

    88%|████████▊ | 35/40 [00:00<00:00, 62.30it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 59.03it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 54.64it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 59.03it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 54.64it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 59.03it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 54.64it/s]

    -
    5%|▌ | 2/40 [00:00&lt;00:02, 17.91it/s]
    +
    2%|▎ | 1/40 [00:00&lt;00:04, 7.86it/s]
    +

    </pre>

    +
    +
    +
    2%|▎ | 1/40 [00:00<00:04, 7.86it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    2%|▎ | 1/40 [00:00<00:04, 7.86it/s]

    + + +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    20%|██ | 8/40 [00:00&lt;00:00, 38.53it/s]

    </pre>

    -
    5%|▌ | 2/40 [00:00<00:02, 17.91it/s]
    +
    20%|██ | 8/40 [00:00<00:00, 38.53it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 2/40 [00:00<00:02, 17.91it/s]

    +

    20%|██ | 8/40 [00:00<00:00, 38.53it/s]

    -
    25%|██▌ | 10/40 [00:00&lt;00:00, 48.77it/s]
    +
    35%|███▌ | 14/40 [00:00&lt;00:00, 46.74it/s]

    </pre>

    -
    25%|██▌ | 10/40 [00:00<00:00, 48.77it/s]
    +
    35%|███▌ | 14/40 [00:00<00:00, 46.74it/s]

    end{sphinxVerbatim}

    -

    25%|██▌ | 10/40 [00:00<00:00, 48.77it/s]

    +

    35%|███▌ | 14/40 [00:00<00:00, 46.74it/s]

    -
    45%|████▌ | 18/40 [00:00&lt;00:00, 58.27it/s]
    +
    52%|█████▎ | 21/40 [00:00&lt;00:00, 52.27it/s]

    </pre>

    -
    45%|████▌ | 18/40 [00:00<00:00, 58.27it/s]
    +
    52%|█████▎ | 21/40 [00:00<00:00, 52.27it/s]

    end{sphinxVerbatim}

    -

    45%|████▌ | 18/40 [00:00<00:00, 58.27it/s]

    +

    52%|█████▎ | 21/40 [00:00<00:00, 52.27it/s]

    -
    62%|██████▎ | 25/40 [00:00&lt;00:00, 62.12it/s]
    +
    70%|███████ | 28/40 [00:00&lt;00:00, 57.88it/s]

    </pre>

    -
    62%|██████▎ | 25/40 [00:00<00:00, 62.12it/s]
    +
    70%|███████ | 28/40 [00:00<00:00, 57.88it/s]

    end{sphinxVerbatim}

    -

    62%|██████▎ | 25/40 [00:00<00:00, 62.12it/s]

    +

    70%|███████ | 28/40 [00:00<00:00, 57.88it/s]

    -
    80%|████████ | 32/40 [00:00&lt;00:00, 64.03it/s]
    +
    90%|█████████ | 36/40 [00:00&lt;00:00, 64.33it/s]

    </pre>

    -
    80%|████████ | 32/40 [00:00<00:00, 64.03it/s]
    +
    90%|█████████ | 36/40 [00:00<00:00, 64.33it/s]

    end{sphinxVerbatim}

    -

    80%|████████ | 32/40 [00:00<00:00, 64.03it/s]

    +

    90%|█████████ | 36/40 [00:00<00:00, 64.33it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 61.44it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 55.15it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 61.44it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 55.15it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 61.44it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 55.15it/s]

    -
    +
    @@ -3012,35 +3099,35 @@

    Dark images - is_dark_issue dark_score + is_dark_issue 34848 - True 0.203922 + True 50270 - True 0.204588 + True 3936 - True 0.213098 + True 733 - True 0.217686 + True 8094 - True 0.230118 + True @@ -3134,35 +3221,35 @@

    Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -3190,7 +3277,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index ca3884e75..6cc35451a 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:56.232543Z", - "iopub.status.busy": "2024-02-08T04:24:56.232378Z", - "iopub.status.idle": "2024-02-08T04:24:58.931394Z", - "shell.execute_reply": "2024-02-08T04:24:58.930789Z" + "iopub.execute_input": "2024-02-08T05:11:33.855472Z", + "iopub.status.busy": "2024-02-08T05:11:33.855301Z", + "iopub.status.idle": "2024-02-08T05:11:36.680229Z", + "shell.execute_reply": "2024-02-08T05:11:36.679587Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:58.934174Z", - "iopub.status.busy": "2024-02-08T04:24:58.933710Z", - "iopub.status.idle": "2024-02-08T04:24:58.937329Z", - "shell.execute_reply": "2024-02-08T04:24:58.936873Z" + "iopub.execute_input": "2024-02-08T05:11:36.682789Z", + "iopub.status.busy": "2024-02-08T05:11:36.682504Z", + "iopub.status.idle": "2024-02-08T05:11:36.686100Z", + "shell.execute_reply": "2024-02-08T05:11:36.685571Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:58.939174Z", - "iopub.status.busy": "2024-02-08T04:24:58.938911Z", - "iopub.status.idle": "2024-02-08T04:25:01.280745Z", - "shell.execute_reply": "2024-02-08T04:25:01.280238Z" + "iopub.execute_input": "2024-02-08T05:11:36.688210Z", + "iopub.status.busy": "2024-02-08T05:11:36.687886Z", + "iopub.status.idle": "2024-02-08T05:11:42.408324Z", + "shell.execute_reply": "2024-02-08T05:11:42.407756Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1eec2d01466b406faa6fd5ecda631e5d", + "model_id": "5c4b4cfac6fb41f2bb0be9cbeb8c1702", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e589d0c9f4074d929f567d526d1382cd", + "model_id": "e5ff19704e974b418104ac00b0017738", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ea33752ef0e44cc7a07b481740f0d64f", + "model_id": "bbfffb031cc24eb4ae644fb9173c9de0", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "105f329ad92c48cf972b910d94794f45", + "model_id": "e7800f2f49ce4746b2842751e0616d59", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:01.283006Z", - "iopub.status.busy": "2024-02-08T04:25:01.282600Z", - "iopub.status.idle": "2024-02-08T04:25:01.286183Z", - "shell.execute_reply": "2024-02-08T04:25:01.285712Z" + "iopub.execute_input": "2024-02-08T05:11:42.410325Z", + "iopub.status.busy": "2024-02-08T05:11:42.410111Z", + "iopub.status.idle": "2024-02-08T05:11:42.413871Z", + "shell.execute_reply": "2024-02-08T05:11:42.413354Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:01.288113Z", - "iopub.status.busy": "2024-02-08T04:25:01.287932Z", - "iopub.status.idle": "2024-02-08T04:25:12.545629Z", - "shell.execute_reply": "2024-02-08T04:25:12.545098Z" + "iopub.execute_input": "2024-02-08T05:11:42.415858Z", + "iopub.status.busy": "2024-02-08T05:11:42.415525Z", + "iopub.status.idle": "2024-02-08T05:11:53.750074Z", + "shell.execute_reply": "2024-02-08T05:11:53.749507Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ce69eb6fd8f34a5bad0f15df3a6b52b0", + "model_id": "e05b0e6e74fa464d816d0358a6dc76b4", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:12.548131Z", - "iopub.status.busy": "2024-02-08T04:25:12.547897Z", - "iopub.status.idle": "2024-02-08T04:25:30.917414Z", - "shell.execute_reply": "2024-02-08T04:25:30.916876Z" + "iopub.execute_input": "2024-02-08T05:11:53.752787Z", + "iopub.status.busy": "2024-02-08T05:11:53.752415Z", + "iopub.status.idle": "2024-02-08T05:12:12.431429Z", + "shell.execute_reply": "2024-02-08T05:12:12.430850Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.920125Z", - "iopub.status.busy": "2024-02-08T04:25:30.919726Z", - "iopub.status.idle": "2024-02-08T04:25:30.925627Z", - "shell.execute_reply": "2024-02-08T04:25:30.925174Z" + "iopub.execute_input": "2024-02-08T05:12:12.434281Z", + "iopub.status.busy": "2024-02-08T05:12:12.433867Z", + "iopub.status.idle": "2024-02-08T05:12:12.440057Z", + "shell.execute_reply": "2024-02-08T05:12:12.439494Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.927527Z", - "iopub.status.busy": "2024-02-08T04:25:30.927201Z", - "iopub.status.idle": "2024-02-08T04:25:30.930903Z", - "shell.execute_reply": "2024-02-08T04:25:30.930494Z" + "iopub.execute_input": "2024-02-08T05:12:12.442385Z", + "iopub.status.busy": "2024-02-08T05:12:12.441854Z", + "iopub.status.idle": "2024-02-08T05:12:12.446407Z", + "shell.execute_reply": "2024-02-08T05:12:12.445964Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.932869Z", - "iopub.status.busy": "2024-02-08T04:25:30.932550Z", - "iopub.status.idle": "2024-02-08T04:25:30.941233Z", - "shell.execute_reply": "2024-02-08T04:25:30.940796Z" + "iopub.execute_input": "2024-02-08T05:12:12.448647Z", + "iopub.status.busy": "2024-02-08T05:12:12.448313Z", + "iopub.status.idle": "2024-02-08T05:12:12.457542Z", + "shell.execute_reply": "2024-02-08T05:12:12.456967Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.943198Z", - "iopub.status.busy": "2024-02-08T04:25:30.942898Z", - "iopub.status.idle": "2024-02-08T04:25:30.970984Z", - "shell.execute_reply": "2024-02-08T04:25:30.970570Z" + "iopub.execute_input": "2024-02-08T05:12:12.459748Z", + "iopub.status.busy": "2024-02-08T05:12:12.459381Z", + "iopub.status.idle": "2024-02-08T05:12:12.486639Z", + "shell.execute_reply": "2024-02-08T05:12:12.486117Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.973114Z", - "iopub.status.busy": "2024-02-08T04:25:30.972691Z", - "iopub.status.idle": "2024-02-08T04:26:01.791285Z", - "shell.execute_reply": "2024-02-08T04:26:01.790653Z" + "iopub.execute_input": "2024-02-08T05:12:12.489022Z", + "iopub.status.busy": "2024-02-08T05:12:12.488682Z", + "iopub.status.idle": "2024-02-08T05:12:47.304575Z", + "shell.execute_reply": "2024-02-08T05:12:47.303948Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.545\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.393\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.360\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 5.035\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 3/40 [00:00<00:01, 27.78it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.39it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 51.02it/s]" + " 20%|██ | 8/40 [00:00<00:00, 39.50it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.17it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 46.73it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.86it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 53.72it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 62.77it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 57.38it/s]" ] }, { @@ -790,7 +790,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.88it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 57.39it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 40/40 [00:00<00:00, 53.69it/s]" ] }, { @@ -820,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.05it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.11it/s]" ] }, { @@ -828,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 48.24it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 37.60it/s]" ] }, { @@ -836,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 56.60it/s]" + " 32%|███▎ | 13/40 [00:00<00:00, 45.19it/s]" ] }, { @@ -844,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 62.68it/s]" + " 50%|█████ | 20/40 [00:00<00:00, 51.79it/s]" ] }, { @@ -852,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 66.11it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 56.06it/s]" ] }, { @@ -860,15 +868,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.45it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 59.66it/s]" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\n", - "Training on fold: 2 ...\n" + "\r", + "100%|██████████| 40/40 [00:00<00:00, 53.55it/s]" ] }, { @@ -882,14 +890,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.565\n" + "\n", + "Training on fold: 2 ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.153\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.325\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.956\n", "Computing feature embeddings ...\n" ] }, @@ -906,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.22it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.09it/s]" ] }, { @@ -914,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 48.56it/s]" + " 20%|██ | 8/40 [00:00<00:00, 40.71it/s]" ] }, { @@ -922,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 57.12it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 51.00it/s]" ] }, { @@ -930,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 63.37it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 53.38it/s]" ] }, { @@ -938,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 64.97it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 54.81it/s]" ] }, { @@ -946,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 39/40 [00:00<00:00, 68.47it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 58.74it/s]" ] }, { @@ -954,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.34it/s]" + "100%|██████████| 40/40 [00:00<00:00, 52.08it/s]" ] }, { @@ -984,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.37it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.35it/s]" ] }, { @@ -992,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 50.99it/s]" + " 20%|██ | 8/40 [00:00<00:00, 41.07it/s]" ] }, { @@ -1000,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.63it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 53.07it/s]" ] }, { @@ -1008,7 +1024,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 62.58it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 57.05it/s]" ] }, { @@ -1016,7 +1032,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 65.07it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 60.72it/s]" ] }, { @@ -1024,7 +1040,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 73.11it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 60.32it/s]" ] }, { @@ -1032,7 +1048,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.41it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.52it/s]" ] }, { @@ -1054,14 +1070,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.716\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.128\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.350\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.675\n", "Computing feature embeddings ...\n" ] }, @@ -1078,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.70it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.42it/s]" ] }, { @@ -1086,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 44.22it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 34.21it/s]" ] }, { @@ -1094,7 +1110,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 55.41it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 47.70it/s]" ] }, { @@ -1102,7 +1118,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 60.21it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 55.32it/s]" ] }, { @@ -1110,7 +1126,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 63.53it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 56.57it/s]" ] }, { @@ -1118,7 +1134,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 64.28it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 62.30it/s]" ] }, { @@ -1126,7 +1142,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 59.03it/s]" + "100%|██████████| 40/40 [00:00<00:00, 54.64it/s]" ] }, { @@ -1156,7 +1172,15 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.91it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 7.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 20%|██ | 8/40 [00:00<00:00, 38.53it/s]" ] }, { @@ -1164,7 +1188,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 48.77it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 46.74it/s]" ] }, { @@ -1172,7 +1196,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 58.27it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 52.27it/s]" ] }, { @@ -1180,7 +1204,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 62.12it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 57.88it/s]" ] }, { @@ -1188,7 +1212,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 64.03it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 64.33it/s]" ] }, { @@ -1196,7 +1220,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.44it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.15it/s]" ] }, { @@ -1273,10 +1297,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:26:01.793942Z", - "iopub.status.busy": "2024-02-08T04:26:01.793708Z", - "iopub.status.idle": "2024-02-08T04:26:01.808555Z", - "shell.execute_reply": "2024-02-08T04:26:01.808026Z" + "iopub.execute_input": "2024-02-08T05:12:47.307122Z", + "iopub.status.busy": "2024-02-08T05:12:47.306721Z", + "iopub.status.idle": "2024-02-08T05:12:47.321685Z", + "shell.execute_reply": "2024-02-08T05:12:47.321241Z" } }, "outputs": [], @@ -1301,10 +1325,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:26:01.810654Z", - "iopub.status.busy": "2024-02-08T04:26:01.810270Z", - "iopub.status.idle": "2024-02-08T04:26:02.254184Z", - "shell.execute_reply": "2024-02-08T04:26:02.253640Z" + "iopub.execute_input": "2024-02-08T05:12:47.324152Z", + "iopub.status.busy": "2024-02-08T05:12:47.323716Z", + "iopub.status.idle": "2024-02-08T05:12:47.795908Z", + "shell.execute_reply": "2024-02-08T05:12:47.795244Z" } }, "outputs": [], @@ -1324,10 +1348,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:26:02.256439Z", - "iopub.status.busy": "2024-02-08T04:26:02.256259Z", - "iopub.status.idle": "2024-02-08T04:29:26.370970Z", - "shell.execute_reply": "2024-02-08T04:29:26.370342Z" + "iopub.execute_input": "2024-02-08T05:12:47.798403Z", + "iopub.status.busy": "2024-02-08T05:12:47.798206Z", + "iopub.status.idle": "2024-02-08T05:16:16.134576Z", + "shell.execute_reply": "2024-02-08T05:16:16.133948Z" } }, "outputs": [ @@ -1366,7 +1390,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6e7d1c0d21c4730876e3dc529f3db41", + "model_id": "c7e1f8c4d56340c8bb108cd4fe09524c", "version_major": 2, "version_minor": 0 }, @@ -1405,10 +1429,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.373314Z", - "iopub.status.busy": "2024-02-08T04:29:26.372922Z", - "iopub.status.idle": "2024-02-08T04:29:26.818658Z", - "shell.execute_reply": "2024-02-08T04:29:26.818134Z" + "iopub.execute_input": "2024-02-08T05:16:16.137196Z", + "iopub.status.busy": "2024-02-08T05:16:16.136611Z", + "iopub.status.idle": "2024-02-08T05:16:16.606508Z", + "shell.execute_reply": "2024-02-08T05:16:16.605923Z" } }, "outputs": [ @@ -1556,10 +1580,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.821205Z", - "iopub.status.busy": "2024-02-08T04:29:26.820713Z", - "iopub.status.idle": "2024-02-08T04:29:26.881196Z", - "shell.execute_reply": "2024-02-08T04:29:26.880709Z" + "iopub.execute_input": "2024-02-08T05:16:16.609511Z", + "iopub.status.busy": "2024-02-08T05:16:16.609031Z", + "iopub.status.idle": "2024-02-08T05:16:16.672077Z", + "shell.execute_reply": "2024-02-08T05:16:16.671511Z" } }, "outputs": [ @@ -1663,10 +1687,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.883670Z", - "iopub.status.busy": "2024-02-08T04:29:26.883206Z", - "iopub.status.idle": "2024-02-08T04:29:26.891318Z", - "shell.execute_reply": "2024-02-08T04:29:26.890887Z" + "iopub.execute_input": "2024-02-08T05:16:16.674286Z", + "iopub.status.busy": "2024-02-08T05:16:16.673952Z", + "iopub.status.idle": "2024-02-08T05:16:16.682904Z", + "shell.execute_reply": "2024-02-08T05:16:16.682454Z" } }, "outputs": [ @@ -1796,10 +1820,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.893282Z", - "iopub.status.busy": "2024-02-08T04:29:26.892958Z", - "iopub.status.idle": "2024-02-08T04:29:26.897622Z", - "shell.execute_reply": "2024-02-08T04:29:26.897061Z" + "iopub.execute_input": "2024-02-08T05:16:16.685126Z", + "iopub.status.busy": "2024-02-08T05:16:16.684796Z", + "iopub.status.idle": "2024-02-08T05:16:16.689639Z", + "shell.execute_reply": "2024-02-08T05:16:16.689163Z" }, "nbsphinx": "hidden" }, @@ -1845,10 +1869,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.899634Z", - "iopub.status.busy": "2024-02-08T04:29:26.899324Z", - "iopub.status.idle": "2024-02-08T04:29:27.376843Z", - "shell.execute_reply": "2024-02-08T04:29:27.376264Z" + "iopub.execute_input": "2024-02-08T05:16:16.691789Z", + "iopub.status.busy": "2024-02-08T05:16:16.691422Z", + "iopub.status.idle": "2024-02-08T05:16:17.213029Z", + "shell.execute_reply": "2024-02-08T05:16:17.212410Z" } }, "outputs": [ @@ -1883,10 +1907,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.379088Z", - "iopub.status.busy": "2024-02-08T04:29:27.378755Z", - "iopub.status.idle": "2024-02-08T04:29:27.386489Z", - "shell.execute_reply": "2024-02-08T04:29:27.386057Z" + "iopub.execute_input": "2024-02-08T05:16:17.215467Z", + "iopub.status.busy": "2024-02-08T05:16:17.214996Z", + "iopub.status.idle": "2024-02-08T05:16:17.224959Z", + "shell.execute_reply": "2024-02-08T05:16:17.224479Z" } }, "outputs": [ @@ -2053,10 +2077,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.388581Z", - "iopub.status.busy": "2024-02-08T04:29:27.388218Z", - "iopub.status.idle": "2024-02-08T04:29:27.395182Z", - "shell.execute_reply": "2024-02-08T04:29:27.394738Z" + "iopub.execute_input": "2024-02-08T05:16:17.227422Z", + "iopub.status.busy": "2024-02-08T05:16:17.226963Z", + "iopub.status.idle": "2024-02-08T05:16:17.235643Z", + "shell.execute_reply": "2024-02-08T05:16:17.235180Z" }, "nbsphinx": "hidden" }, @@ -2132,10 +2156,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.397024Z", - "iopub.status.busy": "2024-02-08T04:29:27.396850Z", - "iopub.status.idle": "2024-02-08T04:29:27.833200Z", - "shell.execute_reply": "2024-02-08T04:29:27.832645Z" + "iopub.execute_input": "2024-02-08T05:16:17.237953Z", + "iopub.status.busy": "2024-02-08T05:16:17.237551Z", + "iopub.status.idle": "2024-02-08T05:16:17.722322Z", + "shell.execute_reply": "2024-02-08T05:16:17.721746Z" } }, "outputs": [ @@ -2172,10 +2196,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.835376Z", - "iopub.status.busy": "2024-02-08T04:29:27.834999Z", - "iopub.status.idle": "2024-02-08T04:29:27.850165Z", - "shell.execute_reply": "2024-02-08T04:29:27.849608Z" + "iopub.execute_input": "2024-02-08T05:16:17.724592Z", + "iopub.status.busy": "2024-02-08T05:16:17.724194Z", + "iopub.status.idle": "2024-02-08T05:16:17.740235Z", + "shell.execute_reply": "2024-02-08T05:16:17.739614Z" } }, "outputs": [ @@ -2332,10 +2356,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.852521Z", - "iopub.status.busy": "2024-02-08T04:29:27.852115Z", - "iopub.status.idle": "2024-02-08T04:29:27.857586Z", - "shell.execute_reply": "2024-02-08T04:29:27.857046Z" + "iopub.execute_input": "2024-02-08T05:16:17.742697Z", + "iopub.status.busy": "2024-02-08T05:16:17.742264Z", + "iopub.status.idle": "2024-02-08T05:16:17.749660Z", + "shell.execute_reply": "2024-02-08T05:16:17.749131Z" }, "nbsphinx": "hidden" }, @@ -2380,10 +2404,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.859645Z", - "iopub.status.busy": "2024-02-08T04:29:27.859344Z", - "iopub.status.idle": "2024-02-08T04:29:28.254342Z", - "shell.execute_reply": "2024-02-08T04:29:28.253785Z" + "iopub.execute_input": "2024-02-08T05:16:17.752010Z", + "iopub.status.busy": "2024-02-08T05:16:17.751625Z", + "iopub.status.idle": "2024-02-08T05:16:18.239460Z", + "shell.execute_reply": "2024-02-08T05:16:18.238912Z" } }, "outputs": [ @@ -2465,10 +2489,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.256536Z", - "iopub.status.busy": "2024-02-08T04:29:28.256361Z", - "iopub.status.idle": "2024-02-08T04:29:28.264799Z", - "shell.execute_reply": "2024-02-08T04:29:28.264244Z" + "iopub.execute_input": "2024-02-08T05:16:18.242461Z", + "iopub.status.busy": "2024-02-08T05:16:18.241984Z", + "iopub.status.idle": "2024-02-08T05:16:18.251716Z", + "shell.execute_reply": "2024-02-08T05:16:18.251180Z" } }, "outputs": [ @@ -2493,47 +2517,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2596,10 +2620,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.266967Z", - "iopub.status.busy": "2024-02-08T04:29:28.266794Z", - "iopub.status.idle": "2024-02-08T04:29:28.272101Z", - "shell.execute_reply": "2024-02-08T04:29:28.271528Z" + "iopub.execute_input": "2024-02-08T05:16:18.254337Z", + "iopub.status.busy": "2024-02-08T05:16:18.254007Z", + "iopub.status.idle": "2024-02-08T05:16:18.259914Z", + "shell.execute_reply": "2024-02-08T05:16:18.259362Z" }, "nbsphinx": "hidden" }, @@ -2636,10 +2660,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.274106Z", - "iopub.status.busy": "2024-02-08T04:29:28.273933Z", - "iopub.status.idle": "2024-02-08T04:29:28.448369Z", - "shell.execute_reply": "2024-02-08T04:29:28.447945Z" + "iopub.execute_input": "2024-02-08T05:16:18.262797Z", + "iopub.status.busy": "2024-02-08T05:16:18.261859Z", + "iopub.status.idle": "2024-02-08T05:16:18.467078Z", + "shell.execute_reply": "2024-02-08T05:16:18.466624Z" } }, "outputs": [ @@ -2681,10 +2705,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.450416Z", - "iopub.status.busy": "2024-02-08T04:29:28.450253Z", - "iopub.status.idle": "2024-02-08T04:29:28.457374Z", - "shell.execute_reply": "2024-02-08T04:29:28.456949Z" + "iopub.execute_input": "2024-02-08T05:16:18.469453Z", + "iopub.status.busy": "2024-02-08T05:16:18.469266Z", + "iopub.status.idle": "2024-02-08T05:16:18.477401Z", + "shell.execute_reply": "2024-02-08T05:16:18.476936Z" } }, "outputs": [ @@ -2709,47 +2733,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "
    " ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2770,10 +2794,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.459371Z", - "iopub.status.busy": "2024-02-08T04:29:28.459080Z", - "iopub.status.idle": "2024-02-08T04:29:28.664721Z", - "shell.execute_reply": "2024-02-08T04:29:28.664223Z" + "iopub.execute_input": "2024-02-08T05:16:18.479350Z", + "iopub.status.busy": "2024-02-08T05:16:18.479171Z", + "iopub.status.idle": "2024-02-08T05:16:18.652231Z", + "shell.execute_reply": "2024-02-08T05:16:18.651687Z" } }, "outputs": [ @@ -2813,10 +2837,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.666766Z", - "iopub.status.busy": "2024-02-08T04:29:28.666522Z", - "iopub.status.idle": "2024-02-08T04:29:28.670873Z", - "shell.execute_reply": "2024-02-08T04:29:28.670415Z" + "iopub.execute_input": "2024-02-08T05:16:18.654334Z", + "iopub.status.busy": "2024-02-08T05:16:18.654151Z", + "iopub.status.idle": "2024-02-08T05:16:18.658449Z", + "shell.execute_reply": "2024-02-08T05:16:18.658019Z" }, "nbsphinx": "hidden" }, @@ -2853,7 +2877,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "022361df31e04c07a94380f640f14be5": { + "1644edf88a214176b72d5e2999de8b8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1ec724c611f14ab38760c5b566b9582f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7a0422ab0104b88942f6e13074466fd", + "placeholder": "​", + "style": "IPY_MODEL_effe32e5f0a941f080bbc9527408df9b", + "tabbable": null, + "tooltip": null, + "value": " 10000/0 [00:00<00:00, 604906.98 examples/s]" + } + }, + "1f8b5c4b58024e64be421bef7eadc5d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2906,23 +2969,7 @@ "width": null } }, - "02a75c6b9edc4a8da0feb9bfb6765cbb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "030281198fd34a91972408f1da63fd2c": { + "285fd65ebfa84b7db898a122b01e9cf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2975,56 +3022,25 @@ "width": null } }, - "0b506b5e968a47e5bdac76006be1a8f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6777fbed25941949ac8a3d865aed819", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_db40575858474d3a843331bc41775ad3", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "0c77dd68f643447aa8f7a15a8f8d7c0d": { + "2aa613cbd16f441d9edaca57135cb071": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_62d335a76c35470a9d62b78583ff85f6", - "placeholder": "​", - "style": "IPY_MODEL_8944dd98d72349a5be7063852a21d1c5", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0dc71852ac254921bbed195ab4251c4f": { + "2b931418c3fd4234a23894c55017dfcf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3040,77 +3056,102 @@ "description_width": "" } }, - "105f329ad92c48cf972b910d94794f45": { - "model_module": "@jupyter-widgets/controls", + "2c0f9fff6e4c405fa1bfc4e835f67e87": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f905fd537338456d835ebeb8895ccb67", - "IPY_MODEL_6b4dbe42cec946a9860f4bf17694a897", - "IPY_MODEL_3c2c501bb364468ba6431695ddd1cb05" - ], - "layout": "IPY_MODEL_9cc620828b64434cb0d8bdaf6831e7ae", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "163f6d444ced4bd3a8aeef3fb3508584": { + "2cd5b2a3ff3c4ff2aed85ff949da477d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ec070a2ba34490b84dfd843b416f425", - "placeholder": "​", - "style": "IPY_MODEL_743d085136164ef5a0f8e5e72f4e15d8", + "layout": "IPY_MODEL_35a9338c6d8a4eaf862bc864ff5dd08b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e3ab4c006214c16ab971289caed8b54", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 2.0 } }, - "17b24e6d097243b8b8083d44d73119bc": { + "2e3ab4c006214c16ab971289caed8b54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb252788ddb9420a88bb9797d7813181", - "placeholder": "​", - "style": "IPY_MODEL_90005ad1662a4399b7be6a444a22baf4", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1a890e8102094b07bd098955bc285fc9": { + "35a9338c6d8a4eaf862bc864ff5dd08b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3163,7 +3204,25 @@ "width": null } }, - "1ec070a2ba34490b84dfd843b416f425": { + "363e5cd53b2a4843aff9e84163dbe4de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "36cdebc200c1419587f484aba7f952db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3216,116 +3275,16 @@ "width": null } }, - "1eec2d01466b406faa6fd5ecda631e5d": { + "37f8ad1027ad4b2182598247456a700e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_95e05aba0365417aab068330e8b9a12b", - "IPY_MODEL_0b506b5e968a47e5bdac76006be1a8f7", - "IPY_MODEL_23266deca5c24b548a53cd17dfc0c1ae" - ], - "layout": "IPY_MODEL_d4b0778e22ed4eadb1732422377e864c", - "tabbable": null, - "tooltip": null - } - }, - "200fde7945ec4df980b83907c2e129ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_022361df31e04c07a94380f640f14be5", - "placeholder": "​", - "style": "IPY_MODEL_c6726edea8694a65a03ad0e2fb31c97b", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: " - } - }, - "2191c71bc38844fda92806b5e0000cfa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "22793e0bfd4445869a5eb18544b4933c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, @@ -3334,46 +3293,7 @@ "text_color": null } }, - "23266deca5c24b548a53cd17dfc0c1ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b67fbc431ea48d79379601ba00ea8d4", - "placeholder": "​", - "style": "IPY_MODEL_af7256daba3e4d6fb5beb6e6efbedb1f", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 51.6MB/s]" - } - }, - "37fac0c2d47b4f4cbf18f1bb7348240e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3bbd7ddc822a40bb99e2eb7d57b32a62": { + "3de862f5c9be4a6dbdda8611c5e6dca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3426,7 +3346,7 @@ "width": null } }, - "3c2c501bb364468ba6431695ddd1cb05": { + "3f55ac718f964cec989f7482f3183b89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3441,15 +3361,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f0347dfa685c498e90e22335f0838175", + "layout": "IPY_MODEL_96e7054a006f4727bf45e5a42d11b2c2", "placeholder": "​", - "style": "IPY_MODEL_fa36e53aaef54fd689bfb9d08854a360", + "style": "IPY_MODEL_e0ebc204c13641a2b55191d60baf356f", "tabbable": null, "tooltip": null, - "value": " 10000/0 [00:00<00:00, 649162.53 examples/s]" + "value": "Map (num_proc=4): 100%" } }, - "48334b3517aa4ba7832a21e78f093fdd": { + "3fdf1f2465c1440b8c718c42a818ad75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3465,17 +3385,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9588000ebdf345bebf297a2c279caa6d", + "layout": "IPY_MODEL_e2c737cdcd6f4555b7e61b60589713ca", "max": 1.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0dc71852ac254921bbed195ab4251c4f", + "style": "IPY_MODEL_2b931418c3fd4234a23894c55017dfcf", "tabbable": null, "tooltip": null, "value": 1.0 } }, - "4b418860b14e47f58fd4b00a13032e44": { + "42a019e901584661bcd2c6b48c3bfd0d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4418d7b6a1184fb2a4103b6e70f569aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3528,7 +3466,7 @@ "width": null } }, - "4bba15efd9dc46a2a0ebd1291f8896dc": { + "471b6653307d4909b42ade69cf37da25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3581,7 +3519,65 @@ "width": null } }, - "53c815aed4304e5e9afdf1da25822e92": { + "493ed9042d5e4326adfc3d2585299355": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5174d8704fca4455bda38a72dfce3e9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5c4b4cfac6fb41f2bb0be9cbeb8c1702": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b07001a214c4c268b08c628a7ff9e8c", + "IPY_MODEL_c3de9a57ab064122bf5347d7f435c3e4", + "IPY_MODEL_677296d2bf664f35ad740d29f938fd5d" + ], + "layout": "IPY_MODEL_36cdebc200c1419587f484aba7f952db", + "tabbable": null, + "tooltip": null + } + }, + "5d70744021bd418c95053a103abb48af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3599,7 +3595,7 @@ "text_color": null } }, - "564801b11acd4cf59ad85465e6a2a44d": { + "6397b7759d21423b9c41a28075a672ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3652,7 +3648,30 @@ "width": null } }, - "60f912b3115d49cd827a4200e203f2c9": { + "677296d2bf664f35ad740d29f938fd5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e53626a1bc4048ddb632f06afadeb258", + "placeholder": "​", + "style": "IPY_MODEL_d6a1a3af52b34e20a14fd4ff35251275", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:01<00:00, 25.2MB/s]" + } + }, + "67d8a420ec26495abdcdb3b12e679851": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3668,60 +3687,65 @@ "description_width": "" } }, - "62d335a76c35470a9d62b78583ff85f6": { - "model_module": "@jupyter-widgets/base", + "68d54c5150274e5f8dcc0ad415e06a5a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6d967799b3234367929d5561fa93aa2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6698cd7395124e1a8376a76adf2c4453": { + "74d40d29ce84473bb02ef23b29a16b31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99867176270e42be92113eb850116874", + "IPY_MODEL_2cd5b2a3ff3c4ff2aed85ff949da477d", + "IPY_MODEL_9f33cb0947d349b78bad2c1cd8a403e5" + ], + "layout": "IPY_MODEL_b89c0aea8ebd4903ae202e5ffdb99c81", + "tabbable": null, + "tooltip": null + } + }, + "7562623f07f54b5cbff436c2d9c3b869": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3774,7 +3798,7 @@ "width": null } }, - "6a9836c5b18f438b8377e541518ee897": { + "77816eaf3dc34ead865eac35c87b2e04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3827,33 +3851,7 @@ "width": null } }, - "6b4dbe42cec946a9860f4bf17694a897": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f62babe0a6794ddfb0512fdd7ec0d2e6", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d16e6000e234533bcde9ed155252467", - "tabbable": null, - "tooltip": null, - "value": 1.0 - } - }, - "6b67fbc431ea48d79379601ba00ea8d4": { + "7930a46787484e95a506fe2ffde1ac01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3906,25 +3904,7 @@ "width": null } }, - "6caa5a8063894f4995c98e645d6ff9fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "743d085136164ef5a0f8e5e72f4e15d8": { + "79c541cc0f894a56a2797fbef2534db4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3942,73 +3922,7 @@ "text_color": null } }, - "76145457ff634734ab36f88825eb03f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "77468d8237894488926b994607e32290": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8be3516c6484667a59994d658e9fa5b", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60f912b3115d49cd827a4200e203f2c9", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "77d4a0e4587c4fd6954b30bf64d2759c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_17b24e6d097243b8b8083d44d73119bc", - "IPY_MODEL_bb5b1299d4bf4b4a8c5edb9c01e08f4a", - "IPY_MODEL_c63ff68274c34fac9f7ad054164174d4" - ], - "layout": "IPY_MODEL_edfeed6b7cf649fda36e013a4fdaa7ff", - "tabbable": null, - "tooltip": null - } - }, - "7f55f4f4deb242e49f6586cf22c09f47": { + "7a3e0d588f0248b28b5c9d27a4b7737c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4061,78 +3975,48 @@ "width": null } }, - "8039157c6cfa420f945b501e5a83bbe0": { + "7e37a4f7322147979cf7891faa98ee14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc77e2b0e4414a47ae304a5cf6344637", + "placeholder": "​", + "style": "IPY_MODEL_363e5cd53b2a4843aff9e84163dbe4de", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: " } }, - "8504f14162fd453a920ab503c6015fac": { - "model_module": "@jupyter-widgets/base", + "810dd6ae071b4bc39252b1d0c0529379": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "85da4e0901624e5d8bff898ceea6d901": { + "834eb2f7d0d74cb785e58552bdaab3c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4179,90 +4063,52 @@ "order": null, "overflow": null, "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "884ffee63a00480ea5edbb59b662c16f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a9836c5b18f438b8377e541518ee897", - "placeholder": "​", - "style": "IPY_MODEL_6caa5a8063894f4995c98e645d6ff9fe", - "tabbable": null, - "tooltip": null, - "value": " 60000/0 [00:00<00:00, 972945.69 examples/s]" - } - }, - "8944dd98d72349a5be7063852a21d1c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "90005ad1662a4399b7be6a444a22baf4": { + "8b07001a214c4c268b08c628a7ff9e8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_834eb2f7d0d74cb785e58552bdaab3c2", + "placeholder": "​", + "style": "IPY_MODEL_ae5b4be114cf49a3a236e2414ea9ec74", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "91107edd04e24ddfa18822baf8d28255": { + "8eac27d48e0d4eda8f3f1a29c903074b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "9588000ebdf345bebf297a2c279caa6d": { + "8f2272d60a3248e29fe79642f0ff3265": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4312,10 +4158,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "95e05aba0365417aab068330e8b9a12b": { + "903186124d324e7fb525fa3ff2403018": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4330,15 +4176,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4bba15efd9dc46a2a0ebd1291f8896dc", + "layout": "IPY_MODEL_285fd65ebfa84b7db898a122b01e9cf6", "placeholder": "​", - "style": "IPY_MODEL_d5749ba00c354619848ffd0fe274e6fd", + "style": "IPY_MODEL_5174d8704fca4455bda38a72dfce3e9e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 5.18M/5.18M [00:00<00:00, 15.5MB/s]" + } + }, + "923abd22bde14711966b7c5552bf4c5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6397b7759d21423b9c41a28075a672ed", + "placeholder": "​", + "style": "IPY_MODEL_79c541cc0f894a56a2797fbef2534db4", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: " } }, - "9cc620828b64434cb0d8bdaf6831e7ae": { + "96e7054a006f4727bf45e5a42d11b2c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4391,23 +4260,30 @@ "width": null } }, - "9d16e6000e234533bcde9ed155252467": { + "99867176270e42be92113eb850116874": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b207a5d2a3bf4b9285d84b1c2d7408c7", + "placeholder": "​", + "style": "IPY_MODEL_5d70744021bd418c95053a103abb48af", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "a2342367645f4628a390dd1f293fe17a": { + "9f33cb0947d349b78bad2c1cd8a403e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4422,57 +4298,94 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3bbd7ddc822a40bb99e2eb7d57b32a62", + "layout": "IPY_MODEL_7a3e0d588f0248b28b5c9d27a4b7737c", "placeholder": "​", - "style": "IPY_MODEL_f30bada11cdc4aa5a3be563b379969f3", + "style": "IPY_MODEL_e753e814b85c48f89b1839b325827653", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 62.3MB/s]" + "value": " 2/2 [00:00<00:00, 553.67it/s]" } }, - "a6e7d1c0d21c4730876e3dc529f3db41": { + "a5440438a96642aa822f3db19dd9d2b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_163f6d444ced4bd3a8aeef3fb3508584", - "IPY_MODEL_77468d8237894488926b994607e32290", - "IPY_MODEL_d63672f8f5a54edb893686a037241111" - ], - "layout": "IPY_MODEL_1a890e8102094b07bd098955bc285fc9", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee8b1d7e105c4d54aeff1bbda21c46cf", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67d8a420ec26495abdcdb3b12e679851", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "a76fc2e470334b3fbdbd3f0089500faa": { - "model_module": "@jupyter-widgets/controls", + "a8a5a7c2120f4f4e9594f6cc1ca2c60a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "af7256daba3e4d6fb5beb6e6efbedb1f": { + "ae5b4be114cf49a3a236e2414ea9ec74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4490,7 +4403,60 @@ "text_color": null } }, - "b3c252ad82284cfebb7d60516a02a5c8": { + "b207a5d2a3bf4b9285d84b1c2d7408c7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b3a233d32141401f8db7bc191a381641": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4505,15 +4471,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_030281198fd34a91972408f1da63fd2c", + "layout": "IPY_MODEL_fbc31c35b38e4af899f96c14b9989fb1", "placeholder": "​", - "style": "IPY_MODEL_8039157c6cfa420f945b501e5a83bbe0", + "style": "IPY_MODEL_37f8ad1027ad4b2182598247456a700e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 60000/0 [00:00<00:00, 909801.02 examples/s]" } }, - "bb252788ddb9420a88bb9797d7813181": { + "b89c0aea8ebd4903ae202e5ffdb99c81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4566,33 +4532,31 @@ "width": null } }, - "bb5b1299d4bf4b4a8c5edb9c01e08f4a": { + "bbfffb031cc24eb4ae644fb9173c9de0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6698cd7395124e1a8376a76adf2c4453", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_37fac0c2d47b4f4cbf18f1bb7348240e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_923abd22bde14711966b7c5552bf4c5e", + "IPY_MODEL_3fdf1f2465c1440b8c718c42a818ad75", + "IPY_MODEL_b3a233d32141401f8db7bc191a381641" + ], + "layout": "IPY_MODEL_ffd7dcc7b14a4ef798b2746aa3b3c7f0", "tabbable": null, - "tooltip": null, - "value": 2.0 + "tooltip": null } }, - "bf209122024e46c5ab88db5cb5138baf": { + "be05548dfdec494981be4be62e6a5d4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4607,15 +4571,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2191c71bc38844fda92806b5e0000cfa", + "layout": "IPY_MODEL_1f8b5c4b58024e64be421bef7eadc5d0", "placeholder": "​", - "style": "IPY_MODEL_a76fc2e470334b3fbdbd3f0089500faa", + "style": "IPY_MODEL_42a019e901584661bcd2c6b48c3bfd0d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7058.48 examples/s]" + "value": " 60000/60000 [00:38<00:00, 1621.13it/s]" } }, - "c0e317ca2efa410b9b4b1b686da287f3": { + "c1e31f34f2ff4836aeaad3e21d2121f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4631,40 +4595,90 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8504f14162fd453a920ab503c6015fac", + "layout": "IPY_MODEL_471b6653307d4909b42ade69cf37da25", "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_02a75c6b9edc4a8da0feb9bfb6765cbb", + "style": "IPY_MODEL_8eac27d48e0d4eda8f3f1a29c903074b", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "c3de9a57ab064122bf5347d7f435c3e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3de862f5c9be4a6dbdda8611c5e6dca5", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_493ed9042d5e4326adfc3d2585299355", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "c74f77bc004047b7b8662e029b1fcb07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7930a46787484e95a506fe2ffde1ac01", + "placeholder": "​", + "style": "IPY_MODEL_6d967799b3234367929d5561fa93aa2a", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "100%" } }, - "c63ff68274c34fac9f7ad054164174d4": { + "c7e1f8c4d56340c8bb108cd4fe09524c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85da4e0901624e5d8bff898ceea6d901", - "placeholder": "​", - "style": "IPY_MODEL_91107edd04e24ddfa18822baf8d28255", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c74f77bc004047b7b8662e029b1fcb07", + "IPY_MODEL_a5440438a96642aa822f3db19dd9d2b2", + "IPY_MODEL_be05548dfdec494981be4be62e6a5d4a" + ], + "layout": "IPY_MODEL_fddb77a232504422a0b397d40d2ebc1e", "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 521.03it/s]" + "tooltip": null } }, - "c6726edea8694a65a03ad0e2fb31c97b": { + "d6a1a3af52b34e20a14fd4ff35251275": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4682,7 +4696,7 @@ "text_color": null } }, - "c8be3516c6484667a59994d658e9fa5b": { + "d70aa7ea4b3b44ea9784c79850fb7af4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4732,10 +4746,62 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "dc7818977fcb49399992e292f7bab51d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a8a5a7c2120f4f4e9594f6cc1ca2c60a", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68d54c5150274e5f8dcc0ad415e06a5a", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "dfd15be73a8148cdb1ab8b91c3f276a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d70aa7ea4b3b44ea9784c79850fb7af4", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1644edf88a214176b72d5e2999de8b8e", + "tabbable": null, + "tooltip": null, + "value": 1.0 } }, - "ce69eb6fd8f34a5bad0f15df3a6b52b0": { + "e05b0e6e74fa464d816d0358a6dc76b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4750,16 +4816,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0c77dd68f643447aa8f7a15a8f8d7c0d", - "IPY_MODEL_e28a4e53150a428d98c3c546e1b45e03", - "IPY_MODEL_bf209122024e46c5ab88db5cb5138baf" + "IPY_MODEL_3f55ac718f964cec989f7482f3183b89", + "IPY_MODEL_dc7818977fcb49399992e292f7bab51d", + "IPY_MODEL_f98496a8928c4621ac3e712295d0f550" ], - "layout": "IPY_MODEL_7f55f4f4deb242e49f6586cf22c09f47", + "layout": "IPY_MODEL_8f2272d60a3248e29fe79642f0ff3265", "tabbable": null, "tooltip": null } }, - "cf33f9566dfc4d708dcbfd58fe688462": { + "e0ebc204c13641a2b55191d60baf356f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e2c737cdcd6f4555b7e61b60589713ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4809,10 +4893,10 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "d4b0778e22ed4eadb1732422377e864c": { + "e53626a1bc4048ddb632f06afadeb258": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4865,90 +4949,49 @@ "width": null } }, - "d5749ba00c354619848ffd0fe274e6fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d63672f8f5a54edb893686a037241111": { + "e5ff19704e974b418104ac00b0017738": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b418860b14e47f58fd4b00a13032e44", - "placeholder": "​", - "style": "IPY_MODEL_53c815aed4304e5e9afdf1da25822e92", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f69d38dc83a4401bb43f2a3672cfcb79", + "IPY_MODEL_c1e31f34f2ff4836aeaad3e21d2121f5", + "IPY_MODEL_903186124d324e7fb525fa3ff2403018" + ], + "layout": "IPY_MODEL_77816eaf3dc34ead865eac35c87b2e04", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1692.62it/s]" + "tooltip": null } }, - "db40575858474d3a843331bc41775ad3": { + "e753e814b85c48f89b1839b325827653": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e28a4e53150a428d98c3c546e1b45e03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ef735a55d4af44f0ae295a9724d55bf7", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_76145457ff634734ab36f88825eb03f4", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e589d0c9f4074d929f567d526d1382cd": { + "e7800f2f49ce4746b2842751e0616d59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4963,16 +5006,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b3c252ad82284cfebb7d60516a02a5c8", - "IPY_MODEL_c0e317ca2efa410b9b4b1b686da287f3", - "IPY_MODEL_a2342367645f4628a390dd1f293fe17a" + "IPY_MODEL_7e37a4f7322147979cf7891faa98ee14", + "IPY_MODEL_dfd15be73a8148cdb1ab8b91c3f276a7", + "IPY_MODEL_1ec724c611f14ab38760c5b566b9582f" ], - "layout": "IPY_MODEL_cf33f9566dfc4d708dcbfd58fe688462", + "layout": "IPY_MODEL_4418d7b6a1184fb2a4103b6e70f569aa", "tabbable": null, "tooltip": null } }, - "e6777fbed25941949ac8a3d865aed819": { + "ee8b1d7e105c4d54aeff1bbda21c46cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5025,31 +5068,48 @@ "width": null } }, - "ea33752ef0e44cc7a07b481740f0d64f": { + "effe32e5f0a941f080bbc9527408df9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f69d38dc83a4401bb43f2a3672cfcb79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_200fde7945ec4df980b83907c2e129ef", - "IPY_MODEL_48334b3517aa4ba7832a21e78f093fdd", - "IPY_MODEL_884ffee63a00480ea5edbb59b662c16f" - ], - "layout": "IPY_MODEL_ffae2d4faf394024b9fa81123e38597b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c0f9fff6e4c405fa1bfc4e835f67e87", + "placeholder": "​", + "style": "IPY_MODEL_2aa613cbd16f441d9edaca57135cb071", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "edfeed6b7cf649fda36e013a4fdaa7ff": { + "f7a0422ab0104b88942f6e13074466fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5102,7 +5162,30 @@ "width": null } }, - "ef735a55d4af44f0ae295a9724d55bf7": { + "f98496a8928c4621ac3e712295d0f550": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7562623f07f54b5cbff436c2d9c3b869", + "placeholder": "​", + "style": "IPY_MODEL_810dd6ae071b4bc39252b1d0c0529379", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6473.19 examples/s]" + } + }, + "fbc31c35b38e4af899f96c14b9989fb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5155,7 +5238,7 @@ "width": null } }, - "f0347dfa685c498e90e22335f0838175": { + "fc77e2b0e4414a47ae304a5cf6344637": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5208,25 +5291,7 @@ "width": null } }, - "f30bada11cdc4aa5a3be563b379969f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f62babe0a6794ddfb0512fdd7ec0d2e6": { + "fddb77a232504422a0b397d40d2ebc1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5276,51 +5341,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" - } - }, - "f905fd537338456d835ebeb8895ccb67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_564801b11acd4cf59ad85465e6a2a44d", - "placeholder": "​", - "style": "IPY_MODEL_22793e0bfd4445869a5eb18544b4933c", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: " - } - }, - "fa36e53aaef54fd689bfb9d08854a360": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "width": null } }, - "ffae2d4faf394024b9fa81123e38597b": { + "ffd7dcc7b14a4ef798b2746aa3b3c7f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 87da21dc3..0df9de925 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:32.645032Z", - "iopub.status.busy": "2024-02-08T04:29:32.644695Z", - "iopub.status.idle": "2024-02-08T04:29:33.720265Z", - "shell.execute_reply": "2024-02-08T04:29:33.719714Z" + "iopub.execute_input": "2024-02-08T05:16:23.904483Z", + "iopub.status.busy": "2024-02-08T05:16:23.904288Z", + "iopub.status.idle": "2024-02-08T05:16:25.064878Z", + "shell.execute_reply": "2024-02-08T05:16:25.064318Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.722754Z", - "iopub.status.busy": "2024-02-08T04:29:33.722495Z", - "iopub.status.idle": "2024-02-08T04:29:33.896878Z", - "shell.execute_reply": "2024-02-08T04:29:33.896375Z" + "iopub.execute_input": "2024-02-08T05:16:25.067486Z", + "iopub.status.busy": "2024-02-08T05:16:25.067046Z", + "iopub.status.idle": "2024-02-08T05:16:25.249068Z", + "shell.execute_reply": "2024-02-08T05:16:25.248446Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.899042Z", - "iopub.status.busy": "2024-02-08T04:29:33.898858Z", - "iopub.status.idle": "2024-02-08T04:29:33.910302Z", - "shell.execute_reply": "2024-02-08T04:29:33.909891Z" + "iopub.execute_input": "2024-02-08T05:16:25.251515Z", + "iopub.status.busy": "2024-02-08T05:16:25.251316Z", + "iopub.status.idle": "2024-02-08T05:16:25.263540Z", + "shell.execute_reply": "2024-02-08T05:16:25.263084Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.912102Z", - "iopub.status.busy": "2024-02-08T04:29:33.911929Z", - "iopub.status.idle": "2024-02-08T04:29:34.143692Z", - "shell.execute_reply": "2024-02-08T04:29:34.143115Z" + "iopub.execute_input": "2024-02-08T05:16:25.265557Z", + "iopub.status.busy": "2024-02-08T05:16:25.265345Z", + "iopub.status.idle": "2024-02-08T05:16:25.502662Z", + "shell.execute_reply": "2024-02-08T05:16:25.502081Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:34.146119Z", - "iopub.status.busy": "2024-02-08T04:29:34.145722Z", - "iopub.status.idle": "2024-02-08T04:29:34.171831Z", - "shell.execute_reply": "2024-02-08T04:29:34.171416Z" + "iopub.execute_input": "2024-02-08T05:16:25.504829Z", + "iopub.status.busy": "2024-02-08T05:16:25.504610Z", + "iopub.status.idle": "2024-02-08T05:16:25.531768Z", + "shell.execute_reply": "2024-02-08T05:16:25.531124Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:34.173843Z", - "iopub.status.busy": "2024-02-08T04:29:34.173536Z", - "iopub.status.idle": "2024-02-08T04:29:35.807810Z", - "shell.execute_reply": "2024-02-08T04:29:35.807175Z" + "iopub.execute_input": "2024-02-08T05:16:25.534300Z", + "iopub.status.busy": "2024-02-08T05:16:25.534072Z", + "iopub.status.idle": "2024-02-08T05:16:27.324472Z", + "shell.execute_reply": "2024-02-08T05:16:27.323774Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:35.810545Z", - "iopub.status.busy": "2024-02-08T04:29:35.809961Z", - "iopub.status.idle": "2024-02-08T04:29:35.825604Z", - "shell.execute_reply": "2024-02-08T04:29:35.825067Z" + "iopub.execute_input": "2024-02-08T05:16:27.327517Z", + "iopub.status.busy": "2024-02-08T05:16:27.326712Z", + "iopub.status.idle": "2024-02-08T05:16:27.344016Z", + "shell.execute_reply": "2024-02-08T05:16:27.343410Z" }, "scrolled": true }, @@ -603,10 +603,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:35.827648Z", - "iopub.status.busy": "2024-02-08T04:29:35.827315Z", - "iopub.status.idle": "2024-02-08T04:29:37.188484Z", - "shell.execute_reply": "2024-02-08T04:29:37.187888Z" + "iopub.execute_input": "2024-02-08T05:16:27.346267Z", + "iopub.status.busy": "2024-02-08T05:16:27.345912Z", + "iopub.status.idle": "2024-02-08T05:16:28.805475Z", + "shell.execute_reply": "2024-02-08T05:16:28.804859Z" }, "id": "AaHC5MRKjruT" }, @@ -725,10 +725,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.191219Z", - "iopub.status.busy": "2024-02-08T04:29:37.190509Z", - "iopub.status.idle": "2024-02-08T04:29:37.203596Z", - "shell.execute_reply": "2024-02-08T04:29:37.203132Z" + "iopub.execute_input": "2024-02-08T05:16:28.808277Z", + "iopub.status.busy": "2024-02-08T05:16:28.807550Z", + "iopub.status.idle": "2024-02-08T05:16:28.822035Z", + "shell.execute_reply": "2024-02-08T05:16:28.821504Z" }, "id": "Wy27rvyhjruU" }, @@ -777,10 +777,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.205575Z", - "iopub.status.busy": "2024-02-08T04:29:37.205257Z", - "iopub.status.idle": "2024-02-08T04:29:37.276055Z", - "shell.execute_reply": "2024-02-08T04:29:37.275466Z" + "iopub.execute_input": "2024-02-08T05:16:28.824303Z", + "iopub.status.busy": "2024-02-08T05:16:28.823967Z", + "iopub.status.idle": "2024-02-08T05:16:28.906213Z", + "shell.execute_reply": "2024-02-08T05:16:28.905616Z" }, "id": "Db8YHnyVjruU" }, @@ -887,10 +887,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.278425Z", - "iopub.status.busy": "2024-02-08T04:29:37.277958Z", - "iopub.status.idle": "2024-02-08T04:29:37.484301Z", - "shell.execute_reply": "2024-02-08T04:29:37.483767Z" + "iopub.execute_input": "2024-02-08T05:16:28.908687Z", + "iopub.status.busy": "2024-02-08T05:16:28.908315Z", + "iopub.status.idle": "2024-02-08T05:16:29.122035Z", + "shell.execute_reply": "2024-02-08T05:16:29.121452Z" }, "id": "iJqAHuS2jruV" }, @@ -927,10 +927,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.486294Z", - "iopub.status.busy": "2024-02-08T04:29:37.486111Z", - "iopub.status.idle": "2024-02-08T04:29:37.502750Z", - "shell.execute_reply": "2024-02-08T04:29:37.502299Z" + "iopub.execute_input": "2024-02-08T05:16:29.124454Z", + "iopub.status.busy": "2024-02-08T05:16:29.124090Z", + "iopub.status.idle": "2024-02-08T05:16:29.141232Z", + "shell.execute_reply": "2024-02-08T05:16:29.140709Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1396,10 +1396,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.504575Z", - "iopub.status.busy": "2024-02-08T04:29:37.504403Z", - "iopub.status.idle": "2024-02-08T04:29:37.514117Z", - "shell.execute_reply": "2024-02-08T04:29:37.513675Z" + "iopub.execute_input": "2024-02-08T05:16:29.143296Z", + "iopub.status.busy": "2024-02-08T05:16:29.143026Z", + "iopub.status.idle": "2024-02-08T05:16:29.153368Z", + "shell.execute_reply": "2024-02-08T05:16:29.152882Z" }, "id": "0lonvOYvjruV" }, @@ -1546,10 +1546,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.516079Z", - "iopub.status.busy": "2024-02-08T04:29:37.515743Z", - "iopub.status.idle": "2024-02-08T04:29:37.601813Z", - "shell.execute_reply": "2024-02-08T04:29:37.601272Z" + "iopub.execute_input": "2024-02-08T05:16:29.155357Z", + "iopub.status.busy": "2024-02-08T05:16:29.155177Z", + "iopub.status.idle": "2024-02-08T05:16:29.246946Z", + "shell.execute_reply": "2024-02-08T05:16:29.246397Z" }, "id": "MfqTCa3kjruV" }, @@ -1630,10 +1630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.604001Z", - "iopub.status.busy": "2024-02-08T04:29:37.603757Z", - "iopub.status.idle": "2024-02-08T04:29:37.719348Z", - "shell.execute_reply": "2024-02-08T04:29:37.718745Z" + "iopub.execute_input": "2024-02-08T05:16:29.249443Z", + "iopub.status.busy": "2024-02-08T05:16:29.249083Z", + "iopub.status.idle": "2024-02-08T05:16:29.393372Z", + "shell.execute_reply": "2024-02-08T05:16:29.392737Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1693,10 +1693,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.721930Z", - "iopub.status.busy": "2024-02-08T04:29:37.721478Z", - "iopub.status.idle": "2024-02-08T04:29:37.725255Z", - "shell.execute_reply": "2024-02-08T04:29:37.724725Z" + "iopub.execute_input": "2024-02-08T05:16:29.395694Z", + "iopub.status.busy": "2024-02-08T05:16:29.395428Z", + "iopub.status.idle": "2024-02-08T05:16:29.399352Z", + "shell.execute_reply": "2024-02-08T05:16:29.398811Z" }, "id": "0rXP3ZPWjruW" }, @@ -1734,10 +1734,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.727192Z", - "iopub.status.busy": "2024-02-08T04:29:37.726886Z", - "iopub.status.idle": "2024-02-08T04:29:37.730475Z", - "shell.execute_reply": "2024-02-08T04:29:37.729957Z" + "iopub.execute_input": "2024-02-08T05:16:29.401424Z", + "iopub.status.busy": "2024-02-08T05:16:29.401231Z", + "iopub.status.idle": "2024-02-08T05:16:29.404974Z", + "shell.execute_reply": "2024-02-08T05:16:29.404417Z" }, "id": "-iRPe8KXjruW" }, @@ -1792,10 +1792,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.732457Z", - "iopub.status.busy": "2024-02-08T04:29:37.732160Z", - "iopub.status.idle": "2024-02-08T04:29:37.769591Z", - "shell.execute_reply": "2024-02-08T04:29:37.769152Z" + "iopub.execute_input": "2024-02-08T05:16:29.406936Z", + "iopub.status.busy": "2024-02-08T05:16:29.406750Z", + "iopub.status.idle": "2024-02-08T05:16:29.445136Z", + "shell.execute_reply": "2024-02-08T05:16:29.444538Z" }, "id": "ZpipUliyjruW" }, @@ -1846,10 +1846,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.771657Z", - "iopub.status.busy": "2024-02-08T04:29:37.771341Z", - "iopub.status.idle": "2024-02-08T04:29:37.814037Z", - "shell.execute_reply": "2024-02-08T04:29:37.813596Z" + "iopub.execute_input": "2024-02-08T05:16:29.447272Z", + "iopub.status.busy": "2024-02-08T05:16:29.447037Z", + "iopub.status.idle": "2024-02-08T05:16:29.493067Z", + "shell.execute_reply": "2024-02-08T05:16:29.492437Z" }, "id": "SLq-3q4xjruX" }, @@ -1918,10 +1918,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.815990Z", - "iopub.status.busy": "2024-02-08T04:29:37.815690Z", - "iopub.status.idle": "2024-02-08T04:29:37.905459Z", - "shell.execute_reply": "2024-02-08T04:29:37.904784Z" + "iopub.execute_input": "2024-02-08T05:16:29.495258Z", + "iopub.status.busy": "2024-02-08T05:16:29.495057Z", + "iopub.status.idle": "2024-02-08T05:16:29.598321Z", + "shell.execute_reply": "2024-02-08T05:16:29.597712Z" }, "id": "g5LHhhuqFbXK" }, @@ -1953,10 +1953,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.907986Z", - "iopub.status.busy": "2024-02-08T04:29:37.907545Z", - "iopub.status.idle": "2024-02-08T04:29:37.987051Z", - "shell.execute_reply": "2024-02-08T04:29:37.986492Z" + "iopub.execute_input": "2024-02-08T05:16:29.601066Z", + "iopub.status.busy": "2024-02-08T05:16:29.600752Z", + "iopub.status.idle": "2024-02-08T05:16:29.709010Z", + "shell.execute_reply": "2024-02-08T05:16:29.708373Z" }, "id": "p7w8F8ezBcet" }, @@ -2013,10 +2013,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.989407Z", - "iopub.status.busy": "2024-02-08T04:29:37.989045Z", - "iopub.status.idle": "2024-02-08T04:29:38.193150Z", - "shell.execute_reply": "2024-02-08T04:29:38.192637Z" + "iopub.execute_input": "2024-02-08T05:16:29.711482Z", + "iopub.status.busy": "2024-02-08T05:16:29.711110Z", + "iopub.status.idle": "2024-02-08T05:16:29.921984Z", + "shell.execute_reply": "2024-02-08T05:16:29.921374Z" }, "id": "WETRL74tE_sU" }, @@ -2051,10 +2051,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.195237Z", - "iopub.status.busy": "2024-02-08T04:29:38.194911Z", - "iopub.status.idle": "2024-02-08T04:29:38.360571Z", - "shell.execute_reply": "2024-02-08T04:29:38.359936Z" + "iopub.execute_input": "2024-02-08T05:16:29.924291Z", + "iopub.status.busy": "2024-02-08T05:16:29.923945Z", + "iopub.status.idle": "2024-02-08T05:16:30.137676Z", + "shell.execute_reply": "2024-02-08T05:16:30.137058Z" }, "id": "kCfdx2gOLmXS" }, @@ -2216,10 +2216,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.363019Z", - "iopub.status.busy": "2024-02-08T04:29:38.362538Z", - "iopub.status.idle": "2024-02-08T04:29:38.368605Z", - "shell.execute_reply": "2024-02-08T04:29:38.368062Z" + "iopub.execute_input": "2024-02-08T05:16:30.140295Z", + "iopub.status.busy": "2024-02-08T05:16:30.139915Z", + "iopub.status.idle": "2024-02-08T05:16:30.146272Z", + "shell.execute_reply": "2024-02-08T05:16:30.145735Z" }, "id": "-uogYRWFYnuu" }, @@ -2273,10 +2273,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.370392Z", - "iopub.status.busy": "2024-02-08T04:29:38.370219Z", - "iopub.status.idle": "2024-02-08T04:29:38.582389Z", - "shell.execute_reply": "2024-02-08T04:29:38.581969Z" + "iopub.execute_input": "2024-02-08T05:16:30.148427Z", + "iopub.status.busy": "2024-02-08T05:16:30.148086Z", + "iopub.status.idle": "2024-02-08T05:16:30.366341Z", + "shell.execute_reply": "2024-02-08T05:16:30.365773Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2323,10 +2323,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.584400Z", - "iopub.status.busy": "2024-02-08T04:29:38.584220Z", - "iopub.status.idle": "2024-02-08T04:29:39.639347Z", - "shell.execute_reply": "2024-02-08T04:29:39.638773Z" + "iopub.execute_input": "2024-02-08T05:16:30.369080Z", + "iopub.status.busy": "2024-02-08T05:16:30.368616Z", + "iopub.status.idle": "2024-02-08T05:16:31.451674Z", + "shell.execute_reply": "2024-02-08T05:16:31.451027Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index dfa012bd1..3c2d16d5f 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:42.889519Z", - "iopub.status.busy": "2024-02-08T04:29:42.889351Z", - "iopub.status.idle": "2024-02-08T04:29:43.915960Z", - "shell.execute_reply": "2024-02-08T04:29:43.915405Z" + "iopub.execute_input": "2024-02-08T05:16:34.936998Z", + "iopub.status.busy": "2024-02-08T05:16:34.936817Z", + "iopub.status.idle": "2024-02-08T05:16:36.033944Z", + "shell.execute_reply": "2024-02-08T05:16:36.033316Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.918566Z", - "iopub.status.busy": "2024-02-08T04:29:43.918062Z", - "iopub.status.idle": "2024-02-08T04:29:43.921217Z", - "shell.execute_reply": "2024-02-08T04:29:43.920677Z" + "iopub.execute_input": "2024-02-08T05:16:36.036779Z", + "iopub.status.busy": "2024-02-08T05:16:36.036213Z", + "iopub.status.idle": "2024-02-08T05:16:36.039446Z", + "shell.execute_reply": "2024-02-08T05:16:36.038895Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.923276Z", - "iopub.status.busy": "2024-02-08T04:29:43.922951Z", - "iopub.status.idle": "2024-02-08T04:29:43.930415Z", - "shell.execute_reply": "2024-02-08T04:29:43.929991Z" + "iopub.execute_input": "2024-02-08T05:16:36.041728Z", + "iopub.status.busy": "2024-02-08T05:16:36.041326Z", + "iopub.status.idle": "2024-02-08T05:16:36.049301Z", + "shell.execute_reply": "2024-02-08T05:16:36.048798Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.932385Z", - "iopub.status.busy": "2024-02-08T04:29:43.932070Z", - "iopub.status.idle": "2024-02-08T04:29:43.978343Z", - "shell.execute_reply": "2024-02-08T04:29:43.977921Z" + "iopub.execute_input": "2024-02-08T05:16:36.051266Z", + "iopub.status.busy": "2024-02-08T05:16:36.051078Z", + "iopub.status.idle": "2024-02-08T05:16:36.098632Z", + "shell.execute_reply": "2024-02-08T05:16:36.098136Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.980378Z", - "iopub.status.busy": "2024-02-08T04:29:43.980064Z", - "iopub.status.idle": "2024-02-08T04:29:43.996196Z", - "shell.execute_reply": "2024-02-08T04:29:43.995736Z" + "iopub.execute_input": "2024-02-08T05:16:36.101112Z", + "iopub.status.busy": "2024-02-08T05:16:36.100774Z", + "iopub.status.idle": "2024-02-08T05:16:36.118463Z", + "shell.execute_reply": "2024-02-08T05:16:36.117914Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.998249Z", - "iopub.status.busy": "2024-02-08T04:29:43.997939Z", - "iopub.status.idle": "2024-02-08T04:29:44.001493Z", - "shell.execute_reply": "2024-02-08T04:29:44.001025Z" + "iopub.execute_input": "2024-02-08T05:16:36.120776Z", + "iopub.status.busy": "2024-02-08T05:16:36.120434Z", + "iopub.status.idle": "2024-02-08T05:16:36.124402Z", + "shell.execute_reply": "2024-02-08T05:16:36.123935Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.003462Z", - "iopub.status.busy": "2024-02-08T04:29:44.003206Z", - "iopub.status.idle": "2024-02-08T04:29:44.032086Z", - "shell.execute_reply": "2024-02-08T04:29:44.031667Z" + "iopub.execute_input": "2024-02-08T05:16:36.126729Z", + "iopub.status.busy": "2024-02-08T05:16:36.126390Z", + "iopub.status.idle": "2024-02-08T05:16:36.154633Z", + "shell.execute_reply": "2024-02-08T05:16:36.154141Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.033896Z", - "iopub.status.busy": "2024-02-08T04:29:44.033722Z", - "iopub.status.idle": "2024-02-08T04:29:44.059752Z", - "shell.execute_reply": "2024-02-08T04:29:44.059305Z" + "iopub.execute_input": "2024-02-08T05:16:36.157128Z", + "iopub.status.busy": "2024-02-08T05:16:36.156770Z", + "iopub.status.idle": "2024-02-08T05:16:36.183420Z", + "shell.execute_reply": "2024-02-08T05:16:36.182914Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.061575Z", - "iopub.status.busy": "2024-02-08T04:29:44.061407Z", - "iopub.status.idle": "2024-02-08T04:29:45.734046Z", - "shell.execute_reply": "2024-02-08T04:29:45.733523Z" + "iopub.execute_input": "2024-02-08T05:16:36.185904Z", + "iopub.status.busy": "2024-02-08T05:16:36.185669Z", + "iopub.status.idle": "2024-02-08T05:16:38.003463Z", + "shell.execute_reply": "2024-02-08T05:16:38.002793Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.736683Z", - "iopub.status.busy": "2024-02-08T04:29:45.736217Z", - "iopub.status.idle": "2024-02-08T04:29:45.742703Z", - "shell.execute_reply": "2024-02-08T04:29:45.742248Z" + "iopub.execute_input": "2024-02-08T05:16:38.006228Z", + "iopub.status.busy": "2024-02-08T05:16:38.005857Z", + "iopub.status.idle": "2024-02-08T05:16:38.012858Z", + "shell.execute_reply": "2024-02-08T05:16:38.012286Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.744717Z", - "iopub.status.busy": "2024-02-08T04:29:45.744395Z", - "iopub.status.idle": "2024-02-08T04:29:45.756449Z", - "shell.execute_reply": "2024-02-08T04:29:45.756029Z" + "iopub.execute_input": "2024-02-08T05:16:38.015175Z", + "iopub.status.busy": "2024-02-08T05:16:38.014963Z", + "iopub.status.idle": "2024-02-08T05:16:38.028000Z", + "shell.execute_reply": "2024-02-08T05:16:38.027502Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.758369Z", - "iopub.status.busy": "2024-02-08T04:29:45.757999Z", - "iopub.status.idle": "2024-02-08T04:29:45.764109Z", - "shell.execute_reply": "2024-02-08T04:29:45.763637Z" + "iopub.execute_input": "2024-02-08T05:16:38.030095Z", + "iopub.status.busy": "2024-02-08T05:16:38.029746Z", + "iopub.status.idle": "2024-02-08T05:16:38.036269Z", + "shell.execute_reply": "2024-02-08T05:16:38.035718Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.766108Z", - "iopub.status.busy": "2024-02-08T04:29:45.765938Z", - "iopub.status.idle": "2024-02-08T04:29:45.768411Z", - "shell.execute_reply": "2024-02-08T04:29:45.767997Z" + "iopub.execute_input": "2024-02-08T05:16:38.038467Z", + "iopub.status.busy": "2024-02-08T05:16:38.038157Z", + "iopub.status.idle": "2024-02-08T05:16:38.040886Z", + "shell.execute_reply": "2024-02-08T05:16:38.040428Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.770202Z", - "iopub.status.busy": "2024-02-08T04:29:45.770034Z", - "iopub.status.idle": "2024-02-08T04:29:45.773298Z", - "shell.execute_reply": "2024-02-08T04:29:45.772779Z" + "iopub.execute_input": "2024-02-08T05:16:38.042877Z", + "iopub.status.busy": "2024-02-08T05:16:38.042548Z", + "iopub.status.idle": "2024-02-08T05:16:38.046125Z", + "shell.execute_reply": "2024-02-08T05:16:38.045579Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.775318Z", - "iopub.status.busy": "2024-02-08T04:29:45.775018Z", - "iopub.status.idle": "2024-02-08T04:29:45.777581Z", - "shell.execute_reply": "2024-02-08T04:29:45.777139Z" + "iopub.execute_input": "2024-02-08T05:16:38.048464Z", + "iopub.status.busy": "2024-02-08T05:16:38.048004Z", + "iopub.status.idle": "2024-02-08T05:16:38.050984Z", + "shell.execute_reply": "2024-02-08T05:16:38.050453Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.779440Z", - "iopub.status.busy": "2024-02-08T04:29:45.779263Z", - "iopub.status.idle": "2024-02-08T04:29:45.783182Z", - "shell.execute_reply": "2024-02-08T04:29:45.782669Z" + "iopub.execute_input": "2024-02-08T05:16:38.052798Z", + "iopub.status.busy": "2024-02-08T05:16:38.052624Z", + "iopub.status.idle": "2024-02-08T05:16:38.056584Z", + "shell.execute_reply": "2024-02-08T05:16:38.056047Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.785161Z", - "iopub.status.busy": "2024-02-08T04:29:45.784866Z", - "iopub.status.idle": "2024-02-08T04:29:45.813727Z", - "shell.execute_reply": "2024-02-08T04:29:45.813180Z" + "iopub.execute_input": "2024-02-08T05:16:38.058708Z", + "iopub.status.busy": "2024-02-08T05:16:38.058392Z", + "iopub.status.idle": "2024-02-08T05:16:38.088017Z", + "shell.execute_reply": "2024-02-08T05:16:38.087505Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.816053Z", - "iopub.status.busy": "2024-02-08T04:29:45.815717Z", - "iopub.status.idle": "2024-02-08T04:29:45.820279Z", - "shell.execute_reply": "2024-02-08T04:29:45.819724Z" + "iopub.execute_input": "2024-02-08T05:16:38.090547Z", + "iopub.status.busy": "2024-02-08T05:16:38.090159Z", + "iopub.status.idle": "2024-02-08T05:16:38.095177Z", + "shell.execute_reply": "2024-02-08T05:16:38.094708Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index b4eaced1c..321e2cd0f 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:48.353289Z", - "iopub.status.busy": "2024-02-08T04:29:48.353111Z", - "iopub.status.idle": "2024-02-08T04:29:49.444617Z", - "shell.execute_reply": "2024-02-08T04:29:49.444025Z" + "iopub.execute_input": "2024-02-08T05:16:40.856017Z", + "iopub.status.busy": "2024-02-08T05:16:40.855833Z", + "iopub.status.idle": "2024-02-08T05:16:42.014133Z", + "shell.execute_reply": "2024-02-08T05:16:42.013543Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.447013Z", - "iopub.status.busy": "2024-02-08T04:29:49.446776Z", - "iopub.status.idle": "2024-02-08T04:29:49.635510Z", - "shell.execute_reply": "2024-02-08T04:29:49.635070Z" + "iopub.execute_input": "2024-02-08T05:16:42.016876Z", + "iopub.status.busy": "2024-02-08T05:16:42.016360Z", + "iopub.status.idle": "2024-02-08T05:16:42.218815Z", + "shell.execute_reply": "2024-02-08T05:16:42.218247Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.638063Z", - "iopub.status.busy": "2024-02-08T04:29:49.637575Z", - "iopub.status.idle": "2024-02-08T04:29:49.650235Z", - "shell.execute_reply": "2024-02-08T04:29:49.649787Z" + "iopub.execute_input": "2024-02-08T05:16:42.221496Z", + "iopub.status.busy": "2024-02-08T05:16:42.221090Z", + "iopub.status.idle": "2024-02-08T05:16:42.234145Z", + "shell.execute_reply": "2024-02-08T05:16:42.233583Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.652052Z", - "iopub.status.busy": "2024-02-08T04:29:49.651879Z", - "iopub.status.idle": "2024-02-08T04:29:52.291472Z", - "shell.execute_reply": "2024-02-08T04:29:52.290880Z" + "iopub.execute_input": "2024-02-08T05:16:42.236297Z", + "iopub.status.busy": "2024-02-08T05:16:42.235977Z", + "iopub.status.idle": "2024-02-08T05:16:44.901042Z", + "shell.execute_reply": "2024-02-08T05:16:44.900491Z" } }, "outputs": [ @@ -452,10 +452,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:52.293864Z", - "iopub.status.busy": "2024-02-08T04:29:52.293436Z", - "iopub.status.idle": "2024-02-08T04:29:53.631829Z", - "shell.execute_reply": "2024-02-08T04:29:53.631305Z" + "iopub.execute_input": "2024-02-08T05:16:44.903080Z", + "iopub.status.busy": "2024-02-08T05:16:44.902895Z", + "iopub.status.idle": "2024-02-08T05:16:46.267342Z", + "shell.execute_reply": "2024-02-08T05:16:46.266780Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:53.634214Z", - "iopub.status.busy": "2024-02-08T04:29:53.633866Z", - "iopub.status.idle": "2024-02-08T04:29:53.637796Z", - "shell.execute_reply": "2024-02-08T04:29:53.637329Z" + "iopub.execute_input": "2024-02-08T05:16:46.269717Z", + "iopub.status.busy": "2024-02-08T05:16:46.269521Z", + "iopub.status.idle": "2024-02-08T05:16:46.273330Z", + "shell.execute_reply": "2024-02-08T05:16:46.272768Z" } }, "outputs": [ @@ -542,10 +542,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:53.639682Z", - "iopub.status.busy": "2024-02-08T04:29:53.639363Z", - "iopub.status.idle": "2024-02-08T04:29:55.324199Z", - "shell.execute_reply": "2024-02-08T04:29:55.323510Z" + "iopub.execute_input": "2024-02-08T05:16:46.275279Z", + "iopub.status.busy": "2024-02-08T05:16:46.275095Z", + "iopub.status.idle": "2024-02-08T05:16:48.035444Z", + "shell.execute_reply": "2024-02-08T05:16:48.034751Z" } }, "outputs": [ @@ -592,10 +592,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:55.327072Z", - "iopub.status.busy": "2024-02-08T04:29:55.326288Z", - "iopub.status.idle": "2024-02-08T04:29:55.333737Z", - "shell.execute_reply": "2024-02-08T04:29:55.333247Z" + "iopub.execute_input": "2024-02-08T05:16:48.038270Z", + "iopub.status.busy": "2024-02-08T05:16:48.037668Z", + "iopub.status.idle": "2024-02-08T05:16:48.047299Z", + "shell.execute_reply": "2024-02-08T05:16:48.046721Z" } }, "outputs": [ @@ -631,10 +631,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:55.335798Z", - "iopub.status.busy": "2024-02-08T04:29:55.335474Z", - "iopub.status.idle": "2024-02-08T04:29:57.891579Z", - "shell.execute_reply": "2024-02-08T04:29:57.891036Z" + "iopub.execute_input": "2024-02-08T05:16:48.049551Z", + "iopub.status.busy": "2024-02-08T05:16:48.049235Z", + "iopub.status.idle": "2024-02-08T05:16:50.851686Z", + "shell.execute_reply": "2024-02-08T05:16:50.851097Z" } }, "outputs": [ @@ -669,10 +669,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.893710Z", - "iopub.status.busy": "2024-02-08T04:29:57.893400Z", - "iopub.status.idle": "2024-02-08T04:29:57.896999Z", - "shell.execute_reply": "2024-02-08T04:29:57.896544Z" + "iopub.execute_input": "2024-02-08T05:16:50.853883Z", + "iopub.status.busy": "2024-02-08T05:16:50.853693Z", + "iopub.status.idle": "2024-02-08T05:16:50.857552Z", + "shell.execute_reply": "2024-02-08T05:16:50.857089Z" } }, "outputs": [ @@ -717,10 +717,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.899030Z", - "iopub.status.busy": "2024-02-08T04:29:57.898717Z", - "iopub.status.idle": "2024-02-08T04:29:57.903151Z", - "shell.execute_reply": "2024-02-08T04:29:57.902749Z" + "iopub.execute_input": "2024-02-08T05:16:50.859787Z", + "iopub.status.busy": "2024-02-08T05:16:50.859387Z", + "iopub.status.idle": "2024-02-08T05:16:50.863737Z", + "shell.execute_reply": "2024-02-08T05:16:50.863177Z" } }, "outputs": [], @@ -743,10 +743,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.905054Z", - "iopub.status.busy": "2024-02-08T04:29:57.904735Z", - "iopub.status.idle": "2024-02-08T04:29:57.907794Z", - "shell.execute_reply": "2024-02-08T04:29:57.907351Z" + "iopub.execute_input": "2024-02-08T05:16:50.865877Z", + "iopub.status.busy": "2024-02-08T05:16:50.865570Z", + "iopub.status.idle": "2024-02-08T05:16:50.868733Z", + "shell.execute_reply": "2024-02-08T05:16:50.868285Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index a7d95ad7d..55126c31d 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:00.072576Z", - "iopub.status.busy": "2024-02-08T04:30:00.072400Z", - "iopub.status.idle": "2024-02-08T04:30:01.151131Z", - "shell.execute_reply": "2024-02-08T04:30:01.150594Z" + "iopub.execute_input": "2024-02-08T05:16:53.515571Z", + "iopub.status.busy": "2024-02-08T05:16:53.515376Z", + "iopub.status.idle": "2024-02-08T05:16:54.692984Z", + "shell.execute_reply": "2024-02-08T05:16:54.692402Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:01.153731Z", - "iopub.status.busy": "2024-02-08T04:30:01.153297Z", - "iopub.status.idle": "2024-02-08T04:30:02.565179Z", - "shell.execute_reply": "2024-02-08T04:30:02.564498Z" + "iopub.execute_input": "2024-02-08T05:16:54.695708Z", + "iopub.status.busy": "2024-02-08T05:16:54.695183Z", + "iopub.status.idle": "2024-02-08T05:16:56.971954Z", + "shell.execute_reply": "2024-02-08T05:16:56.971232Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.567869Z", - "iopub.status.busy": "2024-02-08T04:30:02.567469Z", - "iopub.status.idle": "2024-02-08T04:30:02.570763Z", - "shell.execute_reply": "2024-02-08T04:30:02.570298Z" + "iopub.execute_input": "2024-02-08T05:16:56.974618Z", + "iopub.status.busy": "2024-02-08T05:16:56.974215Z", + "iopub.status.idle": "2024-02-08T05:16:56.977451Z", + "shell.execute_reply": "2024-02-08T05:16:56.976971Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.572807Z", - "iopub.status.busy": "2024-02-08T04:30:02.572487Z", - "iopub.status.idle": "2024-02-08T04:30:02.578556Z", - "shell.execute_reply": "2024-02-08T04:30:02.578057Z" + "iopub.execute_input": "2024-02-08T05:16:56.979612Z", + "iopub.status.busy": "2024-02-08T05:16:56.979284Z", + "iopub.status.idle": "2024-02-08T05:16:56.985472Z", + "shell.execute_reply": "2024-02-08T05:16:56.984924Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.580776Z", - "iopub.status.busy": "2024-02-08T04:30:02.580450Z", - "iopub.status.idle": "2024-02-08T04:30:03.070565Z", - "shell.execute_reply": "2024-02-08T04:30:03.069979Z" + "iopub.execute_input": "2024-02-08T05:16:56.987779Z", + "iopub.status.busy": "2024-02-08T05:16:56.987416Z", + "iopub.status.idle": "2024-02-08T05:16:57.488799Z", + "shell.execute_reply": "2024-02-08T05:16:57.488201Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.073533Z", - "iopub.status.busy": "2024-02-08T04:30:03.073160Z", - "iopub.status.idle": "2024-02-08T04:30:03.078436Z", - "shell.execute_reply": "2024-02-08T04:30:03.077957Z" + "iopub.execute_input": "2024-02-08T05:16:57.491360Z", + "iopub.status.busy": "2024-02-08T05:16:57.491015Z", + "iopub.status.idle": "2024-02-08T05:16:57.496482Z", + "shell.execute_reply": "2024-02-08T05:16:57.495900Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.080496Z", - "iopub.status.busy": "2024-02-08T04:30:03.080241Z", - "iopub.status.idle": "2024-02-08T04:30:03.083913Z", - "shell.execute_reply": "2024-02-08T04:30:03.083409Z" + "iopub.execute_input": "2024-02-08T05:16:57.498525Z", + "iopub.status.busy": "2024-02-08T05:16:57.498273Z", + "iopub.status.idle": "2024-02-08T05:16:57.502766Z", + "shell.execute_reply": "2024-02-08T05:16:57.502239Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.085945Z", - "iopub.status.busy": "2024-02-08T04:30:03.085650Z", - "iopub.status.idle": "2024-02-08T04:30:03.803366Z", - "shell.execute_reply": "2024-02-08T04:30:03.802737Z" + "iopub.execute_input": "2024-02-08T05:16:57.505115Z", + "iopub.status.busy": "2024-02-08T05:16:57.504739Z", + "iopub.status.idle": "2024-02-08T05:16:58.169542Z", + "shell.execute_reply": "2024-02-08T05:16:58.168969Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.805530Z", - "iopub.status.busy": "2024-02-08T04:30:03.805328Z", - "iopub.status.idle": "2024-02-08T04:30:03.997894Z", - "shell.execute_reply": "2024-02-08T04:30:03.997434Z" + "iopub.execute_input": "2024-02-08T05:16:58.171773Z", + "iopub.status.busy": "2024-02-08T05:16:58.171556Z", + "iopub.status.idle": "2024-02-08T05:16:58.345846Z", + "shell.execute_reply": "2024-02-08T05:16:58.345282Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.000019Z", - "iopub.status.busy": "2024-02-08T04:30:03.999818Z", - "iopub.status.idle": "2024-02-08T04:30:04.004151Z", - "shell.execute_reply": "2024-02-08T04:30:04.003695Z" + "iopub.execute_input": "2024-02-08T05:16:58.348393Z", + "iopub.status.busy": "2024-02-08T05:16:58.347973Z", + "iopub.status.idle": "2024-02-08T05:16:58.352484Z", + "shell.execute_reply": "2024-02-08T05:16:58.351962Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.006153Z", - "iopub.status.busy": "2024-02-08T04:30:04.005847Z", - "iopub.status.idle": "2024-02-08T04:30:04.453260Z", - "shell.execute_reply": "2024-02-08T04:30:04.452625Z" + "iopub.execute_input": "2024-02-08T05:16:58.354696Z", + "iopub.status.busy": "2024-02-08T05:16:58.354301Z", + "iopub.status.idle": "2024-02-08T05:16:58.825617Z", + "shell.execute_reply": "2024-02-08T05:16:58.824990Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.455432Z", - "iopub.status.busy": "2024-02-08T04:30:04.455094Z", - "iopub.status.idle": "2024-02-08T04:30:04.785572Z", - "shell.execute_reply": "2024-02-08T04:30:04.785061Z" + "iopub.execute_input": "2024-02-08T05:16:58.828381Z", + "iopub.status.busy": "2024-02-08T05:16:58.828004Z", + "iopub.status.idle": "2024-02-08T05:16:59.167061Z", + "shell.execute_reply": "2024-02-08T05:16:59.166481Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.787885Z", - "iopub.status.busy": "2024-02-08T04:30:04.787540Z", - "iopub.status.idle": "2024-02-08T04:30:05.150648Z", - "shell.execute_reply": "2024-02-08T04:30:05.150060Z" + "iopub.execute_input": "2024-02-08T05:16:59.169884Z", + "iopub.status.busy": "2024-02-08T05:16:59.169506Z", + "iopub.status.idle": "2024-02-08T05:16:59.539761Z", + "shell.execute_reply": "2024-02-08T05:16:59.539127Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:05.153992Z", - "iopub.status.busy": "2024-02-08T04:30:05.153625Z", - "iopub.status.idle": "2024-02-08T04:30:05.568258Z", - "shell.execute_reply": "2024-02-08T04:30:05.567723Z" + "iopub.execute_input": "2024-02-08T05:16:59.542851Z", + "iopub.status.busy": "2024-02-08T05:16:59.542457Z", + "iopub.status.idle": "2024-02-08T05:16:59.990032Z", + "shell.execute_reply": "2024-02-08T05:16:59.989412Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:05.572539Z", - "iopub.status.busy": "2024-02-08T04:30:05.572099Z", - "iopub.status.idle": "2024-02-08T04:30:06.017524Z", - "shell.execute_reply": "2024-02-08T04:30:06.016975Z" + "iopub.execute_input": "2024-02-08T05:16:59.994566Z", + "iopub.status.busy": "2024-02-08T05:16:59.994002Z", + "iopub.status.idle": "2024-02-08T05:17:00.455591Z", + "shell.execute_reply": "2024-02-08T05:17:00.454958Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.020497Z", - "iopub.status.busy": "2024-02-08T04:30:06.020166Z", - "iopub.status.idle": "2024-02-08T04:30:06.234814Z", - "shell.execute_reply": "2024-02-08T04:30:06.234375Z" + "iopub.execute_input": "2024-02-08T05:17:00.458928Z", + "iopub.status.busy": "2024-02-08T05:17:00.458572Z", + "iopub.status.idle": "2024-02-08T05:17:00.677651Z", + "shell.execute_reply": "2024-02-08T05:17:00.677072Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.237004Z", - "iopub.status.busy": "2024-02-08T04:30:06.236672Z", - "iopub.status.idle": "2024-02-08T04:30:06.434144Z", - "shell.execute_reply": "2024-02-08T04:30:06.433613Z" + "iopub.execute_input": "2024-02-08T05:17:00.680076Z", + "iopub.status.busy": "2024-02-08T05:17:00.679705Z", + "iopub.status.idle": "2024-02-08T05:17:00.882051Z", + "shell.execute_reply": "2024-02-08T05:17:00.881407Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.436337Z", - "iopub.status.busy": "2024-02-08T04:30:06.436003Z", - "iopub.status.idle": "2024-02-08T04:30:06.438847Z", - "shell.execute_reply": "2024-02-08T04:30:06.438407Z" + "iopub.execute_input": "2024-02-08T05:17:00.885010Z", + "iopub.status.busy": "2024-02-08T05:17:00.884519Z", + "iopub.status.idle": "2024-02-08T05:17:00.887731Z", + "shell.execute_reply": "2024-02-08T05:17:00.887166Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.440735Z", - "iopub.status.busy": "2024-02-08T04:30:06.440417Z", - "iopub.status.idle": "2024-02-08T04:30:07.319773Z", - "shell.execute_reply": "2024-02-08T04:30:07.319187Z" + "iopub.execute_input": "2024-02-08T05:17:00.889952Z", + "iopub.status.busy": "2024-02-08T05:17:00.889687Z", + "iopub.status.idle": "2024-02-08T05:17:01.918413Z", + "shell.execute_reply": "2024-02-08T05:17:01.917826Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.322027Z", - "iopub.status.busy": "2024-02-08T04:30:07.321586Z", - "iopub.status.idle": "2024-02-08T04:30:07.426875Z", - "shell.execute_reply": "2024-02-08T04:30:07.426398Z" + "iopub.execute_input": "2024-02-08T05:17:01.921475Z", + "iopub.status.busy": "2024-02-08T05:17:01.921090Z", + "iopub.status.idle": "2024-02-08T05:17:02.038832Z", + "shell.execute_reply": "2024-02-08T05:17:02.038270Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.429007Z", - "iopub.status.busy": "2024-02-08T04:30:07.428667Z", - "iopub.status.idle": "2024-02-08T04:30:07.537965Z", - "shell.execute_reply": "2024-02-08T04:30:07.537475Z" + "iopub.execute_input": "2024-02-08T05:17:02.041133Z", + "iopub.status.busy": "2024-02-08T05:17:02.040771Z", + "iopub.status.idle": "2024-02-08T05:17:02.182078Z", + "shell.execute_reply": "2024-02-08T05:17:02.181503Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.540187Z", - "iopub.status.busy": "2024-02-08T04:30:07.539991Z", - "iopub.status.idle": "2024-02-08T04:30:08.230961Z", - "shell.execute_reply": "2024-02-08T04:30:08.230413Z" + "iopub.execute_input": "2024-02-08T05:17:02.184372Z", + "iopub.status.busy": "2024-02-08T05:17:02.184010Z", + "iopub.status.idle": "2024-02-08T05:17:02.969079Z", + "shell.execute_reply": "2024-02-08T05:17:02.968512Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:08.233141Z", - "iopub.status.busy": "2024-02-08T04:30:08.232960Z", - "iopub.status.idle": "2024-02-08T04:30:08.236653Z", - "shell.execute_reply": "2024-02-08T04:30:08.236116Z" + "iopub.execute_input": "2024-02-08T05:17:02.971374Z", + "iopub.status.busy": "2024-02-08T05:17:02.971169Z", + "iopub.status.idle": "2024-02-08T05:17:02.974933Z", + "shell.execute_reply": "2024-02-08T05:17:02.974480Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index d6fb56e2c..bf9764a42 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -730,16 +730,16 @@

    2. Pre-process the Cifar10 dataset
    
     
    -
    1%| | 1966080/170498071 [00:00&lt;00:08, 19659740.68it/s]
    +
    0%| | 32768/170498071 [00:00&lt;11:11, 253804.05it/s]

    </pre>

    -
    1%| | 1966080/170498071 [00:00<00:08, 19659740.68it/s]
    +
    0%| | 32768/170498071 [00:00<11:11, 253804.05it/s]

    end{sphinxVerbatim}

    -

    1%| | 1966080/170498071 [00:00<00:08, 19659740.68it/s]

    +

    0%| | 32768/170498071 [00:00<11:11, 253804.05it/s]

    -
    8%|▊ | 13729792/170498071 [00:00&lt;00:02, 77179148.66it/s]
    +
    0%| | 229376/170498071 [00:00&lt;02:51, 993776.00it/s]

    </pre>

    -
    8%|▊ | 13729792/170498071 [00:00<00:02, 77179148.66it/s]
    +
    0%| | 229376/170498071 [00:00<02:51, 993776.00it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 13729792/170498071 [00:00<00:02, 77179148.66it/s]

    +

    0%| | 229376/170498071 [00:00<02:51, 993776.00it/s]

    -
    15%|█▍ | 25460736/170498071 [00:00&lt;00:01, 95453009.47it/s]
    +
    1%| | 884736/170498071 [00:00&lt;00:59, 2843619.98it/s]

    </pre>

    -
    15%|█▍ | 25460736/170498071 [00:00<00:01, 95453009.47it/s]
    +
    1%| | 884736/170498071 [00:00<00:59, 2843619.98it/s]

    end{sphinxVerbatim}

    -

    15%|█▍ | 25460736/170498071 [00:00<00:01, 95453009.47it/s]

    +

    1%| | 884736/170498071 [00:00<00:59, 2843619.98it/s]

    -
    22%|██▏ | 37191680/170498071 [00:00&lt;00:01, 104050694.82it/s]
    +
    2%|▏ | 3604480/170498071 [00:00&lt;00:16, 9937863.72it/s]

    </pre>

    -
    22%|██▏ | 37191680/170498071 [00:00<00:01, 104050694.82it/s]
    +
    2%|▏ | 3604480/170498071 [00:00<00:16, 9937863.72it/s]

    end{sphinxVerbatim}

    -

    22%|██▏ | 37191680/170498071 [00:00<00:01, 104050694.82it/s]

    +

    2%|▏ | 3604480/170498071 [00:00<00:16, 9937863.72it/s]

    -
    29%|██▊ | 48922624/170498071 [00:00&lt;00:01, 108754354.22it/s]
    +
    6%|▌ | 9568256/170498071 [00:00&lt;00:07, 22733434.66it/s]

    </pre>

    -
    29%|██▊ | 48922624/170498071 [00:00<00:01, 108754354.22it/s]
    +
    6%|▌ | 9568256/170498071 [00:00<00:07, 22733434.66it/s]

    end{sphinxVerbatim}

    -

    29%|██▊ | 48922624/170498071 [00:00<00:01, 108754354.22it/s]

    +

    6%|▌ | 9568256/170498071 [00:00<00:07, 22733434.66it/s]

    -
    36%|███▌ | 60653568/170498071 [00:00&lt;00:00, 111599175.08it/s]
    +
    9%|▉ | 15532032/170498071 [00:00&lt;00:04, 33124010.85it/s]

    </pre>

    -
    36%|███▌ | 60653568/170498071 [00:00<00:00, 111599175.08it/s]
    +
    9%|▉ | 15532032/170498071 [00:00<00:04, 33124010.85it/s]

    end{sphinxVerbatim}

    -

    36%|███▌ | 60653568/170498071 [00:00<00:00, 111599175.08it/s]

    +

    9%|▉ | 15532032/170498071 [00:00<00:04, 33124010.85it/s]

    -
    42%|████▏ | 72417280/170498071 [00:00&lt;00:00, 113485568.58it/s]
    +
    11%|█ | 19070976/170498071 [00:00&lt;00:04, 33331594.97it/s]

    </pre>

    -
    42%|████▏ | 72417280/170498071 [00:00<00:00, 113485568.58it/s]
    +
    11%|█ | 19070976/170498071 [00:00<00:04, 33331594.97it/s]

    end{sphinxVerbatim}

    -

    42%|████▏ | 72417280/170498071 [00:00<00:00, 113485568.58it/s]

    +

    11%|█ | 19070976/170498071 [00:00<00:04, 33331594.97it/s]

    -
    49%|████▉ | 84148224/170498071 [00:00&lt;00:00, 114683185.40it/s]
    +
    15%|█▍ | 25001984/170498071 [00:00&lt;00:03, 38542476.09it/s]

    </pre>

    -
    49%|████▉ | 84148224/170498071 [00:00<00:00, 114683185.40it/s]
    +
    15%|█▍ | 25001984/170498071 [00:00<00:03, 38542476.09it/s]

    end{sphinxVerbatim}

    -

    49%|████▉ | 84148224/170498071 [00:00<00:00, 114683185.40it/s]

    +

    15%|█▍ | 25001984/170498071 [00:00<00:03, 38542476.09it/s]

    -
    56%|█████▌ | 95879168/170498071 [00:00&lt;00:00, 115452930.26it/s]
    +
    17%|█▋ | 29491200/170498071 [00:01&lt;00:03, 40313666.10it/s]

    </pre>

    -
    56%|█████▌ | 95879168/170498071 [00:00<00:00, 115452930.26it/s]
    +
    17%|█▋ | 29491200/170498071 [00:01<00:03, 40313666.10it/s]

    end{sphinxVerbatim}

    -

    56%|█████▌ | 95879168/170498071 [00:00<00:00, 115452930.26it/s]

    +

    17%|█▋ | 29491200/170498071 [00:01<00:03, 40313666.10it/s]

    -
    63%|██████▎ | 107610112/170498071 [00:01&lt;00:00, 116001177.88it/s]
    +
    20%|██ | 34439168/170498071 [00:01&lt;00:03, 42784554.31it/s]

    </pre>

    -
    63%|██████▎ | 107610112/170498071 [00:01<00:00, 116001177.88it/s]
    +
    20%|██ | 34439168/170498071 [00:01<00:03, 42784554.31it/s]

    end{sphinxVerbatim}

    -

    63%|██████▎ | 107610112/170498071 [00:01<00:00, 116001177.88it/s]

    +

    20%|██ | 34439168/170498071 [00:01<00:03, 42784554.31it/s]

    -
    70%|██████▉ | 119341056/170498071 [00:01&lt;00:00, 116178766.29it/s]
    +
    23%|██▎ | 38797312/170498071 [00:01&lt;00:03, 42575855.01it/s]

    </pre>

    -
    70%|██████▉ | 119341056/170498071 [00:01<00:00, 116178766.29it/s]
    +
    23%|██▎ | 38797312/170498071 [00:01<00:03, 42575855.01it/s]

    end{sphinxVerbatim}

    -

    70%|██████▉ | 119341056/170498071 [00:01<00:00, 116178766.29it/s]

    +

    23%|██▎ | 38797312/170498071 [00:01<00:03, 42575855.01it/s]

    -
    77%|███████▋ | 131137536/170498071 [00:01&lt;00:00, 116661736.90it/s]
    +
    26%|██▌ | 43909120/170498071 [00:01&lt;00:02, 44133340.46it/s]

    </pre>

    -
    77%|███████▋ | 131137536/170498071 [00:01<00:00, 116661736.90it/s]
    +
    26%|██▌ | 43909120/170498071 [00:01<00:02, 44133340.46it/s]

    end{sphinxVerbatim}

    -

    77%|███████▋ | 131137536/170498071 [00:01<00:00, 116661736.90it/s]

    +

    26%|██▌ | 43909120/170498071 [00:01<00:02, 44133340.46it/s]

    -
    84%|████████▍ | 142868480/170498071 [00:01&lt;00:00, 116808215.89it/s]
    +
    28%|██▊ | 48365568/170498071 [00:01&lt;00:02, 44213290.62it/s]

    </pre>

    -
    84%|████████▍ | 142868480/170498071 [00:01<00:00, 116808215.89it/s]
    +
    28%|██▊ | 48365568/170498071 [00:01<00:02, 44213290.62it/s]

    end{sphinxVerbatim}

    -

    84%|████████▍ | 142868480/170498071 [00:01<00:00, 116808215.89it/s]

    +

    28%|██▊ | 48365568/170498071 [00:01<00:02, 44213290.62it/s]

    -
    91%|█████████ | 154599424/170498071 [00:01&lt;00:00, 116920831.64it/s]
    +
    31%|███▏ | 53280768/170498071 [00:01&lt;00:02, 45603815.05it/s]

    </pre>

    -
    91%|█████████ | 154599424/170498071 [00:01<00:00, 116920831.64it/s]
    +
    31%|███▏ | 53280768/170498071 [00:01<00:02, 45603815.05it/s]

    end{sphinxVerbatim}

    -

    91%|█████████ | 154599424/170498071 [00:01<00:00, 116920831.64it/s]

    +

    31%|███▏ | 53280768/170498071 [00:01<00:02, 45603815.05it/s]

    -
    98%|█████████▊| 166330368/170498071 [00:01&lt;00:00, 116990077.48it/s]
    +
    34%|███▍ | 57868288/170498071 [00:01&lt;00:02, 44811305.61it/s]

    </pre>

    -
    98%|█████████▊| 166330368/170498071 [00:01<00:00, 116990077.48it/s]
    +
    34%|███▍ | 57868288/170498071 [00:01<00:02, 44811305.61it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 166330368/170498071 [00:01<00:00, 116990077.48it/s]

    +

    34%|███▍ | 57868288/170498071 [00:01<00:02, 44811305.61it/s]

    + + +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    37%|███▋ | 62685184/170498071 [00:01&lt;00:02, 45437448.27it/s]
    +

    </pre>

    +
    +
    +
    37%|███▋ | 62685184/170498071 [00:01<00:02, 45437448.27it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    37%|███▋ | 62685184/170498071 [00:01<00:02, 45437448.27it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    39%|███▉ | 67272704/170498071 [00:01&lt;00:02, 45126177.69it/s]
    +

    </pre>

    +
    +
    +
    39%|███▉ | 67272704/170498071 [00:01<00:02, 45126177.69it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    39%|███▉ | 67272704/170498071 [00:01<00:02, 45126177.69it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    42%|████▏ | 72122368/170498071 [00:02&lt;00:02, 46040805.06it/s]
    +

    </pre>

    +
    +
    +
    42%|████▏ | 72122368/170498071 [00:02<00:02, 46040805.06it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    42%|████▏ | 72122368/170498071 [00:02<00:02, 46040805.06it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    45%|████▌ | 76742656/170498071 [00:02&lt;00:02, 45311156.87it/s]
    +

    </pre>

    +
    +
    +
    45%|████▌ | 76742656/170498071 [00:02<00:02, 45311156.87it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    45%|████▌ | 76742656/170498071 [00:02<00:02, 45311156.87it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    48%|████▊ | 81854464/170498071 [00:02&lt;00:01, 46283694.59it/s]
    +

    </pre>

    +
    +
    +
    48%|████▊ | 81854464/170498071 [00:02<00:01, 46283694.59it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    48%|████▊ | 81854464/170498071 [00:02<00:01, 46283694.59it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    51%|█████ | 86507520/170498071 [00:02&lt;00:01, 45720127.96it/s]
    +

    </pre>

    +
    +
    +
    51%|█████ | 86507520/170498071 [00:02<00:01, 45720127.96it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    51%|█████ | 86507520/170498071 [00:02<00:01, 45720127.96it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    54%|█████▎ | 91455488/170498071 [00:02&lt;00:01, 46807783.76it/s]
    +

    </pre>

    +
    +
    +
    54%|█████▎ | 91455488/170498071 [00:02<00:01, 46807783.76it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    54%|█████▎ | 91455488/170498071 [00:02<00:01, 46807783.76it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    56%|█████▋ | 96174080/170498071 [00:02&lt;00:01, 45884858.81it/s]
    +

    </pre>

    +
    +
    +
    56%|█████▋ | 96174080/170498071 [00:02<00:01, 45884858.81it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    56%|█████▋ | 96174080/170498071 [00:02<00:01, 45884858.81it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    59%|█████▉ | 100892672/170498071 [00:02&lt;00:01, 45622214.20it/s]
    +

    </pre>

    +
    +
    +
    59%|█████▉ | 100892672/170498071 [00:02<00:01, 45622214.20it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    59%|█████▉ | 100892672/170498071 [00:02<00:01, 45622214.20it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    62%|██████▏ | 105480192/170498071 [00:02&lt;00:01, 45635391.85it/s]
    +

    </pre>

    +
    +
    +
    62%|██████▏ | 105480192/170498071 [00:02<00:01, 45635391.85it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    62%|██████▏ | 105480192/170498071 [00:02<00:01, 45635391.85it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    65%|██████▍ | 110297088/170498071 [00:02&lt;00:01, 45956041.49it/s]
    +

    </pre>

    +
    +
    +
    65%|██████▍ | 110297088/170498071 [00:02<00:01, 45956041.49it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    65%|██████▍ | 110297088/170498071 [00:02<00:01, 45956041.49it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    67%|██████▋ | 114917376/170498071 [00:02&lt;00:01, 45582206.50it/s]
    +

    </pre>

    +
    +
    +
    67%|██████▋ | 114917376/170498071 [00:02<00:01, 45582206.50it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    67%|██████▋ | 114917376/170498071 [00:02<00:01, 45582206.50it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    70%|███████ | 119799808/170498071 [00:03&lt;00:01, 46514478.20it/s]
    +

    </pre>

    +
    +
    +
    70%|███████ | 119799808/170498071 [00:03<00:01, 46514478.20it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    70%|███████ | 119799808/170498071 [00:03<00:01, 46514478.20it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    73%|███████▎ | 124485632/170498071 [00:03&lt;00:01, 45639548.48it/s]
    +

    </pre>

    +
    +
    +
    73%|███████▎ | 124485632/170498071 [00:03<00:01, 45639548.48it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    73%|███████▎ | 124485632/170498071 [00:03<00:01, 45639548.48it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    76%|███████▌ | 129335296/170498071 [00:03&lt;00:00, 46446998.37it/s]
    +

    </pre>

    +
    +
    +
    76%|███████▌ | 129335296/170498071 [00:03<00:00, 46446998.37it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    76%|███████▌ | 129335296/170498071 [00:03<00:00, 46446998.37it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    79%|███████▊ | 133988352/170498071 [00:03&lt;00:00, 45593760.64it/s]
    +

    </pre>

    +
    +
    +
    79%|███████▊ | 133988352/170498071 [00:03<00:00, 45593760.64it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    79%|███████▊ | 133988352/170498071 [00:03<00:00, 45593760.64it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    81%|████████▏ | 138739712/170498071 [00:03&lt;00:00, 46153655.26it/s]
    +

    </pre>

    +
    +
    +
    81%|████████▏ | 138739712/170498071 [00:03<00:00, 46153655.26it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    81%|████████▏ | 138739712/170498071 [00:03<00:00, 46153655.26it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    84%|████████▍ | 143392768/170498071 [00:03&lt;00:00, 45504976.74it/s]
    +

    </pre>

    +
    +
    +
    84%|████████▍ | 143392768/170498071 [00:03<00:00, 45504976.74it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    84%|████████▍ | 143392768/170498071 [00:03<00:00, 45504976.74it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    87%|████████▋ | 148209664/170498071 [00:03&lt;00:00, 46079464.34it/s]
    +

    </pre>

    +
    +
    +
    87%|████████▋ | 148209664/170498071 [00:03<00:00, 46079464.34it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    87%|████████▋ | 148209664/170498071 [00:03<00:00, 46079464.34it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    90%|████████▉ | 152829952/170498071 [00:03&lt;00:00, 45516536.27it/s]
    +

    </pre>

    +
    +
    +
    90%|████████▉ | 152829952/170498071 [00:03<00:00, 45516536.27it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    90%|████████▉ | 152829952/170498071 [00:03<00:00, 45516536.27it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    92%|█████████▏| 157646848/170498071 [00:03&lt;00:00, 46018066.70it/s]
    +

    </pre>

    +
    +
    +
    92%|█████████▏| 157646848/170498071 [00:03<00:00, 46018066.70it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    92%|█████████▏| 157646848/170498071 [00:03<00:00, 46018066.70it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    95%|█████████▌| 162267136/170498071 [00:03&lt;00:00, 45503104.22it/s]
    +

    </pre>

    +
    +
    +
    95%|█████████▌| 162267136/170498071 [00:03<00:00, 45503104.22it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    95%|█████████▌| 162267136/170498071 [00:03<00:00, 45503104.22it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    98%|█████████▊| 167280640/170498071 [00:04&lt;00:00, 46441485.40it/s]
    +

    </pre>

    +
    +
    +
    98%|█████████▊| 167280640/170498071 [00:04<00:00, 46441485.40it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    98%|█████████▊| 167280640/170498071 [00:04<00:00, 46441485.40it/s]

    -
    100%|██████████| 170498071/170498071 [00:01&lt;00:00, 110845448.51it/s]
    +
    100%|██████████| 170498071/170498071 [00:04&lt;00:00, 41107986.54it/s]

    </pre>

    -
    100%|██████████| 170498071/170498071 [00:01<00:00, 110845448.51it/s]
    +
    100%|██████████| 170498071/170498071 [00:04<00:00, 41107986.54it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 170498071/170498071 [00:01<00:00, 110845448.51it/s]

    +

    100%|██████████| 170498071/170498071 [00:04<00:00, 41107986.54it/s]

    -
    +
    @@ -1493,7 +2091,7 @@

    4. Use cleanlab and here.

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 65c66de70..d3b8139b6 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:10.403237Z", - "iopub.status.busy": "2024-02-08T04:30:10.403065Z", - "iopub.status.idle": "2024-02-08T04:30:13.024182Z", - "shell.execute_reply": "2024-02-08T04:30:13.023553Z" + "iopub.execute_input": "2024-02-08T05:17:05.426264Z", + "iopub.status.busy": "2024-02-08T05:17:05.425848Z", + "iopub.status.idle": "2024-02-08T05:17:08.282874Z", + "shell.execute_reply": "2024-02-08T05:17:08.282291Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.026721Z", - "iopub.status.busy": "2024-02-08T04:30:13.026419Z", - "iopub.status.idle": "2024-02-08T04:30:13.342311Z", - "shell.execute_reply": "2024-02-08T04:30:13.341724Z" + "iopub.execute_input": "2024-02-08T05:17:08.285746Z", + "iopub.status.busy": "2024-02-08T05:17:08.285258Z", + "iopub.status.idle": "2024-02-08T05:17:08.637966Z", + "shell.execute_reply": "2024-02-08T05:17:08.637382Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.344795Z", - "iopub.status.busy": "2024-02-08T04:30:13.344495Z", - "iopub.status.idle": "2024-02-08T04:30:13.348857Z", - "shell.execute_reply": "2024-02-08T04:30:13.348325Z" + "iopub.execute_input": "2024-02-08T05:17:08.640554Z", + "iopub.status.busy": "2024-02-08T05:17:08.640185Z", + "iopub.status.idle": "2024-02-08T05:17:08.644567Z", + "shell.execute_reply": "2024-02-08T05:17:08.644001Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.351075Z", - "iopub.status.busy": "2024-02-08T04:30:13.350701Z", - "iopub.status.idle": "2024-02-08T04:30:17.722194Z", - "shell.execute_reply": "2024-02-08T04:30:17.721653Z" + "iopub.execute_input": "2024-02-08T05:17:08.646865Z", + "iopub.status.busy": "2024-02-08T05:17:08.646554Z", + "iopub.status.idle": "2024-02-08T05:17:15.879028Z", + "shell.execute_reply": "2024-02-08T05:17:15.878437Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1966080/170498071 [00:00<00:08, 19659740.68it/s]" + " 0%| | 32768/170498071 [00:00<11:11, 253804.05it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 13729792/170498071 [00:00<00:02, 77179148.66it/s]" + " 0%| | 229376/170498071 [00:00<02:51, 993776.00it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 25460736/170498071 [00:00<00:01, 95453009.47it/s]" + " 1%| | 884736/170498071 [00:00<00:59, 2843619.98it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37191680/170498071 [00:00<00:01, 104050694.82it/s]" + " 2%|▏ | 3604480/170498071 [00:00<00:16, 9937863.72it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 48922624/170498071 [00:00<00:01, 108754354.22it/s]" + " 6%|▌ | 9568256/170498071 [00:00<00:07, 22733434.66it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 60653568/170498071 [00:00<00:00, 111599175.08it/s]" + " 9%|▉ | 15532032/170498071 [00:00<00:04, 33124010.85it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 72417280/170498071 [00:00<00:00, 113485568.58it/s]" + " 11%|█ | 19070976/170498071 [00:00<00:04, 33331594.97it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 84148224/170498071 [00:00<00:00, 114683185.40it/s]" + " 15%|█▍ | 25001984/170498071 [00:00<00:03, 38542476.09it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 95879168/170498071 [00:00<00:00, 115452930.26it/s]" + " 17%|█▋ | 29491200/170498071 [00:01<00:03, 40313666.10it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 107610112/170498071 [00:01<00:00, 116001177.88it/s]" + " 20%|██ | 34439168/170498071 [00:01<00:03, 42784554.31it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 119341056/170498071 [00:01<00:00, 116178766.29it/s]" + " 23%|██▎ | 38797312/170498071 [00:01<00:03, 42575855.01it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 131137536/170498071 [00:01<00:00, 116661736.90it/s]" + " 26%|██▌ | 43909120/170498071 [00:01<00:02, 44133340.46it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 142868480/170498071 [00:01<00:00, 116808215.89it/s]" + " 28%|██▊ | 48365568/170498071 [00:01<00:02, 44213290.62it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 154599424/170498071 [00:01<00:00, 116920831.64it/s]" + " 31%|███▏ | 53280768/170498071 [00:01<00:02, 45603815.05it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 166330368/170498071 [00:01<00:00, 116990077.48it/s]" + " 34%|███▍ | 57868288/170498071 [00:01<00:02, 44811305.61it/s]" ] }, { @@ -372,7 +372,191 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 110845448.51it/s]" + " 37%|███▋ | 62685184/170498071 [00:01<00:02, 45437448.27it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 39%|███▉ | 67272704/170498071 [00:01<00:02, 45126177.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 42%|████▏ | 72122368/170498071 [00:02<00:02, 46040805.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 45%|████▌ | 76742656/170498071 [00:02<00:02, 45311156.87it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 48%|████▊ | 81854464/170498071 [00:02<00:01, 46283694.59it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 51%|█████ | 86507520/170498071 [00:02<00:01, 45720127.96it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 54%|█████▎ | 91455488/170498071 [00:02<00:01, 46807783.76it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▋ | 96174080/170498071 [00:02<00:01, 45884858.81it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▉ | 100892672/170498071 [00:02<00:01, 45622214.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 105480192/170498071 [00:02<00:01, 45635391.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▍ | 110297088/170498071 [00:02<00:01, 45956041.49it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 67%|██████▋ | 114917376/170498071 [00:02<00:01, 45582206.50it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 70%|███████ | 119799808/170498071 [00:03<00:01, 46514478.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 73%|███████▎ | 124485632/170498071 [00:03<00:01, 45639548.48it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 76%|███████▌ | 129335296/170498071 [00:03<00:00, 46446998.37it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▊ | 133988352/170498071 [00:03<00:00, 45593760.64it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████▏ | 138739712/170498071 [00:03<00:00, 46153655.26it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 143392768/170498071 [00:03<00:00, 45504976.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148209664/170498071 [00:03<00:00, 46079464.34it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|████████▉ | 152829952/170498071 [00:03<00:00, 45516536.27it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 157646848/170498071 [00:03<00:00, 46018066.70it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162267136/170498071 [00:03<00:00, 45503104.22it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 167280640/170498071 [00:04<00:00, 46441485.40it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:04<00:00, 41107986.54it/s]" ] }, { @@ -490,10 +674,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:17.724373Z", - "iopub.status.busy": "2024-02-08T04:30:17.724096Z", - "iopub.status.idle": "2024-02-08T04:30:17.728698Z", - "shell.execute_reply": "2024-02-08T04:30:17.728278Z" + "iopub.execute_input": "2024-02-08T05:17:15.881245Z", + "iopub.status.busy": "2024-02-08T05:17:15.881053Z", + "iopub.status.idle": "2024-02-08T05:17:15.886298Z", + "shell.execute_reply": "2024-02-08T05:17:15.885876Z" }, "nbsphinx": "hidden" }, @@ -544,10 +728,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:17.730711Z", - "iopub.status.busy": "2024-02-08T04:30:17.730452Z", - "iopub.status.idle": "2024-02-08T04:30:18.284987Z", - "shell.execute_reply": "2024-02-08T04:30:18.284485Z" + "iopub.execute_input": "2024-02-08T05:17:15.888349Z", + "iopub.status.busy": "2024-02-08T05:17:15.888018Z", + "iopub.status.idle": "2024-02-08T05:17:16.439381Z", + "shell.execute_reply": "2024-02-08T05:17:16.438746Z" } }, "outputs": [ @@ -580,10 +764,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.287052Z", - "iopub.status.busy": "2024-02-08T04:30:18.286769Z", - "iopub.status.idle": "2024-02-08T04:30:18.804685Z", - "shell.execute_reply": "2024-02-08T04:30:18.804072Z" + "iopub.execute_input": "2024-02-08T05:17:16.441539Z", + "iopub.status.busy": "2024-02-08T05:17:16.441332Z", + "iopub.status.idle": "2024-02-08T05:17:16.983160Z", + "shell.execute_reply": "2024-02-08T05:17:16.982529Z" } }, "outputs": [ @@ -621,10 +805,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.806777Z", - "iopub.status.busy": "2024-02-08T04:30:18.806483Z", - "iopub.status.idle": "2024-02-08T04:30:18.809916Z", - "shell.execute_reply": "2024-02-08T04:30:18.809486Z" + "iopub.execute_input": "2024-02-08T05:17:16.985466Z", + "iopub.status.busy": "2024-02-08T05:17:16.985047Z", + "iopub.status.idle": "2024-02-08T05:17:16.988712Z", + "shell.execute_reply": "2024-02-08T05:17:16.988153Z" } }, "outputs": [], @@ -647,17 +831,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.811865Z", - "iopub.status.busy": "2024-02-08T04:30:18.811527Z", - "iopub.status.idle": "2024-02-08T04:30:31.364282Z", - "shell.execute_reply": "2024-02-08T04:30:31.363667Z" + "iopub.execute_input": "2024-02-08T05:17:16.990864Z", + "iopub.status.busy": "2024-02-08T05:17:16.990531Z", + "iopub.status.idle": "2024-02-08T05:17:30.384574Z", + "shell.execute_reply": "2024-02-08T05:17:30.383954Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8ec90718ebe14457846ef833a3f69479", + "model_id": "825668b38db748b986e9bda15e51e13b", "version_major": 2, "version_minor": 0 }, @@ -716,10 +900,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:31.366608Z", - "iopub.status.busy": "2024-02-08T04:30:31.366233Z", - "iopub.status.idle": "2024-02-08T04:30:32.923298Z", - "shell.execute_reply": "2024-02-08T04:30:32.922745Z" + "iopub.execute_input": "2024-02-08T05:17:30.387065Z", + "iopub.status.busy": "2024-02-08T05:17:30.386677Z", + "iopub.status.idle": "2024-02-08T05:17:31.989176Z", + "shell.execute_reply": "2024-02-08T05:17:31.988590Z" } }, "outputs": [ @@ -763,10 +947,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:32.926239Z", - "iopub.status.busy": "2024-02-08T04:30:32.925792Z", - "iopub.status.idle": "2024-02-08T04:30:33.332069Z", - "shell.execute_reply": "2024-02-08T04:30:33.331464Z" + "iopub.execute_input": "2024-02-08T05:17:31.991570Z", + "iopub.status.busy": "2024-02-08T05:17:31.991111Z", + "iopub.status.idle": "2024-02-08T05:17:32.449002Z", + "shell.execute_reply": "2024-02-08T05:17:32.448403Z" } }, "outputs": [ @@ -802,10 +986,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:33.334561Z", - "iopub.status.busy": "2024-02-08T04:30:33.334085Z", - "iopub.status.idle": "2024-02-08T04:30:33.961207Z", - "shell.execute_reply": "2024-02-08T04:30:33.960621Z" + "iopub.execute_input": "2024-02-08T05:17:32.451718Z", + "iopub.status.busy": "2024-02-08T05:17:32.451216Z", + "iopub.status.idle": "2024-02-08T05:17:33.151860Z", + "shell.execute_reply": "2024-02-08T05:17:33.151313Z" } }, "outputs": [ @@ -855,10 +1039,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:33.963531Z", - "iopub.status.busy": "2024-02-08T04:30:33.963345Z", - "iopub.status.idle": "2024-02-08T04:30:34.255761Z", - "shell.execute_reply": "2024-02-08T04:30:34.255221Z" + "iopub.execute_input": "2024-02-08T05:17:33.154439Z", + "iopub.status.busy": "2024-02-08T05:17:33.154055Z", + "iopub.status.idle": "2024-02-08T05:17:33.500788Z", + "shell.execute_reply": "2024-02-08T05:17:33.500203Z" } }, "outputs": [ @@ -906,10 +1090,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.257730Z", - "iopub.status.busy": "2024-02-08T04:30:34.257550Z", - "iopub.status.idle": "2024-02-08T04:30:34.485252Z", - "shell.execute_reply": "2024-02-08T04:30:34.484849Z" + "iopub.execute_input": "2024-02-08T05:17:33.503176Z", + "iopub.status.busy": "2024-02-08T05:17:33.502822Z", + "iopub.status.idle": "2024-02-08T05:17:33.757736Z", + "shell.execute_reply": "2024-02-08T05:17:33.757170Z" } }, "outputs": [ @@ -965,10 +1149,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.487726Z", - "iopub.status.busy": "2024-02-08T04:30:34.487222Z", - "iopub.status.idle": "2024-02-08T04:30:34.562718Z", - "shell.execute_reply": "2024-02-08T04:30:34.562255Z" + "iopub.execute_input": "2024-02-08T05:17:33.763168Z", + "iopub.status.busy": "2024-02-08T05:17:33.762933Z", + "iopub.status.idle": "2024-02-08T05:17:33.854185Z", + "shell.execute_reply": "2024-02-08T05:17:33.853691Z" } }, "outputs": [], @@ -989,10 +1173,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.565151Z", - "iopub.status.busy": "2024-02-08T04:30:34.564820Z", - "iopub.status.idle": "2024-02-08T04:30:44.672053Z", - "shell.execute_reply": "2024-02-08T04:30:44.671463Z" + "iopub.execute_input": "2024-02-08T05:17:33.856930Z", + "iopub.status.busy": "2024-02-08T05:17:33.856640Z", + "iopub.status.idle": "2024-02-08T05:17:44.539894Z", + "shell.execute_reply": "2024-02-08T05:17:44.539169Z" } }, "outputs": [ @@ -1029,10 +1213,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:44.674407Z", - "iopub.status.busy": "2024-02-08T04:30:44.674085Z", - "iopub.status.idle": "2024-02-08T04:30:46.341098Z", - "shell.execute_reply": "2024-02-08T04:30:46.340559Z" + "iopub.execute_input": "2024-02-08T05:17:44.542602Z", + "iopub.status.busy": "2024-02-08T05:17:44.542199Z", + "iopub.status.idle": "2024-02-08T05:17:46.479367Z", + "shell.execute_reply": "2024-02-08T05:17:46.478694Z" } }, "outputs": [ @@ -1063,10 +1247,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.343980Z", - "iopub.status.busy": "2024-02-08T04:30:46.343183Z", - "iopub.status.idle": "2024-02-08T04:30:46.549529Z", - "shell.execute_reply": "2024-02-08T04:30:46.549050Z" + "iopub.execute_input": "2024-02-08T05:17:46.482458Z", + "iopub.status.busy": "2024-02-08T05:17:46.481971Z", + "iopub.status.idle": "2024-02-08T05:17:46.688532Z", + "shell.execute_reply": "2024-02-08T05:17:46.687903Z" } }, "outputs": [], @@ -1080,10 +1264,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.551949Z", - "iopub.status.busy": "2024-02-08T04:30:46.551608Z", - "iopub.status.idle": "2024-02-08T04:30:46.554597Z", - "shell.execute_reply": "2024-02-08T04:30:46.554192Z" + "iopub.execute_input": "2024-02-08T05:17:46.691136Z", + "iopub.status.busy": "2024-02-08T05:17:46.690740Z", + "iopub.status.idle": "2024-02-08T05:17:46.694886Z", + "shell.execute_reply": "2024-02-08T05:17:46.694321Z" } }, "outputs": [], @@ -1105,10 +1289,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.556571Z", - "iopub.status.busy": "2024-02-08T04:30:46.556256Z", - "iopub.status.idle": "2024-02-08T04:30:46.564143Z", - "shell.execute_reply": "2024-02-08T04:30:46.563713Z" + "iopub.execute_input": "2024-02-08T05:17:46.697187Z", + "iopub.status.busy": "2024-02-08T05:17:46.696860Z", + "iopub.status.idle": "2024-02-08T05:17:46.705406Z", + "shell.execute_reply": "2024-02-08T05:17:46.704905Z" }, "nbsphinx": "hidden" }, @@ -1153,30 +1337,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "55278c78cbd94215b2c837195ceeb854": { + "038ec4553cd7485f8bc6b775cc1ac431": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8291224fafb44311a21cd1a944c03a26", - "placeholder": "​", - "style": "IPY_MODEL_7c0f27427fd7458e803f7842e3c2b7b0", + "layout": "IPY_MODEL_c1c41233fe614d279ca59c66cbba997a", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_143179c01bf94cc88f3717bb18023e8a", "tabbable": null, "tooltip": null, - "value": "model.safetensors: 100%" + "value": 102469840.0 } }, - "7c0f27427fd7458e803f7842e3c2b7b0": { + "03d4c196de6b49fabaae303aaa5e1201": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1194,7 +1381,23 @@ "text_color": null } }, - "8291224fafb44311a21cd1a944c03a26": { + "143179c01bf94cc88f3717bb18023e8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5a00804c5fce4ec18bb7db14fd32b417": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1247,54 +1450,7 @@ "width": null } }, - "8a2fc69f5c3f4e30bde00e979493715a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a1d3abd8ccac4d8ca172e65b1644272f", - "placeholder": "​", - "style": "IPY_MODEL_e94269c930c348fc97e754247d9595ed", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 220MB/s]" - } - }, - "8ec90718ebe14457846ef833a3f69479": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_55278c78cbd94215b2c837195ceeb854", - "IPY_MODEL_e8cf996d0fe94c3cb5e2785fee2bf584", - "IPY_MODEL_8a2fc69f5c3f4e30bde00e979493715a" - ], - "layout": "IPY_MODEL_a02d42e775b44528a4ec1f675c156ebe", - "tabbable": null, - "tooltip": null - } - }, - "a02d42e775b44528a4ec1f675c156ebe": { + "70630cd3b71546b196c328130764cfd7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1347,7 +1503,54 @@ "width": null } }, - "a1d3abd8ccac4d8ca172e65b1644272f": { + "7638661cf1ea4bdf9057cf8fb2ed8155": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5a00804c5fce4ec18bb7db14fd32b417", + "placeholder": "​", + "style": "IPY_MODEL_03d4c196de6b49fabaae303aaa5e1201", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 126MB/s]" + } + }, + "825668b38db748b986e9bda15e51e13b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c60e04d7447e4f17a454ef9c1b22babd", + "IPY_MODEL_038ec4553cd7485f8bc6b775cc1ac431", + "IPY_MODEL_7638661cf1ea4bdf9057cf8fb2ed8155" + ], + "layout": "IPY_MODEL_70630cd3b71546b196c328130764cfd7", + "tabbable": null, + "tooltip": null + } + }, + "845005c35b004bdb8957033ab5ca8657": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1400,49 +1603,7 @@ "width": null } }, - "b4faa0e3178b4731a79084ed65896fc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e8cf996d0fe94c3cb5e2785fee2bf584": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ee3ee555896b49de84d08c251eed995d", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b4faa0e3178b4731a79084ed65896fc6", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "e94269c930c348fc97e754247d9595ed": { + "95c4ac1a954348fa9148c8ee12f7fb4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1460,7 +1621,7 @@ "text_color": null } }, - "ee3ee555896b49de84d08c251eed995d": { + "c1c41233fe614d279ca59c66cbba997a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1512,6 +1673,29 @@ "visibility": null, "width": null } + }, + "c60e04d7447e4f17a454ef9c1b22babd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_845005c35b004bdb8957033ab5ca8657", + "placeholder": "​", + "style": "IPY_MODEL_95c4ac1a954348fa9148c8ee12f7fb4e", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index ff8035f20..c13537792 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:50.751304Z", - "iopub.status.busy": "2024-02-08T04:30:50.751133Z", - "iopub.status.idle": "2024-02-08T04:30:51.823240Z", - "shell.execute_reply": "2024-02-08T04:30:51.822703Z" + "iopub.execute_input": "2024-02-08T05:17:51.413127Z", + "iopub.status.busy": "2024-02-08T05:17:51.412706Z", + "iopub.status.idle": "2024-02-08T05:17:52.611238Z", + "shell.execute_reply": "2024-02-08T05:17:52.610680Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.825744Z", - "iopub.status.busy": "2024-02-08T04:30:51.825364Z", - "iopub.status.idle": "2024-02-08T04:30:51.842820Z", - "shell.execute_reply": "2024-02-08T04:30:51.842387Z" + "iopub.execute_input": "2024-02-08T05:17:52.614217Z", + "iopub.status.busy": "2024-02-08T05:17:52.613717Z", + "iopub.status.idle": "2024-02-08T05:17:52.633243Z", + "shell.execute_reply": "2024-02-08T05:17:52.632743Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.844983Z", - "iopub.status.busy": "2024-02-08T04:30:51.844515Z", - "iopub.status.idle": "2024-02-08T04:30:51.847432Z", - "shell.execute_reply": "2024-02-08T04:30:51.846998Z" + "iopub.execute_input": "2024-02-08T05:17:52.635825Z", + "iopub.status.busy": "2024-02-08T05:17:52.635484Z", + "iopub.status.idle": "2024-02-08T05:17:52.638626Z", + "shell.execute_reply": "2024-02-08T05:17:52.638180Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.849404Z", - "iopub.status.busy": "2024-02-08T04:30:51.849113Z", - "iopub.status.idle": "2024-02-08T04:30:52.062082Z", - "shell.execute_reply": "2024-02-08T04:30:52.061561Z" + "iopub.execute_input": "2024-02-08T05:17:52.640735Z", + "iopub.status.busy": "2024-02-08T05:17:52.640434Z", + "iopub.status.idle": "2024-02-08T05:17:52.920965Z", + "shell.execute_reply": "2024-02-08T05:17:52.920349Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.064034Z", - "iopub.status.busy": "2024-02-08T04:30:52.063840Z", - "iopub.status.idle": "2024-02-08T04:30:52.239826Z", - "shell.execute_reply": "2024-02-08T04:30:52.239268Z" + "iopub.execute_input": "2024-02-08T05:17:52.923467Z", + "iopub.status.busy": "2024-02-08T05:17:52.923019Z", + "iopub.status.idle": "2024-02-08T05:17:53.115689Z", + "shell.execute_reply": "2024-02-08T05:17:53.115011Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.242089Z", - "iopub.status.busy": "2024-02-08T04:30:52.241901Z", - "iopub.status.idle": "2024-02-08T04:30:52.445021Z", - "shell.execute_reply": "2024-02-08T04:30:52.444475Z" + "iopub.execute_input": "2024-02-08T05:17:53.118435Z", + "iopub.status.busy": "2024-02-08T05:17:53.118062Z", + "iopub.status.idle": "2024-02-08T05:17:53.371491Z", + "shell.execute_reply": "2024-02-08T05:17:53.370876Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.446996Z", - "iopub.status.busy": "2024-02-08T04:30:52.446821Z", - "iopub.status.idle": "2024-02-08T04:30:52.450930Z", - "shell.execute_reply": "2024-02-08T04:30:52.450482Z" + "iopub.execute_input": "2024-02-08T05:17:53.373865Z", + "iopub.status.busy": "2024-02-08T05:17:53.373626Z", + "iopub.status.idle": "2024-02-08T05:17:53.378358Z", + "shell.execute_reply": "2024-02-08T05:17:53.377808Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.452716Z", - "iopub.status.busy": "2024-02-08T04:30:52.452542Z", - "iopub.status.idle": "2024-02-08T04:30:52.458401Z", - "shell.execute_reply": "2024-02-08T04:30:52.457979Z" + "iopub.execute_input": "2024-02-08T05:17:53.380695Z", + "iopub.status.busy": "2024-02-08T05:17:53.380265Z", + "iopub.status.idle": "2024-02-08T05:17:53.387022Z", + "shell.execute_reply": "2024-02-08T05:17:53.386397Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.460493Z", - "iopub.status.busy": "2024-02-08T04:30:52.460074Z", - "iopub.status.idle": "2024-02-08T04:30:52.462570Z", - "shell.execute_reply": "2024-02-08T04:30:52.462147Z" + "iopub.execute_input": "2024-02-08T05:17:53.389333Z", + "iopub.status.busy": "2024-02-08T05:17:53.389109Z", + "iopub.status.idle": "2024-02-08T05:17:53.392037Z", + "shell.execute_reply": "2024-02-08T05:17:53.391331Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.464422Z", - "iopub.status.busy": "2024-02-08T04:30:52.464251Z", - "iopub.status.idle": "2024-02-08T04:31:00.593329Z", - "shell.execute_reply": "2024-02-08T04:31:00.592695Z" + "iopub.execute_input": "2024-02-08T05:17:53.394330Z", + "iopub.status.busy": "2024-02-08T05:17:53.394004Z", + "iopub.status.idle": "2024-02-08T05:18:01.926806Z", + "shell.execute_reply": "2024-02-08T05:18:01.926205Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.596169Z", - "iopub.status.busy": "2024-02-08T04:31:00.595573Z", - "iopub.status.idle": "2024-02-08T04:31:00.602431Z", - "shell.execute_reply": "2024-02-08T04:31:00.601900Z" + "iopub.execute_input": "2024-02-08T05:18:01.930017Z", + "iopub.status.busy": "2024-02-08T05:18:01.929420Z", + "iopub.status.idle": "2024-02-08T05:18:01.937267Z", + "shell.execute_reply": "2024-02-08T05:18:01.936715Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.604583Z", - "iopub.status.busy": "2024-02-08T04:31:00.604256Z", - "iopub.status.idle": "2024-02-08T04:31:00.607660Z", - "shell.execute_reply": "2024-02-08T04:31:00.607238Z" + "iopub.execute_input": "2024-02-08T05:18:01.939696Z", + "iopub.status.busy": "2024-02-08T05:18:01.939307Z", + "iopub.status.idle": "2024-02-08T05:18:01.943488Z", + "shell.execute_reply": "2024-02-08T05:18:01.942900Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.609663Z", - "iopub.status.busy": "2024-02-08T04:31:00.609347Z", - "iopub.status.idle": "2024-02-08T04:31:00.612323Z", - "shell.execute_reply": "2024-02-08T04:31:00.611787Z" + "iopub.execute_input": "2024-02-08T05:18:01.945734Z", + "iopub.status.busy": "2024-02-08T05:18:01.945405Z", + "iopub.status.idle": "2024-02-08T05:18:01.948895Z", + "shell.execute_reply": "2024-02-08T05:18:01.948338Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.614282Z", - "iopub.status.busy": "2024-02-08T04:31:00.613967Z", - "iopub.status.idle": "2024-02-08T04:31:00.616872Z", - "shell.execute_reply": "2024-02-08T04:31:00.616427Z" + "iopub.execute_input": "2024-02-08T05:18:01.951160Z", + "iopub.status.busy": "2024-02-08T05:18:01.950717Z", + "iopub.status.idle": "2024-02-08T05:18:01.953844Z", + "shell.execute_reply": "2024-02-08T05:18:01.953404Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.618846Z", - "iopub.status.busy": "2024-02-08T04:31:00.618530Z", - "iopub.status.idle": "2024-02-08T04:31:00.626345Z", - "shell.execute_reply": "2024-02-08T04:31:00.625821Z" + "iopub.execute_input": "2024-02-08T05:18:01.956220Z", + "iopub.status.busy": "2024-02-08T05:18:01.955844Z", + "iopub.status.idle": "2024-02-08T05:18:01.964834Z", + "shell.execute_reply": "2024-02-08T05:18:01.964236Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.628449Z", - "iopub.status.busy": "2024-02-08T04:31:00.628141Z", - "iopub.status.idle": "2024-02-08T04:31:00.747556Z", - "shell.execute_reply": "2024-02-08T04:31:00.747054Z" + "iopub.execute_input": "2024-02-08T05:18:01.967310Z", + "iopub.status.busy": "2024-02-08T05:18:01.966842Z", + "iopub.status.idle": "2024-02-08T05:18:02.090316Z", + "shell.execute_reply": "2024-02-08T05:18:02.089645Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.749632Z", - "iopub.status.busy": "2024-02-08T04:31:00.749285Z", - "iopub.status.idle": "2024-02-08T04:31:00.867709Z", - "shell.execute_reply": "2024-02-08T04:31:00.867227Z" + "iopub.execute_input": "2024-02-08T05:18:02.092988Z", + "iopub.status.busy": "2024-02-08T05:18:02.092569Z", + "iopub.status.idle": "2024-02-08T05:18:02.204658Z", + "shell.execute_reply": "2024-02-08T05:18:02.203939Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.869752Z", - "iopub.status.busy": "2024-02-08T04:31:00.869575Z", - "iopub.status.idle": "2024-02-08T04:31:01.355217Z", - "shell.execute_reply": "2024-02-08T04:31:01.354754Z" + "iopub.execute_input": "2024-02-08T05:18:02.207487Z", + "iopub.status.busy": "2024-02-08T05:18:02.207236Z", + "iopub.status.idle": "2024-02-08T05:18:02.771856Z", + "shell.execute_reply": "2024-02-08T05:18:02.771183Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:01.357253Z", - "iopub.status.busy": "2024-02-08T04:31:01.357080Z", - "iopub.status.idle": "2024-02-08T04:31:01.434382Z", - "shell.execute_reply": "2024-02-08T04:31:01.433913Z" + "iopub.execute_input": "2024-02-08T05:18:02.774657Z", + "iopub.status.busy": "2024-02-08T05:18:02.774189Z", + "iopub.status.idle": "2024-02-08T05:18:02.854230Z", + "shell.execute_reply": "2024-02-08T05:18:02.853626Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:01.436548Z", - "iopub.status.busy": "2024-02-08T04:31:01.436195Z", - "iopub.status.idle": "2024-02-08T04:31:01.445937Z", - "shell.execute_reply": "2024-02-08T04:31:01.445389Z" + "iopub.execute_input": "2024-02-08T05:18:02.856474Z", + "iopub.status.busy": "2024-02-08T05:18:02.856273Z", + "iopub.status.idle": "2024-02-08T05:18:02.866501Z", + "shell.execute_reply": "2024-02-08T05:18:02.865955Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index e83c7be4a..def320d86 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -715,13 +715,13 @@

    3. Use cleanlab to find label issues

    -
    +
    -
    +
    -
    0%| | 15263/4997817 [00:00&lt;00:32, 152620.32it/s]
    +
    0%| | 15219/4997817 [00:00&lt;00:32, 152175.63it/s]

    </pre>

    -
    0%| | 15263/4997817 [00:00<00:32, 152620.32it/s]
    +
    0%| | 15219/4997817 [00:00<00:32, 152175.63it/s]

    end{sphinxVerbatim}

    -

    0%| | 15263/4997817 [00:00<00:32, 152620.32it/s]

    +

    0%| | 15219/4997817 [00:00<00:32, 152175.63it/s]

    -
    1%| | 30666/4997817 [00:00&lt;00:32, 153444.23it/s]
    +
    1%| | 30515/4997817 [00:00&lt;00:32, 152628.96it/s]

    </pre>

    -
    1%| | 30666/4997817 [00:00<00:32, 153444.23it/s]
    +
    1%| | 30515/4997817 [00:00<00:32, 152628.96it/s]

    end{sphinxVerbatim}

    -

    1%| | 30666/4997817 [00:00<00:32, 153444.23it/s]

    +

    1%| | 30515/4997817 [00:00<00:32, 152628.96it/s]

    -
    1%| | 46403/4997817 [00:00&lt;00:31, 155233.62it/s]
    +
    1%| | 45778/4997817 [00:00&lt;00:32, 152070.29it/s]

    </pre>

    -
    1%| | 46403/4997817 [00:00<00:31, 155233.62it/s]
    +
    1%| | 45778/4997817 [00:00<00:32, 152070.29it/s]

    end{sphinxVerbatim}

    -

    1%| | 46403/4997817 [00:00<00:31, 155233.62it/s]

    +

    1%| | 45778/4997817 [00:00<00:32, 152070.29it/s]

    -
    1%| | 62088/4997817 [00:00&lt;00:31, 155869.58it/s]
    +
    1%| | 60986/4997817 [00:00&lt;00:32, 151671.35it/s]

    </pre>

    -
    1%| | 62088/4997817 [00:00<00:31, 155869.58it/s]
    +
    1%| | 60986/4997817 [00:00<00:32, 151671.35it/s]

    end{sphinxVerbatim}

    -

    1%| | 62088/4997817 [00:00<00:31, 155869.58it/s]

    +

    1%| | 60986/4997817 [00:00<00:32, 151671.35it/s]

    -
    2%|▏ | 77755/4997817 [00:00&lt;00:31, 156156.65it/s]
    +
    2%|▏ | 76154/4997817 [00:00&lt;00:32, 151334.04it/s]

    </pre>

    -
    2%|▏ | 77755/4997817 [00:00<00:31, 156156.65it/s]
    +
    2%|▏ | 76154/4997817 [00:00<00:32, 151334.04it/s]

    end{sphinxVerbatim}

    -

    2%|▏ | 77755/4997817 [00:00<00:31, 156156.65it/s]

    +

    2%|▏ | 76154/4997817 [00:00<00:32, 151334.04it/s]

    -
    2%|▏ | 93461/4997817 [00:00&lt;00:31, 156459.90it/s]
    +
    2%|▏ | 91408/4997817 [00:00&lt;00:32, 151739.35it/s]

    </pre>

    -
    2%|▏ | 93461/4997817 [00:00<00:31, 156459.90it/s]
    +
    2%|▏ | 91408/4997817 [00:00<00:32, 151739.35it/s]

    end{sphinxVerbatim}

    -

    2%|▏ | 93461/4997817 [00:00<00:31, 156459.90it/s]

    +

    2%|▏ | 91408/4997817 [00:00<00:32, 151739.35it/s]

    -
    2%|▏ | 109145/4997817 [00:00&lt;00:31, 156582.99it/s]
    +
    2%|▏ | 106583/4997817 [00:00&lt;00:32, 151262.88it/s]

    </pre>

    -
    2%|▏ | 109145/4997817 [00:00<00:31, 156582.99it/s]
    +
    2%|▏ | 106583/4997817 [00:00<00:32, 151262.88it/s]

    end{sphinxVerbatim}

    -

    2%|▏ | 109145/4997817 [00:00<00:31, 156582.99it/s]

    +

    2%|▏ | 106583/4997817 [00:00<00:32, 151262.88it/s]

    -
    2%|▏ | 124865/4997817 [00:00&lt;00:31, 156775.77it/s]
    +
    2%|▏ | 121799/4997817 [00:00&lt;00:32, 151497.04it/s]

    </pre>

    -
    2%|▏ | 124865/4997817 [00:00<00:31, 156775.77it/s]
    +
    2%|▏ | 121799/4997817 [00:00<00:32, 151497.04it/s]

    end{sphinxVerbatim}

    -

    2%|▏ | 124865/4997817 [00:00<00:31, 156775.77it/s]

    +

    2%|▏ | 121799/4997817 [00:00<00:32, 151497.04it/s]

    -
    3%|▎ | 140561/4997817 [00:00&lt;00:30, 156832.47it/s]
    +
    3%|▎ | 136950/4997817 [00:00&lt;00:32, 151116.12it/s]

    </pre>

    -
    3%|▎ | 140561/4997817 [00:00<00:30, 156832.47it/s]
    +
    3%|▎ | 136950/4997817 [00:00<00:32, 151116.12it/s]

    end{sphinxVerbatim}

    -

    3%|▎ | 140561/4997817 [00:00<00:30, 156832.47it/s]

    +

    3%|▎ | 136950/4997817 [00:00<00:32, 151116.12it/s]

    -
    3%|▎ | 156296/4997817 [00:01&lt;00:30, 156990.78it/s]
    +
    3%|▎ | 152062/4997817 [00:01&lt;00:32, 150719.47it/s]

    </pre>

    -
    3%|▎ | 156296/4997817 [00:01<00:30, 156990.78it/s]
    +
    3%|▎ | 152062/4997817 [00:01<00:32, 150719.47it/s]

    end{sphinxVerbatim}

    -

    3%|▎ | 156296/4997817 [00:01<00:30, 156990.78it/s]

    +

    3%|▎ | 152062/4997817 [00:01<00:32, 150719.47it/s]

    -
    3%|▎ | 171996/4997817 [00:01&lt;00:30, 156816.52it/s]
    +
    3%|▎ | 167152/4997817 [00:01&lt;00:32, 150772.00it/s]

    </pre>

    -
    3%|▎ | 171996/4997817 [00:01<00:30, 156816.52it/s]
    +
    3%|▎ | 167152/4997817 [00:01<00:32, 150772.00it/s]

    end{sphinxVerbatim}

    -

    3%|▎ | 171996/4997817 [00:01<00:30, 156816.52it/s]

    +

    3%|▎ | 167152/4997817 [00:01<00:32, 150772.00it/s]

    -
    4%|▍ | 187678/4997817 [00:01&lt;00:30, 156789.10it/s]
    +
    4%|▎ | 182311/4997817 [00:01&lt;00:31, 151017.94it/s]

    </pre>

    -
    4%|▍ | 187678/4997817 [00:01<00:30, 156789.10it/s]
    +
    4%|▎ | 182311/4997817 [00:01<00:31, 151017.94it/s]

    end{sphinxVerbatim}

    -

    4%|▍ | 187678/4997817 [00:01<00:30, 156789.10it/s]

    +

    4%|▎ | 182311/4997817 [00:01<00:31, 151017.94it/s]

    -
    4%|▍ | 203449/4997817 [00:01&lt;00:30, 157064.19it/s]
    +
    4%|▍ | 197414/4997817 [00:01&lt;00:32, 149004.91it/s]

    </pre>

    -
    4%|▍ | 203449/4997817 [00:01<00:30, 157064.19it/s]
    +
    4%|▍ | 197414/4997817 [00:01<00:32, 149004.91it/s]

    end{sphinxVerbatim}

    -

    4%|▍ | 203449/4997817 [00:01<00:30, 157064.19it/s]

    +

    4%|▍ | 197414/4997817 [00:01<00:32, 149004.91it/s]

    -
    4%|▍ | 219271/4997817 [00:01&lt;00:30, 157411.47it/s]
    +
    4%|▍ | 212321/4997817 [00:01&lt;00:32, 148494.46it/s]

    </pre>

    -
    4%|▍ | 219271/4997817 [00:01<00:30, 157411.47it/s]
    +
    4%|▍ | 212321/4997817 [00:01<00:32, 148494.46it/s]

    end{sphinxVerbatim}

    -

    4%|▍ | 219271/4997817 [00:01<00:30, 157411.47it/s]

    +

    4%|▍ | 212321/4997817 [00:01<00:32, 148494.46it/s]

    -
    5%|▍ | 235039/4997817 [00:01&lt;00:30, 157491.41it/s]
    +
    5%|▍ | 227688/4997817 [00:01&lt;00:31, 150033.39it/s]

    </pre>

    -
    5%|▍ | 235039/4997817 [00:01<00:30, 157491.41it/s]
    +
    5%|▍ | 227688/4997817 [00:01<00:31, 150033.39it/s]

    end{sphinxVerbatim}

    -

    5%|▍ | 235039/4997817 [00:01<00:30, 157491.41it/s]

    +

    5%|▍ | 227688/4997817 [00:01<00:31, 150033.39it/s]

    -
    5%|▌ | 250894/4997817 [00:01&lt;00:30, 157807.98it/s]
    +
    5%|▍ | 242927/4997817 [00:01&lt;00:31, 150733.98it/s]

    </pre>

    -
    5%|▌ | 250894/4997817 [00:01<00:30, 157807.98it/s]
    +
    5%|▍ | 242927/4997817 [00:01<00:31, 150733.98it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 250894/4997817 [00:01<00:30, 157807.98it/s]

    +

    5%|▍ | 242927/4997817 [00:01<00:31, 150733.98it/s]

    -
    5%|▌ | 266675/4997817 [00:01&lt;00:29, 157776.96it/s]
    +
    5%|▌ | 258207/4997817 [00:01&lt;00:31, 151349.15it/s]

    </pre>

    -
    5%|▌ | 266675/4997817 [00:01<00:29, 157776.96it/s]
    +
    5%|▌ | 258207/4997817 [00:01<00:31, 151349.15it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 266675/4997817 [00:01<00:29, 157776.96it/s]

    +

    5%|▌ | 258207/4997817 [00:01<00:31, 151349.15it/s]

    -
    6%|▌ | 282453/4997817 [00:01&lt;00:29, 157761.99it/s]
    +
    5%|▌ | 273519/4997817 [00:01&lt;00:31, 151877.06it/s]

    </pre>

    -
    6%|▌ | 282453/4997817 [00:01<00:29, 157761.99it/s]
    +
    5%|▌ | 273519/4997817 [00:01<00:31, 151877.06it/s]

    end{sphinxVerbatim}

    -

    6%|▌ | 282453/4997817 [00:01<00:29, 157761.99it/s]

    +

    5%|▌ | 273519/4997817 [00:01<00:31, 151877.06it/s]

    -
    6%|▌ | 298230/4997817 [00:01&lt;00:29, 157339.46it/s]
    +
    6%|▌ | 288818/4997817 [00:01&lt;00:30, 152206.19it/s]

    </pre>

    -
    6%|▌ | 298230/4997817 [00:01<00:29, 157339.46it/s]
    +
    6%|▌ | 288818/4997817 [00:01<00:30, 152206.19it/s]

    end{sphinxVerbatim}

    -

    6%|▌ | 298230/4997817 [00:01<00:29, 157339.46it/s]

    +

    6%|▌ | 288818/4997817 [00:01<00:30, 152206.19it/s]

    -
    6%|▋ | 313965/4997817 [00:02&lt;00:29, 157107.54it/s]
    +
    6%|▌ | 304086/4997817 [00:02&lt;00:30, 152346.07it/s]

    </pre>

    -
    6%|▋ | 313965/4997817 [00:02<00:29, 157107.54it/s]
    +
    6%|▌ | 304086/4997817 [00:02<00:30, 152346.07it/s]

    end{sphinxVerbatim}

    -

    6%|▋ | 313965/4997817 [00:02<00:29, 157107.54it/s]

    +

    6%|▌ | 304086/4997817 [00:02<00:30, 152346.07it/s]

    -
    7%|▋ | 329811/4997817 [00:02&lt;00:29, 157509.28it/s]
    +
    6%|▋ | 319322/4997817 [00:02&lt;00:30, 152226.57it/s]

    </pre>

    -
    7%|▋ | 329811/4997817 [00:02<00:29, 157509.28it/s]
    +
    6%|▋ | 319322/4997817 [00:02<00:30, 152226.57it/s]

    end{sphinxVerbatim}

    -

    7%|▋ | 329811/4997817 [00:02<00:29, 157509.28it/s]

    +

    6%|▋ | 319322/4997817 [00:02<00:30, 152226.57it/s]

    -
    7%|▋ | 345563/4997817 [00:02&lt;00:30, 153954.15it/s]
    +
    7%|▋ | 334625/4997817 [00:02&lt;00:30, 152465.32it/s]

    </pre>

    -
    7%|▋ | 345563/4997817 [00:02<00:30, 153954.15it/s]
    +
    7%|▋ | 334625/4997817 [00:02<00:30, 152465.32it/s]

    end{sphinxVerbatim}

    -

    7%|▋ | 345563/4997817 [00:02<00:30, 153954.15it/s]

    +

    7%|▋ | 334625/4997817 [00:02<00:30, 152465.32it/s]

    -
    7%|▋ | 361251/4997817 [00:02&lt;00:29, 154814.53it/s]
    +
    7%|▋ | 349873/4997817 [00:02&lt;00:30, 152288.21it/s]

    </pre>

    -
    7%|▋ | 361251/4997817 [00:02<00:29, 154814.53it/s]
    +
    7%|▋ | 349873/4997817 [00:02<00:30, 152288.21it/s]

    end{sphinxVerbatim}

    -

    7%|▋ | 361251/4997817 [00:02<00:29, 154814.53it/s]

    +

    7%|▋ | 349873/4997817 [00:02<00:30, 152288.21it/s]

    -
    8%|▊ | 376940/4997817 [00:02&lt;00:29, 155427.51it/s]
    +
    7%|▋ | 365103/4997817 [00:02&lt;00:31, 149042.74it/s]

    </pre>

    -
    8%|▊ | 376940/4997817 [00:02<00:29, 155427.51it/s]
    +
    7%|▋ | 365103/4997817 [00:02<00:31, 149042.74it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 376940/4997817 [00:02<00:29, 155427.51it/s]

    +

    7%|▋ | 365103/4997817 [00:02<00:31, 149042.74it/s]

    -
    8%|▊ | 392762/4997817 [00:02&lt;00:29, 156257.19it/s]
    +
    8%|▊ | 380408/4997817 [00:02&lt;00:30, 150221.43it/s]

    </pre>

    -
    8%|▊ | 392762/4997817 [00:02<00:29, 156257.19it/s]
    +
    8%|▊ | 380408/4997817 [00:02<00:30, 150221.43it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 392762/4997817 [00:02<00:29, 156257.19it/s]

    +

    8%|▊ | 380408/4997817 [00:02<00:30, 150221.43it/s]

    -
    8%|▊ | 408619/4997817 [00:02&lt;00:29, 156944.77it/s]
    +
    8%|▊ | 395607/4997817 [00:02&lt;00:30, 150742.66it/s]

    </pre>

    -
    8%|▊ | 408619/4997817 [00:02<00:29, 156944.77it/s]
    +
    8%|▊ | 395607/4997817 [00:02<00:30, 150742.66it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 408619/4997817 [00:02<00:29, 156944.77it/s]

    +

    8%|▊ | 395607/4997817 [00:02<00:30, 150742.66it/s]

    -
    8%|▊ | 424451/4997817 [00:02&lt;00:29, 157351.99it/s]
    +
    8%|▊ | 410867/4997817 [00:02&lt;00:30, 151292.06it/s]

    </pre>

    -
    8%|▊ | 424451/4997817 [00:02<00:29, 157351.99it/s]
    +
    8%|▊ | 410867/4997817 [00:02<00:30, 151292.06it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 424451/4997817 [00:02<00:29, 157351.99it/s]

    +

    8%|▊ | 410867/4997817 [00:02<00:30, 151292.06it/s]

    -
    9%|▉ | 440219/4997817 [00:02&lt;00:28, 157448.13it/s]
    +
    9%|▊ | 426153/4997817 [00:02&lt;00:30, 151755.55it/s]

    </pre>

    -
    9%|▉ | 440219/4997817 [00:02<00:28, 157448.13it/s]
    +
    9%|▊ | 426153/4997817 [00:02<00:30, 151755.55it/s]

    end{sphinxVerbatim}

    -

    9%|▉ | 440219/4997817 [00:02<00:28, 157448.13it/s]

    +

    9%|▊ | 426153/4997817 [00:02<00:30, 151755.55it/s]

    -
    9%|▉ | 456014/4997817 [00:02&lt;00:28, 157594.94it/s]
    +
    9%|▉ | 441466/4997817 [00:02&lt;00:29, 152163.81it/s]

    </pre>

    -
    9%|▉ | 456014/4997817 [00:02<00:28, 157594.94it/s]
    +
    9%|▉ | 441466/4997817 [00:02<00:29, 152163.81it/s]

    end{sphinxVerbatim}

    -

    9%|▉ | 456014/4997817 [00:02<00:28, 157594.94it/s]

    +

    9%|▉ | 441466/4997817 [00:02<00:29, 152163.81it/s]

    -
    9%|▉ | 471810/4997817 [00:03&lt;00:28, 157702.43it/s]
    +
    9%|▉ | 456687/4997817 [00:03&lt;00:29, 152154.88it/s]

    </pre>

    -
    9%|▉ | 471810/4997817 [00:03<00:28, 157702.43it/s]
    +
    9%|▉ | 456687/4997817 [00:03<00:29, 152154.88it/s]

    end{sphinxVerbatim}

    -

    9%|▉ | 471810/4997817 [00:03<00:28, 157702.43it/s]

    +

    9%|▉ | 456687/4997817 [00:03<00:29, 152154.88it/s]

    -
    10%|▉ | 487647/4997817 [00:03&lt;00:28, 157900.06it/s]
    +
    9%|▉ | 472009/4997817 [00:03&lt;00:29, 152471.31it/s]

    </pre>

    -
    10%|▉ | 487647/4997817 [00:03<00:28, 157900.06it/s]
    +
    9%|▉ | 472009/4997817 [00:03<00:29, 152471.31it/s]

    end{sphinxVerbatim}

    -

    10%|▉ | 487647/4997817 [00:03<00:28, 157900.06it/s]

    +

    9%|▉ | 472009/4997817 [00:03<00:29, 152471.31it/s]

    -
    10%|█ | 503447/4997817 [00:03&lt;00:28, 157926.90it/s]
    +
    10%|▉ | 487319/4997817 [00:03&lt;00:29, 152657.18it/s]

    </pre>

    -
    10%|█ | 503447/4997817 [00:03<00:28, 157926.90it/s]
    +
    10%|▉ | 487319/4997817 [00:03<00:29, 152657.18it/s]

    end{sphinxVerbatim}

    -

    10%|█ | 503447/4997817 [00:03<00:28, 157926.90it/s]

    +

    10%|▉ | 487319/4997817 [00:03<00:29, 152657.18it/s]

    -
    10%|█ | 519243/4997817 [00:03&lt;00:28, 157933.03it/s]
    +
    10%|█ | 502587/4997817 [00:03&lt;00:29, 152587.42it/s]

    </pre>

    -
    10%|█ | 519243/4997817 [00:03<00:28, 157933.03it/s]
    +
    10%|█ | 502587/4997817 [00:03<00:29, 152587.42it/s]

    end{sphinxVerbatim}

    -

    10%|█ | 519243/4997817 [00:03<00:28, 157933.03it/s]

    +

    10%|█ | 502587/4997817 [00:03<00:29, 152587.42it/s]

    -
    11%|█ | 535046/4997817 [00:03&lt;00:28, 157960.35it/s]
    +
    10%|█ | 517878/4997817 [00:03&lt;00:29, 152680.31it/s]

    </pre>

    -
    11%|█ | 535046/4997817 [00:03<00:28, 157960.35it/s]
    +
    10%|█ | 517878/4997817 [00:03<00:29, 152680.31it/s]

    end{sphinxVerbatim}

    -

    11%|█ | 535046/4997817 [00:03<00:28, 157960.35it/s]

    +

    10%|█ | 517878/4997817 [00:03<00:29, 152680.31it/s]

    -
    11%|█ | 550843/4997817 [00:03&lt;00:28, 157126.81it/s]
    +
    11%|█ | 533228/4997817 [00:03&lt;00:29, 152922.25it/s]

    </pre>

    -
    11%|█ | 550843/4997817 [00:03<00:28, 157126.81it/s]
    +
    11%|█ | 533228/4997817 [00:03<00:29, 152922.25it/s]

    end{sphinxVerbatim}

    -

    11%|█ | 550843/4997817 [00:03<00:28, 157126.81it/s]

    +

    11%|█ | 533228/4997817 [00:03<00:29, 152922.25it/s]

    -
    11%|█▏ | 566561/4997817 [00:03&lt;00:28, 157141.74it/s]
    +
    11%|█ | 548521/4997817 [00:03&lt;00:29, 152579.62it/s]

    </pre>

    -
    11%|█▏ | 566561/4997817 [00:03<00:28, 157141.74it/s]
    +
    11%|█ | 548521/4997817 [00:03<00:29, 152579.62it/s]

    end{sphinxVerbatim}

    -

    11%|█▏ | 566561/4997817 [00:03<00:28, 157141.74it/s]

    +

    11%|█ | 548521/4997817 [00:03<00:29, 152579.62it/s]

    -
    12%|█▏ | 582279/4997817 [00:03&lt;00:28, 157149.98it/s]
    +
    11%|█▏ | 563780/4997817 [00:03&lt;00:29, 152366.87it/s]

    </pre>

    -
    12%|█▏ | 582279/4997817 [00:03<00:28, 157149.98it/s]
    +
    11%|█▏ | 563780/4997817 [00:03<00:29, 152366.87it/s]

    end{sphinxVerbatim}

    -

    12%|█▏ | 582279/4997817 [00:03<00:28, 157149.98it/s]

    +

    11%|█▏ | 563780/4997817 [00:03<00:29, 152366.87it/s]

    -
    12%|█▏ | 597995/4997817 [00:03&lt;00:28, 157124.65it/s]
    +
    12%|█▏ | 579068/4997817 [00:03&lt;00:28, 152516.68it/s]

    </pre>

    -
    12%|█▏ | 597995/4997817 [00:03<00:28, 157124.65it/s]
    +
    12%|█▏ | 579068/4997817 [00:03<00:28, 152516.68it/s]

    end{sphinxVerbatim}

    -

    12%|█▏ | 597995/4997817 [00:03<00:28, 157124.65it/s]

    +

    12%|█▏ | 579068/4997817 [00:03<00:28, 152516.68it/s]

    -
    12%|█▏ | 613708/4997817 [00:03&lt;00:27, 156897.25it/s]
    +
    12%|█▏ | 594320/4997817 [00:03&lt;00:28, 152104.13it/s]

    </pre>

    -
    12%|█▏ | 613708/4997817 [00:03<00:27, 156897.25it/s]
    +
    12%|█▏ | 594320/4997817 [00:03<00:28, 152104.13it/s]

    end{sphinxVerbatim}

    -

    12%|█▏ | 613708/4997817 [00:03<00:27, 156897.25it/s]

    +

    12%|█▏ | 594320/4997817 [00:03<00:28, 152104.13it/s]

    -
    13%|█▎ | 629508/4997817 [00:04&lt;00:27, 157224.86it/s]
    +
    12%|█▏ | 609531/4997817 [00:04&lt;00:28, 152101.48it/s]

    </pre>

    -
    13%|█▎ | 629508/4997817 [00:04<00:27, 157224.86it/s]
    +
    12%|█▏ | 609531/4997817 [00:04<00:28, 152101.48it/s]

    end{sphinxVerbatim}

    -

    13%|█▎ | 629508/4997817 [00:04<00:27, 157224.86it/s]

    +

    12%|█▏ | 609531/4997817 [00:04<00:28, 152101.48it/s]

    -
    13%|█▎ | 645231/4997817 [00:04&lt;00:27, 157177.39it/s]
    +
    13%|█▎ | 624752/4997817 [00:04&lt;00:28, 152131.73it/s]

    </pre>

    -
    13%|█▎ | 645231/4997817 [00:04<00:27, 157177.39it/s]
    +
    13%|█▎ | 624752/4997817 [00:04<00:28, 152131.73it/s]

    end{sphinxVerbatim}

    -

    13%|█▎ | 645231/4997817 [00:04<00:27, 157177.39it/s]

    +

    13%|█▎ | 624752/4997817 [00:04<00:28, 152131.73it/s]

    -
    13%|█▎ | 660949/4997817 [00:04&lt;00:27, 156978.60it/s]
    +
    13%|█▎ | 639966/4997817 [00:04&lt;00:28, 151079.04it/s]

    </pre>

    -
    13%|█▎ | 660949/4997817 [00:04<00:27, 156978.60it/s]
    +
    13%|█▎ | 639966/4997817 [00:04<00:28, 151079.04it/s]

    end{sphinxVerbatim}

    -

    13%|█▎ | 660949/4997817 [00:04<00:27, 156978.60it/s]

    +

    13%|█▎ | 639966/4997817 [00:04<00:28, 151079.04it/s]

    -
    14%|█▎ | 676648/4997817 [00:04&lt;00:27, 156760.78it/s]
    +
    13%|█▎ | 655076/4997817 [00:04&lt;00:28, 151049.89it/s]

    </pre>

    -
    14%|█▎ | 676648/4997817 [00:04<00:27, 156760.78it/s]
    +
    13%|█▎ | 655076/4997817 [00:04<00:28, 151049.89it/s]

    end{sphinxVerbatim}

    -

    14%|█▎ | 676648/4997817 [00:04<00:27, 156760.78it/s]

    +

    13%|█▎ | 655076/4997817 [00:04<00:28, 151049.89it/s]

    -
    14%|█▍ | 692325/4997817 [00:04&lt;00:27, 156208.63it/s]
    +
    13%|█▎ | 670183/4997817 [00:04&lt;00:30, 143565.20it/s]

    </pre>

    -
    14%|█▍ | 692325/4997817 [00:04<00:27, 156208.63it/s]
    +
    13%|█▎ | 670183/4997817 [00:04<00:30, 143565.20it/s]

    end{sphinxVerbatim}

    -

    14%|█▍ | 692325/4997817 [00:04<00:27, 156208.63it/s]

    +

    13%|█▎ | 670183/4997817 [00:04<00:30, 143565.20it/s]

    -
    14%|█▍ | 707947/4997817 [00:04&lt;00:27, 156090.54it/s]
    +
    14%|█▎ | 685377/4997817 [00:04&lt;00:29, 145979.48it/s]

    </pre>

    -
    14%|█▍ | 707947/4997817 [00:04<00:27, 156090.54it/s]
    +
    14%|█▎ | 685377/4997817 [00:04<00:29, 145979.48it/s]

    end{sphinxVerbatim}

    -

    14%|█▍ | 707947/4997817 [00:04<00:27, 156090.54it/s]

    +

    14%|█▎ | 685377/4997817 [00:04<00:29, 145979.48it/s]

    -
    14%|█▍ | 723563/4997817 [00:04&lt;00:27, 156108.57it/s]
    +
    14%|█▍ | 700538/4997817 [00:04&lt;00:29, 147618.75it/s]

    </pre>

    -
    14%|█▍ | 723563/4997817 [00:04<00:27, 156108.57it/s]
    +
    14%|█▍ | 700538/4997817 [00:04<00:29, 147618.75it/s]

    end{sphinxVerbatim}

    -

    14%|█▍ | 723563/4997817 [00:04<00:27, 156108.57it/s]

    +

    14%|█▍ | 700538/4997817 [00:04<00:29, 147618.75it/s]

    -
    15%|█▍ | 739191/4997817 [00:04&lt;00:27, 156158.25it/s]
    +
    14%|█▍ | 715680/4997817 [00:04&lt;00:28, 148734.34it/s]

    </pre>

    -
    15%|█▍ | 739191/4997817 [00:04<00:27, 156158.25it/s]
    +
    14%|█▍ | 715680/4997817 [00:04<00:28, 148734.34it/s]

    end{sphinxVerbatim}

    -

    15%|█▍ | 739191/4997817 [00:04<00:27, 156158.25it/s]

    +

    14%|█▍ | 715680/4997817 [00:04<00:28, 148734.34it/s]

    -
    15%|█▌ | 754807/4997817 [00:04&lt;00:27, 156048.28it/s]
    +
    15%|█▍ | 730868/4997817 [00:04&lt;00:28, 149661.46it/s]

    </pre>

    -
    15%|█▌ | 754807/4997817 [00:04<00:27, 156048.28it/s]
    +
    15%|█▍ | 730868/4997817 [00:04<00:28, 149661.46it/s]

    end{sphinxVerbatim}

    -

    15%|█▌ | 754807/4997817 [00:04<00:27, 156048.28it/s]

    +

    15%|█▍ | 730868/4997817 [00:04<00:28, 149661.46it/s]

    -
    15%|█▌ | 770497/4997817 [00:04&lt;00:27, 156302.41it/s]
    +
    15%|█▍ | 746099/4997817 [00:04&lt;00:28, 150444.15it/s]

    </pre>

    -
    15%|█▌ | 770497/4997817 [00:04<00:27, 156302.41it/s]
    +
    15%|█▍ | 746099/4997817 [00:04<00:28, 150444.15it/s]

    end{sphinxVerbatim}

    -

    15%|█▌ | 770497/4997817 [00:04<00:27, 156302.41it/s]

    +

    15%|█▍ | 746099/4997817 [00:04<00:28, 150444.15it/s]

    -
    16%|█▌ | 786317/4997817 [00:05&lt;00:26, 156868.27it/s]
    +
    15%|█▌ | 761372/4997817 [00:05&lt;00:28, 151122.68it/s]

    </pre>

    -
    16%|█▌ | 786317/4997817 [00:05<00:26, 156868.27it/s]
    +
    15%|█▌ | 761372/4997817 [00:05<00:28, 151122.68it/s]

    end{sphinxVerbatim}

    -

    16%|█▌ | 786317/4997817 [00:05<00:26, 156868.27it/s]

    +

    15%|█▌ | 761372/4997817 [00:05<00:28, 151122.68it/s]

    -
    16%|█▌ | 802017/4997817 [00:05&lt;00:26, 156904.88it/s]
    +
    16%|█▌ | 776857/4997817 [00:05&lt;00:27, 152232.63it/s]

    </pre>

    -
    16%|█▌ | 802017/4997817 [00:05<00:26, 156904.88it/s]
    +
    16%|█▌ | 776857/4997817 [00:05<00:27, 152232.63it/s]

    end{sphinxVerbatim}

    -

    16%|█▌ | 802017/4997817 [00:05<00:26, 156904.88it/s]

    +

    16%|█▌ | 776857/4997817 [00:05<00:27, 152232.63it/s]

    -
    16%|█▋ | 817708/4997817 [00:05&lt;00:27, 153225.26it/s]
    +
    16%|█▌ | 792347/4997817 [00:05&lt;00:27, 153026.64it/s]

    </pre>

    -
    16%|█▋ | 817708/4997817 [00:05<00:27, 153225.26it/s]
    +
    16%|█▌ | 792347/4997817 [00:05<00:27, 153026.64it/s]

    end{sphinxVerbatim}

    -

    16%|█▋ | 817708/4997817 [00:05<00:27, 153225.26it/s]

    +

    16%|█▌ | 792347/4997817 [00:05<00:27, 153026.64it/s]

    -
    17%|█▋ | 833392/4997817 [00:05&lt;00:26, 154288.53it/s]
    +
    16%|█▌ | 807768/4997817 [00:05&lt;00:27, 153377.03it/s]

    </pre>

    -
    17%|█▋ | 833392/4997817 [00:05<00:26, 154288.53it/s]
    +
    16%|█▌ | 807768/4997817 [00:05<00:27, 153377.03it/s]

    end{sphinxVerbatim}

    -

    17%|█▋ | 833392/4997817 [00:05<00:26, 154288.53it/s]

    +

    16%|█▌ | 807768/4997817 [00:05<00:27, 153377.03it/s]

    -
    17%|█▋ | 849328/4997817 [00:05&lt;00:26, 155788.65it/s]
    +
    16%|█▋ | 823303/4997817 [00:05&lt;00:27, 153966.34it/s]

    </pre>

    -
    17%|█▋ | 849328/4997817 [00:05<00:26, 155788.65it/s]
    +
    16%|█▋ | 823303/4997817 [00:05<00:27, 153966.34it/s]

    end{sphinxVerbatim}

    -

    17%|█▋ | 849328/4997817 [00:05<00:26, 155788.65it/s]

    +

    16%|█▋ | 823303/4997817 [00:05<00:27, 153966.34it/s]

    -
    17%|█▋ | 865122/4997817 [00:05&lt;00:26, 156427.57it/s]
    +
    17%|█▋ | 838868/4997817 [00:05&lt;00:26, 154469.02it/s]

    </pre>

    -
    17%|█▋ | 865122/4997817 [00:05<00:26, 156427.57it/s]
    +
    17%|█▋ | 838868/4997817 [00:05<00:26, 154469.02it/s]

    end{sphinxVerbatim}

    -

    17%|█▋ | 865122/4997817 [00:05<00:26, 156427.57it/s]

    +

    17%|█▋ | 838868/4997817 [00:05<00:26, 154469.02it/s]

    -
    18%|█▊ | 880887/4997817 [00:05&lt;00:26, 156788.95it/s]
    +
    17%|█▋ | 854393/4997817 [00:05&lt;00:26, 154699.52it/s]

    </pre>

    -
    18%|█▊ | 880887/4997817 [00:05<00:26, 156788.95it/s]
    +
    17%|█▋ | 854393/4997817 [00:05<00:26, 154699.52it/s]

    end{sphinxVerbatim}

    -

    18%|█▊ | 880887/4997817 [00:05<00:26, 156788.95it/s]

    +

    17%|█▋ | 854393/4997817 [00:05<00:26, 154699.52it/s]

    -
    18%|█▊ | 896614/4997817 [00:05&lt;00:26, 156931.70it/s]
    +
    17%|█▋ | 869879/4997817 [00:05&lt;00:26, 154744.14it/s]

    </pre>

    -
    18%|█▊ | 896614/4997817 [00:05<00:26, 156931.70it/s]
    +
    17%|█▋ | 869879/4997817 [00:05<00:26, 154744.14it/s]

    end{sphinxVerbatim}

    -

    18%|█▊ | 896614/4997817 [00:05<00:26, 156931.70it/s]

    +

    17%|█▋ | 869879/4997817 [00:05<00:26, 154744.14it/s]

    -
    18%|█▊ | 912312/4997817 [00:05&lt;00:26, 156914.97it/s]
    +
    18%|█▊ | 885355/4997817 [00:05&lt;00:26, 154662.03it/s]

    </pre>

    -
    18%|█▊ | 912312/4997817 [00:05<00:26, 156914.97it/s]
    +
    18%|█▊ | 885355/4997817 [00:05<00:26, 154662.03it/s]

    end{sphinxVerbatim}

    -

    18%|█▊ | 912312/4997817 [00:05<00:26, 156914.97it/s]

    +

    18%|█▊ | 885355/4997817 [00:05<00:26, 154662.03it/s]

    -
    19%|█▊ | 928025/4997817 [00:05&lt;00:25, 156976.92it/s]
    +
    18%|█▊ | 900823/4997817 [00:05&lt;00:26, 154618.28it/s]

    </pre>

    -
    19%|█▊ | 928025/4997817 [00:05<00:25, 156976.92it/s]
    +
    18%|█▊ | 900823/4997817 [00:05<00:26, 154618.28it/s]

    end{sphinxVerbatim}

    -

    19%|█▊ | 928025/4997817 [00:05<00:25, 156976.92it/s]

    +

    18%|█▊ | 900823/4997817 [00:05<00:26, 154618.28it/s]

    -
    19%|█▉ | 943726/4997817 [00:06&lt;00:25, 156932.85it/s]
    +
    18%|█▊ | 916286/4997817 [00:06&lt;00:26, 154561.85it/s]

    </pre>

    -
    19%|█▉ | 943726/4997817 [00:06<00:25, 156932.85it/s]
    +
    18%|█▊ | 916286/4997817 [00:06<00:26, 154561.85it/s]

    end{sphinxVerbatim}

    -

    19%|█▉ | 943726/4997817 [00:06<00:25, 156932.85it/s]

    +

    18%|█▊ | 916286/4997817 [00:06<00:26, 154561.85it/s]

    -
    19%|█▉ | 959463/4997817 [00:06&lt;00:25, 157062.64it/s]
    +
    19%|█▊ | 931866/4997817 [00:06&lt;00:26, 154930.84it/s]

    </pre>

    -
    19%|█▉ | 959463/4997817 [00:06<00:25, 157062.64it/s]
    +
    19%|█▊ | 931866/4997817 [00:06<00:26, 154930.84it/s]

    end{sphinxVerbatim}

    -

    19%|█▉ | 959463/4997817 [00:06<00:25, 157062.64it/s]

    +

    19%|█▊ | 931866/4997817 [00:06<00:26, 154930.84it/s]

    -
    20%|█▉ | 975171/4997817 [00:06&lt;00:25, 156949.11it/s]
    +
    19%|█▉ | 947360/4997817 [00:06&lt;00:26, 154896.54it/s]

    </pre>

    -
    20%|█▉ | 975171/4997817 [00:06<00:25, 156949.11it/s]
    +
    19%|█▉ | 947360/4997817 [00:06<00:26, 154896.54it/s]

    end{sphinxVerbatim}

    -

    20%|█▉ | 975171/4997817 [00:06<00:25, 156949.11it/s]

    +

    19%|█▉ | 947360/4997817 [00:06<00:26, 154896.54it/s]

    -
    20%|█▉ | 990867/4997817 [00:06&lt;00:25, 156556.37it/s]
    +
    19%|█▉ | 962850/4997817 [00:06&lt;00:26, 154866.84it/s]

    </pre>

    -
    20%|█▉ | 990867/4997817 [00:06<00:25, 156556.37it/s]
    +
    19%|█▉ | 962850/4997817 [00:06<00:26, 154866.84it/s]

    end{sphinxVerbatim}

    -

    20%|█▉ | 990867/4997817 [00:06<00:25, 156556.37it/s]

    +

    19%|█▉ | 962850/4997817 [00:06<00:26, 154866.84it/s]

    -
    20%|██ | 1006550/4997817 [00:06&lt;00:25, 156635.05it/s]
    +
    20%|█▉ | 978337/4997817 [00:06&lt;00:25, 154782.30it/s]

    </pre>

    -
    20%|██ | 1006550/4997817 [00:06<00:25, 156635.05it/s]
    +
    20%|█▉ | 978337/4997817 [00:06<00:25, 154782.30it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 1006550/4997817 [00:06<00:25, 156635.05it/s]

    +

    20%|█▉ | 978337/4997817 [00:06<00:25, 154782.30it/s]

    -
    20%|██ | 1022215/4997817 [00:06&lt;00:25, 156528.27it/s]
    +
    20%|█▉ | 993816/4997817 [00:06&lt;00:25, 154378.72it/s]

    </pre>

    -
    20%|██ | 1022215/4997817 [00:06<00:25, 156528.27it/s]
    +
    20%|█▉ | 993816/4997817 [00:06<00:25, 154378.72it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 1022215/4997817 [00:06<00:25, 156528.27it/s]

    +

    20%|█▉ | 993816/4997817 [00:06<00:25, 154378.72it/s]

    -
    21%|██ | 1037881/4997817 [00:06&lt;00:25, 156565.86it/s]
    +
    20%|██ | 1009295/4997817 [00:06&lt;00:25, 154498.77it/s]

    </pre>

    -
    21%|██ | 1037881/4997817 [00:06<00:25, 156565.86it/s]
    +
    20%|██ | 1009295/4997817 [00:06<00:25, 154498.77it/s]

    end{sphinxVerbatim}

    -

    21%|██ | 1037881/4997817 [00:06<00:25, 156565.86it/s]

    +

    20%|██ | 1009295/4997817 [00:06<00:25, 154498.77it/s]

    -
    21%|██ | 1053699/4997817 [00:06&lt;00:25, 157047.75it/s]
    +
    21%|██ | 1024770/4997817 [00:06&lt;00:25, 154570.08it/s]

    </pre>

    -
    21%|██ | 1053699/4997817 [00:06<00:25, 157047.75it/s]
    +
    21%|██ | 1024770/4997817 [00:06<00:25, 154570.08it/s]

    end{sphinxVerbatim}

    -

    21%|██ | 1053699/4997817 [00:06<00:25, 157047.75it/s]

    +

    21%|██ | 1024770/4997817 [00:06<00:25, 154570.08it/s]

    -
    21%|██▏ | 1069405/4997817 [00:06&lt;00:25, 157030.48it/s]
    +
    21%|██ | 1040292/4997817 [00:06&lt;00:25, 154762.00it/s]

    </pre>

    -
    21%|██▏ | 1069405/4997817 [00:06<00:25, 157030.48it/s]
    +
    21%|██ | 1040292/4997817 [00:06<00:25, 154762.00it/s]

    end{sphinxVerbatim}

    -

    21%|██▏ | 1069405/4997817 [00:06<00:25, 157030.48it/s]

    +

    21%|██ | 1040292/4997817 [00:06<00:25, 154762.00it/s]

    -
    22%|██▏ | 1085109/4997817 [00:06&lt;00:24, 157023.73it/s]
    +
    21%|██ | 1055833/4997817 [00:06&lt;00:25, 154953.40it/s]

    </pre>

    -
    22%|██▏ | 1085109/4997817 [00:06<00:24, 157023.73it/s]
    +
    21%|██ | 1055833/4997817 [00:06<00:25, 154953.40it/s]

    end{sphinxVerbatim}

    -

    22%|██▏ | 1085109/4997817 [00:06<00:24, 157023.73it/s]

    +

    21%|██ | 1055833/4997817 [00:06<00:25, 154953.40it/s]

    -
    22%|██▏ | 1100812/4997817 [00:07&lt;00:24, 157017.91it/s]
    +
    21%|██▏ | 1071368/4997817 [00:07&lt;00:25, 155068.69it/s]

    </pre>

    -
    22%|██▏ | 1100812/4997817 [00:07<00:24, 157017.91it/s]
    +
    21%|██▏ | 1071368/4997817 [00:07<00:25, 155068.69it/s]

    end{sphinxVerbatim}

    -

    22%|██▏ | 1100812/4997817 [00:07<00:24, 157017.91it/s]

    +

    21%|██▏ | 1071368/4997817 [00:07<00:25, 155068.69it/s]

    -
    22%|██▏ | 1116514/4997817 [00:07&lt;00:24, 156868.74it/s]
    +
    22%|██▏ | 1086875/4997817 [00:07&lt;00:25, 154910.98it/s]

    </pre>

    -
    22%|██▏ | 1116514/4997817 [00:07<00:24, 156868.74it/s]
    +
    22%|██▏ | 1086875/4997817 [00:07<00:25, 154910.98it/s]

    end{sphinxVerbatim}

    -

    22%|██▏ | 1116514/4997817 [00:07<00:24, 156868.74it/s]

    +

    22%|██▏ | 1086875/4997817 [00:07<00:25, 154910.98it/s]

    -
    23%|██▎ | 1132201/4997817 [00:07&lt;00:24, 156856.61it/s]
    +
    22%|██▏ | 1102367/4997817 [00:07&lt;00:25, 154771.95it/s]

    </pre>

    -
    23%|██▎ | 1132201/4997817 [00:07<00:24, 156856.61it/s]
    +
    22%|██▏ | 1102367/4997817 [00:07<00:25, 154771.95it/s]

    end{sphinxVerbatim}

    -

    23%|██▎ | 1132201/4997817 [00:07<00:24, 156856.61it/s]

    +

    22%|██▏ | 1102367/4997817 [00:07<00:25, 154771.95it/s]

    -
    23%|██▎ | 1147887/4997817 [00:07&lt;00:24, 156805.11it/s]
    +
    22%|██▏ | 1117845/4997817 [00:07&lt;00:25, 154473.84it/s]

    </pre>

    -
    23%|██▎ | 1147887/4997817 [00:07<00:24, 156805.11it/s]
    +
    22%|██▏ | 1117845/4997817 [00:07<00:25, 154473.84it/s]

    end{sphinxVerbatim}

    -

    23%|██▎ | 1147887/4997817 [00:07<00:24, 156805.11it/s]

    +

    22%|██▏ | 1117845/4997817 [00:07<00:25, 154473.84it/s]

    -
    23%|██▎ | 1163580/4997817 [00:07&lt;00:24, 156840.13it/s]
    +
    23%|██▎ | 1133293/4997817 [00:07&lt;00:25, 153830.15it/s]

    </pre>

    -
    23%|██▎ | 1163580/4997817 [00:07<00:24, 156840.13it/s]
    +
    23%|██▎ | 1133293/4997817 [00:07<00:25, 153830.15it/s]

    end{sphinxVerbatim}

    -

    23%|██▎ | 1163580/4997817 [00:07<00:24, 156840.13it/s]

    +

    23%|██▎ | 1133293/4997817 [00:07<00:25, 153830.15it/s]

    -
    24%|██▎ | 1179265/4997817 [00:07&lt;00:24, 156735.23it/s]
    +
    23%|██▎ | 1148677/4997817 [00:07&lt;00:25, 152795.48it/s]

    </pre>

    -
    24%|██▎ | 1179265/4997817 [00:07<00:24, 156735.23it/s]
    +
    23%|██▎ | 1148677/4997817 [00:07<00:25, 152795.48it/s]

    end{sphinxVerbatim}

    -

    24%|██▎ | 1179265/4997817 [00:07<00:24, 156735.23it/s]

    +

    23%|██▎ | 1148677/4997817 [00:07<00:25, 152795.48it/s]

    -
    24%|██▍ | 1194966/4997817 [00:07&lt;00:24, 156815.51it/s]
    +
    23%|██▎ | 1164033/4997817 [00:07&lt;00:25, 153020.57it/s]

    </pre>

    -
    24%|██▍ | 1194966/4997817 [00:07<00:24, 156815.51it/s]
    +
    23%|██▎ | 1164033/4997817 [00:07<00:25, 153020.57it/s]

    end{sphinxVerbatim}

    -

    24%|██▍ | 1194966/4997817 [00:07<00:24, 156815.51it/s]

    +

    23%|██▎ | 1164033/4997817 [00:07<00:25, 153020.57it/s]

    -
    24%|██▍ | 1210648/4997817 [00:07&lt;00:24, 156722.01it/s]
    +
    24%|██▎ | 1179445/4997817 [00:07&lt;00:24, 153346.10it/s]

    </pre>

    -
    24%|██▍ | 1210648/4997817 [00:07<00:24, 156722.01it/s]
    +
    24%|██▎ | 1179445/4997817 [00:07<00:24, 153346.10it/s]

    end{sphinxVerbatim}

    -

    24%|██▍ | 1210648/4997817 [00:07<00:24, 156722.01it/s]

    +

    24%|██▎ | 1179445/4997817 [00:07<00:24, 153346.10it/s]

    -
    25%|██▍ | 1226321/4997817 [00:07&lt;00:24, 156153.98it/s]
    +
    24%|██▍ | 1194827/4997817 [00:07&lt;00:24, 153485.79it/s]

    </pre>

    -
    25%|██▍ | 1226321/4997817 [00:07<00:24, 156153.98it/s]
    +
    24%|██▍ | 1194827/4997817 [00:07<00:24, 153485.79it/s]

    end{sphinxVerbatim}

    -

    25%|██▍ | 1226321/4997817 [00:07<00:24, 156153.98it/s]

    +

    24%|██▍ | 1194827/4997817 [00:07<00:24, 153485.79it/s]

    -
    25%|██▍ | 1241937/4997817 [00:07&lt;00:24, 156124.87it/s]
    +
    24%|██▍ | 1210177/4997817 [00:07&lt;00:24, 153406.60it/s]

    </pre>

    -
    25%|██▍ | 1241937/4997817 [00:07<00:24, 156124.87it/s]
    +
    24%|██▍ | 1210177/4997817 [00:07<00:24, 153406.60it/s]

    end{sphinxVerbatim}

    -

    25%|██▍ | 1241937/4997817 [00:07<00:24, 156124.87it/s]

    +

    24%|██▍ | 1210177/4997817 [00:07<00:24, 153406.60it/s]

    -
    25%|██▌ | 1257558/4997817 [00:08&lt;00:23, 156148.50it/s]
    +
    25%|██▍ | 1225519/4997817 [00:08&lt;00:24, 153329.14it/s]

    </pre>

    -
    25%|██▌ | 1257558/4997817 [00:08<00:23, 156148.50it/s]
    +
    25%|██▍ | 1225519/4997817 [00:08<00:24, 153329.14it/s]

    end{sphinxVerbatim}

    -

    25%|██▌ | 1257558/4997817 [00:08<00:23, 156148.50it/s]

    +

    25%|██▍ | 1225519/4997817 [00:08<00:24, 153329.14it/s]

    -
    25%|██▌ | 1273179/4997817 [00:08&lt;00:23, 156164.18it/s]
    +
    25%|██▍ | 1240853/4997817 [00:08&lt;00:24, 152990.60it/s]

    </pre>

    -
    25%|██▌ | 1273179/4997817 [00:08<00:23, 156164.18it/s]
    +
    25%|██▍ | 1240853/4997817 [00:08<00:24, 152990.60it/s]

    end{sphinxVerbatim}

    -

    25%|██▌ | 1273179/4997817 [00:08<00:23, 156164.18it/s]

    +

    25%|██▍ | 1240853/4997817 [00:08<00:24, 152990.60it/s]

    -
    26%|██▌ | 1288823/4997817 [00:08&lt;00:23, 156245.31it/s]
    +
    25%|██▌ | 1256153/4997817 [00:08&lt;00:24, 152916.47it/s]

    </pre>

    -
    26%|██▌ | 1288823/4997817 [00:08<00:23, 156245.31it/s]
    +
    25%|██▌ | 1256153/4997817 [00:08<00:24, 152916.47it/s]

    end{sphinxVerbatim}

    -

    26%|██▌ | 1288823/4997817 [00:08<00:23, 156245.31it/s]

    +

    25%|██▌ | 1256153/4997817 [00:08<00:24, 152916.47it/s]

    -
    26%|██▌ | 1304448/4997817 [00:08&lt;00:24, 149122.57it/s]
    +
    25%|██▌ | 1271445/4997817 [00:08&lt;00:24, 152236.93it/s]

    </pre>

    -
    26%|██▌ | 1304448/4997817 [00:08<00:24, 149122.57it/s]
    +
    25%|██▌ | 1271445/4997817 [00:08<00:24, 152236.93it/s]

    end{sphinxVerbatim}

    -

    26%|██▌ | 1304448/4997817 [00:08<00:24, 149122.57it/s]

    +

    25%|██▌ | 1271445/4997817 [00:08<00:24, 152236.93it/s]

    -
    26%|██▋ | 1320201/4997817 [00:08&lt;00:24, 151560.64it/s]
    +
    26%|██▌ | 1286713/4997817 [00:08&lt;00:24, 152365.67it/s]

    </pre>

    -
    26%|██▋ | 1320201/4997817 [00:08<00:24, 151560.64it/s]
    +
    26%|██▌ | 1286713/4997817 [00:08<00:24, 152365.67it/s]

    end{sphinxVerbatim}

    -

    26%|██▋ | 1320201/4997817 [00:08<00:24, 151560.64it/s]

    +

    26%|██▌ | 1286713/4997817 [00:08<00:24, 152365.67it/s]

    -
    27%|██▋ | 1335784/4997817 [00:08&lt;00:23, 152810.29it/s]
    +
    26%|██▌ | 1302067/4997817 [00:08&lt;00:24, 152714.43it/s]

    </pre>

    -
    27%|██▋ | 1335784/4997817 [00:08<00:23, 152810.29it/s]
    +
    26%|██▌ | 1302067/4997817 [00:08<00:24, 152714.43it/s]

    end{sphinxVerbatim}

    -

    27%|██▋ | 1335784/4997817 [00:08<00:23, 152810.29it/s]

    +

    26%|██▌ | 1302067/4997817 [00:08<00:24, 152714.43it/s]

    -
    27%|██▋ | 1351437/4997817 [00:08&lt;00:23, 153905.86it/s]
    +
    26%|██▋ | 1317531/4997817 [00:08&lt;00:24, 153287.37it/s]

    </pre>

    -
    27%|██▋ | 1351437/4997817 [00:08<00:23, 153905.86it/s]
    +
    26%|██▋ | 1317531/4997817 [00:08<00:24, 153287.37it/s]

    end{sphinxVerbatim}

    -

    27%|██▋ | 1351437/4997817 [00:08<00:23, 153905.86it/s]

    +

    26%|██▋ | 1317531/4997817 [00:08<00:24, 153287.37it/s]

    -
    27%|██▋ | 1367067/4997817 [00:08&lt;00:23, 154615.30it/s]
    +
    27%|██▋ | 1332993/4997817 [00:08&lt;00:23, 153682.36it/s]

    </pre>

    -
    27%|██▋ | 1367067/4997817 [00:08<00:23, 154615.30it/s]
    +
    27%|██▋ | 1332993/4997817 [00:08<00:23, 153682.36it/s]

    end{sphinxVerbatim}

    -

    27%|██▋ | 1367067/4997817 [00:08<00:23, 154615.30it/s]

    +

    27%|██▋ | 1332993/4997817 [00:08<00:23, 153682.36it/s]

    -
    28%|██▊ | 1382626/4997817 [00:08&lt;00:23, 154902.96it/s]
    +
    27%|██▋ | 1348485/4997817 [00:08&lt;00:23, 154049.29it/s]

    </pre>

    -
    28%|██▊ | 1382626/4997817 [00:08<00:23, 154902.96it/s]
    +
    27%|██▋ | 1348485/4997817 [00:08<00:23, 154049.29it/s]

    end{sphinxVerbatim}

    -

    28%|██▊ | 1382626/4997817 [00:08<00:23, 154902.96it/s]

    +

    27%|██▋ | 1348485/4997817 [00:08<00:23, 154049.29it/s]

    -
    28%|██▊ | 1398347/4997817 [00:08&lt;00:23, 155589.95it/s]
    +
    27%|██▋ | 1363898/4997817 [00:08&lt;00:23, 154071.65it/s]

    </pre>

    -
    28%|██▊ | 1398347/4997817 [00:08<00:23, 155589.95it/s]
    +
    27%|██▋ | 1363898/4997817 [00:08<00:23, 154071.65it/s]

    end{sphinxVerbatim}

    -

    28%|██▊ | 1398347/4997817 [00:08<00:23, 155589.95it/s]

    +

    27%|██▋ | 1363898/4997817 [00:08<00:23, 154071.65it/s]

    -
    28%|██▊ | 1414047/4997817 [00:09&lt;00:22, 156009.20it/s]
    +
    28%|██▊ | 1379399/4997817 [00:09&lt;00:23, 154351.60it/s]

    </pre>

    -
    28%|██▊ | 1414047/4997817 [00:09<00:22, 156009.20it/s]
    +
    28%|██▊ | 1379399/4997817 [00:09<00:23, 154351.60it/s]

    end{sphinxVerbatim}

    -

    28%|██▊ | 1414047/4997817 [00:09<00:22, 156009.20it/s]

    +

    28%|██▊ | 1379399/4997817 [00:09<00:23, 154351.60it/s]

    -
    29%|██▊ | 1429657/4997817 [00:09&lt;00:22, 155598.60it/s]
    +
    28%|██▊ | 1394835/4997817 [00:09&lt;00:23, 154191.34it/s]

    </pre>

    -
    29%|██▊ | 1429657/4997817 [00:09<00:22, 155598.60it/s]
    +
    28%|██▊ | 1394835/4997817 [00:09<00:23, 154191.34it/s]

    end{sphinxVerbatim}

    -

    29%|██▊ | 1429657/4997817 [00:09<00:22, 155598.60it/s]

    +

    28%|██▊ | 1394835/4997817 [00:09<00:23, 154191.34it/s]

    -
    29%|██▉ | 1445223/4997817 [00:09&lt;00:22, 155576.53it/s]
    +
    28%|██▊ | 1410321/4997817 [00:09&lt;00:23, 154389.90it/s]

    </pre>

    -
    29%|██▉ | 1445223/4997817 [00:09<00:22, 155576.53it/s]
    +
    28%|██▊ | 1410321/4997817 [00:09<00:23, 154389.90it/s]

    end{sphinxVerbatim}

    -

    29%|██▉ | 1445223/4997817 [00:09<00:22, 155576.53it/s]

    +

    28%|██▊ | 1410321/4997817 [00:09<00:23, 154389.90it/s]

    -
    29%|██▉ | 1460785/4997817 [00:09&lt;00:23, 151230.69it/s]
    +
    29%|██▊ | 1425761/4997817 [00:09&lt;00:23, 154373.66it/s]

    </pre>

    -
    29%|██▉ | 1460785/4997817 [00:09<00:23, 151230.69it/s]
    +
    29%|██▊ | 1425761/4997817 [00:09<00:23, 154373.66it/s]

    end{sphinxVerbatim}

    -

    29%|██▉ | 1460785/4997817 [00:09<00:23, 151230.69it/s]

    +

    29%|██▊ | 1425761/4997817 [00:09<00:23, 154373.66it/s]

    -
    30%|██▉ | 1476499/4997817 [00:09&lt;00:23, 152962.50it/s]
    +
    29%|██▉ | 1441199/4997817 [00:09&lt;00:23, 154033.50it/s]

    </pre>

    -
    30%|██▉ | 1476499/4997817 [00:09<00:23, 152962.50it/s]
    +
    29%|██▉ | 1441199/4997817 [00:09<00:23, 154033.50it/s]

    end{sphinxVerbatim}

    -

    30%|██▉ | 1476499/4997817 [00:09<00:23, 152962.50it/s]

    +

    29%|██▉ | 1441199/4997817 [00:09<00:23, 154033.50it/s]

    -
    30%|██▉ | 1492193/4997817 [00:09&lt;00:22, 154135.92it/s]
    +
    29%|██▉ | 1456681/4997817 [00:09&lt;00:22, 154241.61it/s]

    </pre>

    -
    30%|██▉ | 1492193/4997817 [00:09<00:22, 154135.92it/s]
    +
    29%|██▉ | 1456681/4997817 [00:09<00:22, 154241.61it/s]

    end{sphinxVerbatim}

    -

    30%|██▉ | 1492193/4997817 [00:09<00:22, 154135.92it/s]

    +

    29%|██▉ | 1456681/4997817 [00:09<00:22, 154241.61it/s]

    -
    30%|███ | 1507910/4997817 [00:09&lt;00:22, 155034.80it/s]
    +
    29%|██▉ | 1472106/4997817 [00:09&lt;00:23, 149708.68it/s]

    </pre>

    -
    30%|███ | 1507910/4997817 [00:09<00:22, 155034.80it/s]
    +
    29%|██▉ | 1472106/4997817 [00:09<00:23, 149708.68it/s]

    end{sphinxVerbatim}

    -

    30%|███ | 1507910/4997817 [00:09<00:22, 155034.80it/s]

    +

    29%|██▉ | 1472106/4997817 [00:09<00:23, 149708.68it/s]

    -
    30%|███ | 1523500/4997817 [00:09&lt;00:22, 155291.00it/s]
    +
    30%|██▉ | 1487442/4997817 [00:09&lt;00:23, 150778.12it/s]

    </pre>

    -
    30%|███ | 1523500/4997817 [00:09<00:22, 155291.00it/s]
    +
    30%|██▉ | 1487442/4997817 [00:09<00:23, 150778.12it/s]

    end{sphinxVerbatim}

    -

    30%|███ | 1523500/4997817 [00:09<00:22, 155291.00it/s]

    +

    30%|██▉ | 1487442/4997817 [00:09<00:23, 150778.12it/s]

    -
    31%|███ | 1539068/4997817 [00:09&lt;00:22, 155405.46it/s]
    +
    30%|███ | 1502934/4997817 [00:09&lt;00:22, 151998.09it/s]

    </pre>

    -
    31%|███ | 1539068/4997817 [00:09<00:22, 155405.46it/s]
    +
    30%|███ | 1502934/4997817 [00:09<00:22, 151998.09it/s]

    end{sphinxVerbatim}

    -

    31%|███ | 1539068/4997817 [00:09<00:22, 155405.46it/s]

    +

    30%|███ | 1502934/4997817 [00:09<00:22, 151998.09it/s]

    -
    31%|███ | 1554740/4997817 [00:09&lt;00:22, 155797.39it/s]
    +
    30%|███ | 1518481/4997817 [00:09&lt;00:22, 153026.59it/s]

    </pre>

    -
    31%|███ | 1554740/4997817 [00:09<00:22, 155797.39it/s]
    +
    30%|███ | 1518481/4997817 [00:09<00:22, 153026.59it/s]

    end{sphinxVerbatim}

    -

    31%|███ | 1554740/4997817 [00:09<00:22, 155797.39it/s]

    +

    30%|███ | 1518481/4997817 [00:09<00:22, 153026.59it/s]

    -
    31%|███▏ | 1570325/4997817 [00:10&lt;00:22, 155632.09it/s]
    +
    31%|███ | 1533971/4997817 [00:10&lt;00:22, 153580.89it/s]

    </pre>

    -
    31%|███▏ | 1570325/4997817 [00:10<00:22, 155632.09it/s]
    +
    31%|███ | 1533971/4997817 [00:10<00:22, 153580.89it/s]

    end{sphinxVerbatim}

    -

    31%|███▏ | 1570325/4997817 [00:10<00:22, 155632.09it/s]

    +

    31%|███ | 1533971/4997817 [00:10<00:22, 153580.89it/s]

    -
    32%|███▏ | 1585935/4997817 [00:10&lt;00:21, 155771.47it/s]
    +
    31%|███ | 1549477/4997817 [00:10&lt;00:22, 154018.67it/s]

    </pre>

    -
    32%|███▏ | 1585935/4997817 [00:10<00:21, 155771.47it/s]
    +
    31%|███ | 1549477/4997817 [00:10<00:22, 154018.67it/s]

    end{sphinxVerbatim}

    -

    32%|███▏ | 1585935/4997817 [00:10<00:21, 155771.47it/s]

    +

    31%|███ | 1549477/4997817 [00:10<00:22, 154018.67it/s]

    -
    32%|███▏ | 1601515/4997817 [00:10&lt;00:21, 155577.69it/s]
    +
    31%|███▏ | 1564939/4997817 [00:10&lt;00:22, 154195.91it/s]

    </pre>

    -
    32%|███▏ | 1601515/4997817 [00:10<00:21, 155577.69it/s]
    +
    31%|███▏ | 1564939/4997817 [00:10<00:22, 154195.91it/s]

    end{sphinxVerbatim}

    -

    32%|███▏ | 1601515/4997817 [00:10<00:21, 155577.69it/s]

    +

    31%|███▏ | 1564939/4997817 [00:10<00:22, 154195.91it/s]

    -
    32%|███▏ | 1617101/4997817 [00:10&lt;00:21, 155645.58it/s]
    +
    32%|███▏ | 1580364/4997817 [00:10&lt;00:22, 153889.50it/s]

    </pre>

    -
    32%|███▏ | 1617101/4997817 [00:10<00:21, 155645.58it/s]
    +
    32%|███▏ | 1580364/4997817 [00:10<00:22, 153889.50it/s]

    end{sphinxVerbatim}

    -

    32%|███▏ | 1617101/4997817 [00:10<00:21, 155645.58it/s]

    +

    32%|███▏ | 1580364/4997817 [00:10<00:22, 153889.50it/s]

    -
    33%|███▎ | 1632667/4997817 [00:10&lt;00:22, 148235.31it/s]
    +
    32%|███▏ | 1595792/4997817 [00:10&lt;00:22, 154004.33it/s]

    </pre>

    -
    33%|███▎ | 1632667/4997817 [00:10<00:22, 148235.31it/s]
    +
    32%|███▏ | 1595792/4997817 [00:10<00:22, 154004.33it/s]

    end{sphinxVerbatim}

    -

    33%|███▎ | 1632667/4997817 [00:10<00:22, 148235.31it/s]

    +

    32%|███▏ | 1595792/4997817 [00:10<00:22, 154004.33it/s]

    -
    33%|███▎ | 1648018/4997817 [00:10&lt;00:22, 149759.46it/s]
    +
    32%|███▏ | 1611227/4997817 [00:10&lt;00:21, 154106.29it/s]

    </pre>

    -
    33%|███▎ | 1648018/4997817 [00:10<00:22, 149759.46it/s]
    +
    32%|███▏ | 1611227/4997817 [00:10<00:21, 154106.29it/s]

    end{sphinxVerbatim}

    -

    33%|███▎ | 1648018/4997817 [00:10<00:22, 149759.46it/s]

    +

    32%|███▏ | 1611227/4997817 [00:10<00:21, 154106.29it/s]

    -
    33%|███▎ | 1663496/4997817 [00:10&lt;00:22, 151227.25it/s]
    +
    33%|███▎ | 1626640/4997817 [00:10&lt;00:21, 153914.83it/s]

    </pre>

    -
    33%|███▎ | 1663496/4997817 [00:10<00:22, 151227.25it/s]
    +
    33%|███▎ | 1626640/4997817 [00:10<00:21, 153914.83it/s]

    end{sphinxVerbatim}

    -

    33%|███▎ | 1663496/4997817 [00:10<00:22, 151227.25it/s]

    +

    33%|███▎ | 1626640/4997817 [00:10<00:21, 153914.83it/s]

    -
    34%|███▎ | 1679092/4997817 [00:10&lt;00:21, 152620.63it/s]
    +
    33%|███▎ | 1642067/4997817 [00:10&lt;00:21, 154017.91it/s]

    </pre>

    -
    34%|███▎ | 1679092/4997817 [00:10<00:21, 152620.63it/s]
    +
    33%|███▎ | 1642067/4997817 [00:10<00:21, 154017.91it/s]

    end{sphinxVerbatim}

    -

    34%|███▎ | 1679092/4997817 [00:10<00:21, 152620.63it/s]

    +

    33%|███▎ | 1642067/4997817 [00:10<00:21, 154017.91it/s]

    -
    34%|███▍ | 1694624/4997817 [00:10&lt;00:21, 153418.04it/s]
    +
    33%|███▎ | 1657470/4997817 [00:10&lt;00:21, 153883.75it/s]

    </pre>

    -
    34%|███▍ | 1694624/4997817 [00:10<00:21, 153418.04it/s]
    +
    33%|███▎ | 1657470/4997817 [00:10<00:21, 153883.75it/s]

    end{sphinxVerbatim}

    -

    34%|███▍ | 1694624/4997817 [00:10<00:21, 153418.04it/s]

    +

    33%|███▎ | 1657470/4997817 [00:10<00:21, 153883.75it/s]

    -
    34%|███▍ | 1710114/4997817 [00:10&lt;00:21, 153856.65it/s]
    +
    33%|███▎ | 1672885/4997817 [00:10&lt;00:21, 153960.13it/s]

    </pre>

    -
    34%|███▍ | 1710114/4997817 [00:10<00:21, 153856.65it/s]
    +
    33%|███▎ | 1672885/4997817 [00:10<00:21, 153960.13it/s]

    end{sphinxVerbatim}

    -

    34%|███▍ | 1710114/4997817 [00:10<00:21, 153856.65it/s]

    +

    33%|███▎ | 1672885/4997817 [00:10<00:21, 153960.13it/s]

    -
    35%|███▍ | 1725618/4997817 [00:11&lt;00:21, 154206.80it/s]
    +
    34%|███▍ | 1688410/4997817 [00:11&lt;00:21, 154345.25it/s]

    </pre>

    -
    35%|███▍ | 1725618/4997817 [00:11<00:21, 154206.80it/s]
    +
    34%|███▍ | 1688410/4997817 [00:11<00:21, 154345.25it/s]

    end{sphinxVerbatim}

    -

    35%|███▍ | 1725618/4997817 [00:11<00:21, 154206.80it/s]

    +

    34%|███▍ | 1688410/4997817 [00:11<00:21, 154345.25it/s]

    -
    35%|███▍ | 1741184/4997817 [00:11&lt;00:21, 154637.42it/s]
    +
    34%|███▍ | 1703989/4997817 [00:11&lt;00:21, 154777.26it/s]

    </pre>

    -
    35%|███▍ | 1741184/4997817 [00:11<00:21, 154637.42it/s]
    +
    34%|███▍ | 1703989/4997817 [00:11<00:21, 154777.26it/s]

    end{sphinxVerbatim}

    -

    35%|███▍ | 1741184/4997817 [00:11<00:21, 154637.42it/s]

    +

    34%|███▍ | 1703989/4997817 [00:11<00:21, 154777.26it/s]

    -
    35%|███▌ | 1756809/4997817 [00:11&lt;00:20, 155118.45it/s]
    +
    34%|███▍ | 1719468/4997817 [00:11&lt;00:21, 154729.80it/s]

    </pre>

    -
    35%|███▌ | 1756809/4997817 [00:11<00:20, 155118.45it/s]
    +
    34%|███▍ | 1719468/4997817 [00:11<00:21, 154729.80it/s]

    end{sphinxVerbatim}

    -

    35%|███▌ | 1756809/4997817 [00:11<00:20, 155118.45it/s]

    +

    34%|███▍ | 1719468/4997817 [00:11<00:21, 154729.80it/s]

    -
    35%|███▌ | 1772353/4997817 [00:11&lt;00:20, 155210.55it/s]
    +
    35%|███▍ | 1734942/4997817 [00:11&lt;00:21, 154566.62it/s]

    </pre>

    -
    35%|███▌ | 1772353/4997817 [00:11<00:20, 155210.55it/s]
    +
    35%|███▍ | 1734942/4997817 [00:11<00:21, 154566.62it/s]

    end{sphinxVerbatim}

    -

    35%|███▌ | 1772353/4997817 [00:11<00:20, 155210.55it/s]

    +

    35%|███▍ | 1734942/4997817 [00:11<00:21, 154566.62it/s]

    -
    36%|███▌ | 1787879/4997817 [00:11&lt;00:20, 155071.46it/s]
    +
    35%|███▌ | 1750507/4997817 [00:11&lt;00:20, 154890.07it/s]

    </pre>

    -
    36%|███▌ | 1787879/4997817 [00:11<00:20, 155071.46it/s]
    +
    35%|███▌ | 1750507/4997817 [00:11<00:20, 154890.07it/s]

    end{sphinxVerbatim}

    -

    36%|███▌ | 1787879/4997817 [00:11<00:20, 155071.46it/s]

    +

    35%|███▌ | 1750507/4997817 [00:11<00:20, 154890.07it/s]

    -
    36%|███▌ | 1803441/4997817 [00:11&lt;00:20, 155232.57it/s]
    +
    35%|███▌ | 1766005/4997817 [00:11&lt;00:20, 154914.31it/s]

    </pre>

    -
    36%|███▌ | 1803441/4997817 [00:11<00:20, 155232.57it/s]
    +
    35%|███▌ | 1766005/4997817 [00:11<00:20, 154914.31it/s]

    end{sphinxVerbatim}

    -

    36%|███▌ | 1803441/4997817 [00:11<00:20, 155232.57it/s]

    +

    35%|███▌ | 1766005/4997817 [00:11<00:20, 154914.31it/s]

    -
    36%|███▋ | 1818967/4997817 [00:11&lt;00:20, 155131.89it/s]
    +
    36%|███▌ | 1781497/4997817 [00:11&lt;00:21, 147546.06it/s]

    </pre>

    -
    36%|███▋ | 1818967/4997817 [00:11<00:20, 155131.89it/s]
    +
    36%|███▌ | 1781497/4997817 [00:11<00:21, 147546.06it/s]

    end{sphinxVerbatim}

    -

    36%|███▋ | 1818967/4997817 [00:11<00:20, 155131.89it/s]

    +

    36%|███▌ | 1781497/4997817 [00:11<00:21, 147546.06it/s]

    -
    37%|███▋ | 1834552/4997817 [00:11&lt;00:20, 155345.75it/s]
    +
    36%|███▌ | 1796958/4997817 [00:11&lt;00:21, 149591.06it/s]

    </pre>

    -
    37%|███▋ | 1834552/4997817 [00:11<00:20, 155345.75it/s]
    +
    36%|███▌ | 1796958/4997817 [00:11<00:21, 149591.06it/s]

    end{sphinxVerbatim}

    -

    37%|███▋ | 1834552/4997817 [00:11<00:20, 155345.75it/s]

    +

    36%|███▌ | 1796958/4997817 [00:11<00:21, 149591.06it/s]

    -
    37%|███▋ | 1850088/4997817 [00:11&lt;00:20, 155196.47it/s]
    +
    36%|███▋ | 1812454/4997817 [00:11&lt;00:21, 151160.60it/s]

    </pre>

    -
    37%|███▋ | 1850088/4997817 [00:11<00:20, 155196.47it/s]
    +
    36%|███▋ | 1812454/4997817 [00:11<00:21, 151160.60it/s]

    end{sphinxVerbatim}

    -

    37%|███▋ | 1850088/4997817 [00:11<00:20, 155196.47it/s]

    +

    36%|███▋ | 1812454/4997817 [00:11<00:21, 151160.60it/s]

    -
    37%|███▋ | 1865620/4997817 [00:11&lt;00:20, 155230.31it/s]
    +
    37%|███▋ | 1827877/4997817 [00:11&lt;00:20, 152061.89it/s]

    </pre>

    -
    37%|███▋ | 1865620/4997817 [00:11<00:20, 155230.31it/s]
    +
    37%|███▋ | 1827877/4997817 [00:11<00:20, 152061.89it/s]

    end{sphinxVerbatim}

    -

    37%|███▋ | 1865620/4997817 [00:11<00:20, 155230.31it/s]

    +

    37%|███▋ | 1827877/4997817 [00:11<00:20, 152061.89it/s]

    -
    38%|███▊ | 1881152/4997817 [00:12&lt;00:20, 155254.90it/s]
    +
    37%|███▋ | 1843464/4997817 [00:12&lt;00:20, 153189.44it/s]

    </pre>

    -
    38%|███▊ | 1881152/4997817 [00:12<00:20, 155254.90it/s]
    +
    37%|███▋ | 1843464/4997817 [00:12<00:20, 153189.44it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 1881152/4997817 [00:12<00:20, 155254.90it/s]

    +

    37%|███▋ | 1843464/4997817 [00:12<00:20, 153189.44it/s]

    -
    38%|███▊ | 1896678/4997817 [00:12&lt;00:19, 155248.93it/s]
    +
    37%|███▋ | 1858984/4997817 [00:12&lt;00:20, 153786.46it/s]

    </pre>

    -
    38%|███▊ | 1896678/4997817 [00:12<00:19, 155248.93it/s]
    +
    37%|███▋ | 1858984/4997817 [00:12<00:20, 153786.46it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 1896678/4997817 [00:12<00:19, 155248.93it/s]

    +

    37%|███▋ | 1858984/4997817 [00:12<00:20, 153786.46it/s]

    -
    38%|███▊ | 1912204/4997817 [00:12&lt;00:19, 155052.44it/s]
    +
    38%|███▊ | 1874464/4997817 [00:12&lt;00:20, 154084.92it/s]

    </pre>

    -
    38%|███▊ | 1912204/4997817 [00:12<00:19, 155052.44it/s]
    +
    38%|███▊ | 1874464/4997817 [00:12<00:20, 154084.92it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 1912204/4997817 [00:12<00:19, 155052.44it/s]

    +

    38%|███▊ | 1874464/4997817 [00:12<00:20, 154084.92it/s]

    -
    39%|███▊ | 1927782/4997817 [00:12&lt;00:19, 155267.04it/s]
    +
    38%|███▊ | 1889886/4997817 [00:12&lt;00:20, 154001.26it/s]

    </pre>

    -
    39%|███▊ | 1927782/4997817 [00:12<00:19, 155267.04it/s]
    +
    38%|███▊ | 1889886/4997817 [00:12<00:20, 154001.26it/s]

    end{sphinxVerbatim}

    -

    39%|███▊ | 1927782/4997817 [00:12<00:19, 155267.04it/s]

    +

    38%|███▊ | 1889886/4997817 [00:12<00:20, 154001.26it/s]

    -
    39%|███▉ | 1943309/4997817 [00:12&lt;00:20, 147382.65it/s]
    +
    38%|███▊ | 1905352/4997817 [00:12&lt;00:20, 154197.03it/s]

    </pre>

    -
    39%|███▉ | 1943309/4997817 [00:12<00:20, 147382.65it/s]
    +
    38%|███▊ | 1905352/4997817 [00:12<00:20, 154197.03it/s]

    end{sphinxVerbatim}

    -

    39%|███▉ | 1943309/4997817 [00:12<00:20, 147382.65it/s]

    +

    38%|███▊ | 1905352/4997817 [00:12<00:20, 154197.03it/s]

    -
    39%|███▉ | 1958900/4997817 [00:12&lt;00:20, 149845.53it/s]
    +
    38%|███▊ | 1920784/4997817 [00:12&lt;00:19, 154230.24it/s]

    </pre>

    -
    39%|███▉ | 1958900/4997817 [00:12<00:20, 149845.53it/s]
    +
    38%|███▊ | 1920784/4997817 [00:12<00:19, 154230.24it/s]

    end{sphinxVerbatim}

    -

    39%|███▉ | 1958900/4997817 [00:12<00:20, 149845.53it/s]

    +

    38%|███▊ | 1920784/4997817 [00:12<00:19, 154230.24it/s]

    -
    40%|███▉ | 1974144/4997817 [00:12&lt;00:20, 150601.16it/s]
    +
    39%|███▊ | 1936212/4997817 [00:12&lt;00:20, 148546.66it/s]

    </pre>

    -
    40%|███▉ | 1974144/4997817 [00:12<00:20, 150601.16it/s]
    +
    39%|███▊ | 1936212/4997817 [00:12<00:20, 148546.66it/s]

    end{sphinxVerbatim}

    -

    40%|███▉ | 1974144/4997817 [00:12<00:20, 150601.16it/s]

    +

    39%|███▊ | 1936212/4997817 [00:12<00:20, 148546.66it/s]

    -
    40%|███▉ | 1989777/4997817 [00:12&lt;00:19, 152285.11it/s]
    +
    39%|███▉ | 1951414/4997817 [00:12&lt;00:20, 149557.92it/s]

    </pre>

    -
    40%|███▉ | 1989777/4997817 [00:12<00:19, 152285.11it/s]
    +
    39%|███▉ | 1951414/4997817 [00:12<00:20, 149557.92it/s]

    end{sphinxVerbatim}

    -

    40%|███▉ | 1989777/4997817 [00:12<00:19, 152285.11it/s]

    +

    39%|███▉ | 1951414/4997817 [00:12<00:20, 149557.92it/s]

    -
    40%|████ | 2005339/4997817 [00:12&lt;00:19, 153271.17it/s]
    +
    39%|███▉ | 1966912/4997817 [00:12&lt;00:20, 151149.78it/s]

    </pre>

    -
    40%|████ | 2005339/4997817 [00:12<00:19, 153271.17it/s]
    +
    39%|███▉ | 1966912/4997817 [00:12<00:20, 151149.78it/s]

    end{sphinxVerbatim}

    -

    40%|████ | 2005339/4997817 [00:12<00:19, 153271.17it/s]

    +

    39%|███▉ | 1966912/4997817 [00:12<00:20, 151149.78it/s]

    -
    40%|████ | 2020923/4997817 [00:12&lt;00:19, 154032.12it/s]
    +
    40%|███▉ | 1982262/4997817 [00:12&lt;00:19, 151843.47it/s]

    </pre>

    -
    40%|████ | 2020923/4997817 [00:12<00:19, 154032.12it/s]
    +
    40%|███▉ | 1982262/4997817 [00:12<00:19, 151843.47it/s]

    end{sphinxVerbatim}

    -

    40%|████ | 2020923/4997817 [00:12<00:19, 154032.12it/s]

    +

    40%|███▉ | 1982262/4997817 [00:12<00:19, 151843.47it/s]

    -
    41%|████ | 2036556/4997817 [00:13&lt;00:19, 154716.13it/s]
    +
    40%|███▉ | 1997680/4997817 [00:13&lt;00:19, 152533.87it/s]

    </pre>

    -
    41%|████ | 2036556/4997817 [00:13<00:19, 154716.13it/s]
    +
    40%|███▉ | 1997680/4997817 [00:13<00:19, 152533.87it/s]

    end{sphinxVerbatim}

    -

    41%|████ | 2036556/4997817 [00:13<00:19, 154716.13it/s]

    +

    40%|███▉ | 1997680/4997817 [00:13<00:19, 152533.87it/s]

    -
    41%|████ | 2052197/4997817 [00:13&lt;00:18, 155218.30it/s]
    +
    40%|████ | 2012949/4997817 [00:13&lt;00:19, 152506.11it/s]

    </pre>

    -
    41%|████ | 2052197/4997817 [00:13<00:18, 155218.30it/s]
    +
    40%|████ | 2012949/4997817 [00:13<00:19, 152506.11it/s]

    end{sphinxVerbatim}

    -

    41%|████ | 2052197/4997817 [00:13<00:18, 155218.30it/s]

    +

    40%|████ | 2012949/4997817 [00:13<00:19, 152506.11it/s]

    -
    41%|████▏ | 2067791/4997817 [00:13&lt;00:18, 155431.62it/s]
    +
    41%|████ | 2028211/4997817 [00:13&lt;00:19, 152396.45it/s]

    </pre>

    -
    41%|████▏ | 2067791/4997817 [00:13<00:18, 155431.62it/s]
    +
    41%|████ | 2028211/4997817 [00:13<00:19, 152396.45it/s]

    end{sphinxVerbatim}

    -

    41%|████▏ | 2067791/4997817 [00:13<00:18, 155431.62it/s]

    +

    41%|████ | 2028211/4997817 [00:13<00:19, 152396.45it/s]

    -
    42%|████▏ | 2083480/4997817 [00:13&lt;00:18, 155866.53it/s]
    +
    41%|████ | 2043459/4997817 [00:13&lt;00:19, 152411.03it/s]

    </pre>

    -
    42%|████▏ | 2083480/4997817 [00:13<00:18, 155866.53it/s]
    +
    41%|████ | 2043459/4997817 [00:13<00:19, 152411.03it/s]

    end{sphinxVerbatim}

    -

    42%|████▏ | 2083480/4997817 [00:13<00:18, 155866.53it/s]

    +

    41%|████ | 2043459/4997817 [00:13<00:19, 152411.03it/s]

    -
    42%|████▏ | 2099072/4997817 [00:13&lt;00:18, 153960.26it/s]
    +
    41%|████ | 2058765/4997817 [00:13&lt;00:19, 152604.20it/s]

    </pre>

    -
    42%|████▏ | 2099072/4997817 [00:13<00:18, 153960.26it/s]
    +
    41%|████ | 2058765/4997817 [00:13<00:19, 152604.20it/s]

    end{sphinxVerbatim}

    -

    42%|████▏ | 2099072/4997817 [00:13<00:18, 153960.26it/s]

    +

    41%|████ | 2058765/4997817 [00:13<00:19, 152604.20it/s]

    -
    42%|████▏ | 2114477/4997817 [00:13&lt;00:19, 149462.47it/s]
    +
    41%|████▏ | 2074030/4997817 [00:13&lt;00:19, 152499.64it/s]

    </pre>

    -
    42%|████▏ | 2114477/4997817 [00:13<00:19, 149462.47it/s]
    +
    41%|████▏ | 2074030/4997817 [00:13<00:19, 152499.64it/s]

    end{sphinxVerbatim}

    -

    42%|████▏ | 2114477/4997817 [00:13<00:19, 149462.47it/s]

    +

    41%|████▏ | 2074030/4997817 [00:13<00:19, 152499.64it/s]

    -
    43%|████▎ | 2129964/4997817 [00:13&lt;00:18, 151036.87it/s]
    +
    42%|████▏ | 2089285/4997817 [00:13&lt;00:19, 152513.02it/s]

    </pre>

    -
    43%|████▎ | 2129964/4997817 [00:13<00:18, 151036.87it/s]
    +
    42%|████▏ | 2089285/4997817 [00:13<00:19, 152513.02it/s]

    end{sphinxVerbatim}

    -

    43%|████▎ | 2129964/4997817 [00:13<00:18, 151036.87it/s]

    +

    42%|████▏ | 2089285/4997817 [00:13<00:19, 152513.02it/s]

    -
    43%|████▎ | 2145511/4997817 [00:13&lt;00:18, 152339.93it/s]
    +
    42%|████▏ | 2104539/4997817 [00:13&lt;00:19, 151666.67it/s]

    </pre>

    -
    43%|████▎ | 2145511/4997817 [00:13<00:18, 152339.93it/s]
    +
    42%|████▏ | 2104539/4997817 [00:13<00:19, 151666.67it/s]

    end{sphinxVerbatim}

    -

    43%|████▎ | 2145511/4997817 [00:13<00:18, 152339.93it/s]

    +

    42%|████▏ | 2104539/4997817 [00:13<00:19, 151666.67it/s]

    -
    43%|████▎ | 2161091/4997817 [00:13&lt;00:18, 153360.76it/s]
    +
    42%|████▏ | 2119708/4997817 [00:13&lt;00:19, 151082.79it/s]

    </pre>

    -
    43%|████▎ | 2161091/4997817 [00:13<00:18, 153360.76it/s]
    +
    42%|████▏ | 2119708/4997817 [00:13<00:19, 151082.79it/s]

    end{sphinxVerbatim}

    -

    43%|████▎ | 2161091/4997817 [00:13<00:18, 153360.76it/s]

    +

    42%|████▏ | 2119708/4997817 [00:13<00:19, 151082.79it/s]

    -
    44%|████▎ | 2176618/4997817 [00:14&lt;00:18, 153926.20it/s]
    +
    43%|████▎ | 2134819/4997817 [00:13&lt;00:18, 150954.13it/s]

    </pre>

    -
    44%|████▎ | 2176618/4997817 [00:14<00:18, 153926.20it/s]
    +
    43%|████▎ | 2134819/4997817 [00:13<00:18, 150954.13it/s]

    end{sphinxVerbatim}

    -

    44%|████▎ | 2176618/4997817 [00:14<00:18, 153926.20it/s]

    +

    43%|████▎ | 2134819/4997817 [00:13<00:18, 150954.13it/s]

    -
    44%|████▍ | 2192023/4997817 [00:14&lt;00:18, 153927.27it/s]
    +
    43%|████▎ | 2149966/4997817 [00:14&lt;00:18, 151105.70it/s]

    </pre>

    -
    44%|████▍ | 2192023/4997817 [00:14<00:18, 153927.27it/s]
    +
    43%|████▎ | 2149966/4997817 [00:14<00:18, 151105.70it/s]

    end{sphinxVerbatim}

    -

    44%|████▍ | 2192023/4997817 [00:14<00:18, 153927.27it/s]

    +

    43%|████▎ | 2149966/4997817 [00:14<00:18, 151105.70it/s]

    -
    44%|████▍ | 2207487/4997817 [00:14&lt;00:18, 154138.21it/s]
    +
    43%|████▎ | 2165078/4997817 [00:14&lt;00:18, 150864.63it/s]

    </pre>

    -
    44%|████▍ | 2207487/4997817 [00:14<00:18, 154138.21it/s]
    +
    43%|████▎ | 2165078/4997817 [00:14<00:18, 150864.63it/s]

    end{sphinxVerbatim}

    -

    44%|████▍ | 2207487/4997817 [00:14<00:18, 154138.21it/s]

    +

    43%|████▎ | 2165078/4997817 [00:14<00:18, 150864.63it/s]

    -
    44%|████▍ | 2222907/4997817 [00:14&lt;00:18, 154133.22it/s]
    +
    44%|████▎ | 2180212/4997817 [00:14&lt;00:18, 151004.51it/s]

    </pre>

    -
    44%|████▍ | 2222907/4997817 [00:14<00:18, 154133.22it/s]
    +
    44%|████▎ | 2180212/4997817 [00:14<00:18, 151004.51it/s]

    end{sphinxVerbatim}

    -

    44%|████▍ | 2222907/4997817 [00:14<00:18, 154133.22it/s]

    +

    44%|████▎ | 2180212/4997817 [00:14<00:18, 151004.51it/s]

    -
    45%|████▍ | 2238462/4997817 [00:14&lt;00:17, 154555.13it/s]
    +
    44%|████▍ | 2195377/4997817 [00:14&lt;00:18, 151195.99it/s]

    </pre>

    -
    45%|████▍ | 2238462/4997817 [00:14<00:17, 154555.13it/s]
    +
    44%|████▍ | 2195377/4997817 [00:14<00:18, 151195.99it/s]

    end{sphinxVerbatim}

    -

    45%|████▍ | 2238462/4997817 [00:14<00:17, 154555.13it/s]

    +

    44%|████▍ | 2195377/4997817 [00:14<00:18, 151195.99it/s]

    -
    45%|████▌ | 2254046/4997817 [00:14&lt;00:17, 154936.96it/s]
    +
    44%|████▍ | 2210676/4997817 [00:14&lt;00:18, 151731.76it/s]

    </pre>

    -
    45%|████▌ | 2254046/4997817 [00:14<00:17, 154936.96it/s]
    +
    44%|████▍ | 2210676/4997817 [00:14<00:18, 151731.76it/s]

    end{sphinxVerbatim}

    -

    45%|████▌ | 2254046/4997817 [00:14<00:17, 154936.96it/s]

    +

    44%|████▍ | 2210676/4997817 [00:14<00:18, 151731.76it/s]

    -
    45%|████▌ | 2269542/4997817 [00:14&lt;00:17, 154628.66it/s]
    +
    45%|████▍ | 2225850/4997817 [00:14&lt;00:18, 151531.53it/s]

    </pre>

    -
    45%|████▌ | 2269542/4997817 [00:14<00:17, 154628.66it/s]
    +
    45%|████▍ | 2225850/4997817 [00:14<00:18, 151531.53it/s]

    end{sphinxVerbatim}

    -

    45%|████▌ | 2269542/4997817 [00:14<00:17, 154628.66it/s]

    +

    45%|████▍ | 2225850/4997817 [00:14<00:18, 151531.53it/s]

    -
    46%|████▌ | 2285034/4997817 [00:14&lt;00:17, 154712.81it/s]
    +
    45%|████▍ | 2241004/4997817 [00:14&lt;00:18, 151333.79it/s]

    </pre>

    -
    46%|████▌ | 2285034/4997817 [00:14<00:17, 154712.81it/s]
    +
    45%|████▍ | 2241004/4997817 [00:14<00:18, 151333.79it/s]

    end{sphinxVerbatim}

    -

    46%|████▌ | 2285034/4997817 [00:14<00:17, 154712.81it/s]

    +

    45%|████▍ | 2241004/4997817 [00:14<00:18, 151333.79it/s]

    -
    46%|████▌ | 2300521/4997817 [00:14&lt;00:17, 154756.29it/s]
    +
    45%|████▌ | 2256138/4997817 [00:14&lt;00:18, 150729.51it/s]

    </pre>

    -
    46%|████▌ | 2300521/4997817 [00:14<00:17, 154756.29it/s]
    +
    45%|████▌ | 2256138/4997817 [00:14<00:18, 150729.51it/s]

    end{sphinxVerbatim}

    -

    46%|████▌ | 2300521/4997817 [00:14<00:17, 154756.29it/s]

    +

    45%|████▌ | 2256138/4997817 [00:14<00:18, 150729.51it/s]

    -
    46%|████▋ | 2316076/4997817 [00:14&lt;00:17, 154990.85it/s]
    +
    45%|████▌ | 2271212/4997817 [00:14&lt;00:18, 150197.98it/s]

    </pre>

    -
    46%|████▋ | 2316076/4997817 [00:14<00:17, 154990.85it/s]
    +
    45%|████▌ | 2271212/4997817 [00:14<00:18, 150197.98it/s]

    end{sphinxVerbatim}

    -

    46%|████▋ | 2316076/4997817 [00:14<00:17, 154990.85it/s]

    +

    45%|████▌ | 2271212/4997817 [00:14<00:18, 150197.98it/s]

    -
    47%|████▋ | 2331731/4997817 [00:15&lt;00:17, 155457.59it/s]
    +
    46%|████▌ | 2286233/4997817 [00:15&lt;00:18, 150187.72it/s]

    </pre>

    -
    47%|████▋ | 2331731/4997817 [00:15<00:17, 155457.59it/s]
    +
    46%|████▌ | 2286233/4997817 [00:15<00:18, 150187.72it/s]

    end{sphinxVerbatim}

    -

    47%|████▋ | 2331731/4997817 [00:15<00:17, 155457.59it/s]

    +

    46%|████▌ | 2286233/4997817 [00:15<00:18, 150187.72it/s]

    -
    47%|████▋ | 2347419/4997817 [00:15&lt;00:17, 155882.10it/s]
    +
    46%|████▌ | 2301330/4997817 [00:15&lt;00:17, 150418.31it/s]

    </pre>

    -
    47%|████▋ | 2347419/4997817 [00:15<00:17, 155882.10it/s]
    +
    46%|████▌ | 2301330/4997817 [00:15<00:17, 150418.31it/s]

    end{sphinxVerbatim}

    -

    47%|████▋ | 2347419/4997817 [00:15<00:17, 155882.10it/s]

    +

    46%|████▌ | 2301330/4997817 [00:15<00:17, 150418.31it/s]

    -
    47%|████▋ | 2363116/4997817 [00:15&lt;00:16, 156205.14it/s]
    +
    46%|████▋ | 2316399/4997817 [00:15&lt;00:17, 150498.24it/s]

    </pre>

    -
    47%|████▋ | 2363116/4997817 [00:15<00:16, 156205.14it/s]
    +
    46%|████▋ | 2316399/4997817 [00:15<00:17, 150498.24it/s]

    end{sphinxVerbatim}

    -

    47%|████▋ | 2363116/4997817 [00:15<00:16, 156205.14it/s]

    +

    46%|████▋ | 2316399/4997817 [00:15<00:17, 150498.24it/s]

    -
    48%|████▊ | 2378808/4997817 [00:15&lt;00:16, 156417.45it/s]
    +
    47%|████▋ | 2331548/4997817 [00:15&lt;00:17, 150793.94it/s]

    </pre>

    -
    48%|████▊ | 2378808/4997817 [00:15<00:16, 156417.45it/s]
    +
    47%|████▋ | 2331548/4997817 [00:15<00:17, 150793.94it/s]

    end{sphinxVerbatim}

    -

    48%|████▊ | 2378808/4997817 [00:15<00:16, 156417.45it/s]

    +

    47%|████▋ | 2331548/4997817 [00:15<00:17, 150793.94it/s]

    -
    48%|████▊ | 2394450/4997817 [00:15&lt;00:16, 156396.45it/s]
    +
    47%|████▋ | 2346781/4997817 [00:15&lt;00:17, 151253.19it/s]

    </pre>

    -
    48%|████▊ | 2394450/4997817 [00:15<00:16, 156396.45it/s]
    +
    47%|████▋ | 2346781/4997817 [00:15<00:17, 151253.19it/s]

    end{sphinxVerbatim}

    -

    48%|████▊ | 2394450/4997817 [00:15<00:16, 156396.45it/s]

    +

    47%|████▋ | 2346781/4997817 [00:15<00:17, 151253.19it/s]

    -
    48%|████▊ | 2410090/4997817 [00:15&lt;00:16, 156233.00it/s]
    +
    47%|████▋ | 2362004/4997817 [00:15&lt;00:17, 151542.75it/s]

    </pre>

    -
    48%|████▊ | 2410090/4997817 [00:15<00:16, 156233.00it/s]
    +
    47%|████▋ | 2362004/4997817 [00:15<00:17, 151542.75it/s]

    end{sphinxVerbatim}

    -

    48%|████▊ | 2410090/4997817 [00:15<00:16, 156233.00it/s]

    +

    47%|████▋ | 2362004/4997817 [00:15<00:17, 151542.75it/s]

    -
    49%|████▊ | 2425714/4997817 [00:15&lt;00:16, 153347.97it/s]
    +
    48%|████▊ | 2377162/4997817 [00:15&lt;00:17, 151551.14it/s]

    </pre>

    -
    49%|████▊ | 2425714/4997817 [00:15<00:16, 153347.97it/s]
    +
    48%|████▊ | 2377162/4997817 [00:15<00:17, 151551.14it/s]

    end{sphinxVerbatim}

    -

    49%|████▊ | 2425714/4997817 [00:15<00:16, 153347.97it/s]

    +

    48%|████▊ | 2377162/4997817 [00:15<00:17, 151551.14it/s]

    -
    49%|████▉ | 2441355/4997817 [00:15&lt;00:16, 154251.91it/s]
    +
    48%|████▊ | 2392436/4997817 [00:15&lt;00:17, 151906.04it/s]

    </pre>

    -
    49%|████▉ | 2441355/4997817 [00:15<00:16, 154251.91it/s]
    +
    48%|████▊ | 2392436/4997817 [00:15<00:17, 151906.04it/s]

    end{sphinxVerbatim}

    -

    49%|████▉ | 2441355/4997817 [00:15<00:16, 154251.91it/s]

    +

    48%|████▊ | 2392436/4997817 [00:15<00:17, 151906.04it/s]

    -
    49%|████▉ | 2456999/4997817 [00:15&lt;00:16, 154899.45it/s]
    +
    48%|████▊ | 2407643/4997817 [00:15&lt;00:17, 151953.19it/s]

    </pre>

    -
    49%|████▉ | 2456999/4997817 [00:15<00:16, 154899.45it/s]
    +
    48%|████▊ | 2407643/4997817 [00:15<00:17, 151953.19it/s]

    end{sphinxVerbatim}

    -

    49%|████▉ | 2456999/4997817 [00:15<00:16, 154899.45it/s]

    +

    48%|████▊ | 2407643/4997817 [00:15<00:17, 151953.19it/s]

    -
    49%|████▉ | 2472573/4997817 [00:15&lt;00:16, 155147.20it/s]
    +
    48%|████▊ | 2423011/4997817 [00:15&lt;00:16, 152469.29it/s]

    </pre>

    -
    49%|████▉ | 2472573/4997817 [00:15<00:16, 155147.20it/s]
    +
    48%|████▊ | 2423011/4997817 [00:15<00:16, 152469.29it/s]

    end{sphinxVerbatim}

    -

    49%|████▉ | 2472573/4997817 [00:15<00:16, 155147.20it/s]

    +

    48%|████▊ | 2423011/4997817 [00:15<00:16, 152469.29it/s]

    -
    50%|████▉ | 2488269/4997817 [00:16&lt;00:16, 155687.39it/s]
    +
    49%|████▉ | 2438258/4997817 [00:16&lt;00:16, 152457.99it/s]

    </pre>

    -
    50%|████▉ | 2488269/4997817 [00:16<00:16, 155687.39it/s]
    +
    49%|████▉ | 2438258/4997817 [00:16<00:16, 152457.99it/s]

    end{sphinxVerbatim}

    -

    50%|████▉ | 2488269/4997817 [00:16<00:16, 155687.39it/s]

    +

    49%|████▉ | 2438258/4997817 [00:16<00:16, 152457.99it/s]

    -
    50%|█████ | 2503888/4997817 [00:16&lt;00:16, 155834.72it/s]
    +
    49%|████▉ | 2453589/4997817 [00:16&lt;00:16, 152711.08it/s]

    </pre>

    -
    50%|█████ | 2503888/4997817 [00:16<00:16, 155834.72it/s]
    +
    49%|████▉ | 2453589/4997817 [00:16<00:16, 152711.08it/s]

    end{sphinxVerbatim}

    -

    50%|█████ | 2503888/4997817 [00:16<00:16, 155834.72it/s]

    +

    49%|████▉ | 2453589/4997817 [00:16<00:16, 152711.08it/s]

    -
    50%|█████ | 2519475/4997817 [00:16&lt;00:15, 155805.85it/s]
    +
    49%|████▉ | 2468861/4997817 [00:16&lt;00:16, 152406.11it/s]

    </pre>

    -
    50%|█████ | 2519475/4997817 [00:16<00:15, 155805.85it/s]
    +
    49%|████▉ | 2468861/4997817 [00:16<00:16, 152406.11it/s]

    end{sphinxVerbatim}

    -

    50%|█████ | 2519475/4997817 [00:16<00:15, 155805.85it/s]

    +

    49%|████▉ | 2468861/4997817 [00:16<00:16, 152406.11it/s]

    -
    51%|█████ | 2535058/4997817 [00:16&lt;00:15, 155369.20it/s]
    +
    50%|████▉ | 2484102/4997817 [00:16&lt;00:16, 152383.37it/s]

    </pre>

    -
    51%|█████ | 2535058/4997817 [00:16<00:15, 155369.20it/s]
    +
    50%|████▉ | 2484102/4997817 [00:16<00:16, 152383.37it/s]

    end{sphinxVerbatim}

    -

    51%|█████ | 2535058/4997817 [00:16<00:15, 155369.20it/s]

    +

    50%|████▉ | 2484102/4997817 [00:16<00:16, 152383.37it/s]

    -
    51%|█████ | 2550597/4997817 [00:16&lt;00:15, 155179.21it/s]
    +
    50%|█████ | 2499341/4997817 [00:16&lt;00:16, 152361.67it/s]

    </pre>

    -
    51%|█████ | 2550597/4997817 [00:16<00:15, 155179.21it/s]
    +
    50%|█████ | 2499341/4997817 [00:16<00:16, 152361.67it/s]

    end{sphinxVerbatim}

    -

    51%|█████ | 2550597/4997817 [00:16<00:15, 155179.21it/s]

    +

    50%|█████ | 2499341/4997817 [00:16<00:16, 152361.67it/s]

    -
    51%|█████▏ | 2566117/4997817 [00:16&lt;00:15, 155127.40it/s]
    +
    50%|█████ | 2514736/4997817 [00:16&lt;00:16, 152835.48it/s]

    </pre>

    -
    51%|█████▏ | 2566117/4997817 [00:16<00:15, 155127.40it/s]
    +
    50%|█████ | 2514736/4997817 [00:16<00:16, 152835.48it/s]

    end{sphinxVerbatim}

    -

    51%|█████▏ | 2566117/4997817 [00:16<00:15, 155127.40it/s]

    +

    50%|█████ | 2514736/4997817 [00:16<00:16, 152835.48it/s]

    -
    52%|█████▏ | 2581758/4997817 [00:16&lt;00:15, 155508.94it/s]
    +
    51%|█████ | 2530062/4997817 [00:16&lt;00:16, 152961.70it/s]

    </pre>

    -
    52%|█████▏ | 2581758/4997817 [00:16<00:15, 155508.94it/s]
    +
    51%|█████ | 2530062/4997817 [00:16<00:16, 152961.70it/s]

    end{sphinxVerbatim}

    -

    52%|█████▏ | 2581758/4997817 [00:16<00:15, 155508.94it/s]

    +

    51%|█████ | 2530062/4997817 [00:16<00:16, 152961.70it/s]

    -
    52%|█████▏ | 2597417/4997817 [00:16&lt;00:15, 155829.62it/s]
    +
    51%|█████ | 2545402/4997817 [00:16&lt;00:16, 153090.00it/s]

    </pre>

    -
    52%|█████▏ | 2597417/4997817 [00:16<00:15, 155829.62it/s]
    +
    51%|█████ | 2545402/4997817 [00:16<00:16, 153090.00it/s]

    end{sphinxVerbatim}

    -

    52%|█████▏ | 2597417/4997817 [00:16<00:15, 155829.62it/s]

    +

    51%|█████ | 2545402/4997817 [00:16<00:16, 153090.00it/s]

    -
    52%|█████▏ | 2613047/4997817 [00:16&lt;00:15, 155967.82it/s]
    +
    51%|█████ | 2560712/4997817 [00:16&lt;00:15, 152472.61it/s]

    </pre>

    -
    52%|█████▏ | 2613047/4997817 [00:16<00:15, 155967.82it/s]
    +
    51%|█████ | 2560712/4997817 [00:16<00:15, 152472.61it/s]

    end{sphinxVerbatim}

    -

    52%|█████▏ | 2613047/4997817 [00:16<00:15, 155967.82it/s]

    +

    51%|█████ | 2560712/4997817 [00:16<00:15, 152472.61it/s]

    -
    53%|█████▎ | 2628736/4997817 [00:16&lt;00:15, 156242.26it/s]
    +
    52%|█████▏ | 2576006/4997817 [00:16&lt;00:15, 152608.52it/s]

    </pre>

    -
    53%|█████▎ | 2628736/4997817 [00:16<00:15, 156242.26it/s]
    +
    52%|█████▏ | 2576006/4997817 [00:16<00:15, 152608.52it/s]

    end{sphinxVerbatim}

    -

    53%|█████▎ | 2628736/4997817 [00:16<00:15, 156242.26it/s]

    +

    52%|█████▏ | 2576006/4997817 [00:16<00:15, 152608.52it/s]

    -
    53%|█████▎ | 2644396/4997817 [00:17&lt;00:15, 156346.54it/s]
    +
    52%|█████▏ | 2591361/4997817 [00:17&lt;00:15, 152887.01it/s]

    </pre>

    -
    53%|█████▎ | 2644396/4997817 [00:17<00:15, 156346.54it/s]
    +
    52%|█████▏ | 2591361/4997817 [00:17<00:15, 152887.01it/s]

    end{sphinxVerbatim}

    -

    53%|█████▎ | 2644396/4997817 [00:17<00:15, 156346.54it/s]

    +

    52%|█████▏ | 2591361/4997817 [00:17<00:15, 152887.01it/s]

    -
    53%|█████▎ | 2660031/4997817 [00:17&lt;00:14, 156281.93it/s]
    +
    52%|█████▏ | 2606651/4997817 [00:17&lt;00:15, 152751.10it/s]

    </pre>

    -
    53%|█████▎ | 2660031/4997817 [00:17<00:14, 156281.93it/s]
    +
    52%|█████▏ | 2606651/4997817 [00:17<00:15, 152751.10it/s]

    end{sphinxVerbatim}

    -

    53%|█████▎ | 2660031/4997817 [00:17<00:14, 156281.93it/s]

    +

    52%|█████▏ | 2606651/4997817 [00:17<00:15, 152751.10it/s]

    -
    54%|█████▎ | 2675660/4997817 [00:17&lt;00:14, 156120.12it/s]
    +
    52%|█████▏ | 2621927/4997817 [00:17&lt;00:15, 152635.77it/s]

    </pre>

    -
    54%|█████▎ | 2675660/4997817 [00:17<00:14, 156120.12it/s]
    +
    52%|█████▏ | 2621927/4997817 [00:17<00:15, 152635.77it/s]

    end{sphinxVerbatim}

    -

    54%|█████▎ | 2675660/4997817 [00:17<00:14, 156120.12it/s]

    +

    52%|█████▏ | 2621927/4997817 [00:17<00:15, 152635.77it/s]

    -
    54%|█████▍ | 2691280/4997817 [00:17&lt;00:14, 156142.76it/s]
    +
    53%|█████▎ | 2637191/4997817 [00:17&lt;00:15, 152547.55it/s]

    </pre>

    -
    54%|█████▍ | 2691280/4997817 [00:17<00:14, 156142.76it/s]
    +
    53%|█████▎ | 2637191/4997817 [00:17<00:15, 152547.55it/s]

    end{sphinxVerbatim}

    -

    54%|█████▍ | 2691280/4997817 [00:17<00:14, 156142.76it/s]

    +

    53%|█████▎ | 2637191/4997817 [00:17<00:15, 152547.55it/s]

    -
    54%|█████▍ | 2706895/4997817 [00:17&lt;00:14, 155947.37it/s]
    +
    53%|█████▎ | 2652472/4997817 [00:17&lt;00:15, 152623.26it/s]

    </pre>

    -
    54%|█████▍ | 2706895/4997817 [00:17<00:14, 155947.37it/s]
    +
    53%|█████▎ | 2652472/4997817 [00:17<00:15, 152623.26it/s]

    end{sphinxVerbatim}

    -

    54%|█████▍ | 2706895/4997817 [00:17<00:14, 155947.37it/s]

    +

    53%|█████▎ | 2652472/4997817 [00:17<00:15, 152623.26it/s]

    -
    54%|█████▍ | 2722572/4997817 [00:17&lt;00:14, 156193.18it/s]
    +
    53%|█████▎ | 2667735/4997817 [00:17&lt;00:15, 152574.74it/s]

    </pre>

    -
    54%|█████▍ | 2722572/4997817 [00:17<00:14, 156193.18it/s]
    +
    53%|█████▎ | 2667735/4997817 [00:17<00:15, 152574.74it/s]

    end{sphinxVerbatim}

    -

    54%|█████▍ | 2722572/4997817 [00:17<00:14, 156193.18it/s]

    +

    53%|█████▎ | 2667735/4997817 [00:17<00:15, 152574.74it/s]

    -
    55%|█████▍ | 2738193/4997817 [00:17&lt;00:14, 156195.92it/s]
    +
    54%|█████▎ | 2682993/4997817 [00:17&lt;00:15, 152551.51it/s]

    </pre>

    -
    55%|█████▍ | 2738193/4997817 [00:17<00:14, 156195.92it/s]
    +
    54%|█████▎ | 2682993/4997817 [00:17<00:15, 152551.51it/s]

    end{sphinxVerbatim}

    -

    55%|█████▍ | 2738193/4997817 [00:17<00:14, 156195.92it/s]

    +

    54%|█████▎ | 2682993/4997817 [00:17<00:15, 152551.51it/s]

    -
    55%|█████▌ | 2753813/4997817 [00:17&lt;00:14, 150301.55it/s]
    +
    54%|█████▍ | 2698249/4997817 [00:17&lt;00:15, 152430.35it/s]

    </pre>

    -
    55%|█████▌ | 2753813/4997817 [00:17<00:14, 150301.55it/s]
    +
    54%|█████▍ | 2698249/4997817 [00:17<00:15, 152430.35it/s]

    end{sphinxVerbatim}

    -

    55%|█████▌ | 2753813/4997817 [00:17<00:14, 150301.55it/s]

    +

    54%|█████▍ | 2698249/4997817 [00:17<00:15, 152430.35it/s]

    -
    55%|█████▌ | 2769422/4997817 [00:17&lt;00:14, 151987.78it/s]
    +
    54%|█████▍ | 2713493/4997817 [00:17&lt;00:14, 152302.06it/s]

    </pre>

    -
    55%|█████▌ | 2769422/4997817 [00:17<00:14, 151987.78it/s]
    +
    54%|█████▍ | 2713493/4997817 [00:17<00:14, 152302.06it/s]

    end{sphinxVerbatim}

    -

    55%|█████▌ | 2769422/4997817 [00:17<00:14, 151987.78it/s]

    +

    54%|█████▍ | 2713493/4997817 [00:17<00:14, 152302.06it/s]

    -
    56%|█████▌ | 2785064/4997817 [00:17&lt;00:14, 153289.24it/s]
    +
    55%|█████▍ | 2728724/4997817 [00:17&lt;00:15, 151063.24it/s]

    </pre>

    -
    56%|█████▌ | 2785064/4997817 [00:17<00:14, 153289.24it/s]
    +
    55%|█████▍ | 2728724/4997817 [00:17<00:15, 151063.24it/s]

    end{sphinxVerbatim}

    -

    56%|█████▌ | 2785064/4997817 [00:17<00:14, 153289.24it/s]

    +

    55%|█████▍ | 2728724/4997817 [00:17<00:15, 151063.24it/s]

    -
    56%|█████▌ | 2800777/4997817 [00:18&lt;00:14, 154423.61it/s]
    +
    55%|█████▍ | 2743939/4997817 [00:18&lt;00:14, 151383.79it/s]

    </pre>

    -
    56%|█████▌ | 2800777/4997817 [00:18<00:14, 154423.61it/s]
    +
    55%|█████▍ | 2743939/4997817 [00:18<00:14, 151383.79it/s]

    end{sphinxVerbatim}

    -

    56%|█████▌ | 2800777/4997817 [00:18<00:14, 154423.61it/s]

    +

    55%|█████▍ | 2743939/4997817 [00:18<00:14, 151383.79it/s]

    -
    56%|█████▋ | 2816532/4997817 [00:18&lt;00:14, 155351.64it/s]
    +
    55%|█████▌ | 2759158/4997817 [00:18&lt;00:14, 151621.64it/s]

    </pre>

    -
    56%|█████▋ | 2816532/4997817 [00:18<00:14, 155351.64it/s]
    +
    55%|█████▌ | 2759158/4997817 [00:18<00:14, 151621.64it/s]

    end{sphinxVerbatim}

    -

    56%|█████▋ | 2816532/4997817 [00:18<00:14, 155351.64it/s]

    +

    55%|█████▌ | 2759158/4997817 [00:18<00:14, 151621.64it/s]

    -
    57%|█████▋ | 2832326/4997817 [00:18&lt;00:13, 156121.44it/s]
    +
    56%|█████▌ | 2774348/4997817 [00:18&lt;00:14, 151702.75it/s]

    </pre>

    -
    57%|█████▋ | 2832326/4997817 [00:18<00:13, 156121.44it/s]
    +
    56%|█████▌ | 2774348/4997817 [00:18<00:14, 151702.75it/s]

    end{sphinxVerbatim}

    -

    57%|█████▋ | 2832326/4997817 [00:18<00:13, 156121.44it/s]

    +

    56%|█████▌ | 2774348/4997817 [00:18<00:14, 151702.75it/s]

    -
    57%|█████▋ | 2848000/4997817 [00:18&lt;00:13, 156304.73it/s]
    +
    56%|█████▌ | 2789597/4997817 [00:18&lt;00:14, 151936.90it/s]

    </pre>

    -
    57%|█████▋ | 2848000/4997817 [00:18<00:13, 156304.73it/s]
    +
    56%|█████▌ | 2789597/4997817 [00:18<00:14, 151936.90it/s]

    end{sphinxVerbatim}

    -

    57%|█████▋ | 2848000/4997817 [00:18<00:13, 156304.73it/s]

    +

    56%|█████▌ | 2789597/4997817 [00:18<00:14, 151936.90it/s]

    -
    57%|█████▋ | 2863639/4997817 [00:18&lt;00:13, 156075.36it/s]
    +
    56%|█████▌ | 2804823/4997817 [00:18&lt;00:14, 152032.20it/s]

    </pre>

    -
    57%|█████▋ | 2863639/4997817 [00:18<00:13, 156075.36it/s]
    +
    56%|█████▌ | 2804823/4997817 [00:18<00:14, 152032.20it/s]

    end{sphinxVerbatim}

    -

    57%|█████▋ | 2863639/4997817 [00:18<00:13, 156075.36it/s]

    +

    56%|█████▌ | 2804823/4997817 [00:18<00:14, 152032.20it/s]

    -
    58%|█████▊ | 2879282/4997817 [00:18&lt;00:13, 156179.98it/s]
    +
    56%|█████▋ | 2820027/4997817 [00:18&lt;00:14, 152028.49it/s]

    </pre>

    -
    58%|█████▊ | 2879282/4997817 [00:18<00:13, 156179.98it/s]
    +
    56%|█████▋ | 2820027/4997817 [00:18<00:14, 152028.49it/s]

    end{sphinxVerbatim}

    -

    58%|█████▊ | 2879282/4997817 [00:18<00:13, 156179.98it/s]

    +

    56%|█████▋ | 2820027/4997817 [00:18<00:14, 152028.49it/s]

    -
    58%|█████▊ | 2894905/4997817 [00:18&lt;00:13, 156130.38it/s]
    +
    57%|█████▋ | 2835231/4997817 [00:18&lt;00:14, 151863.98it/s]

    </pre>

    -
    58%|█████▊ | 2894905/4997817 [00:18<00:13, 156130.38it/s]
    +
    57%|█████▋ | 2835231/4997817 [00:18<00:14, 151863.98it/s]

    end{sphinxVerbatim}

    -

    58%|█████▊ | 2894905/4997817 [00:18<00:13, 156130.38it/s]

    +

    57%|█████▋ | 2835231/4997817 [00:18<00:14, 151863.98it/s]

    -
    58%|█████▊ | 2910521/4997817 [00:18&lt;00:13, 155588.20it/s]
    +
    57%|█████▋ | 2850481/4997817 [00:18&lt;00:14, 152051.86it/s]

    </pre>

    -
    58%|█████▊ | 2910521/4997817 [00:18<00:13, 155588.20it/s]
    +
    57%|█████▋ | 2850481/4997817 [00:18<00:14, 152051.86it/s]

    end{sphinxVerbatim}

    -

    58%|█████▊ | 2910521/4997817 [00:18<00:13, 155588.20it/s]

    +

    57%|█████▋ | 2850481/4997817 [00:18<00:14, 152051.86it/s]

    -
    59%|█████▊ | 2926101/4997817 [00:18&lt;00:13, 155647.77it/s]
    +
    57%|█████▋ | 2865687/4997817 [00:18&lt;00:14, 152021.10it/s]

    </pre>

    -
    59%|█████▊ | 2926101/4997817 [00:18<00:13, 155647.77it/s]
    +
    57%|█████▋ | 2865687/4997817 [00:18<00:14, 152021.10it/s]

    end{sphinxVerbatim}

    -

    59%|█████▊ | 2926101/4997817 [00:18<00:13, 155647.77it/s]

    +

    57%|█████▋ | 2865687/4997817 [00:18<00:14, 152021.10it/s]

    -
    59%|█████▉ | 2941668/4997817 [00:18&lt;00:13, 155279.31it/s]
    +
    58%|█████▊ | 2880890/4997817 [00:18&lt;00:13, 151948.23it/s]

    </pre>

    -
    59%|█████▉ | 2941668/4997817 [00:18<00:13, 155279.31it/s]
    +
    58%|█████▊ | 2880890/4997817 [00:18<00:13, 151948.23it/s]

    end{sphinxVerbatim}

    -

    59%|█████▉ | 2941668/4997817 [00:18<00:13, 155279.31it/s]

    +

    58%|█████▊ | 2880890/4997817 [00:18<00:13, 151948.23it/s]

    -
    59%|█████▉ | 2957198/4997817 [00:19&lt;00:13, 155117.95it/s]
    +
    58%|█████▊ | 2896119/4997817 [00:19&lt;00:13, 152047.99it/s]

    </pre>

    -
    59%|█████▉ | 2957198/4997817 [00:19<00:13, 155117.95it/s]
    +
    58%|█████▊ | 2896119/4997817 [00:19<00:13, 152047.99it/s]

    end{sphinxVerbatim}

    -

    59%|█████▉ | 2957198/4997817 [00:19<00:13, 155117.95it/s]

    +

    58%|█████▊ | 2896119/4997817 [00:19<00:13, 152047.99it/s]

    -
    59%|█████▉ | 2972765/4997817 [00:19&lt;00:13, 155281.18it/s]
    +
    58%|█████▊ | 2911324/4997817 [00:19&lt;00:13, 151894.90it/s]

    </pre>

    -
    59%|█████▉ | 2972765/4997817 [00:19<00:13, 155281.18it/s]
    +
    58%|█████▊ | 2911324/4997817 [00:19<00:13, 151894.90it/s]

    end{sphinxVerbatim}

    -

    59%|█████▉ | 2972765/4997817 [00:19<00:13, 155281.18it/s]

    +

    58%|█████▊ | 2911324/4997817 [00:19<00:13, 151894.90it/s]

    -
    60%|█████▉ | 2988398/4997817 [00:19&lt;00:12, 155591.93it/s]
    +
    59%|█████▊ | 2926514/4997817 [00:19&lt;00:13, 151707.99it/s]

    </pre>

    -
    60%|█████▉ | 2988398/4997817 [00:19<00:12, 155591.93it/s]
    +
    59%|█████▊ | 2926514/4997817 [00:19<00:13, 151707.99it/s]

    end{sphinxVerbatim}

    -

    60%|█████▉ | 2988398/4997817 [00:19<00:12, 155591.93it/s]

    +

    59%|█████▊ | 2926514/4997817 [00:19<00:13, 151707.99it/s]

    -
    60%|██████ | 3003958/4997817 [00:19&lt;00:12, 155555.18it/s]
    +
    59%|█████▉ | 2941685/4997817 [00:19&lt;00:13, 151331.30it/s]

    </pre>

    -
    60%|██████ | 3003958/4997817 [00:19<00:12, 155555.18it/s]
    +
    59%|█████▉ | 2941685/4997817 [00:19<00:13, 151331.30it/s]

    end{sphinxVerbatim}

    -

    60%|██████ | 3003958/4997817 [00:19<00:12, 155555.18it/s]

    +

    59%|█████▉ | 2941685/4997817 [00:19<00:13, 151331.30it/s]

    -
    60%|██████ | 3019690/4997817 [00:19&lt;00:12, 156080.74it/s]
    +
    59%|█████▉ | 2956862/4997817 [00:19&lt;00:13, 151461.27it/s]

    </pre>

    -
    60%|██████ | 3019690/4997817 [00:19<00:12, 156080.74it/s]
    +
    59%|█████▉ | 2956862/4997817 [00:19<00:13, 151461.27it/s]

    end{sphinxVerbatim}

    -

    60%|██████ | 3019690/4997817 [00:19<00:12, 156080.74it/s]

    +

    59%|█████▉ | 2956862/4997817 [00:19<00:13, 151461.27it/s]

    -
    61%|██████ | 3035372/4997817 [00:19&lt;00:12, 156299.79it/s]
    +
    59%|█████▉ | 2972034/4997817 [00:19&lt;00:13, 151534.88it/s]

    </pre>

    -
    61%|██████ | 3035372/4997817 [00:19<00:12, 156299.79it/s]
    +
    59%|█████▉ | 2972034/4997817 [00:19<00:13, 151534.88it/s]

    end{sphinxVerbatim}

    -

    61%|██████ | 3035372/4997817 [00:19<00:12, 156299.79it/s]

    +

    59%|█████▉ | 2972034/4997817 [00:19<00:13, 151534.88it/s]

    -
    61%|██████ | 3051003/4997817 [00:19&lt;00:12, 154260.07it/s]
    +
    60%|█████▉ | 2987200/4997817 [00:19&lt;00:13, 151569.37it/s]

    </pre>

    -
    61%|██████ | 3051003/4997817 [00:19<00:12, 154260.07it/s]
    +
    60%|█████▉ | 2987200/4997817 [00:19<00:13, 151569.37it/s]

    end{sphinxVerbatim}

    -

    61%|██████ | 3051003/4997817 [00:19<00:12, 154260.07it/s]

    +

    60%|█████▉ | 2987200/4997817 [00:19<00:13, 151569.37it/s]

    -
    61%|██████▏ | 3066480/4997817 [00:19&lt;00:12, 154409.21it/s]
    +
    60%|██████ | 3002482/4997817 [00:19&lt;00:13, 151940.96it/s]

    </pre>

    -
    61%|██████▏ | 3066480/4997817 [00:19<00:12, 154409.21it/s]
    +
    60%|██████ | 3002482/4997817 [00:19<00:13, 151940.96it/s]

    end{sphinxVerbatim}

    -

    61%|██████▏ | 3066480/4997817 [00:19<00:12, 154409.21it/s]

    +

    60%|██████ | 3002482/4997817 [00:19<00:13, 151940.96it/s]

    -
    62%|██████▏ | 3082098/4997817 [00:19&lt;00:12, 154934.80it/s]
    +
    60%|██████ | 3017677/4997817 [00:19&lt;00:13, 151819.15it/s]

    </pre>

    -
    62%|██████▏ | 3082098/4997817 [00:19<00:12, 154934.80it/s]
    +
    60%|██████ | 3017677/4997817 [00:19<00:13, 151819.15it/s]

    end{sphinxVerbatim}

    -

    62%|██████▏ | 3082098/4997817 [00:19<00:12, 154934.80it/s]

    +

    60%|██████ | 3017677/4997817 [00:19<00:13, 151819.15it/s]

    -
    62%|██████▏ | 3097722/4997817 [00:19&lt;00:12, 155321.11it/s]
    +
    61%|██████ | 3032885/4997817 [00:19&lt;00:12, 151894.65it/s]

    </pre>

    -
    62%|██████▏ | 3097722/4997817 [00:19<00:12, 155321.11it/s]
    +
    61%|██████ | 3032885/4997817 [00:19<00:12, 151894.65it/s]

    end{sphinxVerbatim}

    -

    62%|██████▏ | 3097722/4997817 [00:19<00:12, 155321.11it/s]

    +

    61%|██████ | 3032885/4997817 [00:19<00:12, 151894.65it/s]

    -
    62%|██████▏ | 3113318/4997817 [00:20&lt;00:12, 155509.63it/s]
    +
    61%|██████ | 3048113/4997817 [00:20&lt;00:12, 152008.14it/s]

    </pre>

    -
    62%|██████▏ | 3113318/4997817 [00:20<00:12, 155509.63it/s]
    +
    61%|██████ | 3048113/4997817 [00:20<00:12, 152008.14it/s]

    end{sphinxVerbatim}

    -

    62%|██████▏ | 3113318/4997817 [00:20<00:12, 155509.63it/s]

    +

    61%|██████ | 3048113/4997817 [00:20<00:12, 152008.14it/s]

    -
    63%|██████▎ | 3128913/4997817 [00:20&lt;00:12, 155639.58it/s]
    +
    61%|██████▏ | 3063393/4997817 [00:20&lt;00:12, 152242.46it/s]

    </pre>

    -
    63%|██████▎ | 3128913/4997817 [00:20<00:12, 155639.58it/s]
    +
    61%|██████▏ | 3063393/4997817 [00:20<00:12, 152242.46it/s]

    end{sphinxVerbatim}

    -

    63%|██████▎ | 3128913/4997817 [00:20<00:12, 155639.58it/s]

    +

    61%|██████▏ | 3063393/4997817 [00:20<00:12, 152242.46it/s]

    -
    63%|██████▎ | 3144479/4997817 [00:20&lt;00:11, 155436.41it/s]
    +
    62%|██████▏ | 3078624/4997817 [00:20&lt;00:12, 152259.82it/s]

    </pre>

    -
    63%|██████▎ | 3144479/4997817 [00:20<00:11, 155436.41it/s]
    +
    62%|██████▏ | 3078624/4997817 [00:20<00:12, 152259.82it/s]

    end{sphinxVerbatim}

    -

    63%|██████▎ | 3144479/4997817 [00:20<00:11, 155436.41it/s]

    +

    62%|██████▏ | 3078624/4997817 [00:20<00:12, 152259.82it/s]

    -
    63%|██████▎ | 3160024/4997817 [00:20&lt;00:11, 155424.44it/s]
    +
    62%|██████▏ | 3093999/4997817 [00:20&lt;00:12, 152703.83it/s]

    </pre>

    -
    63%|██████▎ | 3160024/4997817 [00:20<00:11, 155424.44it/s]
    +
    62%|██████▏ | 3093999/4997817 [00:20<00:12, 152703.83it/s]

    end{sphinxVerbatim}

    -

    63%|██████▎ | 3160024/4997817 [00:20<00:11, 155424.44it/s]

    +

    62%|██████▏ | 3093999/4997817 [00:20<00:12, 152703.83it/s]

    -
    64%|██████▎ | 3175636/4997817 [00:20&lt;00:11, 155631.16it/s]
    +
    62%|██████▏ | 3109270/4997817 [00:20&lt;00:12, 152597.70it/s]

    </pre>

    -
    64%|██████▎ | 3175636/4997817 [00:20<00:11, 155631.16it/s]
    +
    62%|██████▏ | 3109270/4997817 [00:20<00:12, 152597.70it/s]

    end{sphinxVerbatim}

    -

    64%|██████▎ | 3175636/4997817 [00:20<00:11, 155631.16it/s]

    +

    62%|██████▏ | 3109270/4997817 [00:20<00:12, 152597.70it/s]

    -
    64%|██████▍ | 3191241/4997817 [00:20&lt;00:11, 155756.16it/s]
    +
    63%|██████▎ | 3124545/4997817 [00:20&lt;00:12, 152640.02it/s]

    </pre>

    -
    64%|██████▍ | 3191241/4997817 [00:20<00:11, 155756.16it/s]
    +
    63%|██████▎ | 3124545/4997817 [00:20<00:12, 152640.02it/s]

    end{sphinxVerbatim}

    -

    64%|██████▍ | 3191241/4997817 [00:20<00:11, 155756.16it/s]

    +

    63%|██████▎ | 3124545/4997817 [00:20<00:12, 152640.02it/s]

    -
    64%|██████▍ | 3206843/4997817 [00:20&lt;00:11, 155833.52it/s]
    +
    63%|██████▎ | 3139820/4997817 [00:20&lt;00:12, 152672.28it/s]

    </pre>

    -
    64%|██████▍ | 3206843/4997817 [00:20<00:11, 155833.52it/s]
    +
    63%|██████▎ | 3139820/4997817 [00:20<00:12, 152672.28it/s]

    end{sphinxVerbatim}

    -

    64%|██████▍ | 3206843/4997817 [00:20<00:11, 155833.52it/s]

    +

    63%|██████▎ | 3139820/4997817 [00:20<00:12, 152672.28it/s]

    -
    64%|██████▍ | 3222427/4997817 [00:20&lt;00:11, 155273.07it/s]
    +
    63%|██████▎ | 3155088/4997817 [00:20&lt;00:12, 152185.95it/s]

    </pre>

    -
    64%|██████▍ | 3222427/4997817 [00:20<00:11, 155273.07it/s]
    +
    63%|██████▎ | 3155088/4997817 [00:20<00:12, 152185.95it/s]

    end{sphinxVerbatim}

    -

    64%|██████▍ | 3222427/4997817 [00:20<00:11, 155273.07it/s]

    +

    63%|██████▎ | 3155088/4997817 [00:20<00:12, 152185.95it/s]

    -
    65%|██████▍ | 3237981/4997817 [00:20&lt;00:11, 155351.19it/s]
    +
    63%|██████▎ | 3170307/4997817 [00:20&lt;00:12, 152112.32it/s]

    </pre>

    -
    65%|██████▍ | 3237981/4997817 [00:20<00:11, 155351.19it/s]
    +
    63%|██████▎ | 3170307/4997817 [00:20<00:12, 152112.32it/s]

    end{sphinxVerbatim}

    -

    65%|██████▍ | 3237981/4997817 [00:20<00:11, 155351.19it/s]

    +

    63%|██████▎ | 3170307/4997817 [00:20<00:12, 152112.32it/s]

    -
    65%|██████▌ | 3253517/4997817 [00:20&lt;00:11, 154931.20it/s]
    +
    64%|██████▎ | 3185530/4997817 [00:20&lt;00:11, 152144.01it/s]

    </pre>

    -
    65%|██████▌ | 3253517/4997817 [00:20<00:11, 154931.20it/s]
    +
    64%|██████▎ | 3185530/4997817 [00:20<00:11, 152144.01it/s]

    end{sphinxVerbatim}

    -

    65%|██████▌ | 3253517/4997817 [00:20<00:11, 154931.20it/s]

    +

    64%|██████▎ | 3185530/4997817 [00:20<00:11, 152144.01it/s]

    -
    65%|██████▌ | 3269081/4997817 [00:21&lt;00:11, 155140.63it/s]
    +
    64%|██████▍ | 3200769/4997817 [00:21&lt;00:11, 152215.78it/s]

    </pre>

    -
    65%|██████▌ | 3269081/4997817 [00:21<00:11, 155140.63it/s]
    +
    64%|██████▍ | 3200769/4997817 [00:21<00:11, 152215.78it/s]

    end{sphinxVerbatim}

    -

    65%|██████▌ | 3269081/4997817 [00:21<00:11, 155140.63it/s]

    +

    64%|██████▍ | 3200769/4997817 [00:21<00:11, 152215.78it/s]

    -
    66%|██████▌ | 3284643/4997817 [00:21&lt;00:11, 155282.26it/s]
    +
    64%|██████▍ | 3215991/4997817 [00:21&lt;00:11, 152101.57it/s]

    </pre>

    -
    66%|██████▌ | 3284643/4997817 [00:21<00:11, 155282.26it/s]
    +
    64%|██████▍ | 3215991/4997817 [00:21<00:11, 152101.57it/s]

    end{sphinxVerbatim}

    -

    66%|██████▌ | 3284643/4997817 [00:21<00:11, 155282.26it/s]

    +

    64%|██████▍ | 3215991/4997817 [00:21<00:11, 152101.57it/s]

    -
    66%|██████▌ | 3300172/4997817 [00:21&lt;00:10, 154899.59it/s]
    +
    65%|██████▍ | 3231212/4997817 [00:21&lt;00:11, 152132.03it/s]

    </pre>

    -
    66%|██████▌ | 3300172/4997817 [00:21<00:10, 154899.59it/s]
    +
    65%|██████▍ | 3231212/4997817 [00:21<00:11, 152132.03it/s]

    end{sphinxVerbatim}

    -

    66%|██████▌ | 3300172/4997817 [00:21<00:10, 154899.59it/s]

    +

    65%|██████▍ | 3231212/4997817 [00:21<00:11, 152132.03it/s]

    -
    66%|██████▋ | 3315734/4997817 [00:21&lt;00:10, 155110.38it/s]
    +
    65%|██████▍ | 3246456/4997817 [00:21&lt;00:11, 152222.64it/s]

    </pre>

    -
    66%|██████▋ | 3315734/4997817 [00:21<00:10, 155110.38it/s]
    +
    65%|██████▍ | 3246456/4997817 [00:21<00:11, 152222.64it/s]

    end{sphinxVerbatim}

    -

    66%|██████▋ | 3315734/4997817 [00:21<00:10, 155110.38it/s]

    +

    65%|██████▍ | 3246456/4997817 [00:21<00:11, 152222.64it/s]

    -
    67%|██████▋ | 3331370/4997817 [00:21&lt;00:10, 155482.10it/s]
    +
    65%|██████▌ | 3261753/4997817 [00:21&lt;00:11, 152443.70it/s]

    </pre>

    -
    67%|██████▋ | 3331370/4997817 [00:21<00:10, 155482.10it/s]
    +
    65%|██████▌ | 3261753/4997817 [00:21<00:11, 152443.70it/s]

    end{sphinxVerbatim}

    -

    67%|██████▋ | 3331370/4997817 [00:21<00:10, 155482.10it/s]

    +

    65%|██████▌ | 3261753/4997817 [00:21<00:11, 152443.70it/s]

    -
    67%|██████▋ | 3346919/4997817 [00:21&lt;00:10, 155478.18it/s]
    +
    66%|██████▌ | 3277013/4997817 [00:21&lt;00:11, 152488.65it/s]

    </pre>

    -
    67%|██████▋ | 3346919/4997817 [00:21<00:10, 155478.18it/s]
    +
    66%|██████▌ | 3277013/4997817 [00:21<00:11, 152488.65it/s]

    end{sphinxVerbatim}

    -

    67%|██████▋ | 3346919/4997817 [00:21<00:10, 155478.18it/s]

    +

    66%|██████▌ | 3277013/4997817 [00:21<00:11, 152488.65it/s]

    -
    67%|██████▋ | 3362526/4997817 [00:21&lt;00:10, 155654.59it/s]
    +
    66%|██████▌ | 3292262/4997817 [00:21&lt;00:11, 152111.15it/s]

    </pre>

    -
    67%|██████▋ | 3362526/4997817 [00:21<00:10, 155654.59it/s]
    +
    66%|██████▌ | 3292262/4997817 [00:21<00:11, 152111.15it/s]

    end{sphinxVerbatim}

    -

    67%|██████▋ | 3362526/4997817 [00:21<00:10, 155654.59it/s]

    +

    66%|██████▌ | 3292262/4997817 [00:21<00:11, 152111.15it/s]

    -
    68%|██████▊ | 3378092/4997817 [00:21&lt;00:10, 155458.59it/s]
    +
    66%|██████▌ | 3307474/4997817 [00:21&lt;00:11, 151890.48it/s]

    </pre>

    -
    68%|██████▊ | 3378092/4997817 [00:21<00:10, 155458.59it/s]
    +
    66%|██████▌ | 3307474/4997817 [00:21<00:11, 151890.48it/s]

    end{sphinxVerbatim}

    -

    68%|██████▊ | 3378092/4997817 [00:21<00:10, 155458.59it/s]

    +

    66%|██████▌ | 3307474/4997817 [00:21<00:11, 151890.48it/s]

    -
    68%|██████▊ | 3393723/4997817 [00:21&lt;00:10, 155711.81it/s]
    +
    66%|██████▋ | 3322664/4997817 [00:21&lt;00:11, 151792.11it/s]

    </pre>

    -
    68%|██████▊ | 3393723/4997817 [00:21<00:10, 155711.81it/s]
    +
    66%|██████▋ | 3322664/4997817 [00:21<00:11, 151792.11it/s]

    end{sphinxVerbatim}

    -

    68%|██████▊ | 3393723/4997817 [00:21<00:10, 155711.81it/s]

    +

    66%|██████▋ | 3322664/4997817 [00:21<00:11, 151792.11it/s]

    -
    68%|██████▊ | 3409391/4997817 [00:21&lt;00:10, 155999.46it/s]
    +
    67%|██████▋ | 3338019/4997817 [00:21&lt;00:10, 152314.90it/s]

    </pre>

    -
    68%|██████▊ | 3409391/4997817 [00:21<00:10, 155999.46it/s]
    +
    67%|██████▋ | 3338019/4997817 [00:21<00:10, 152314.90it/s]

    end{sphinxVerbatim}

    -

    68%|██████▊ | 3409391/4997817 [00:21<00:10, 155999.46it/s]

    +

    67%|██████▋ | 3338019/4997817 [00:21<00:10, 152314.90it/s]

    -
    69%|██████▊ | 3425019/4997817 [00:22&lt;00:10, 156082.27it/s]
    +
    67%|██████▋ | 3353323/4997817 [00:22&lt;00:10, 152529.53it/s]

    </pre>

    -
    69%|██████▊ | 3425019/4997817 [00:22<00:10, 156082.27it/s]
    +
    67%|██████▋ | 3353323/4997817 [00:22<00:10, 152529.53it/s]

    end{sphinxVerbatim}

    -

    69%|██████▊ | 3425019/4997817 [00:22<00:10, 156082.27it/s]

    +

    67%|██████▋ | 3353323/4997817 [00:22<00:10, 152529.53it/s]

    -
    69%|██████▉ | 3440777/4997817 [00:22&lt;00:09, 156528.39it/s]
    +
    67%|██████▋ | 3368577/4997817 [00:22&lt;00:10, 152460.16it/s]

    </pre>

    -
    69%|██████▉ | 3440777/4997817 [00:22<00:09, 156528.39it/s]
    +
    67%|██████▋ | 3368577/4997817 [00:22<00:10, 152460.16it/s]

    end{sphinxVerbatim}

    -

    69%|██████▉ | 3440777/4997817 [00:22<00:09, 156528.39it/s]

    +

    67%|██████▋ | 3368577/4997817 [00:22<00:10, 152460.16it/s]

    -
    69%|██████▉ | 3456471/4997817 [00:22&lt;00:09, 156650.75it/s]
    +
    68%|██████▊ | 3383824/4997817 [00:22&lt;00:10, 152309.28it/s]

    </pre>

    -
    69%|██████▉ | 3456471/4997817 [00:22<00:09, 156650.75it/s]
    +
    68%|██████▊ | 3383824/4997817 [00:22<00:10, 152309.28it/s]

    end{sphinxVerbatim}

    -

    69%|██████▉ | 3456471/4997817 [00:22<00:09, 156650.75it/s]

    +

    68%|██████▊ | 3383824/4997817 [00:22<00:10, 152309.28it/s]

    -
    69%|██████▉ | 3472159/4997817 [00:22&lt;00:09, 156718.43it/s]
    +
    68%|██████▊ | 3399056/4997817 [00:22&lt;00:10, 151943.79it/s]

    </pre>

    -
    69%|██████▉ | 3472159/4997817 [00:22<00:09, 156718.43it/s]
    +
    68%|██████▊ | 3399056/4997817 [00:22<00:10, 151943.79it/s]

    end{sphinxVerbatim}

    -

    69%|██████▉ | 3472159/4997817 [00:22<00:09, 156718.43it/s]

    +

    68%|██████▊ | 3399056/4997817 [00:22<00:10, 151943.79it/s]

    -
    70%|██████▉ | 3487831/4997817 [00:22&lt;00:09, 156663.27it/s]
    +
    68%|██████▊ | 3414251/4997817 [00:22&lt;00:10, 151765.12it/s]

    </pre>

    -
    70%|██████▉ | 3487831/4997817 [00:22<00:09, 156663.27it/s]
    +
    68%|██████▊ | 3414251/4997817 [00:22<00:10, 151765.12it/s]

    end{sphinxVerbatim}

    -

    70%|██████▉ | 3487831/4997817 [00:22<00:09, 156663.27it/s]

    +

    68%|██████▊ | 3414251/4997817 [00:22<00:10, 151765.12it/s]

    -
    70%|███████ | 3503498/4997817 [00:22&lt;00:09, 156604.19it/s]
    +
    69%|██████▊ | 3429493/4997817 [00:22&lt;00:10, 151958.92it/s]

    </pre>

    -
    70%|███████ | 3503498/4997817 [00:22<00:09, 156604.19it/s]
    +
    69%|██████▊ | 3429493/4997817 [00:22<00:10, 151958.92it/s]

    end{sphinxVerbatim}

    -

    70%|███████ | 3503498/4997817 [00:22<00:09, 156604.19it/s]

    +

    69%|██████▊ | 3429493/4997817 [00:22<00:10, 151958.92it/s]

    -
    70%|███████ | 3519159/4997817 [00:22&lt;00:09, 156242.75it/s]
    +
    69%|██████▉ | 3444690/4997817 [00:22&lt;00:10, 151836.87it/s]

    </pre>

    -
    70%|███████ | 3519159/4997817 [00:22<00:09, 156242.75it/s]
    +
    69%|██████▉ | 3444690/4997817 [00:22<00:10, 151836.87it/s]

    end{sphinxVerbatim}

    -

    70%|███████ | 3519159/4997817 [00:22<00:09, 156242.75it/s]

    +

    69%|██████▉ | 3444690/4997817 [00:22<00:10, 151836.87it/s]

    -
    71%|███████ | 3534858/4997817 [00:22&lt;00:09, 156463.62it/s]
    +
    69%|██████▉ | 3459874/4997817 [00:22&lt;00:10, 151774.03it/s]

    </pre>

    -
    71%|███████ | 3534858/4997817 [00:22<00:09, 156463.62it/s]
    +
    69%|██████▉ | 3459874/4997817 [00:22<00:10, 151774.03it/s]

    end{sphinxVerbatim}

    -

    71%|███████ | 3534858/4997817 [00:22<00:09, 156463.62it/s]

    +

    69%|██████▉ | 3459874/4997817 [00:22<00:10, 151774.03it/s]

    -
    71%|███████ | 3550505/4997817 [00:22&lt;00:09, 149036.13it/s]
    +
    70%|██████▉ | 3475111/4997817 [00:22&lt;00:10, 151949.21it/s]

    </pre>

    -
    71%|███████ | 3550505/4997817 [00:22<00:09, 149036.13it/s]
    +
    70%|██████▉ | 3475111/4997817 [00:22<00:10, 151949.21it/s]

    end{sphinxVerbatim}

    -

    71%|███████ | 3550505/4997817 [00:22<00:09, 149036.13it/s]

    +

    70%|██████▉ | 3475111/4997817 [00:22<00:10, 151949.21it/s]

    -
    71%|███████▏ | 3566172/4997817 [00:22&lt;00:09, 151244.49it/s]
    +
    70%|██████▉ | 3490307/4997817 [00:22&lt;00:09, 151945.21it/s]

    </pre>

    -
    71%|███████▏ | 3566172/4997817 [00:22<00:09, 151244.49it/s]
    +
    70%|██████▉ | 3490307/4997817 [00:22<00:09, 151945.21it/s]

    end{sphinxVerbatim}

    -

    71%|███████▏ | 3566172/4997817 [00:22<00:09, 151244.49it/s]

    +

    70%|██████▉ | 3490307/4997817 [00:22<00:09, 151945.21it/s]

    -
    72%|███████▏ | 3581958/4997817 [00:23&lt;00:09, 153178.22it/s]
    +
    70%|███████ | 3505502/4997817 [00:23&lt;00:09, 149425.36it/s]

    </pre>

    -
    72%|███████▏ | 3581958/4997817 [00:23<00:09, 153178.22it/s]
    +
    70%|███████ | 3505502/4997817 [00:23<00:09, 149425.36it/s]

    end{sphinxVerbatim}

    -

    72%|███████▏ | 3581958/4997817 [00:23<00:09, 153178.22it/s]

    +

    70%|███████ | 3505502/4997817 [00:23<00:09, 149425.36it/s]

    -
    72%|███████▏ | 3597789/4997817 [00:23&lt;00:09, 154690.37it/s]
    +
    70%|███████ | 3520675/4997817 [00:23&lt;00:09, 150104.81it/s]

    </pre>

    -
    72%|███████▏ | 3597789/4997817 [00:23<00:09, 154690.37it/s]
    +
    70%|███████ | 3520675/4997817 [00:23<00:09, 150104.81it/s]

    end{sphinxVerbatim}

    -

    72%|███████▏ | 3597789/4997817 [00:23<00:09, 154690.37it/s]

    +

    70%|███████ | 3520675/4997817 [00:23<00:09, 150104.81it/s]

    -
    72%|███████▏ | 3613468/4997817 [00:23&lt;00:08, 155310.76it/s]
    +
    71%|███████ | 3536035/4997817 [00:23&lt;00:09, 151141.36it/s]

    </pre>

    -
    72%|███████▏ | 3613468/4997817 [00:23<00:08, 155310.76it/s]
    +
    71%|███████ | 3536035/4997817 [00:23<00:09, 151141.36it/s]

    end{sphinxVerbatim}

    -

    72%|███████▏ | 3613468/4997817 [00:23<00:08, 155310.76it/s]

    +

    71%|███████ | 3536035/4997817 [00:23<00:09, 151141.36it/s]

    -
    73%|███████▎ | 3629200/4997817 [00:23&lt;00:08, 155906.08it/s]
    +
    71%|███████ | 3551305/4997817 [00:23&lt;00:09, 151603.89it/s]

    </pre>

    -
    73%|███████▎ | 3629200/4997817 [00:23<00:08, 155906.08it/s]
    +
    71%|███████ | 3551305/4997817 [00:23<00:09, 151603.89it/s]

    end{sphinxVerbatim}

    -

    73%|███████▎ | 3629200/4997817 [00:23<00:08, 155906.08it/s]

    +

    71%|███████ | 3551305/4997817 [00:23<00:09, 151603.89it/s]

    -
    73%|███████▎ | 3644976/4997817 [00:23&lt;00:08, 156457.28it/s]
    +
    71%|███████▏ | 3566631/4997817 [00:23&lt;00:09, 152096.15it/s]

    </pre>

    -
    73%|███████▎ | 3644976/4997817 [00:23<00:08, 156457.28it/s]
    +
    71%|███████▏ | 3566631/4997817 [00:23<00:09, 152096.15it/s]

    end{sphinxVerbatim}

    -

    73%|███████▎ | 3644976/4997817 [00:23<00:08, 156457.28it/s]

    +

    71%|███████▏ | 3566631/4997817 [00:23<00:09, 152096.15it/s]

    -
    73%|███████▎ | 3660681/4997817 [00:23&lt;00:08, 156631.04it/s]
    +
    72%|███████▏ | 3582057/4997817 [00:23&lt;00:09, 152739.92it/s]

    </pre>

    -
    73%|███████▎ | 3660681/4997817 [00:23<00:08, 156631.04it/s]
    +
    72%|███████▏ | 3582057/4997817 [00:23<00:09, 152739.92it/s]

    end{sphinxVerbatim}

    -

    73%|███████▎ | 3660681/4997817 [00:23<00:08, 156631.04it/s]

    +

    72%|███████▏ | 3582057/4997817 [00:23<00:09, 152739.92it/s]

    -
    74%|███████▎ | 3676412/4997817 [00:23&lt;00:08, 156830.70it/s]
    +
    72%|███████▏ | 3597451/4997817 [00:23&lt;00:09, 153097.47it/s]

    </pre>

    -
    74%|███████▎ | 3676412/4997817 [00:23<00:08, 156830.70it/s]
    +
    72%|███████▏ | 3597451/4997817 [00:23<00:09, 153097.47it/s]

    end{sphinxVerbatim}

    -

    74%|███████▎ | 3676412/4997817 [00:23<00:08, 156830.70it/s]

    +

    72%|███████▏ | 3597451/4997817 [00:23<00:09, 153097.47it/s]

    -
    74%|███████▍ | 3692102/4997817 [00:23&lt;00:08, 156763.32it/s]
    +
    72%|███████▏ | 3612812/4997817 [00:23&lt;00:09, 153248.53it/s]

    </pre>

    -
    74%|███████▍ | 3692102/4997817 [00:23<00:08, 156763.32it/s]
    +
    72%|███████▏ | 3612812/4997817 [00:23<00:09, 153248.53it/s]

    end{sphinxVerbatim}

    -

    74%|███████▍ | 3692102/4997817 [00:23<00:08, 156763.32it/s]

    +

    72%|███████▏ | 3612812/4997817 [00:23<00:09, 153248.53it/s]

    -
    74%|███████▍ | 3707783/4997817 [00:23&lt;00:08, 156228.59it/s]
    +
    73%|███████▎ | 3628145/4997817 [00:23&lt;00:08, 153269.81it/s]

    </pre>

    -
    74%|███████▍ | 3707783/4997817 [00:23<00:08, 156228.59it/s]
    +
    73%|███████▎ | 3628145/4997817 [00:23<00:08, 153269.81it/s]

    end{sphinxVerbatim}

    -

    74%|███████▍ | 3707783/4997817 [00:23<00:08, 156228.59it/s]

    +

    73%|███████▎ | 3628145/4997817 [00:23<00:08, 153269.81it/s]

    -
    75%|███████▍ | 3723410/4997817 [00:23&lt;00:08, 156001.90it/s]
    +
    73%|███████▎ | 3643473/4997817 [00:23&lt;00:08, 153075.54it/s]

    </pre>

    -
    75%|███████▍ | 3723410/4997817 [00:23<00:08, 156001.90it/s]
    +
    73%|███████▎ | 3643473/4997817 [00:23<00:08, 153075.54it/s]

    end{sphinxVerbatim}

    -

    75%|███████▍ | 3723410/4997817 [00:23<00:08, 156001.90it/s]

    +

    73%|███████▎ | 3643473/4997817 [00:23<00:08, 153075.54it/s]

    -
    75%|███████▍ | 3739013/4997817 [00:24&lt;00:08, 155896.92it/s]
    +
    73%|███████▎ | 3658782/4997817 [00:24&lt;00:08, 152987.26it/s]

    </pre>

    -
    75%|███████▍ | 3739013/4997817 [00:24<00:08, 155896.92it/s]
    +
    73%|███████▎ | 3658782/4997817 [00:24<00:08, 152987.26it/s]

    end{sphinxVerbatim}

    -

    75%|███████▍ | 3739013/4997817 [00:24<00:08, 155896.92it/s]

    +

    73%|███████▎ | 3658782/4997817 [00:24<00:08, 152987.26it/s]

    -
    75%|███████▌ | 3754680/4997817 [00:24&lt;00:07, 156126.72it/s]
    +
    74%|███████▎ | 3674219/4997817 [00:24&lt;00:08, 153400.11it/s]

    </pre>

    -
    75%|███████▌ | 3754680/4997817 [00:24<00:07, 156126.72it/s]
    +
    74%|███████▎ | 3674219/4997817 [00:24<00:08, 153400.11it/s]

    end{sphinxVerbatim}

    -

    75%|███████▌ | 3754680/4997817 [00:24<00:07, 156126.72it/s]

    +

    74%|███████▎ | 3674219/4997817 [00:24<00:08, 153400.11it/s]

    -
    75%|███████▌ | 3770294/4997817 [00:24&lt;00:07, 155956.77it/s]
    +
    74%|███████▍ | 3689609/4997817 [00:24&lt;00:08, 153548.76it/s]

    </pre>

    -
    75%|███████▌ | 3770294/4997817 [00:24<00:07, 155956.77it/s]
    +
    74%|███████▍ | 3689609/4997817 [00:24<00:08, 153548.76it/s]

    end{sphinxVerbatim}

    -

    75%|███████▌ | 3770294/4997817 [00:24<00:07, 155956.77it/s]

    +

    74%|███████▍ | 3689609/4997817 [00:24<00:08, 153548.76it/s]

    -
    76%|███████▌ | 3785910/4997817 [00:24&lt;00:07, 156016.86it/s]
    +
    74%|███████▍ | 3704965/4997817 [00:24&lt;00:08, 153215.87it/s]

    </pre>

    -
    76%|███████▌ | 3785910/4997817 [00:24<00:07, 156016.86it/s]
    +
    74%|███████▍ | 3704965/4997817 [00:24<00:08, 153215.87it/s]

    end{sphinxVerbatim}

    -

    76%|███████▌ | 3785910/4997817 [00:24<00:07, 156016.86it/s]

    +

    74%|███████▍ | 3704965/4997817 [00:24<00:08, 153215.87it/s]

    -
    76%|███████▌ | 3801513/4997817 [00:24&lt;00:07, 155964.71it/s]
    +
    74%|███████▍ | 3720330/4997817 [00:24&lt;00:08, 153308.02it/s]

    </pre>

    -
    76%|███████▌ | 3801513/4997817 [00:24<00:07, 155964.71it/s]
    +
    74%|███████▍ | 3720330/4997817 [00:24<00:08, 153308.02it/s]

    end{sphinxVerbatim}

    -

    76%|███████▌ | 3801513/4997817 [00:24<00:07, 155964.71it/s]

    +

    74%|███████▍ | 3720330/4997817 [00:24<00:08, 153308.02it/s]

    -
    76%|███████▋ | 3817120/4997817 [00:24&lt;00:07, 155992.84it/s]
    +
    75%|███████▍ | 3735745/4997817 [00:24&lt;00:08, 153557.19it/s]

    </pre>

    -
    76%|███████▋ | 3817120/4997817 [00:24<00:07, 155992.84it/s]
    +
    75%|███████▍ | 3735745/4997817 [00:24<00:08, 153557.19it/s]

    end{sphinxVerbatim}

    -

    76%|███████▋ | 3817120/4997817 [00:24<00:07, 155992.84it/s]

    +

    75%|███████▍ | 3735745/4997817 [00:24<00:08, 153557.19it/s]

    -
    77%|███████▋ | 3832720/4997817 [00:24&lt;00:07, 155983.55it/s]
    +
    75%|███████▌ | 3751101/4997817 [00:24&lt;00:08, 153486.47it/s]

    </pre>

    -
    77%|███████▋ | 3832720/4997817 [00:24<00:07, 155983.55it/s]
    +
    75%|███████▌ | 3751101/4997817 [00:24<00:08, 153486.47it/s]

    end{sphinxVerbatim}

    -

    77%|███████▋ | 3832720/4997817 [00:24<00:07, 155983.55it/s]

    +

    75%|███████▌ | 3751101/4997817 [00:24<00:08, 153486.47it/s]

    -
    77%|███████▋ | 3848345/4997817 [00:24&lt;00:07, 156059.90it/s]
    +
    75%|███████▌ | 3766504/4997817 [00:24&lt;00:08, 153647.63it/s]

    </pre>

    -
    77%|███████▋ | 3848345/4997817 [00:24<00:07, 156059.90it/s]
    +
    75%|███████▌ | 3766504/4997817 [00:24<00:08, 153647.63it/s]

    end{sphinxVerbatim}

    -

    77%|███████▋ | 3848345/4997817 [00:24<00:07, 156059.90it/s]

    +

    75%|███████▌ | 3766504/4997817 [00:24<00:08, 153647.63it/s]

    -
    77%|███████▋ | 3863952/4997817 [00:24&lt;00:07, 148367.40it/s]
    +
    76%|███████▌ | 3781869/4997817 [00:24&lt;00:07, 153439.48it/s]

    </pre>

    -
    77%|███████▋ | 3863952/4997817 [00:24<00:07, 148367.40it/s]
    +
    76%|███████▌ | 3781869/4997817 [00:24<00:07, 153439.48it/s]

    end{sphinxVerbatim}

    -

    77%|███████▋ | 3863952/4997817 [00:24<00:07, 148367.40it/s]

    +

    76%|███████▌ | 3781869/4997817 [00:24<00:07, 153439.48it/s]

    -
    78%|███████▊ | 3879632/4997817 [00:24&lt;00:07, 150805.37it/s]
    +
    76%|███████▌ | 3797284/4997817 [00:24&lt;00:07, 153648.41it/s]

    </pre>

    -
    78%|███████▊ | 3879632/4997817 [00:24<00:07, 150805.37it/s]
    +
    76%|███████▌ | 3797284/4997817 [00:24<00:07, 153648.41it/s]

    end{sphinxVerbatim}

    -

    78%|███████▊ | 3879632/4997817 [00:24<00:07, 150805.37it/s]

    +

    76%|███████▌ | 3797284/4997817 [00:24<00:07, 153648.41it/s]

    -
    78%|███████▊ | 3895335/4997817 [00:25&lt;00:07, 152623.35it/s]
    +
    76%|███████▋ | 3812649/4997817 [00:25&lt;00:07, 153206.91it/s]

    </pre>

    -
    78%|███████▊ | 3895335/4997817 [00:25<00:07, 152623.35it/s]
    +
    76%|███████▋ | 3812649/4997817 [00:25<00:07, 153206.91it/s]

    end{sphinxVerbatim}

    -

    78%|███████▊ | 3895335/4997817 [00:25<00:07, 152623.35it/s]

    +

    76%|███████▋ | 3812649/4997817 [00:25<00:07, 153206.91it/s]

    -
    78%|███████▊ | 3911069/4997817 [00:25&lt;00:07, 154010.55it/s]
    +
    77%|███████▋ | 3828069/4997817 [00:25&lt;00:07, 153502.20it/s]

    </pre>

    -
    78%|███████▊ | 3911069/4997817 [00:25<00:07, 154010.55it/s]
    +
    77%|███████▋ | 3828069/4997817 [00:25<00:07, 153502.20it/s]

    end{sphinxVerbatim}

    -

    78%|███████▊ | 3911069/4997817 [00:25<00:07, 154010.55it/s]

    +

    77%|███████▋ | 3828069/4997817 [00:25<00:07, 153502.20it/s]

    -
    79%|███████▊ | 3926784/4997817 [00:25&lt;00:06, 154938.94it/s]
    +
    77%|███████▋ | 3843420/4997817 [00:25&lt;00:07, 153333.71it/s]

    </pre>

    -
    79%|███████▊ | 3926784/4997817 [00:25<00:06, 154938.94it/s]
    +
    77%|███████▋ | 3843420/4997817 [00:25<00:07, 153333.71it/s]

    end{sphinxVerbatim}

    -

    79%|███████▊ | 3926784/4997817 [00:25<00:06, 154938.94it/s]

    +

    77%|███████▋ | 3843420/4997817 [00:25<00:07, 153333.71it/s]

    -
    79%|███████▉ | 3942544/4997817 [00:25&lt;00:06, 155727.99it/s]
    +
    77%|███████▋ | 3858826/4997817 [00:25&lt;00:07, 153549.42it/s]

    </pre>

    -
    79%|███████▉ | 3942544/4997817 [00:25<00:06, 155727.99it/s]
    +
    77%|███████▋ | 3858826/4997817 [00:25<00:07, 153549.42it/s]

    end{sphinxVerbatim}

    -

    79%|███████▉ | 3942544/4997817 [00:25<00:06, 155727.99it/s]

    +

    77%|███████▋ | 3858826/4997817 [00:25<00:07, 153549.42it/s]

    -
    79%|███████▉ | 3958159/4997817 [00:25&lt;00:06, 155850.31it/s]
    +
    78%|███████▊ | 3874182/4997817 [00:25&lt;00:07, 153524.89it/s]

    </pre>

    -
    79%|███████▉ | 3958159/4997817 [00:25<00:06, 155850.31it/s]
    +
    78%|███████▊ | 3874182/4997817 [00:25<00:07, 153524.89it/s]

    end{sphinxVerbatim}

    -

    79%|███████▉ | 3958159/4997817 [00:25<00:06, 155850.31it/s]

    +

    78%|███████▊ | 3874182/4997817 [00:25<00:07, 153524.89it/s]

    -
    80%|███████▉ | 3973923/4997817 [00:25&lt;00:06, 156382.04it/s]
    +
    78%|███████▊ | 3889575/4997817 [00:25&lt;00:07, 153644.24it/s]

    </pre>

    -
    80%|███████▉ | 3973923/4997817 [00:25<00:06, 156382.04it/s]
    +
    78%|███████▊ | 3889575/4997817 [00:25<00:07, 153644.24it/s]

    end{sphinxVerbatim}

    -

    80%|███████▉ | 3973923/4997817 [00:25<00:06, 156382.04it/s]

    +

    78%|███████▊ | 3889575/4997817 [00:25<00:07, 153644.24it/s]

    -
    80%|███████▉ | 3989706/4997817 [00:25&lt;00:06, 156813.02it/s]
    +
    78%|███████▊ | 3904940/4997817 [00:25&lt;00:07, 153484.99it/s]

    </pre>

    -
    80%|███████▉ | 3989706/4997817 [00:25<00:06, 156813.02it/s]
    +
    78%|███████▊ | 3904940/4997817 [00:25<00:07, 153484.99it/s]

    end{sphinxVerbatim}

    -

    80%|███████▉ | 3989706/4997817 [00:25<00:06, 156813.02it/s]

    +

    78%|███████▊ | 3904940/4997817 [00:25<00:07, 153484.99it/s]

    -
    80%|████████ | 4005509/4997817 [00:25&lt;00:06, 157173.90it/s]
    +
    78%|███████▊ | 3920289/4997817 [00:25&lt;00:07, 153285.72it/s]

    </pre>

    -
    80%|████████ | 4005509/4997817 [00:25<00:06, 157173.90it/s]
    +
    78%|███████▊ | 3920289/4997817 [00:25<00:07, 153285.72it/s]

    end{sphinxVerbatim}

    -

    80%|████████ | 4005509/4997817 [00:25<00:06, 157173.90it/s]

    +

    78%|███████▊ | 3920289/4997817 [00:25<00:07, 153285.72it/s]

    -
    80%|████████ | 4021268/4997817 [00:25&lt;00:06, 157297.01it/s]
    +
    79%|███████▊ | 3935618/4997817 [00:25&lt;00:06, 153225.79it/s]

    </pre>

    -
    80%|████████ | 4021268/4997817 [00:25<00:06, 157297.01it/s]
    +
    79%|███████▊ | 3935618/4997817 [00:25<00:06, 153225.79it/s]

    end{sphinxVerbatim}

    -

    80%|████████ | 4021268/4997817 [00:25<00:06, 157297.01it/s]

    +

    79%|███████▊ | 3935618/4997817 [00:25<00:06, 153225.79it/s]

    -
    81%|████████ | 4037002/4997817 [00:25&lt;00:06, 156864.65it/s]
    +
    79%|███████▉ | 3951084/4997817 [00:25&lt;00:06, 153653.44it/s]

    </pre>

    -
    81%|████████ | 4037002/4997817 [00:25<00:06, 156864.65it/s]
    +
    79%|███████▉ | 3951084/4997817 [00:25<00:06, 153653.44it/s]

    end{sphinxVerbatim}

    -

    81%|████████ | 4037002/4997817 [00:25<00:06, 156864.65it/s]

    +

    79%|███████▉ | 3951084/4997817 [00:25<00:06, 153653.44it/s]

    -
    81%|████████ | 4052692/4997817 [00:26&lt;00:06, 156360.66it/s]
    +
    79%|███████▉ | 3966477/4997817 [00:26&lt;00:06, 153733.07it/s]

    </pre>

    -
    81%|████████ | 4052692/4997817 [00:26<00:06, 156360.66it/s]
    +
    79%|███████▉ | 3966477/4997817 [00:26<00:06, 153733.07it/s]

    end{sphinxVerbatim}

    -

    81%|████████ | 4052692/4997817 [00:26<00:06, 156360.66it/s]

    +

    79%|███████▉ | 3966477/4997817 [00:26<00:06, 153733.07it/s]

    -
    81%|████████▏ | 4068403/4997817 [00:26&lt;00:05, 156583.00it/s]
    +
    80%|███████▉ | 3981879/4997817 [00:26&lt;00:06, 153815.61it/s]

    </pre>

    -
    81%|████████▏ | 4068403/4997817 [00:26<00:05, 156583.00it/s]
    +
    80%|███████▉ | 3981879/4997817 [00:26<00:06, 153815.61it/s]

    end{sphinxVerbatim}

    -

    81%|████████▏ | 4068403/4997817 [00:26<00:05, 156583.00it/s]

    +

    80%|███████▉ | 3981879/4997817 [00:26<00:06, 153815.61it/s]

    -
    82%|████████▏ | 4084170/4997817 [00:26&lt;00:05, 156906.95it/s]
    +
    80%|███████▉ | 3997261/4997817 [00:26&lt;00:06, 153450.15it/s]

    </pre>

    -
    82%|████████▏ | 4084170/4997817 [00:26<00:05, 156906.95it/s]
    +
    80%|███████▉ | 3997261/4997817 [00:26<00:06, 153450.15it/s]

    end{sphinxVerbatim}

    -

    82%|████████▏ | 4084170/4997817 [00:26<00:05, 156906.95it/s]

    +

    80%|███████▉ | 3997261/4997817 [00:26<00:06, 153450.15it/s]

    -
    82%|████████▏ | 4099862/4997817 [00:26&lt;00:05, 156560.68it/s]
    +
    80%|████████ | 4012607/4997817 [00:26&lt;00:06, 153340.19it/s]

    </pre>

    -
    82%|████████▏ | 4099862/4997817 [00:26<00:05, 156560.68it/s]
    +
    80%|████████ | 4012607/4997817 [00:26<00:06, 153340.19it/s]

    end{sphinxVerbatim}

    -

    82%|████████▏ | 4099862/4997817 [00:26<00:05, 156560.68it/s]

    +

    80%|████████ | 4012607/4997817 [00:26<00:06, 153340.19it/s]

    -
    82%|████████▏ | 4115633/4997817 [00:26&lt;00:05, 156901.80it/s]
    +
    81%|████████ | 4027942/4997817 [00:26&lt;00:06, 153204.17it/s]

    </pre>

    -
    82%|████████▏ | 4115633/4997817 [00:26<00:05, 156901.80it/s]
    +
    81%|████████ | 4027942/4997817 [00:26<00:06, 153204.17it/s]

    end{sphinxVerbatim}

    -

    82%|████████▏ | 4115633/4997817 [00:26<00:05, 156901.80it/s]

    +

    81%|████████ | 4027942/4997817 [00:26<00:06, 153204.17it/s]

    -
    83%|████████▎ | 4131413/4997817 [00:26&lt;00:05, 157169.61it/s]
    +
    81%|████████ | 4043263/4997817 [00:26&lt;00:06, 153101.59it/s]

    </pre>

    -
    83%|████████▎ | 4131413/4997817 [00:26<00:05, 157169.61it/s]
    +
    81%|████████ | 4043263/4997817 [00:26<00:06, 153101.59it/s]

    end{sphinxVerbatim}

    -

    83%|████████▎ | 4131413/4997817 [00:26<00:05, 157169.61it/s]

    +

    81%|████████ | 4043263/4997817 [00:26<00:06, 153101.59it/s]

    -
    83%|████████▎ | 4147174/4997817 [00:26&lt;00:05, 157300.90it/s]
    +
    81%|████████ | 4058574/4997817 [00:26&lt;00:06, 152649.60it/s]

    </pre>

    -
    83%|████████▎ | 4147174/4997817 [00:26<00:05, 157300.90it/s]
    +
    81%|████████ | 4058574/4997817 [00:26<00:06, 152649.60it/s]

    end{sphinxVerbatim}

    -

    83%|████████▎ | 4147174/4997817 [00:26<00:05, 157300.90it/s]

    +

    81%|████████ | 4058574/4997817 [00:26<00:06, 152649.60it/s]

    -
    83%|████████▎ | 4162905/4997817 [00:26&lt;00:05, 157101.40it/s]
    +
    82%|████████▏ | 4073840/4997817 [00:26&lt;00:06, 152492.42it/s]

    </pre>

    -
    83%|████████▎ | 4162905/4997817 [00:26<00:05, 157101.40it/s]
    +
    82%|████████▏ | 4073840/4997817 [00:26<00:06, 152492.42it/s]

    end{sphinxVerbatim}

    -

    83%|████████▎ | 4162905/4997817 [00:26<00:05, 157101.40it/s]

    +

    82%|████████▏ | 4073840/4997817 [00:26<00:06, 152492.42it/s]

    -
    84%|████████▎ | 4178673/4997817 [00:26&lt;00:05, 157271.82it/s]
    +
    82%|████████▏ | 4089090/4997817 [00:26&lt;00:05, 152227.07it/s]

    </pre>

    -
    84%|████████▎ | 4178673/4997817 [00:26<00:05, 157271.82it/s]
    +
    82%|████████▏ | 4089090/4997817 [00:26<00:05, 152227.07it/s]

    end{sphinxVerbatim}

    -

    84%|████████▎ | 4178673/4997817 [00:26<00:05, 157271.82it/s]

    +

    82%|████████▏ | 4089090/4997817 [00:26<00:05, 152227.07it/s]

    -
    84%|████████▍ | 4194401/4997817 [00:26&lt;00:05, 154293.22it/s]
    +
    82%|████████▏ | 4104313/4997817 [00:26&lt;00:05, 150900.00it/s]

    </pre>

    -
    84%|████████▍ | 4194401/4997817 [00:26<00:05, 154293.22it/s]
    +
    82%|████████▏ | 4104313/4997817 [00:26<00:05, 150900.00it/s]

    end{sphinxVerbatim}

    -

    84%|████████▍ | 4194401/4997817 [00:26<00:05, 154293.22it/s]

    +

    82%|████████▏ | 4104313/4997817 [00:26<00:05, 150900.00it/s]

    -
    84%|████████▍ | 4210003/4997817 [00:27&lt;00:05, 154802.00it/s]
    +
    82%|████████▏ | 4119406/4997817 [00:27&lt;00:05, 150874.09it/s]

    </pre>

    -
    84%|████████▍ | 4210003/4997817 [00:27<00:05, 154802.00it/s]
    +
    82%|████████▏ | 4119406/4997817 [00:27<00:05, 150874.09it/s]

    end{sphinxVerbatim}

    -

    84%|████████▍ | 4210003/4997817 [00:27<00:05, 154802.00it/s]

    +

    82%|████████▏ | 4119406/4997817 [00:27<00:05, 150874.09it/s]

    -
    85%|████████▍ | 4225675/4997817 [00:27&lt;00:04, 155369.63it/s]
    +
    83%|████████▎ | 4134496/4997817 [00:27&lt;00:05, 150440.82it/s]

    </pre>

    -
    85%|████████▍ | 4225675/4997817 [00:27<00:04, 155369.63it/s]
    +
    83%|████████▎ | 4134496/4997817 [00:27<00:05, 150440.82it/s]

    end{sphinxVerbatim}

    -

    85%|████████▍ | 4225675/4997817 [00:27<00:04, 155369.63it/s]

    +

    83%|████████▎ | 4134496/4997817 [00:27<00:05, 150440.82it/s]

    -
    85%|████████▍ | 4241497/4997817 [00:27&lt;00:04, 156216.58it/s]
    +
    83%|████████▎ | 4149652/4997817 [00:27&lt;00:05, 150772.45it/s]

    </pre>

    -
    85%|████████▍ | 4241497/4997817 [00:27<00:04, 156216.58it/s]
    +
    83%|████████▎ | 4149652/4997817 [00:27<00:05, 150772.45it/s]

    end{sphinxVerbatim}

    -

    85%|████████▍ | 4241497/4997817 [00:27<00:04, 156216.58it/s]

    +

    83%|████████▎ | 4149652/4997817 [00:27<00:05, 150772.45it/s]

    -
    85%|████████▌ | 4257316/4997817 [00:27&lt;00:04, 156802.39it/s]
    +
    83%|████████▎ | 4164918/4997817 [00:27&lt;00:05, 151334.08it/s]

    </pre>

    -
    85%|████████▌ | 4257316/4997817 [00:27<00:04, 156802.39it/s]
    +
    83%|████████▎ | 4164918/4997817 [00:27<00:05, 151334.08it/s]

    end{sphinxVerbatim}

    -

    85%|████████▌ | 4257316/4997817 [00:27<00:04, 156802.39it/s]

    +

    83%|████████▎ | 4164918/4997817 [00:27<00:05, 151334.08it/s]

    -
    86%|████████▌ | 4273149/4997817 [00:27&lt;00:04, 157256.33it/s]
    +
    84%|████████▎ | 4180089/4997817 [00:27&lt;00:05, 151445.14it/s]

    </pre>

    -
    86%|████████▌ | 4273149/4997817 [00:27<00:04, 157256.33it/s]
    +
    84%|████████▎ | 4180089/4997817 [00:27<00:05, 151445.14it/s]

    end{sphinxVerbatim}

    -

    86%|████████▌ | 4273149/4997817 [00:27<00:04, 157256.33it/s]

    +

    84%|████████▎ | 4180089/4997817 [00:27<00:05, 151445.14it/s]

    -
    86%|████████▌ | 4288963/4997817 [00:27&lt;00:04, 157517.68it/s]
    +
    84%|████████▍ | 4195260/4997817 [00:27&lt;00:05, 151520.79it/s]

    </pre>

    -
    86%|████████▌ | 4288963/4997817 [00:27<00:04, 157517.68it/s]
    +
    84%|████████▍ | 4195260/4997817 [00:27<00:05, 151520.79it/s]

    end{sphinxVerbatim}

    -

    86%|████████▌ | 4288963/4997817 [00:27<00:04, 157517.68it/s]

    +

    84%|████████▍ | 4195260/4997817 [00:27<00:05, 151520.79it/s]

    -
    86%|████████▌ | 4304819/4997817 [00:27&lt;00:04, 157827.29it/s]
    +
    84%|████████▍ | 4210505/4997817 [00:27&lt;00:05, 151795.15it/s]

    </pre>

    -
    86%|████████▌ | 4304819/4997817 [00:27<00:04, 157827.29it/s]
    +
    84%|████████▍ | 4210505/4997817 [00:27<00:05, 151795.15it/s]

    end{sphinxVerbatim}

    -

    86%|████████▌ | 4304819/4997817 [00:27<00:04, 157827.29it/s]

    +

    84%|████████▍ | 4210505/4997817 [00:27<00:05, 151795.15it/s]

    -
    86%|████████▋ | 4320680/4997817 [00:27&lt;00:04, 158060.62it/s]
    +
    85%|████████▍ | 4225702/4997817 [00:27&lt;00:05, 151845.96it/s]

    </pre>

    -
    86%|████████▋ | 4320680/4997817 [00:27<00:04, 158060.62it/s]
    +
    85%|████████▍ | 4225702/4997817 [00:27<00:05, 151845.96it/s]

    end{sphinxVerbatim}

    -

    86%|████████▋ | 4320680/4997817 [00:27<00:04, 158060.62it/s]

    +

    85%|████████▍ | 4225702/4997817 [00:27<00:05, 151845.96it/s]

    -
    87%|████████▋ | 4336553/4997817 [00:27&lt;00:04, 158259.05it/s]
    +
    85%|████████▍ | 4240887/4997817 [00:27&lt;00:04, 151794.49it/s]

    </pre>

    -
    87%|████████▋ | 4336553/4997817 [00:27<00:04, 158259.05it/s]
    +
    85%|████████▍ | 4240887/4997817 [00:27<00:04, 151794.49it/s]

    end{sphinxVerbatim}

    -

    87%|████████▋ | 4336553/4997817 [00:27<00:04, 158259.05it/s]

    +

    85%|████████▍ | 4240887/4997817 [00:27<00:04, 151794.49it/s]

    -
    87%|████████▋ | 4352399/4997817 [00:27&lt;00:04, 158317.30it/s]
    +
    85%|████████▌ | 4256251/4997817 [00:27&lt;00:04, 152343.50it/s]

    </pre>

    -
    87%|████████▋ | 4352399/4997817 [00:27<00:04, 158317.30it/s]
    +
    85%|████████▌ | 4256251/4997817 [00:27<00:04, 152343.50it/s]

    end{sphinxVerbatim}

    -

    87%|████████▋ | 4352399/4997817 [00:27<00:04, 158317.30it/s]

    +

    85%|████████▌ | 4256251/4997817 [00:27<00:04, 152343.50it/s]

    -
    87%|████████▋ | 4368232/4997817 [00:28&lt;00:03, 157914.38it/s]
    +
    85%|████████▌ | 4271644/4997817 [00:28&lt;00:04, 152816.49it/s]

    </pre>

    -
    87%|████████▋ | 4368232/4997817 [00:28<00:03, 157914.38it/s]
    +
    85%|████████▌ | 4271644/4997817 [00:28<00:04, 152816.49it/s]

    end{sphinxVerbatim}

    -

    87%|████████▋ | 4368232/4997817 [00:28<00:03, 157914.38it/s]

    +

    85%|████████▌ | 4271644/4997817 [00:28<00:04, 152816.49it/s]

    -
    88%|████████▊ | 4384025/4997817 [00:28&lt;00:03, 157847.90it/s]
    +
    86%|████████▌ | 4286926/4997817 [00:28&lt;00:04, 151759.69it/s]

    </pre>

    -
    88%|████████▊ | 4384025/4997817 [00:28<00:03, 157847.90it/s]
    +
    86%|████████▌ | 4286926/4997817 [00:28<00:04, 151759.69it/s]

    end{sphinxVerbatim}

    -

    88%|████████▊ | 4384025/4997817 [00:28<00:03, 157847.90it/s]

    +

    86%|████████▌ | 4286926/4997817 [00:28<00:04, 151759.69it/s]

    -
    88%|████████▊ | 4399840/4997817 [00:28&lt;00:03, 157937.40it/s]
    +
    86%|████████▌ | 4302104/4997817 [00:28&lt;00:04, 151725.74it/s]

    </pre>

    -
    88%|████████▊ | 4399840/4997817 [00:28<00:03, 157937.40it/s]
    +
    86%|████████▌ | 4302104/4997817 [00:28<00:04, 151725.74it/s]

    end{sphinxVerbatim}

    -

    88%|████████▊ | 4399840/4997817 [00:28<00:03, 157937.40it/s]

    +

    86%|████████▌ | 4302104/4997817 [00:28<00:04, 151725.74it/s]

    -
    88%|████████▊ | 4415688/4997817 [00:28&lt;00:03, 158096.40it/s]
    +
    86%|████████▋ | 4317364/4997817 [00:28&lt;00:04, 151983.82it/s]

    </pre>

    -
    88%|████████▊ | 4415688/4997817 [00:28<00:03, 158096.40it/s]
    +
    86%|████████▋ | 4317364/4997817 [00:28<00:04, 151983.82it/s]

    end{sphinxVerbatim}

    -

    88%|████████▊ | 4415688/4997817 [00:28<00:03, 158096.40it/s]

    +

    86%|████████▋ | 4317364/4997817 [00:28<00:04, 151983.82it/s]

    -
    89%|████████▊ | 4431584/4997817 [00:28&lt;00:03, 158353.82it/s]
    +
    87%|████████▋ | 4332692/4997817 [00:28&lt;00:04, 152369.94it/s]

    </pre>

    -
    89%|████████▊ | 4431584/4997817 [00:28<00:03, 158353.82it/s]
    +
    87%|████████▋ | 4332692/4997817 [00:28<00:04, 152369.94it/s]

    end{sphinxVerbatim}

    -

    89%|████████▊ | 4431584/4997817 [00:28<00:03, 158353.82it/s]

    +

    87%|████████▋ | 4332692/4997817 [00:28<00:04, 152369.94it/s]

    -
    89%|████████▉ | 4447420/4997817 [00:28&lt;00:03, 158329.46it/s]
    +
    87%|████████▋ | 4347991/4997817 [00:28&lt;00:04, 152552.06it/s]

    </pre>

    -
    89%|████████▉ | 4447420/4997817 [00:28<00:03, 158329.46it/s]
    +
    87%|████████▋ | 4347991/4997817 [00:28<00:04, 152552.06it/s]

    end{sphinxVerbatim}

    -

    89%|████████▉ | 4447420/4997817 [00:28<00:03, 158329.46it/s]

    +

    87%|████████▋ | 4347991/4997817 [00:28<00:04, 152552.06it/s]

    -
    89%|████████▉ | 4463254/4997817 [00:28&lt;00:03, 158306.64it/s]
    +
    87%|████████▋ | 4363327/4997817 [00:28&lt;00:04, 152790.89it/s]

    </pre>

    -
    89%|████████▉ | 4463254/4997817 [00:28<00:03, 158306.64it/s]
    +
    87%|████████▋ | 4363327/4997817 [00:28<00:04, 152790.89it/s]

    end{sphinxVerbatim}

    -

    89%|████████▉ | 4463254/4997817 [00:28<00:03, 158306.64it/s]

    +

    87%|████████▋ | 4363327/4997817 [00:28<00:04, 152790.89it/s]

    -
    90%|████████▉ | 4479095/4997817 [00:28&lt;00:03, 158337.00it/s]
    +
    88%|████████▊ | 4378607/4997817 [00:28&lt;00:04, 148458.18it/s]

    </pre>

    -
    90%|████████▉ | 4479095/4997817 [00:28<00:03, 158337.00it/s]
    +
    88%|████████▊ | 4378607/4997817 [00:28<00:04, 148458.18it/s]

    end{sphinxVerbatim}

    -

    90%|████████▉ | 4479095/4997817 [00:28<00:03, 158337.00it/s]

    +

    88%|████████▊ | 4378607/4997817 [00:28<00:04, 148458.18it/s]

    -
    90%|████████▉ | 4494929/4997817 [00:28&lt;00:03, 158263.94it/s]
    +
    88%|████████▊ | 4393480/4997817 [00:28&lt;00:04, 142262.87it/s]

    </pre>

    -
    90%|████████▉ | 4494929/4997817 [00:28<00:03, 158263.94it/s]
    +
    88%|████████▊ | 4393480/4997817 [00:28<00:04, 142262.87it/s]

    end{sphinxVerbatim}

    -

    90%|████████▉ | 4494929/4997817 [00:28<00:03, 158263.94it/s]

    +

    88%|████████▊ | 4393480/4997817 [00:28<00:04, 142262.87it/s]

    -
    90%|█████████ | 4510756/4997817 [00:28&lt;00:03, 157835.36it/s]
    +
    88%|████████▊ | 4408792/4997817 [00:28&lt;00:04, 145373.58it/s]

    </pre>

    -
    90%|█████████ | 4510756/4997817 [00:28<00:03, 157835.36it/s]
    +
    88%|████████▊ | 4408792/4997817 [00:28<00:04, 145373.58it/s]

    end{sphinxVerbatim}

    -

    90%|█████████ | 4510756/4997817 [00:28<00:03, 157835.36it/s]

    +

    88%|████████▊ | 4408792/4997817 [00:28<00:04, 145373.58it/s]

    -
    91%|█████████ | 4526540/4997817 [00:29&lt;00:02, 157699.84it/s]
    +
    89%|████████▊ | 4424149/4997817 [00:29&lt;00:03, 147753.67it/s]

    </pre>

    -
    91%|█████████ | 4526540/4997817 [00:29<00:02, 157699.84it/s]
    +
    89%|████████▊ | 4424149/4997817 [00:29<00:03, 147753.67it/s]

    end{sphinxVerbatim}

    -

    91%|█████████ | 4526540/4997817 [00:29<00:02, 157699.84it/s]

    +

    89%|████████▊ | 4424149/4997817 [00:29<00:03, 147753.67it/s]

    -
    91%|█████████ | 4542329/4997817 [00:29&lt;00:02, 157754.78it/s]
    +
    89%|████████▉ | 4439438/4997817 [00:29&lt;00:03, 149259.24it/s]

    </pre>

    -
    91%|█████████ | 4542329/4997817 [00:29<00:02, 157754.78it/s]
    +
    89%|████████▉ | 4439438/4997817 [00:29<00:03, 149259.24it/s]

    end{sphinxVerbatim}

    -

    91%|█████████ | 4542329/4997817 [00:29<00:02, 157754.78it/s]

    +

    89%|████████▉ | 4439438/4997817 [00:29<00:03, 149259.24it/s]

    -
    91%|█████████ | 4558105/4997817 [00:29&lt;00:02, 157720.35it/s]
    +
    89%|████████▉ | 4454678/4997817 [00:29&lt;00:03, 150183.80it/s]

    </pre>

    -
    91%|█████████ | 4558105/4997817 [00:29<00:02, 157720.35it/s]
    +
    89%|████████▉ | 4454678/4997817 [00:29<00:03, 150183.80it/s]

    end{sphinxVerbatim}

    -

    91%|█████████ | 4558105/4997817 [00:29<00:02, 157720.35it/s]

    +

    89%|████████▉ | 4454678/4997817 [00:29<00:03, 150183.80it/s]

    -
    92%|█████████▏| 4573998/4997817 [00:29&lt;00:02, 158079.44it/s]
    +
    89%|████████▉ | 4469725/4997817 [00:29&lt;00:03, 143754.53it/s]

    </pre>

    -
    92%|█████████▏| 4573998/4997817 [00:29<00:02, 158079.44it/s]
    +
    89%|████████▉ | 4469725/4997817 [00:29<00:03, 143754.53it/s]

    end{sphinxVerbatim}

    -

    92%|█████████▏| 4573998/4997817 [00:29<00:02, 158079.44it/s]

    +

    89%|████████▉ | 4469725/4997817 [00:29<00:03, 143754.53it/s]

    -
    92%|█████████▏| 4589845/4997817 [00:29&lt;00:02, 158195.87it/s]
    +
    90%|████████▉ | 4484985/4997817 [00:29&lt;00:03, 146305.35it/s]

    </pre>

    -
    92%|█████████▏| 4589845/4997817 [00:29<00:02, 158195.87it/s]
    +
    90%|████████▉ | 4484985/4997817 [00:29<00:03, 146305.35it/s]

    end{sphinxVerbatim}

    -

    92%|█████████▏| 4589845/4997817 [00:29<00:02, 158195.87it/s]

    +

    90%|████████▉ | 4484985/4997817 [00:29<00:03, 146305.35it/s]

    -
    92%|█████████▏| 4605665/4997817 [00:29&lt;00:02, 158104.94it/s]
    +
    90%|█████████ | 4500321/4997817 [00:29&lt;00:03, 148363.06it/s]

    </pre>

    -
    92%|█████████▏| 4605665/4997817 [00:29<00:02, 158104.94it/s]
    +
    90%|█████████ | 4500321/4997817 [00:29<00:03, 148363.06it/s]

    end{sphinxVerbatim}

    -

    92%|█████████▏| 4605665/4997817 [00:29<00:02, 158104.94it/s]

    +

    90%|█████████ | 4500321/4997817 [00:29<00:03, 148363.06it/s]

    -
    92%|█████████▏| 4621476/4997817 [00:29&lt;00:02, 157979.37it/s]
    +
    90%|█████████ | 4515705/4997817 [00:29&lt;00:03, 149972.16it/s]

    </pre>

    -
    92%|█████████▏| 4621476/4997817 [00:29<00:02, 157979.37it/s]
    +
    90%|█████████ | 4515705/4997817 [00:29<00:03, 149972.16it/s]

    end{sphinxVerbatim}

    -

    92%|█████████▏| 4621476/4997817 [00:29<00:02, 157979.37it/s]

    +

    90%|█████████ | 4515705/4997817 [00:29<00:03, 149972.16it/s]

    -
    93%|█████████▎| 4637312/4997817 [00:29&lt;00:02, 158092.68it/s]
    +
    91%|█████████ | 4530858/4997817 [00:29&lt;00:03, 150429.10it/s]

    </pre>

    -
    93%|█████████▎| 4637312/4997817 [00:29<00:02, 158092.68it/s]
    +
    91%|█████████ | 4530858/4997817 [00:29<00:03, 150429.10it/s]

    end{sphinxVerbatim}

    -

    93%|█████████▎| 4637312/4997817 [00:29<00:02, 158092.68it/s]

    +

    91%|█████████ | 4530858/4997817 [00:29<00:03, 150429.10it/s]

    -
    93%|█████████▎| 4653156/4997817 [00:29&lt;00:02, 158194.47it/s]
    +
    91%|█████████ | 4546128/4997817 [00:29&lt;00:02, 151102.00it/s]

    </pre>

    -
    93%|█████████▎| 4653156/4997817 [00:29<00:02, 158194.47it/s]
    +
    91%|█████████ | 4546128/4997817 [00:29<00:02, 151102.00it/s]

    end{sphinxVerbatim}

    -

    93%|█████████▎| 4653156/4997817 [00:29<00:02, 158194.47it/s]

    +

    91%|█████████ | 4546128/4997817 [00:29<00:02, 151102.00it/s]

    -
    93%|█████████▎| 4668976/4997817 [00:29&lt;00:02, 157925.00it/s]
    +
    91%|█████████▏| 4561495/4997817 [00:29&lt;00:02, 151865.67it/s]

    </pre>

    -
    93%|█████████▎| 4668976/4997817 [00:29<00:02, 157925.00it/s]
    +
    91%|█████████▏| 4561495/4997817 [00:29<00:02, 151865.67it/s]

    end{sphinxVerbatim}

    -

    93%|█████████▎| 4668976/4997817 [00:29<00:02, 157925.00it/s]

    +

    91%|█████████▏| 4561495/4997817 [00:29<00:02, 151865.67it/s]

    -
    94%|█████████▎| 4684769/4997817 [00:30&lt;00:01, 157455.42it/s]
    +
    92%|█████████▏| 4576696/4997817 [00:30&lt;00:02, 151896.16it/s]

    </pre>

    -
    94%|█████████▎| 4684769/4997817 [00:30<00:01, 157455.42it/s]
    +
    92%|█████████▏| 4576696/4997817 [00:30<00:02, 151896.16it/s]

    end{sphinxVerbatim}

    -

    94%|█████████▎| 4684769/4997817 [00:30<00:01, 157455.42it/s]

    +

    92%|█████████▏| 4576696/4997817 [00:30<00:02, 151896.16it/s]

    -
    94%|█████████▍| 4700543/4997817 [00:30&lt;00:01, 157536.86it/s]
    +
    92%|█████████▏| 4591896/4997817 [00:30&lt;00:02, 151748.87it/s]

    </pre>

    -
    94%|█████████▍| 4700543/4997817 [00:30<00:01, 157536.86it/s]
    +
    92%|█████████▏| 4591896/4997817 [00:30<00:02, 151748.87it/s]

    end{sphinxVerbatim}

    -

    94%|█████████▍| 4700543/4997817 [00:30<00:01, 157536.86it/s]

    +

    92%|█████████▏| 4591896/4997817 [00:30<00:02, 151748.87it/s]

    -
    94%|█████████▍| 4716321/4997817 [00:30&lt;00:01, 157608.67it/s]
    +
    92%|█████████▏| 4607105/4997817 [00:30&lt;00:02, 151849.63it/s]

    </pre>

    -
    94%|█████████▍| 4716321/4997817 [00:30<00:01, 157608.67it/s]
    +
    92%|█████████▏| 4607105/4997817 [00:30<00:02, 151849.63it/s]

    end{sphinxVerbatim}

    -

    94%|█████████▍| 4716321/4997817 [00:30<00:01, 157608.67it/s]

    +

    92%|█████████▏| 4607105/4997817 [00:30<00:02, 151849.63it/s]

    -
    95%|█████████▍| 4732087/4997817 [00:30&lt;00:01, 157621.05it/s]
    +
    92%|█████████▏| 4622426/4997817 [00:30&lt;00:02, 152253.40it/s]

    </pre>

    -
    95%|█████████▍| 4732087/4997817 [00:30<00:01, 157621.05it/s]
    +
    92%|█████████▏| 4622426/4997817 [00:30<00:02, 152253.40it/s]

    end{sphinxVerbatim}

    -

    95%|█████████▍| 4732087/4997817 [00:30<00:01, 157621.05it/s]

    +

    92%|█████████▏| 4622426/4997817 [00:30<00:02, 152253.40it/s]

    -
    95%|█████████▍| 4747850/4997817 [00:30&lt;00:01, 157549.04it/s]
    +
    93%|█████████▎| 4637655/4997817 [00:30&lt;00:02, 152253.97it/s]

    </pre>

    -
    95%|█████████▍| 4747850/4997817 [00:30<00:01, 157549.04it/s]
    +
    93%|█████████▎| 4637655/4997817 [00:30<00:02, 152253.97it/s]

    end{sphinxVerbatim}

    -

    95%|█████████▍| 4747850/4997817 [00:30<00:01, 157549.04it/s]

    +

    93%|█████████▎| 4637655/4997817 [00:30<00:02, 152253.97it/s]

    -
    95%|█████████▌| 4763606/4997817 [00:30&lt;00:01, 157330.93it/s]
    +
    93%|█████████▎| 4652942/4997817 [00:30&lt;00:02, 152435.88it/s]

    </pre>

    -
    95%|█████████▌| 4763606/4997817 [00:30<00:01, 157330.93it/s]
    +
    93%|█████████▎| 4652942/4997817 [00:30<00:02, 152435.88it/s]

    end{sphinxVerbatim}

    -

    95%|█████████▌| 4763606/4997817 [00:30<00:01, 157330.93it/s]

    +

    93%|█████████▎| 4652942/4997817 [00:30<00:02, 152435.88it/s]

    -
    96%|█████████▌| 4779340/4997817 [00:30&lt;00:01, 156851.46it/s]
    +
    93%|█████████▎| 4668228/4997817 [00:30&lt;00:02, 152559.13it/s]

    </pre>

    -
    96%|█████████▌| 4779340/4997817 [00:30<00:01, 156851.46it/s]
    +
    93%|█████████▎| 4668228/4997817 [00:30<00:02, 152559.13it/s]

    end{sphinxVerbatim}

    -

    96%|█████████▌| 4779340/4997817 [00:30<00:01, 156851.46it/s]

    +

    93%|█████████▎| 4668228/4997817 [00:30<00:02, 152559.13it/s]

    -
    96%|█████████▌| 4795062/4997817 [00:30&lt;00:01, 156958.89it/s]
    +
    94%|█████████▎| 4683506/4997817 [00:30&lt;00:02, 152624.09it/s]

    </pre>

    -
    96%|█████████▌| 4795062/4997817 [00:30<00:01, 156958.89it/s]
    +
    94%|█████████▎| 4683506/4997817 [00:30<00:02, 152624.09it/s]

    end{sphinxVerbatim}

    -

    96%|█████████▌| 4795062/4997817 [00:30<00:01, 156958.89it/s]

    +

    94%|█████████▎| 4683506/4997817 [00:30<00:02, 152624.09it/s]

    -
    96%|█████████▋| 4810759/4997817 [00:30&lt;00:01, 156924.75it/s]
    +
    94%|█████████▍| 4698770/4997817 [00:30&lt;00:01, 152408.14it/s]

    </pre>

    -
    96%|█████████▋| 4810759/4997817 [00:30<00:01, 156924.75it/s]
    +
    94%|█████████▍| 4698770/4997817 [00:30<00:01, 152408.14it/s]

    end{sphinxVerbatim}

    -

    96%|█████████▋| 4810759/4997817 [00:30<00:01, 156924.75it/s]

    +

    94%|█████████▍| 4698770/4997817 [00:30<00:01, 152408.14it/s]

    -
    97%|█████████▋| 4826479/4997817 [00:30&lt;00:01, 157004.31it/s]
    +
    94%|█████████▍| 4714012/4997817 [00:30&lt;00:01, 152314.36it/s]

    </pre>

    -
    97%|█████████▋| 4826479/4997817 [00:30<00:01, 157004.31it/s]
    +
    94%|█████████▍| 4714012/4997817 [00:30<00:01, 152314.36it/s]

    end{sphinxVerbatim}

    -

    97%|█████████▋| 4826479/4997817 [00:30<00:01, 157004.31it/s]

    +

    94%|█████████▍| 4714012/4997817 [00:30<00:01, 152314.36it/s]

    -
    97%|█████████▋| 4842180/4997817 [00:31&lt;00:01, 153018.17it/s]
    +
    95%|█████████▍| 4729244/4997817 [00:31&lt;00:01, 152253.45it/s]

    </pre>

    -
    97%|█████████▋| 4842180/4997817 [00:31<00:01, 153018.17it/s]
    +
    95%|█████████▍| 4729244/4997817 [00:31<00:01, 152253.45it/s]

    end{sphinxVerbatim}

    -

    97%|█████████▋| 4842180/4997817 [00:31<00:01, 153018.17it/s]

    +

    95%|█████████▍| 4729244/4997817 [00:31<00:01, 152253.45it/s]

    -
    97%|█████████▋| 4857754/4997817 [00:31&lt;00:00, 153817.46it/s]
    +
    95%|█████████▍| 4744470/4997817 [00:31&lt;00:01, 148906.69it/s]

    </pre>

    -
    97%|█████████▋| 4857754/4997817 [00:31<00:00, 153817.46it/s]
    +
    95%|█████████▍| 4744470/4997817 [00:31<00:01, 148906.69it/s]

    end{sphinxVerbatim}

    -

    97%|█████████▋| 4857754/4997817 [00:31<00:00, 153817.46it/s]

    +

    95%|█████████▍| 4744470/4997817 [00:31<00:01, 148906.69it/s]

    -
    98%|█████████▊| 4873365/4997817 [00:31&lt;00:00, 154494.84it/s]
    +
    95%|█████████▌| 4759678/4997817 [00:31&lt;00:01, 149840.73it/s]

    </pre>

    -
    98%|█████████▊| 4873365/4997817 [00:31<00:00, 154494.84it/s]
    +
    95%|█████████▌| 4759678/4997817 [00:31<00:01, 149840.73it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 4873365/4997817 [00:31<00:00, 154494.84it/s]

    +

    95%|█████████▌| 4759678/4997817 [00:31<00:01, 149840.73it/s]

    -
    98%|█████████▊| 4888941/4997817 [00:31&lt;00:00, 154867.71it/s]
    +
    96%|█████████▌| 4774923/4997817 [00:31&lt;00:01, 150611.02it/s]

    </pre>

    -
    98%|█████████▊| 4888941/4997817 [00:31<00:00, 154867.71it/s]
    +
    96%|█████████▌| 4774923/4997817 [00:31<00:01, 150611.02it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 4888941/4997817 [00:31<00:00, 154867.71it/s]

    +

    96%|█████████▌| 4774923/4997817 [00:31<00:01, 150611.02it/s]

    -
    98%|█████████▊| 4904521/4997817 [00:31&lt;00:00, 155143.07it/s]
    +
    96%|█████████▌| 4790208/4997817 [00:31&lt;00:01, 151275.27it/s]

    </pre>

    -
    98%|█████████▊| 4904521/4997817 [00:31<00:00, 155143.07it/s]
    +
    96%|█████████▌| 4790208/4997817 [00:31<00:01, 151275.27it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 4904521/4997817 [00:31<00:00, 155143.07it/s]

    +

    96%|█████████▌| 4790208/4997817 [00:31<00:01, 151275.27it/s]

    -
    98%|█████████▊| 4920058/4997817 [00:31&lt;00:00, 155210.22it/s]
    +
    96%|█████████▌| 4805406/4997817 [00:31&lt;00:01, 151482.40it/s]

    </pre>

    -
    98%|█████████▊| 4920058/4997817 [00:31<00:00, 155210.22it/s]
    +
    96%|█████████▌| 4805406/4997817 [00:31<00:01, 151482.40it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 4920058/4997817 [00:31<00:00, 155210.22it/s]

    +

    96%|█████████▌| 4805406/4997817 [00:31<00:01, 151482.40it/s]

    -
    99%|█████████▉| 4935639/4997817 [00:31&lt;00:00, 155386.51it/s]
    +
    96%|█████████▋| 4820694/4997817 [00:31&lt;00:01, 151896.91it/s]

    </pre>

    -
    99%|█████████▉| 4935639/4997817 [00:31<00:00, 155386.51it/s]
    +
    96%|█████████▋| 4820694/4997817 [00:31<00:01, 151896.91it/s]

    end{sphinxVerbatim}

    -

    99%|█████████▉| 4935639/4997817 [00:31<00:00, 155386.51it/s]

    +

    96%|█████████▋| 4820694/4997817 [00:31<00:01, 151896.91it/s]

    -
    99%|█████████▉| 4951237/4997817 [00:31&lt;00:00, 155562.98it/s]
    +
    97%|█████████▋| 4836084/4997817 [00:31&lt;00:01, 152492.81it/s]

    </pre>

    -
    99%|█████████▉| 4951237/4997817 [00:31<00:00, 155562.98it/s]
    +
    97%|█████████▋| 4836084/4997817 [00:31<00:01, 152492.81it/s]

    end{sphinxVerbatim}

    -

    99%|█████████▉| 4951237/4997817 [00:31<00:00, 155562.98it/s]

    +

    97%|█████████▋| 4836084/4997817 [00:31<00:01, 152492.81it/s]

    -
    99%|█████████▉| 4966796/4997817 [00:31&lt;00:00, 155195.74it/s]
    +
    97%|█████████▋| 4851423/4997817 [00:31&lt;00:00, 152757.88it/s]

    </pre>

    -
    99%|█████████▉| 4966796/4997817 [00:31<00:00, 155195.74it/s]
    +
    97%|█████████▋| 4851423/4997817 [00:31<00:00, 152757.88it/s]

    end{sphinxVerbatim}

    -

    99%|█████████▉| 4966796/4997817 [00:31<00:00, 155195.74it/s]

    +

    97%|█████████▋| 4851423/4997817 [00:31<00:00, 152757.88it/s]

    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    97%|█████████▋| 4866834/4997817 [00:31&lt;00:00, 153161.56it/s]
    +

    </pre>

    +
    +
    +
    97%|█████████▋| 4866834/4997817 [00:31<00:00, 153161.56it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    97%|█████████▋| 4866834/4997817 [00:31<00:00, 153161.56it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    98%|█████████▊| 4882152/4997817 [00:32&lt;00:00, 153112.21it/s]
    +

    </pre>

    +
    +
    +
    98%|█████████▊| 4882152/4997817 [00:32<00:00, 153112.21it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    98%|█████████▊| 4882152/4997817 [00:32<00:00, 153112.21it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    98%|█████████▊| 4897502/4997817 [00:32&lt;00:00, 153224.32it/s]
    +

    </pre>

    +
    +
    +
    98%|█████████▊| 4897502/4997817 [00:32<00:00, 153224.32it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    98%|█████████▊| 4897502/4997817 [00:32<00:00, 153224.32it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    98%|█████████▊| 4912826/4997817 [00:32&lt;00:00, 151174.62it/s]
    +

    </pre>

    +
    +
    +
    98%|█████████▊| 4912826/4997817 [00:32<00:00, 151174.62it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    98%|█████████▊| 4912826/4997817 [00:32<00:00, 151174.62it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    99%|█████████▊| 4928122/4997817 [00:32&lt;00:00, 151703.79it/s]
    +

    </pre>

    +
    +
    +
    99%|█████████▊| 4928122/4997817 [00:32<00:00, 151703.79it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    99%|█████████▊| 4928122/4997817 [00:32<00:00, 151703.79it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    99%|█████████▉| 4943431/4997817 [00:32&lt;00:00, 152115.73it/s]
    +

    </pre>

    +
    +
    +
    99%|█████████▉| 4943431/4997817 [00:32<00:00, 152115.73it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    99%|█████████▉| 4943431/4997817 [00:32<00:00, 152115.73it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    99%|█████████▉| 4958721/4997817 [00:32&lt;00:00, 152348.60it/s]
    +

    </pre>

    +
    +
    +
    99%|█████████▉| 4958721/4997817 [00:32<00:00, 152348.60it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    99%|█████████▉| 4958721/4997817 [00:32<00:00, 152348.60it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    100%|█████████▉| 4973960/4997817 [00:32&lt;00:00, 152357.87it/s]
    +

    </pre>

    +
    +
    +
    100%|█████████▉| 4973960/4997817 [00:32<00:00, 152357.87it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    100%|█████████▉| 4973960/4997817 [00:32<00:00, 152357.87it/s]

    -
    100%|█████████▉| 4982344/4997817 [00:32&lt;00:00, 155277.39it/s]
    +
    100%|█████████▉| 4989221/4997817 [00:32&lt;00:00, 152431.85it/s]

    </pre>

    -
    100%|█████████▉| 4982344/4997817 [00:32<00:00, 155277.39it/s]
    +
    100%|█████████▉| 4989221/4997817 [00:32<00:00, 152431.85it/s]

    end{sphinxVerbatim}

    -

    100%|█████████▉| 4982344/4997817 [00:32<00:00, 155277.39it/s]

    +

    100%|█████████▉| 4989221/4997817 [00:32<00:00, 152431.85it/s]

    -
    100%|██████████| 4997817/4997817 [00:32&lt;00:00, 155619.15it/s]
    +
    100%|██████████| 4997817/4997817 [00:32&lt;00:00, 152152.96it/s]

    </pre>

    -
    100%|██████████| 4997817/4997817 [00:32<00:00, 155619.15it/s]
    +
    100%|██████████| 4997817/4997817 [00:32<00:00, 152152.96it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 4997817/4997817 [00:32<00:00, 155619.15it/s]

    +

    100%|██████████| 4997817/4997817 [00:32<00:00, 152152.96it/s]

    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -9415,7 +9614,7 @@

    Get label quality scores -{"state": {"21c9e447d7fc49baaa07a5dcce1a412b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "80f77a5f99b34520abdbf09b57cc9c05": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "58627b4f134842dca11108614dae515e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_21c9e447d7fc49baaa07a5dcce1a412b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_80f77a5f99b34520abdbf09b57cc9c05", "tabbable": null, "tooltip": null, "value": 30.0}}, "b02aada907ae490897286a7070c2059f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa70cd8ed63c447d882958ff5fbe6dd6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "db25e0c95dbd4fe58acc9c2e49009d2a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b02aada907ae490897286a7070c2059f", "placeholder": "\u200b", "style": "IPY_MODEL_aa70cd8ed63c447d882958ff5fbe6dd6", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%"}}, "31f64f3801d34603bcb678d8d88d83f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3029038eaec4733a5f0438439b843e5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4cf90d57769c4f3aae212728b54aba6a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31f64f3801d34603bcb678d8d88d83f6", "placeholder": "\u200b", "style": "IPY_MODEL_c3029038eaec4733a5f0438439b843e5", "tabbable": null, "tooltip": null, "value": " 30/30 [00:00<00:00, 437.20it/s]"}}, "924a2835da754654ae4815fa9f5ef2fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "633c79ed95ab41e0aabbd57dbd3ecb08": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_db25e0c95dbd4fe58acc9c2e49009d2a", "IPY_MODEL_58627b4f134842dca11108614dae515e", "IPY_MODEL_4cf90d57769c4f3aae212728b54aba6a"], "layout": "IPY_MODEL_924a2835da754654ae4815fa9f5ef2fb", "tabbable": null, "tooltip": null}}, "e24577d1ffb640629f4e974978dd12fe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d8067231e5354369991d63ab259e569b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4e185115a3fe481bb647f7f4518b4dfc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e24577d1ffb640629f4e974978dd12fe", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d8067231e5354369991d63ab259e569b", "tabbable": null, "tooltip": null, "value": 30.0}}, "f2dc1e15160a4a7da0af031122d9a662": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b1015e6ccde4c4299ac75c1f98dcb22": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "29cb9371753c4992adc2f03e9fded233": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f2dc1e15160a4a7da0af031122d9a662", "placeholder": "\u200b", "style": "IPY_MODEL_4b1015e6ccde4c4299ac75c1f98dcb22", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%"}}, "9244d510c1fe4a9f858e8d747a5fb295": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "66b9efd6c0844f4a916d16ba72b3d48e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "23e3234032514e6680b01e2f25da0326": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9244d510c1fe4a9f858e8d747a5fb295", "placeholder": "\u200b", "style": "IPY_MODEL_66b9efd6c0844f4a916d16ba72b3d48e", "tabbable": null, "tooltip": null, "value": " 30/30 [00:21<00:00, 1.39it/s]"}}, "30f03336498f4516a6d36df879f490a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7cc6878891b34dc6b9eee074c27b9942": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_29cb9371753c4992adc2f03e9fded233", "IPY_MODEL_4e185115a3fe481bb647f7f4518b4dfc", "IPY_MODEL_23e3234032514e6680b01e2f25da0326"], "layout": "IPY_MODEL_30f03336498f4516a6d36df879f490a1", "tabbable": null, "tooltip": null}}, "5003464293884ffa8065ab5b42f55410": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4017c8df71354bda92d5349ae9fef4f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "92739bcd527e4b43b2729ff01f60f8f6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5003464293884ffa8065ab5b42f55410", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4017c8df71354bda92d5349ae9fef4f0", "tabbable": null, "tooltip": null, "value": 30.0}}, "7dbf6f5ff049453eb1a13021b098acfa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b82d325bec94a47b9760cfd2a39a0df": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "77a6a651adfb453fa5d94c5e24358725": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7dbf6f5ff049453eb1a13021b098acfa", "placeholder": "\u200b", "style": "IPY_MODEL_1b82d325bec94a47b9760cfd2a39a0df", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%"}}, "fc49518bd58b48719e6296222d8ba180": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "716682390a83470282205d2427adfa3c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "54e4956dd0ef45b88635518452443a61": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fc49518bd58b48719e6296222d8ba180", "placeholder": "\u200b", "style": "IPY_MODEL_716682390a83470282205d2427adfa3c", "tabbable": null, "tooltip": null, "value": " 30/30 [00:01<00:00, 22.39it/s]"}}, "ad6f45a3725e4aafa3404454d480c462": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc2a058975cf4670b5ea53ada4efa60e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_77a6a651adfb453fa5d94c5e24358725", "IPY_MODEL_92739bcd527e4b43b2729ff01f60f8f6", "IPY_MODEL_54e4956dd0ef45b88635518452443a61"], "layout": "IPY_MODEL_ad6f45a3725e4aafa3404454d480c462", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"aa8d1da8c49c4d2a884a06dab1f31831": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "605b331b013a4216a3a1d69843abfb9d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2dada95fdc0c47b88fb6c50ae7618090": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aa8d1da8c49c4d2a884a06dab1f31831", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_605b331b013a4216a3a1d69843abfb9d", "tabbable": null, "tooltip": null, "value": 30.0}}, "b4cfe9721e084dcf8d5ed3d647c40487": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d01add5fe210416992ea136cad4f9a50": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "106210816124408ca0e833f78c8c2750": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b4cfe9721e084dcf8d5ed3d647c40487", "placeholder": "\u200b", "style": "IPY_MODEL_d01add5fe210416992ea136cad4f9a50", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%"}}, "132a2934c1e94813804517068cca530c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "515057138d954b6ebf522b421c89d5f2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ecfa15309b0748c9a716660fa9b963b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_132a2934c1e94813804517068cca530c", "placeholder": "\u200b", "style": "IPY_MODEL_515057138d954b6ebf522b421c89d5f2", "tabbable": null, "tooltip": null, "value": " 30/30 [00:00<00:00, 423.89it/s]"}}, "b476da5146714d8d93cca98c05787c7a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c8c2e28ad93b4bdd9fc175ec25c69050": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_106210816124408ca0e833f78c8c2750", "IPY_MODEL_2dada95fdc0c47b88fb6c50ae7618090", "IPY_MODEL_ecfa15309b0748c9a716660fa9b963b0"], "layout": "IPY_MODEL_b476da5146714d8d93cca98c05787c7a", "tabbable": null, "tooltip": null}}, "fde2f9b7dcca4cb7b2e34c2392682342": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "103b031096294a14966691d435d6a362": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a38d8339b17a4450931b440a9b5583fd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fde2f9b7dcca4cb7b2e34c2392682342", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_103b031096294a14966691d435d6a362", "tabbable": null, "tooltip": null, "value": 30.0}}, "6d2092724d374342be5b8f9b4a89b9d9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8b227e07b4534bf5bb14643f40e77d70": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f71171dbaac542ab888563268f45ef8c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6d2092724d374342be5b8f9b4a89b9d9", "placeholder": "\u200b", "style": "IPY_MODEL_8b227e07b4534bf5bb14643f40e77d70", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%"}}, "797d2e014b75484db3c4d231eb1ea0b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85a1f5bf0cac46fa928b2505eed353ee": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "53b94fb45c8f40ac801a8583ce8a7a73": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_797d2e014b75484db3c4d231eb1ea0b4", "placeholder": "\u200b", "style": "IPY_MODEL_85a1f5bf0cac46fa928b2505eed353ee", "tabbable": null, "tooltip": null, "value": " 30/30 [00:22<00:00, 1.36it/s]"}}, "f5093f8381674d4c92872ec4fd9fa6e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea58fb54e03a45d5b2072a4db0195034": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f71171dbaac542ab888563268f45ef8c", "IPY_MODEL_a38d8339b17a4450931b440a9b5583fd", "IPY_MODEL_53b94fb45c8f40ac801a8583ce8a7a73"], "layout": "IPY_MODEL_f5093f8381674d4c92872ec4fd9fa6e4", "tabbable": null, "tooltip": null}}, "38c1a2e3eb594faea8eb2159dc493400": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26bfc64f16c340dfb305f1ed58a36893": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "256b1a27f64b492eb415fe31f617f17e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_38c1a2e3eb594faea8eb2159dc493400", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_26bfc64f16c340dfb305f1ed58a36893", "tabbable": null, "tooltip": null, "value": 30.0}}, "a1e0af03c0aa4af59354b9330442282e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e5ddda315dd424898bc3e19b40c8911": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cfc0a965d67648e0a57cd05e92e22c4b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a1e0af03c0aa4af59354b9330442282e", "placeholder": "\u200b", "style": "IPY_MODEL_4e5ddda315dd424898bc3e19b40c8911", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%"}}, "0d25ab13f4d04ef39fede621e03c9b68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0df6444b371a41e586ef22dd0d96e299": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "326727f0539e449b89ff29010c44925d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0d25ab13f4d04ef39fede621e03c9b68", "placeholder": "\u200b", "style": "IPY_MODEL_0df6444b371a41e586ef22dd0d96e299", "tabbable": null, "tooltip": null, "value": " 30/30 [00:01<00:00, 22.03it/s]"}}, "1165496d989d4c618a382d0b049e90f3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30b77994083048219d1b9180228c2b4b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cfc0a965d67648e0a57cd05e92e22c4b", "IPY_MODEL_256b1a27f64b492eb415fe31f617f17e", "IPY_MODEL_326727f0539e449b89ff29010c44925d"], "layout": "IPY_MODEL_1165496d989d4c618a382d0b049e90f3", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 282a261ca..50fa2ea52 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:04.090778Z", - "iopub.status.busy": "2024-02-08T04:31:04.090311Z", - "iopub.status.idle": "2024-02-08T04:31:06.685136Z", - "shell.execute_reply": "2024-02-08T04:31:06.684460Z" + "iopub.execute_input": "2024-02-08T05:18:06.194836Z", + "iopub.status.busy": "2024-02-08T05:18:06.194464Z", + "iopub.status.idle": "2024-02-08T05:18:11.509123Z", + "shell.execute_reply": "2024-02-08T05:18:11.508442Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:06.687749Z", - "iopub.status.busy": "2024-02-08T04:31:06.687374Z", - "iopub.status.idle": "2024-02-08T04:32:33.192723Z", - "shell.execute_reply": "2024-02-08T04:32:33.192050Z" + "iopub.execute_input": "2024-02-08T05:18:11.511765Z", + "iopub.status.busy": "2024-02-08T05:18:11.511386Z", + "iopub.status.idle": "2024-02-08T05:19:01.334173Z", + "shell.execute_reply": "2024-02-08T05:19:01.333418Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:33.195218Z", - "iopub.status.busy": "2024-02-08T04:32:33.194983Z", - "iopub.status.idle": "2024-02-08T04:32:34.284442Z", - "shell.execute_reply": "2024-02-08T04:32:34.283882Z" + "iopub.execute_input": "2024-02-08T05:19:01.337024Z", + "iopub.status.busy": "2024-02-08T05:19:01.336645Z", + "iopub.status.idle": "2024-02-08T05:19:02.446829Z", + "shell.execute_reply": "2024-02-08T05:19:02.446265Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.287010Z", - "iopub.status.busy": "2024-02-08T04:32:34.286715Z", - "iopub.status.idle": "2024-02-08T04:32:34.289859Z", - "shell.execute_reply": "2024-02-08T04:32:34.289423Z" + "iopub.execute_input": "2024-02-08T05:19:02.449563Z", + "iopub.status.busy": "2024-02-08T05:19:02.449077Z", + "iopub.status.idle": "2024-02-08T05:19:02.452514Z", + "shell.execute_reply": "2024-02-08T05:19:02.451942Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.291762Z", - "iopub.status.busy": "2024-02-08T04:32:34.291582Z", - "iopub.status.idle": "2024-02-08T04:32:34.295486Z", - "shell.execute_reply": "2024-02-08T04:32:34.295037Z" + "iopub.execute_input": "2024-02-08T05:19:02.454973Z", + "iopub.status.busy": "2024-02-08T05:19:02.454564Z", + "iopub.status.idle": "2024-02-08T05:19:02.458751Z", + "shell.execute_reply": "2024-02-08T05:19:02.458289Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.297355Z", - "iopub.status.busy": "2024-02-08T04:32:34.297179Z", - "iopub.status.idle": "2024-02-08T04:32:34.300716Z", - "shell.execute_reply": "2024-02-08T04:32:34.300269Z" + "iopub.execute_input": "2024-02-08T05:19:02.461004Z", + "iopub.status.busy": "2024-02-08T05:19:02.460655Z", + "iopub.status.idle": "2024-02-08T05:19:02.464367Z", + "shell.execute_reply": "2024-02-08T05:19:02.463921Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.302700Z", - "iopub.status.busy": "2024-02-08T04:32:34.302414Z", - "iopub.status.idle": "2024-02-08T04:32:34.305247Z", - "shell.execute_reply": "2024-02-08T04:32:34.304818Z" + "iopub.execute_input": "2024-02-08T05:19:02.466454Z", + "iopub.status.busy": "2024-02-08T05:19:02.466133Z", + "iopub.status.idle": "2024-02-08T05:19:02.468853Z", + "shell.execute_reply": "2024-02-08T05:19:02.468435Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.307210Z", - "iopub.status.busy": "2024-02-08T04:32:34.306903Z", - "iopub.status.idle": "2024-02-08T04:33:50.468781Z", - "shell.execute_reply": "2024-02-08T04:33:50.468192Z" + "iopub.execute_input": "2024-02-08T05:19:02.470767Z", + "iopub.status.busy": "2024-02-08T05:19:02.470482Z", + "iopub.status.idle": "2024-02-08T05:20:19.455463Z", + "shell.execute_reply": "2024-02-08T05:20:19.454724Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "633c79ed95ab41e0aabbd57dbd3ecb08", + "model_id": "c8c2e28ad93b4bdd9fc175ec25c69050", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7cc6878891b34dc6b9eee074c27b9942", + "model_id": "ea58fb54e03a45d5b2072a4db0195034", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:50.471202Z", - "iopub.status.busy": "2024-02-08T04:33:50.471016Z", - "iopub.status.idle": "2024-02-08T04:33:51.129982Z", - "shell.execute_reply": "2024-02-08T04:33:51.129389Z" + "iopub.execute_input": "2024-02-08T05:20:19.458139Z", + "iopub.status.busy": "2024-02-08T05:20:19.457915Z", + "iopub.status.idle": "2024-02-08T05:20:20.138783Z", + "shell.execute_reply": "2024-02-08T05:20:20.138296Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:51.132369Z", - "iopub.status.busy": "2024-02-08T04:33:51.131864Z", - "iopub.status.idle": "2024-02-08T04:33:53.739824Z", - "shell.execute_reply": "2024-02-08T04:33:53.739233Z" + "iopub.execute_input": "2024-02-08T05:20:20.141021Z", + "iopub.status.busy": "2024-02-08T05:20:20.140710Z", + "iopub.status.idle": "2024-02-08T05:20:22.899351Z", + "shell.execute_reply": "2024-02-08T05:20:22.898717Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:53.741963Z", - "iopub.status.busy": "2024-02-08T04:33:53.741658Z", - "iopub.status.idle": "2024-02-08T04:34:26.078889Z", - "shell.execute_reply": "2024-02-08T04:34:26.078349Z" + "iopub.execute_input": "2024-02-08T05:20:22.901657Z", + "iopub.status.busy": "2024-02-08T05:20:22.901306Z", + "iopub.status.idle": "2024-02-08T05:20:55.974341Z", + "shell.execute_reply": "2024-02-08T05:20:55.973829Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15263/4997817 [00:00<00:32, 152620.32it/s]" + " 0%| | 15219/4997817 [00:00<00:32, 152175.63it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 30666/4997817 [00:00<00:32, 153444.23it/s]" + " 1%| | 30515/4997817 [00:00<00:32, 152628.96it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46403/4997817 [00:00<00:31, 155233.62it/s]" + " 1%| | 45778/4997817 [00:00<00:32, 152070.29it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 62088/4997817 [00:00<00:31, 155869.58it/s]" + " 1%| | 60986/4997817 [00:00<00:32, 151671.35it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 77755/4997817 [00:00<00:31, 156156.65it/s]" + " 2%|▏ | 76154/4997817 [00:00<00:32, 151334.04it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 93461/4997817 [00:00<00:31, 156459.90it/s]" + " 2%|▏ | 91408/4997817 [00:00<00:32, 151739.35it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 109145/4997817 [00:00<00:31, 156582.99it/s]" + " 2%|▏ | 106583/4997817 [00:00<00:32, 151262.88it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 124865/4997817 [00:00<00:31, 156775.77it/s]" + " 2%|▏ | 121799/4997817 [00:00<00:32, 151497.04it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 140561/4997817 [00:00<00:30, 156832.47it/s]" + " 3%|▎ | 136950/4997817 [00:00<00:32, 151116.12it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 156296/4997817 [00:01<00:30, 156990.78it/s]" + " 3%|▎ | 152062/4997817 [00:01<00:32, 150719.47it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 171996/4997817 [00:01<00:30, 156816.52it/s]" + " 3%|▎ | 167152/4997817 [00:01<00:32, 150772.00it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 187678/4997817 [00:01<00:30, 156789.10it/s]" + " 4%|▎ | 182311/4997817 [00:01<00:31, 151017.94it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 203449/4997817 [00:01<00:30, 157064.19it/s]" + " 4%|▍ | 197414/4997817 [00:01<00:32, 149004.91it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 219271/4997817 [00:01<00:30, 157411.47it/s]" + " 4%|▍ | 212321/4997817 [00:01<00:32, 148494.46it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 235039/4997817 [00:01<00:30, 157491.41it/s]" + " 5%|▍ | 227688/4997817 [00:01<00:31, 150033.39it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 250894/4997817 [00:01<00:30, 157807.98it/s]" + " 5%|▍ | 242927/4997817 [00:01<00:31, 150733.98it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 266675/4997817 [00:01<00:29, 157776.96it/s]" + " 5%|▌ | 258207/4997817 [00:01<00:31, 151349.15it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 282453/4997817 [00:01<00:29, 157761.99it/s]" + " 5%|▌ | 273519/4997817 [00:01<00:31, 151877.06it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 298230/4997817 [00:01<00:29, 157339.46it/s]" + " 6%|▌ | 288818/4997817 [00:01<00:30, 152206.19it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 313965/4997817 [00:02<00:29, 157107.54it/s]" + " 6%|▌ | 304086/4997817 [00:02<00:30, 152346.07it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 329811/4997817 [00:02<00:29, 157509.28it/s]" + " 6%|▋ | 319322/4997817 [00:02<00:30, 152226.57it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 345563/4997817 [00:02<00:30, 153954.15it/s]" + " 7%|▋ | 334625/4997817 [00:02<00:30, 152465.32it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 361251/4997817 [00:02<00:29, 154814.53it/s]" + " 7%|▋ | 349873/4997817 [00:02<00:30, 152288.21it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 376940/4997817 [00:02<00:29, 155427.51it/s]" + " 7%|▋ | 365103/4997817 [00:02<00:31, 149042.74it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 392762/4997817 [00:02<00:29, 156257.19it/s]" + " 8%|▊ | 380408/4997817 [00:02<00:30, 150221.43it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 408619/4997817 [00:02<00:29, 156944.77it/s]" + " 8%|▊ | 395607/4997817 [00:02<00:30, 150742.66it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 424451/4997817 [00:02<00:29, 157351.99it/s]" + " 8%|▊ | 410867/4997817 [00:02<00:30, 151292.06it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 440219/4997817 [00:02<00:28, 157448.13it/s]" + " 9%|▊ | 426153/4997817 [00:02<00:30, 151755.55it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 456014/4997817 [00:02<00:28, 157594.94it/s]" + " 9%|▉ | 441466/4997817 [00:02<00:29, 152163.81it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 471810/4997817 [00:03<00:28, 157702.43it/s]" + " 9%|▉ | 456687/4997817 [00:03<00:29, 152154.88it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 487647/4997817 [00:03<00:28, 157900.06it/s]" + " 9%|▉ | 472009/4997817 [00:03<00:29, 152471.31it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 503447/4997817 [00:03<00:28, 157926.90it/s]" + " 10%|▉ | 487319/4997817 [00:03<00:29, 152657.18it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 519243/4997817 [00:03<00:28, 157933.03it/s]" + " 10%|█ | 502587/4997817 [00:03<00:29, 152587.42it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 535046/4997817 [00:03<00:28, 157960.35it/s]" + " 10%|█ | 517878/4997817 [00:03<00:29, 152680.31it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 550843/4997817 [00:03<00:28, 157126.81it/s]" + " 11%|█ | 533228/4997817 [00:03<00:29, 152922.25it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 566561/4997817 [00:03<00:28, 157141.74it/s]" + " 11%|█ | 548521/4997817 [00:03<00:29, 152579.62it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 582279/4997817 [00:03<00:28, 157149.98it/s]" + " 11%|█▏ | 563780/4997817 [00:03<00:29, 152366.87it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 597995/4997817 [00:03<00:28, 157124.65it/s]" + " 12%|█▏ | 579068/4997817 [00:03<00:28, 152516.68it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 613708/4997817 [00:03<00:27, 156897.25it/s]" + " 12%|█▏ | 594320/4997817 [00:03<00:28, 152104.13it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 629508/4997817 [00:04<00:27, 157224.86it/s]" + " 12%|█▏ | 609531/4997817 [00:04<00:28, 152101.48it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 645231/4997817 [00:04<00:27, 157177.39it/s]" + " 13%|█▎ | 624752/4997817 [00:04<00:28, 152131.73it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 660949/4997817 [00:04<00:27, 156978.60it/s]" + " 13%|█▎ | 639966/4997817 [00:04<00:28, 151079.04it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 676648/4997817 [00:04<00:27, 156760.78it/s]" + " 13%|█▎ | 655076/4997817 [00:04<00:28, 151049.89it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 692325/4997817 [00:04<00:27, 156208.63it/s]" + " 13%|█▎ | 670183/4997817 [00:04<00:30, 143565.20it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 707947/4997817 [00:04<00:27, 156090.54it/s]" + " 14%|█▎ | 685377/4997817 [00:04<00:29, 145979.48it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 723563/4997817 [00:04<00:27, 156108.57it/s]" + " 14%|█▍ | 700538/4997817 [00:04<00:29, 147618.75it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739191/4997817 [00:04<00:27, 156158.25it/s]" + " 14%|█▍ | 715680/4997817 [00:04<00:28, 148734.34it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 754807/4997817 [00:04<00:27, 156048.28it/s]" + " 15%|█▍ | 730868/4997817 [00:04<00:28, 149661.46it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 770497/4997817 [00:04<00:27, 156302.41it/s]" + " 15%|█▍ | 746099/4997817 [00:04<00:28, 150444.15it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 786317/4997817 [00:05<00:26, 156868.27it/s]" + " 15%|█▌ | 761372/4997817 [00:05<00:28, 151122.68it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 802017/4997817 [00:05<00:26, 156904.88it/s]" + " 16%|█▌ | 776857/4997817 [00:05<00:27, 152232.63it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 817708/4997817 [00:05<00:27, 153225.26it/s]" + " 16%|█▌ | 792347/4997817 [00:05<00:27, 153026.64it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 833392/4997817 [00:05<00:26, 154288.53it/s]" + " 16%|█▌ | 807768/4997817 [00:05<00:27, 153377.03it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 849328/4997817 [00:05<00:26, 155788.65it/s]" + " 16%|█▋ | 823303/4997817 [00:05<00:27, 153966.34it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 865122/4997817 [00:05<00:26, 156427.57it/s]" + " 17%|█▋ | 838868/4997817 [00:05<00:26, 154469.02it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 880887/4997817 [00:05<00:26, 156788.95it/s]" + " 17%|█▋ | 854393/4997817 [00:05<00:26, 154699.52it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 896614/4997817 [00:05<00:26, 156931.70it/s]" + " 17%|█▋ | 869879/4997817 [00:05<00:26, 154744.14it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 912312/4997817 [00:05<00:26, 156914.97it/s]" + " 18%|█▊ | 885355/4997817 [00:05<00:26, 154662.03it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 928025/4997817 [00:05<00:25, 156976.92it/s]" + " 18%|█▊ | 900823/4997817 [00:05<00:26, 154618.28it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 943726/4997817 [00:06<00:25, 156932.85it/s]" + " 18%|█▊ | 916286/4997817 [00:06<00:26, 154561.85it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 959463/4997817 [00:06<00:25, 157062.64it/s]" + " 19%|█▊ | 931866/4997817 [00:06<00:26, 154930.84it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 975171/4997817 [00:06<00:25, 156949.11it/s]" + " 19%|█▉ | 947360/4997817 [00:06<00:26, 154896.54it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 990867/4997817 [00:06<00:25, 156556.37it/s]" + " 19%|█▉ | 962850/4997817 [00:06<00:26, 154866.84it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1006550/4997817 [00:06<00:25, 156635.05it/s]" + " 20%|█▉ | 978337/4997817 [00:06<00:25, 154782.30it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1022215/4997817 [00:06<00:25, 156528.27it/s]" + " 20%|█▉ | 993816/4997817 [00:06<00:25, 154378.72it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1037881/4997817 [00:06<00:25, 156565.86it/s]" + " 20%|██ | 1009295/4997817 [00:06<00:25, 154498.77it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1053699/4997817 [00:06<00:25, 157047.75it/s]" + " 21%|██ | 1024770/4997817 [00:06<00:25, 154570.08it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1069405/4997817 [00:06<00:25, 157030.48it/s]" + " 21%|██ | 1040292/4997817 [00:06<00:25, 154762.00it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1085109/4997817 [00:06<00:24, 157023.73it/s]" + " 21%|██ | 1055833/4997817 [00:06<00:25, 154953.40it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1100812/4997817 [00:07<00:24, 157017.91it/s]" + " 21%|██▏ | 1071368/4997817 [00:07<00:25, 155068.69it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1116514/4997817 [00:07<00:24, 156868.74it/s]" + " 22%|██▏ | 1086875/4997817 [00:07<00:25, 154910.98it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1132201/4997817 [00:07<00:24, 156856.61it/s]" + " 22%|██▏ | 1102367/4997817 [00:07<00:25, 154771.95it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1147887/4997817 [00:07<00:24, 156805.11it/s]" + " 22%|██▏ | 1117845/4997817 [00:07<00:25, 154473.84it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1163580/4997817 [00:07<00:24, 156840.13it/s]" + " 23%|██▎ | 1133293/4997817 [00:07<00:25, 153830.15it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1179265/4997817 [00:07<00:24, 156735.23it/s]" + " 23%|██▎ | 1148677/4997817 [00:07<00:25, 152795.48it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1194966/4997817 [00:07<00:24, 156815.51it/s]" + " 23%|██▎ | 1164033/4997817 [00:07<00:25, 153020.57it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1210648/4997817 [00:07<00:24, 156722.01it/s]" + " 24%|██▎ | 1179445/4997817 [00:07<00:24, 153346.10it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1226321/4997817 [00:07<00:24, 156153.98it/s]" + " 24%|██▍ | 1194827/4997817 [00:07<00:24, 153485.79it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1241937/4997817 [00:07<00:24, 156124.87it/s]" + " 24%|██▍ | 1210177/4997817 [00:07<00:24, 153406.60it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1257558/4997817 [00:08<00:23, 156148.50it/s]" + " 25%|██▍ | 1225519/4997817 [00:08<00:24, 153329.14it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1273179/4997817 [00:08<00:23, 156164.18it/s]" + " 25%|██▍ | 1240853/4997817 [00:08<00:24, 152990.60it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1288823/4997817 [00:08<00:23, 156245.31it/s]" + " 25%|██▌ | 1256153/4997817 [00:08<00:24, 152916.47it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1304448/4997817 [00:08<00:24, 149122.57it/s]" + " 25%|██▌ | 1271445/4997817 [00:08<00:24, 152236.93it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1320201/4997817 [00:08<00:24, 151560.64it/s]" + " 26%|██▌ | 1286713/4997817 [00:08<00:24, 152365.67it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1335784/4997817 [00:08<00:23, 152810.29it/s]" + " 26%|██▌ | 1302067/4997817 [00:08<00:24, 152714.43it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1351437/4997817 [00:08<00:23, 153905.86it/s]" + " 26%|██▋ | 1317531/4997817 [00:08<00:24, 153287.37it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1367067/4997817 [00:08<00:23, 154615.30it/s]" + " 27%|██▋ | 1332993/4997817 [00:08<00:23, 153682.36it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1382626/4997817 [00:08<00:23, 154902.96it/s]" + " 27%|██▋ | 1348485/4997817 [00:08<00:23, 154049.29it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1398347/4997817 [00:08<00:23, 155589.95it/s]" + " 27%|██▋ | 1363898/4997817 [00:08<00:23, 154071.65it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1414047/4997817 [00:09<00:22, 156009.20it/s]" + " 28%|██▊ | 1379399/4997817 [00:09<00:23, 154351.60it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1429657/4997817 [00:09<00:22, 155598.60it/s]" + " 28%|██▊ | 1394835/4997817 [00:09<00:23, 154191.34it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1445223/4997817 [00:09<00:22, 155576.53it/s]" + " 28%|██▊ | 1410321/4997817 [00:09<00:23, 154389.90it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1460785/4997817 [00:09<00:23, 151230.69it/s]" + " 29%|██▊ | 1425761/4997817 [00:09<00:23, 154373.66it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1476499/4997817 [00:09<00:23, 152962.50it/s]" + " 29%|██▉ | 1441199/4997817 [00:09<00:23, 154033.50it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1492193/4997817 [00:09<00:22, 154135.92it/s]" + " 29%|██▉ | 1456681/4997817 [00:09<00:22, 154241.61it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1507910/4997817 [00:09<00:22, 155034.80it/s]" + " 29%|██▉ | 1472106/4997817 [00:09<00:23, 149708.68it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1523500/4997817 [00:09<00:22, 155291.00it/s]" + " 30%|██▉ | 1487442/4997817 [00:09<00:23, 150778.12it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1539068/4997817 [00:09<00:22, 155405.46it/s]" + " 30%|███ | 1502934/4997817 [00:09<00:22, 151998.09it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1554740/4997817 [00:09<00:22, 155797.39it/s]" + " 30%|███ | 1518481/4997817 [00:09<00:22, 153026.59it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1570325/4997817 [00:10<00:22, 155632.09it/s]" + " 31%|███ | 1533971/4997817 [00:10<00:22, 153580.89it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1585935/4997817 [00:10<00:21, 155771.47it/s]" + " 31%|███ | 1549477/4997817 [00:10<00:22, 154018.67it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1601515/4997817 [00:10<00:21, 155577.69it/s]" + " 31%|███▏ | 1564939/4997817 [00:10<00:22, 154195.91it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1617101/4997817 [00:10<00:21, 155645.58it/s]" + " 32%|███▏ | 1580364/4997817 [00:10<00:22, 153889.50it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1632667/4997817 [00:10<00:22, 148235.31it/s]" + " 32%|███▏ | 1595792/4997817 [00:10<00:22, 154004.33it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1648018/4997817 [00:10<00:22, 149759.46it/s]" + " 32%|███▏ | 1611227/4997817 [00:10<00:21, 154106.29it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1663496/4997817 [00:10<00:22, 151227.25it/s]" + " 33%|███▎ | 1626640/4997817 [00:10<00:21, 153914.83it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1679092/4997817 [00:10<00:21, 152620.63it/s]" + " 33%|███▎ | 1642067/4997817 [00:10<00:21, 154017.91it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1694624/4997817 [00:10<00:21, 153418.04it/s]" + " 33%|███▎ | 1657470/4997817 [00:10<00:21, 153883.75it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1710114/4997817 [00:10<00:21, 153856.65it/s]" + " 33%|███▎ | 1672885/4997817 [00:10<00:21, 153960.13it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1725618/4997817 [00:11<00:21, 154206.80it/s]" + " 34%|███▍ | 1688410/4997817 [00:11<00:21, 154345.25it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1741184/4997817 [00:11<00:21, 154637.42it/s]" + " 34%|███▍ | 1703989/4997817 [00:11<00:21, 154777.26it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1756809/4997817 [00:11<00:20, 155118.45it/s]" + " 34%|███▍ | 1719468/4997817 [00:11<00:21, 154729.80it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1772353/4997817 [00:11<00:20, 155210.55it/s]" + " 35%|███▍ | 1734942/4997817 [00:11<00:21, 154566.62it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1787879/4997817 [00:11<00:20, 155071.46it/s]" + " 35%|███▌ | 1750507/4997817 [00:11<00:20, 154890.07it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1803441/4997817 [00:11<00:20, 155232.57it/s]" + " 35%|███▌ | 1766005/4997817 [00:11<00:20, 154914.31it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1818967/4997817 [00:11<00:20, 155131.89it/s]" + " 36%|███▌ | 1781497/4997817 [00:11<00:21, 147546.06it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1834552/4997817 [00:11<00:20, 155345.75it/s]" + " 36%|███▌ | 1796958/4997817 [00:11<00:21, 149591.06it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1850088/4997817 [00:11<00:20, 155196.47it/s]" + " 36%|███▋ | 1812454/4997817 [00:11<00:21, 151160.60it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1865620/4997817 [00:11<00:20, 155230.31it/s]" + " 37%|███▋ | 1827877/4997817 [00:11<00:20, 152061.89it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1881152/4997817 [00:12<00:20, 155254.90it/s]" + " 37%|███▋ | 1843464/4997817 [00:12<00:20, 153189.44it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1896678/4997817 [00:12<00:19, 155248.93it/s]" + " 37%|███▋ | 1858984/4997817 [00:12<00:20, 153786.46it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1912204/4997817 [00:12<00:19, 155052.44it/s]" + " 38%|███▊ | 1874464/4997817 [00:12<00:20, 154084.92it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1927782/4997817 [00:12<00:19, 155267.04it/s]" + " 38%|███▊ | 1889886/4997817 [00:12<00:20, 154001.26it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1943309/4997817 [00:12<00:20, 147382.65it/s]" + " 38%|███▊ | 1905352/4997817 [00:12<00:20, 154197.03it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1958900/4997817 [00:12<00:20, 149845.53it/s]" + " 38%|███▊ | 1920784/4997817 [00:12<00:19, 154230.24it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1974144/4997817 [00:12<00:20, 150601.16it/s]" + " 39%|███▊ | 1936212/4997817 [00:12<00:20, 148546.66it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1989777/4997817 [00:12<00:19, 152285.11it/s]" + " 39%|███▉ | 1951414/4997817 [00:12<00:20, 149557.92it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2005339/4997817 [00:12<00:19, 153271.17it/s]" + " 39%|███▉ | 1966912/4997817 [00:12<00:20, 151149.78it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2020923/4997817 [00:12<00:19, 154032.12it/s]" + " 40%|███▉ | 1982262/4997817 [00:12<00:19, 151843.47it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2036556/4997817 [00:13<00:19, 154716.13it/s]" + " 40%|███▉ | 1997680/4997817 [00:13<00:19, 152533.87it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2052197/4997817 [00:13<00:18, 155218.30it/s]" + " 40%|████ | 2012949/4997817 [00:13<00:19, 152506.11it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2067791/4997817 [00:13<00:18, 155431.62it/s]" + " 41%|████ | 2028211/4997817 [00:13<00:19, 152396.45it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2083480/4997817 [00:13<00:18, 155866.53it/s]" + " 41%|████ | 2043459/4997817 [00:13<00:19, 152411.03it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2099072/4997817 [00:13<00:18, 153960.26it/s]" + " 41%|████ | 2058765/4997817 [00:13<00:19, 152604.20it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2114477/4997817 [00:13<00:19, 149462.47it/s]" + " 41%|████▏ | 2074030/4997817 [00:13<00:19, 152499.64it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2129964/4997817 [00:13<00:18, 151036.87it/s]" + " 42%|████▏ | 2089285/4997817 [00:13<00:19, 152513.02it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2145511/4997817 [00:13<00:18, 152339.93it/s]" + " 42%|████▏ | 2104539/4997817 [00:13<00:19, 151666.67it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2161091/4997817 [00:13<00:18, 153360.76it/s]" + " 42%|████▏ | 2119708/4997817 [00:13<00:19, 151082.79it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2176618/4997817 [00:14<00:18, 153926.20it/s]" + " 43%|████▎ | 2134819/4997817 [00:13<00:18, 150954.13it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2192023/4997817 [00:14<00:18, 153927.27it/s]" + " 43%|████▎ | 2149966/4997817 [00:14<00:18, 151105.70it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2207487/4997817 [00:14<00:18, 154138.21it/s]" + " 43%|████▎ | 2165078/4997817 [00:14<00:18, 150864.63it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2222907/4997817 [00:14<00:18, 154133.22it/s]" + " 44%|████▎ | 2180212/4997817 [00:14<00:18, 151004.51it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2238462/4997817 [00:14<00:17, 154555.13it/s]" + " 44%|████▍ | 2195377/4997817 [00:14<00:18, 151195.99it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2254046/4997817 [00:14<00:17, 154936.96it/s]" + " 44%|████▍ | 2210676/4997817 [00:14<00:18, 151731.76it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2269542/4997817 [00:14<00:17, 154628.66it/s]" + " 45%|████▍ | 2225850/4997817 [00:14<00:18, 151531.53it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2285034/4997817 [00:14<00:17, 154712.81it/s]" + " 45%|████▍ | 2241004/4997817 [00:14<00:18, 151333.79it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2300521/4997817 [00:14<00:17, 154756.29it/s]" + " 45%|████▌ | 2256138/4997817 [00:14<00:18, 150729.51it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2316076/4997817 [00:14<00:17, 154990.85it/s]" + " 45%|████▌ | 2271212/4997817 [00:14<00:18, 150197.98it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2331731/4997817 [00:15<00:17, 155457.59it/s]" + " 46%|████▌ | 2286233/4997817 [00:15<00:18, 150187.72it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2347419/4997817 [00:15<00:17, 155882.10it/s]" + " 46%|████▌ | 2301330/4997817 [00:15<00:17, 150418.31it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2363116/4997817 [00:15<00:16, 156205.14it/s]" + " 46%|████▋ | 2316399/4997817 [00:15<00:17, 150498.24it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2378808/4997817 [00:15<00:16, 156417.45it/s]" + " 47%|████▋ | 2331548/4997817 [00:15<00:17, 150793.94it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2394450/4997817 [00:15<00:16, 156396.45it/s]" + " 47%|████▋ | 2346781/4997817 [00:15<00:17, 151253.19it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2410090/4997817 [00:15<00:16, 156233.00it/s]" + " 47%|████▋ | 2362004/4997817 [00:15<00:17, 151542.75it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2425714/4997817 [00:15<00:16, 153347.97it/s]" + " 48%|████▊ | 2377162/4997817 [00:15<00:17, 151551.14it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2441355/4997817 [00:15<00:16, 154251.91it/s]" + " 48%|████▊ | 2392436/4997817 [00:15<00:17, 151906.04it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2456999/4997817 [00:15<00:16, 154899.45it/s]" + " 48%|████▊ | 2407643/4997817 [00:15<00:17, 151953.19it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2472573/4997817 [00:15<00:16, 155147.20it/s]" + " 48%|████▊ | 2423011/4997817 [00:15<00:16, 152469.29it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488269/4997817 [00:16<00:16, 155687.39it/s]" + " 49%|████▉ | 2438258/4997817 [00:16<00:16, 152457.99it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2503888/4997817 [00:16<00:16, 155834.72it/s]" + " 49%|████▉ | 2453589/4997817 [00:16<00:16, 152711.08it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2519475/4997817 [00:16<00:15, 155805.85it/s]" + " 49%|████▉ | 2468861/4997817 [00:16<00:16, 152406.11it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2535058/4997817 [00:16<00:15, 155369.20it/s]" + " 50%|████▉ | 2484102/4997817 [00:16<00:16, 152383.37it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2550597/4997817 [00:16<00:15, 155179.21it/s]" + " 50%|█████ | 2499341/4997817 [00:16<00:16, 152361.67it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2566117/4997817 [00:16<00:15, 155127.40it/s]" + " 50%|█████ | 2514736/4997817 [00:16<00:16, 152835.48it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2581758/4997817 [00:16<00:15, 155508.94it/s]" + " 51%|█████ | 2530062/4997817 [00:16<00:16, 152961.70it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2597417/4997817 [00:16<00:15, 155829.62it/s]" + " 51%|█████ | 2545402/4997817 [00:16<00:16, 153090.00it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2613047/4997817 [00:16<00:15, 155967.82it/s]" + " 51%|█████ | 2560712/4997817 [00:16<00:15, 152472.61it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2628736/4997817 [00:16<00:15, 156242.26it/s]" + " 52%|█████▏ | 2576006/4997817 [00:16<00:15, 152608.52it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2644396/4997817 [00:17<00:15, 156346.54it/s]" + " 52%|█████▏ | 2591361/4997817 [00:17<00:15, 152887.01it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2660031/4997817 [00:17<00:14, 156281.93it/s]" + " 52%|█████▏ | 2606651/4997817 [00:17<00:15, 152751.10it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2675660/4997817 [00:17<00:14, 156120.12it/s]" + " 52%|█████▏ | 2621927/4997817 [00:17<00:15, 152635.77it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2691280/4997817 [00:17<00:14, 156142.76it/s]" + " 53%|█████▎ | 2637191/4997817 [00:17<00:15, 152547.55it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2706895/4997817 [00:17<00:14, 155947.37it/s]" + " 53%|█████▎ | 2652472/4997817 [00:17<00:15, 152623.26it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2722572/4997817 [00:17<00:14, 156193.18it/s]" + " 53%|█████▎ | 2667735/4997817 [00:17<00:15, 152574.74it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2738193/4997817 [00:17<00:14, 156195.92it/s]" + " 54%|█████▎ | 2682993/4997817 [00:17<00:15, 152551.51it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2753813/4997817 [00:17<00:14, 150301.55it/s]" + " 54%|█████▍ | 2698249/4997817 [00:17<00:15, 152430.35it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2769422/4997817 [00:17<00:14, 151987.78it/s]" + " 54%|█████▍ | 2713493/4997817 [00:17<00:14, 152302.06it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2785064/4997817 [00:17<00:14, 153289.24it/s]" + " 55%|█████▍ | 2728724/4997817 [00:17<00:15, 151063.24it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2800777/4997817 [00:18<00:14, 154423.61it/s]" + " 55%|█████▍ | 2743939/4997817 [00:18<00:14, 151383.79it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2816532/4997817 [00:18<00:14, 155351.64it/s]" + " 55%|█████▌ | 2759158/4997817 [00:18<00:14, 151621.64it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2832326/4997817 [00:18<00:13, 156121.44it/s]" + " 56%|█████▌ | 2774348/4997817 [00:18<00:14, 151702.75it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2848000/4997817 [00:18<00:13, 156304.73it/s]" + " 56%|█████▌ | 2789597/4997817 [00:18<00:14, 151936.90it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2863639/4997817 [00:18<00:13, 156075.36it/s]" + " 56%|█████▌ | 2804823/4997817 [00:18<00:14, 152032.20it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2879282/4997817 [00:18<00:13, 156179.98it/s]" + " 56%|█████▋ | 2820027/4997817 [00:18<00:14, 152028.49it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2894905/4997817 [00:18<00:13, 156130.38it/s]" + " 57%|█████▋ | 2835231/4997817 [00:18<00:14, 151863.98it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2910521/4997817 [00:18<00:13, 155588.20it/s]" + " 57%|█████▋ | 2850481/4997817 [00:18<00:14, 152051.86it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2926101/4997817 [00:18<00:13, 155647.77it/s]" + " 57%|█████▋ | 2865687/4997817 [00:18<00:14, 152021.10it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2941668/4997817 [00:18<00:13, 155279.31it/s]" + " 58%|█████▊ | 2880890/4997817 [00:18<00:13, 151948.23it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2957198/4997817 [00:19<00:13, 155117.95it/s]" + " 58%|█████▊ | 2896119/4997817 [00:19<00:13, 152047.99it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2972765/4997817 [00:19<00:13, 155281.18it/s]" + " 58%|█████▊ | 2911324/4997817 [00:19<00:13, 151894.90it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2988398/4997817 [00:19<00:12, 155591.93it/s]" + " 59%|█████▊ | 2926514/4997817 [00:19<00:13, 151707.99it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3003958/4997817 [00:19<00:12, 155555.18it/s]" + " 59%|█████▉ | 2941685/4997817 [00:19<00:13, 151331.30it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3019690/4997817 [00:19<00:12, 156080.74it/s]" + " 59%|█████▉ | 2956862/4997817 [00:19<00:13, 151461.27it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3035372/4997817 [00:19<00:12, 156299.79it/s]" + " 59%|█████▉ | 2972034/4997817 [00:19<00:13, 151534.88it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3051003/4997817 [00:19<00:12, 154260.07it/s]" + " 60%|█████▉ | 2987200/4997817 [00:19<00:13, 151569.37it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3066480/4997817 [00:19<00:12, 154409.21it/s]" + " 60%|██████ | 3002482/4997817 [00:19<00:13, 151940.96it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3082098/4997817 [00:19<00:12, 154934.80it/s]" + " 60%|██████ | 3017677/4997817 [00:19<00:13, 151819.15it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3097722/4997817 [00:19<00:12, 155321.11it/s]" + " 61%|██████ | 3032885/4997817 [00:19<00:12, 151894.65it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3113318/4997817 [00:20<00:12, 155509.63it/s]" + " 61%|██████ | 3048113/4997817 [00:20<00:12, 152008.14it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3128913/4997817 [00:20<00:12, 155639.58it/s]" + " 61%|██████▏ | 3063393/4997817 [00:20<00:12, 152242.46it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3144479/4997817 [00:20<00:11, 155436.41it/s]" + " 62%|██████▏ | 3078624/4997817 [00:20<00:12, 152259.82it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3160024/4997817 [00:20<00:11, 155424.44it/s]" + " 62%|██████▏ | 3093999/4997817 [00:20<00:12, 152703.83it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3175636/4997817 [00:20<00:11, 155631.16it/s]" + " 62%|██████▏ | 3109270/4997817 [00:20<00:12, 152597.70it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3191241/4997817 [00:20<00:11, 155756.16it/s]" + " 63%|██████▎ | 3124545/4997817 [00:20<00:12, 152640.02it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3206843/4997817 [00:20<00:11, 155833.52it/s]" + " 63%|██████▎ | 3139820/4997817 [00:20<00:12, 152672.28it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3222427/4997817 [00:20<00:11, 155273.07it/s]" + " 63%|██████▎ | 3155088/4997817 [00:20<00:12, 152185.95it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3237981/4997817 [00:20<00:11, 155351.19it/s]" + " 63%|██████▎ | 3170307/4997817 [00:20<00:12, 152112.32it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3253517/4997817 [00:20<00:11, 154931.20it/s]" + " 64%|██████▎ | 3185530/4997817 [00:20<00:11, 152144.01it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3269081/4997817 [00:21<00:11, 155140.63it/s]" + " 64%|██████▍ | 3200769/4997817 [00:21<00:11, 152215.78it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3284643/4997817 [00:21<00:11, 155282.26it/s]" + " 64%|██████▍ | 3215991/4997817 [00:21<00:11, 152101.57it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3300172/4997817 [00:21<00:10, 154899.59it/s]" + " 65%|██████▍ | 3231212/4997817 [00:21<00:11, 152132.03it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3315734/4997817 [00:21<00:10, 155110.38it/s]" + " 65%|██████▍ | 3246456/4997817 [00:21<00:11, 152222.64it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3331370/4997817 [00:21<00:10, 155482.10it/s]" + " 65%|██████▌ | 3261753/4997817 [00:21<00:11, 152443.70it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3346919/4997817 [00:21<00:10, 155478.18it/s]" + " 66%|██████▌ | 3277013/4997817 [00:21<00:11, 152488.65it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3362526/4997817 [00:21<00:10, 155654.59it/s]" + " 66%|██████▌ | 3292262/4997817 [00:21<00:11, 152111.15it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3378092/4997817 [00:21<00:10, 155458.59it/s]" + " 66%|██████▌ | 3307474/4997817 [00:21<00:11, 151890.48it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3393723/4997817 [00:21<00:10, 155711.81it/s]" + " 66%|██████▋ | 3322664/4997817 [00:21<00:11, 151792.11it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3409391/4997817 [00:21<00:10, 155999.46it/s]" + " 67%|██████▋ | 3338019/4997817 [00:21<00:10, 152314.90it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3425019/4997817 [00:22<00:10, 156082.27it/s]" + " 67%|██████▋ | 3353323/4997817 [00:22<00:10, 152529.53it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3440777/4997817 [00:22<00:09, 156528.39it/s]" + " 67%|██████▋ | 3368577/4997817 [00:22<00:10, 152460.16it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3456471/4997817 [00:22<00:09, 156650.75it/s]" + " 68%|██████▊ | 3383824/4997817 [00:22<00:10, 152309.28it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3472159/4997817 [00:22<00:09, 156718.43it/s]" + " 68%|██████▊ | 3399056/4997817 [00:22<00:10, 151943.79it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3487831/4997817 [00:22<00:09, 156663.27it/s]" + " 68%|██████▊ | 3414251/4997817 [00:22<00:10, 151765.12it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3503498/4997817 [00:22<00:09, 156604.19it/s]" + " 69%|██████▊ | 3429493/4997817 [00:22<00:10, 151958.92it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3519159/4997817 [00:22<00:09, 156242.75it/s]" + " 69%|██████▉ | 3444690/4997817 [00:22<00:10, 151836.87it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3534858/4997817 [00:22<00:09, 156463.62it/s]" + " 69%|██████▉ | 3459874/4997817 [00:22<00:10, 151774.03it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3550505/4997817 [00:22<00:09, 149036.13it/s]" + " 70%|██████▉ | 3475111/4997817 [00:22<00:10, 151949.21it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3566172/4997817 [00:22<00:09, 151244.49it/s]" + " 70%|██████▉ | 3490307/4997817 [00:22<00:09, 151945.21it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3581958/4997817 [00:23<00:09, 153178.22it/s]" + " 70%|███████ | 3505502/4997817 [00:23<00:09, 149425.36it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3597789/4997817 [00:23<00:09, 154690.37it/s]" + " 70%|███████ | 3520675/4997817 [00:23<00:09, 150104.81it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3613468/4997817 [00:23<00:08, 155310.76it/s]" + " 71%|███████ | 3536035/4997817 [00:23<00:09, 151141.36it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3629200/4997817 [00:23<00:08, 155906.08it/s]" + " 71%|███████ | 3551305/4997817 [00:23<00:09, 151603.89it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3644976/4997817 [00:23<00:08, 156457.28it/s]" + " 71%|███████▏ | 3566631/4997817 [00:23<00:09, 152096.15it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3660681/4997817 [00:23<00:08, 156631.04it/s]" + " 72%|███████▏ | 3582057/4997817 [00:23<00:09, 152739.92it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3676412/4997817 [00:23<00:08, 156830.70it/s]" + " 72%|███████▏ | 3597451/4997817 [00:23<00:09, 153097.47it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3692102/4997817 [00:23<00:08, 156763.32it/s]" + " 72%|███████▏ | 3612812/4997817 [00:23<00:09, 153248.53it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3707783/4997817 [00:23<00:08, 156228.59it/s]" + " 73%|███████▎ | 3628145/4997817 [00:23<00:08, 153269.81it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3723410/4997817 [00:23<00:08, 156001.90it/s]" + " 73%|███████▎ | 3643473/4997817 [00:23<00:08, 153075.54it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3739013/4997817 [00:24<00:08, 155896.92it/s]" + " 73%|███████▎ | 3658782/4997817 [00:24<00:08, 152987.26it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3754680/4997817 [00:24<00:07, 156126.72it/s]" + " 74%|███████▎ | 3674219/4997817 [00:24<00:08, 153400.11it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3770294/4997817 [00:24<00:07, 155956.77it/s]" + " 74%|███████▍ | 3689609/4997817 [00:24<00:08, 153548.76it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3785910/4997817 [00:24<00:07, 156016.86it/s]" + " 74%|███████▍ | 3704965/4997817 [00:24<00:08, 153215.87it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3801513/4997817 [00:24<00:07, 155964.71it/s]" + " 74%|███████▍ | 3720330/4997817 [00:24<00:08, 153308.02it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3817120/4997817 [00:24<00:07, 155992.84it/s]" + " 75%|███████▍ | 3735745/4997817 [00:24<00:08, 153557.19it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3832720/4997817 [00:24<00:07, 155983.55it/s]" + " 75%|███████▌ | 3751101/4997817 [00:24<00:08, 153486.47it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3848345/4997817 [00:24<00:07, 156059.90it/s]" + " 75%|███████▌ | 3766504/4997817 [00:24<00:08, 153647.63it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3863952/4997817 [00:24<00:07, 148367.40it/s]" + " 76%|███████▌ | 3781869/4997817 [00:24<00:07, 153439.48it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3879632/4997817 [00:24<00:07, 150805.37it/s]" + " 76%|███████▌ | 3797284/4997817 [00:24<00:07, 153648.41it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3895335/4997817 [00:25<00:07, 152623.35it/s]" + " 76%|███████▋ | 3812649/4997817 [00:25<00:07, 153206.91it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3911069/4997817 [00:25<00:07, 154010.55it/s]" + " 77%|███████▋ | 3828069/4997817 [00:25<00:07, 153502.20it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3926784/4997817 [00:25<00:06, 154938.94it/s]" + " 77%|███████▋ | 3843420/4997817 [00:25<00:07, 153333.71it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3942544/4997817 [00:25<00:06, 155727.99it/s]" + " 77%|███████▋ | 3858826/4997817 [00:25<00:07, 153549.42it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3958159/4997817 [00:25<00:06, 155850.31it/s]" + " 78%|███████▊ | 3874182/4997817 [00:25<00:07, 153524.89it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3973923/4997817 [00:25<00:06, 156382.04it/s]" + " 78%|███████▊ | 3889575/4997817 [00:25<00:07, 153644.24it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3989706/4997817 [00:25<00:06, 156813.02it/s]" + " 78%|███████▊ | 3904940/4997817 [00:25<00:07, 153484.99it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4005509/4997817 [00:25<00:06, 157173.90it/s]" + " 78%|███████▊ | 3920289/4997817 [00:25<00:07, 153285.72it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4021268/4997817 [00:25<00:06, 157297.01it/s]" + " 79%|███████▊ | 3935618/4997817 [00:25<00:06, 153225.79it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4037002/4997817 [00:25<00:06, 156864.65it/s]" + " 79%|███████▉ | 3951084/4997817 [00:25<00:06, 153653.44it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4052692/4997817 [00:26<00:06, 156360.66it/s]" + " 79%|███████▉ | 3966477/4997817 [00:26<00:06, 153733.07it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4068403/4997817 [00:26<00:05, 156583.00it/s]" + " 80%|███████▉ | 3981879/4997817 [00:26<00:06, 153815.61it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4084170/4997817 [00:26<00:05, 156906.95it/s]" + " 80%|███████▉ | 3997261/4997817 [00:26<00:06, 153450.15it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4099862/4997817 [00:26<00:05, 156560.68it/s]" + " 80%|████████ | 4012607/4997817 [00:26<00:06, 153340.19it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4115633/4997817 [00:26<00:05, 156901.80it/s]" + " 81%|████████ | 4027942/4997817 [00:26<00:06, 153204.17it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4131413/4997817 [00:26<00:05, 157169.61it/s]" + " 81%|████████ | 4043263/4997817 [00:26<00:06, 153101.59it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4147174/4997817 [00:26<00:05, 157300.90it/s]" + " 81%|████████ | 4058574/4997817 [00:26<00:06, 152649.60it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4162905/4997817 [00:26<00:05, 157101.40it/s]" + " 82%|████████▏ | 4073840/4997817 [00:26<00:06, 152492.42it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4178673/4997817 [00:26<00:05, 157271.82it/s]" + " 82%|████████▏ | 4089090/4997817 [00:26<00:05, 152227.07it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4194401/4997817 [00:26<00:05, 154293.22it/s]" + " 82%|████████▏ | 4104313/4997817 [00:26<00:05, 150900.00it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4210003/4997817 [00:27<00:05, 154802.00it/s]" + " 82%|████████▏ | 4119406/4997817 [00:27<00:05, 150874.09it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4225675/4997817 [00:27<00:04, 155369.63it/s]" + " 83%|████████▎ | 4134496/4997817 [00:27<00:05, 150440.82it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4241497/4997817 [00:27<00:04, 156216.58it/s]" + " 83%|████████▎ | 4149652/4997817 [00:27<00:05, 150772.45it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4257316/4997817 [00:27<00:04, 156802.39it/s]" + " 83%|████████▎ | 4164918/4997817 [00:27<00:05, 151334.08it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4273149/4997817 [00:27<00:04, 157256.33it/s]" + " 84%|████████▎ | 4180089/4997817 [00:27<00:05, 151445.14it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4288963/4997817 [00:27<00:04, 157517.68it/s]" + " 84%|████████▍ | 4195260/4997817 [00:27<00:05, 151520.79it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4304819/4997817 [00:27<00:04, 157827.29it/s]" + " 84%|████████▍ | 4210505/4997817 [00:27<00:05, 151795.15it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4320680/4997817 [00:27<00:04, 158060.62it/s]" + " 85%|████████▍ | 4225702/4997817 [00:27<00:05, 151845.96it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4336553/4997817 [00:27<00:04, 158259.05it/s]" + " 85%|████████▍ | 4240887/4997817 [00:27<00:04, 151794.49it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4352399/4997817 [00:27<00:04, 158317.30it/s]" + " 85%|████████▌ | 4256251/4997817 [00:27<00:04, 152343.50it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4368232/4997817 [00:28<00:03, 157914.38it/s]" + " 85%|████████▌ | 4271644/4997817 [00:28<00:04, 152816.49it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4384025/4997817 [00:28<00:03, 157847.90it/s]" + " 86%|████████▌ | 4286926/4997817 [00:28<00:04, 151759.69it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4399840/4997817 [00:28<00:03, 157937.40it/s]" + " 86%|████████▌ | 4302104/4997817 [00:28<00:04, 151725.74it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4415688/4997817 [00:28<00:03, 158096.40it/s]" + " 86%|████████▋ | 4317364/4997817 [00:28<00:04, 151983.82it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4431584/4997817 [00:28<00:03, 158353.82it/s]" + " 87%|████████▋ | 4332692/4997817 [00:28<00:04, 152369.94it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4447420/4997817 [00:28<00:03, 158329.46it/s]" + " 87%|████████▋ | 4347991/4997817 [00:28<00:04, 152552.06it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4463254/4997817 [00:28<00:03, 158306.64it/s]" + " 87%|████████▋ | 4363327/4997817 [00:28<00:04, 152790.89it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4479095/4997817 [00:28<00:03, 158337.00it/s]" + " 88%|████████▊ | 4378607/4997817 [00:28<00:04, 148458.18it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4494929/4997817 [00:28<00:03, 158263.94it/s]" + " 88%|████████▊ | 4393480/4997817 [00:28<00:04, 142262.87it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4510756/4997817 [00:28<00:03, 157835.36it/s]" + " 88%|████████▊ | 4408792/4997817 [00:28<00:04, 145373.58it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4526540/4997817 [00:29<00:02, 157699.84it/s]" + " 89%|████████▊ | 4424149/4997817 [00:29<00:03, 147753.67it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4542329/4997817 [00:29<00:02, 157754.78it/s]" + " 89%|████████▉ | 4439438/4997817 [00:29<00:03, 149259.24it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4558105/4997817 [00:29<00:02, 157720.35it/s]" + " 89%|████████▉ | 4454678/4997817 [00:29<00:03, 150183.80it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4573998/4997817 [00:29<00:02, 158079.44it/s]" + " 89%|████████▉ | 4469725/4997817 [00:29<00:03, 143754.53it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4589845/4997817 [00:29<00:02, 158195.87it/s]" + " 90%|████████▉ | 4484985/4997817 [00:29<00:03, 146305.35it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4605665/4997817 [00:29<00:02, 158104.94it/s]" + " 90%|█████████ | 4500321/4997817 [00:29<00:03, 148363.06it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4621476/4997817 [00:29<00:02, 157979.37it/s]" + " 90%|█████████ | 4515705/4997817 [00:29<00:03, 149972.16it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4637312/4997817 [00:29<00:02, 158092.68it/s]" + " 91%|█████████ | 4530858/4997817 [00:29<00:03, 150429.10it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4653156/4997817 [00:29<00:02, 158194.47it/s]" + " 91%|█████████ | 4546128/4997817 [00:29<00:02, 151102.00it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4668976/4997817 [00:29<00:02, 157925.00it/s]" + " 91%|█████████▏| 4561495/4997817 [00:29<00:02, 151865.67it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4684769/4997817 [00:30<00:01, 157455.42it/s]" + " 92%|█████████▏| 4576696/4997817 [00:30<00:02, 151896.16it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4700543/4997817 [00:30<00:01, 157536.86it/s]" + " 92%|█████████▏| 4591896/4997817 [00:30<00:02, 151748.87it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4716321/4997817 [00:30<00:01, 157608.67it/s]" + " 92%|█████████▏| 4607105/4997817 [00:30<00:02, 151849.63it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4732087/4997817 [00:30<00:01, 157621.05it/s]" + " 92%|█████████▏| 4622426/4997817 [00:30<00:02, 152253.40it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4747850/4997817 [00:30<00:01, 157549.04it/s]" + " 93%|█████████▎| 4637655/4997817 [00:30<00:02, 152253.97it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4763606/4997817 [00:30<00:01, 157330.93it/s]" + " 93%|█████████▎| 4652942/4997817 [00:30<00:02, 152435.88it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4779340/4997817 [00:30<00:01, 156851.46it/s]" + " 93%|█████████▎| 4668228/4997817 [00:30<00:02, 152559.13it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4795062/4997817 [00:30<00:01, 156958.89it/s]" + " 94%|█████████▎| 4683506/4997817 [00:30<00:02, 152624.09it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4810759/4997817 [00:30<00:01, 156924.75it/s]" + " 94%|█████████▍| 4698770/4997817 [00:30<00:01, 152408.14it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4826479/4997817 [00:30<00:01, 157004.31it/s]" + " 94%|█████████▍| 4714012/4997817 [00:30<00:01, 152314.36it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4842180/4997817 [00:31<00:01, 153018.17it/s]" + " 95%|█████████▍| 4729244/4997817 [00:31<00:01, 152253.45it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4857754/4997817 [00:31<00:00, 153817.46it/s]" + " 95%|█████████▍| 4744470/4997817 [00:31<00:01, 148906.69it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4873365/4997817 [00:31<00:00, 154494.84it/s]" + " 95%|█████████▌| 4759678/4997817 [00:31<00:01, 149840.73it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4888941/4997817 [00:31<00:00, 154867.71it/s]" + " 96%|█████████▌| 4774923/4997817 [00:31<00:01, 150611.02it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4904521/4997817 [00:31<00:00, 155143.07it/s]" + " 96%|█████████▌| 4790208/4997817 [00:31<00:01, 151275.27it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4920058/4997817 [00:31<00:00, 155210.22it/s]" + " 96%|█████████▌| 4805406/4997817 [00:31<00:01, 151482.40it/s]" ] }, { @@ -3051,7 +3051,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4935639/4997817 [00:31<00:00, 155386.51it/s]" + " 96%|█████████▋| 4820694/4997817 [00:31<00:01, 151896.91it/s]" ] }, { @@ -3059,7 +3059,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4951237/4997817 [00:31<00:00, 155562.98it/s]" + " 97%|█████████▋| 4836084/4997817 [00:31<00:01, 152492.81it/s]" ] }, { @@ -3067,7 +3067,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4966796/4997817 [00:31<00:00, 155195.74it/s]" + " 97%|█████████▋| 4851423/4997817 [00:31<00:00, 152757.88it/s]" ] }, { @@ -3075,7 +3075,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4982344/4997817 [00:32<00:00, 155277.39it/s]" + " 97%|█████████▋| 4866834/4997817 [00:31<00:00, 153161.56it/s]" ] }, { @@ -3083,7 +3083,71 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:32<00:00, 155619.15it/s]" + " 98%|█████████▊| 4882152/4997817 [00:32<00:00, 153112.21it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4897502/4997817 [00:32<00:00, 153224.32it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4912826/4997817 [00:32<00:00, 151174.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4928122/4997817 [00:32<00:00, 151703.79it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4943431/4997817 [00:32<00:00, 152115.73it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4958721/4997817 [00:32<00:00, 152348.60it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4973960/4997817 [00:32<00:00, 152357.87it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4989221/4997817 [00:32<00:00, 152431.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997817/4997817 [00:32<00:00, 152152.96it/s]" ] }, { @@ -3322,10 +3386,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:26.080952Z", - "iopub.status.busy": "2024-02-08T04:34:26.080738Z", - "iopub.status.idle": "2024-02-08T04:34:40.605218Z", - "shell.execute_reply": "2024-02-08T04:34:40.604703Z" + "iopub.execute_input": "2024-02-08T05:20:55.976566Z", + "iopub.status.busy": "2024-02-08T05:20:55.976226Z", + "iopub.status.idle": "2024-02-08T05:21:10.548967Z", + "shell.execute_reply": "2024-02-08T05:21:10.548301Z" } }, "outputs": [], @@ -3339,10 +3403,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:40.607807Z", - "iopub.status.busy": "2024-02-08T04:34:40.607375Z", - "iopub.status.idle": "2024-02-08T04:34:44.392874Z", - "shell.execute_reply": "2024-02-08T04:34:44.392299Z" + "iopub.execute_input": "2024-02-08T05:21:10.551900Z", + "iopub.status.busy": "2024-02-08T05:21:10.551425Z", + "iopub.status.idle": "2024-02-08T05:21:14.388658Z", + "shell.execute_reply": "2024-02-08T05:21:14.388077Z" } }, "outputs": [ @@ -3411,17 +3475,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:44.395119Z", - "iopub.status.busy": "2024-02-08T04:34:44.394713Z", - "iopub.status.idle": "2024-02-08T04:34:45.738548Z", - "shell.execute_reply": "2024-02-08T04:34:45.738044Z" + "iopub.execute_input": "2024-02-08T05:21:14.390938Z", + "iopub.status.busy": "2024-02-08T05:21:14.390532Z", + "iopub.status.idle": "2024-02-08T05:21:15.799224Z", + "shell.execute_reply": "2024-02-08T05:21:15.798611Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fc2a058975cf4670b5ea53ada4efa60e", + "model_id": "30b77994083048219d1b9180228c2b4b", "version_major": 2, "version_minor": 0 }, @@ -3451,10 +3515,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:45.740842Z", - "iopub.status.busy": "2024-02-08T04:34:45.740635Z", - "iopub.status.idle": "2024-02-08T04:34:46.298623Z", - "shell.execute_reply": "2024-02-08T04:34:46.297981Z" + "iopub.execute_input": "2024-02-08T05:21:15.801674Z", + "iopub.status.busy": "2024-02-08T05:21:15.801489Z", + "iopub.status.idle": "2024-02-08T05:21:16.360971Z", + "shell.execute_reply": "2024-02-08T05:21:16.360335Z" } }, "outputs": [], @@ -3468,10 +3532,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:46.301137Z", - "iopub.status.busy": "2024-02-08T04:34:46.300933Z", - "iopub.status.idle": "2024-02-08T04:34:52.298498Z", - "shell.execute_reply": "2024-02-08T04:34:52.297918Z" + "iopub.execute_input": "2024-02-08T05:21:16.363401Z", + "iopub.status.busy": "2024-02-08T05:21:16.363219Z", + "iopub.status.idle": "2024-02-08T05:21:22.539869Z", + "shell.execute_reply": "2024-02-08T05:21:22.539266Z" } }, "outputs": [ @@ -3544,10 +3608,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:52.300651Z", - "iopub.status.busy": "2024-02-08T04:34:52.300470Z", - "iopub.status.idle": "2024-02-08T04:34:52.355976Z", - "shell.execute_reply": "2024-02-08T04:34:52.355420Z" + "iopub.execute_input": "2024-02-08T05:21:22.542055Z", + "iopub.status.busy": "2024-02-08T05:21:22.541716Z", + "iopub.status.idle": "2024-02-08T05:21:22.598351Z", + "shell.execute_reply": "2024-02-08T05:21:22.597802Z" }, "nbsphinx": "hidden" }, @@ -3591,25 +3655,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1b82d325bec94a47b9760cfd2a39a0df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "21c9e447d7fc49baaa07a5dcce1a412b": { + "0d25ab13f4d04ef39fede621e03c9b68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3662,30 +3708,41 @@ "width": null } }, - "23e3234032514e6680b01e2f25da0326": { + "0df6444b371a41e586ef22dd0d96e299": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9244d510c1fe4a9f858e8d747a5fb295", - "placeholder": "​", - "style": "IPY_MODEL_66b9efd6c0844f4a916d16ba72b3d48e", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00, 1.39it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "29cb9371753c4992adc2f03e9fded233": { + "103b031096294a14966691d435d6a362": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "106210816124408ca0e833f78c8c2750": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3700,15 +3757,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2dc1e15160a4a7da0af031122d9a662", + "layout": "IPY_MODEL_b4cfe9721e084dcf8d5ed3d647c40487", "placeholder": "​", - "style": "IPY_MODEL_4b1015e6ccde4c4299ac75c1f98dcb22", + "style": "IPY_MODEL_d01add5fe210416992ea136cad4f9a50", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "30f03336498f4516a6d36df879f490a1": { + "1165496d989d4c618a382d0b049e90f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3761,7 +3818,7 @@ "width": null } }, - "31f64f3801d34603bcb678d8d88d83f6": { + "132a2934c1e94813804517068cca530c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3814,7 +3871,33 @@ "width": null } }, - "4017c8df71354bda92d5349ae9fef4f0": { + "256b1a27f64b492eb415fe31f617f17e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_38c1a2e3eb594faea8eb2159dc493400", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_26bfc64f16c340dfb305f1ed58a36893", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "26bfc64f16c340dfb305f1ed58a36893": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3830,74 +3913,80 @@ "description_width": "" } }, - "4b1015e6ccde4c4299ac75c1f98dcb22": { + "2dada95fdc0c47b88fb6c50ae7618090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aa8d1da8c49c4d2a884a06dab1f31831", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_605b331b013a4216a3a1d69843abfb9d", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "4cf90d57769c4f3aae212728b54aba6a": { + "30b77994083048219d1b9180228c2b4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31f64f3801d34603bcb678d8d88d83f6", - "placeholder": "​", - "style": "IPY_MODEL_c3029038eaec4733a5f0438439b843e5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cfc0a965d67648e0a57cd05e92e22c4b", + "IPY_MODEL_256b1a27f64b492eb415fe31f617f17e", + "IPY_MODEL_326727f0539e449b89ff29010c44925d" + ], + "layout": "IPY_MODEL_1165496d989d4c618a382d0b049e90f3", "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 437.20it/s]" + "tooltip": null } }, - "4e185115a3fe481bb647f7f4518b4dfc": { + "326727f0539e449b89ff29010c44925d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e24577d1ffb640629f4e974978dd12fe", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d8067231e5354369991d63ab259e569b", + "layout": "IPY_MODEL_0d25ab13f4d04ef39fede621e03c9b68", + "placeholder": "​", + "style": "IPY_MODEL_0df6444b371a41e586ef22dd0d96e299", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": " 30/30 [00:01<00:00, 22.03it/s]" } }, - "5003464293884ffa8065ab5b42f55410": { + "38c1a2e3eb594faea8eb2159dc493400": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3950,80 +4039,7 @@ "width": null } }, - "54e4956dd0ef45b88635518452443a61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc49518bd58b48719e6296222d8ba180", - "placeholder": "​", - "style": "IPY_MODEL_716682390a83470282205d2427adfa3c", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.39it/s]" - } - }, - "58627b4f134842dca11108614dae515e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21c9e447d7fc49baaa07a5dcce1a412b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_80f77a5f99b34520abdbf09b57cc9c05", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "633c79ed95ab41e0aabbd57dbd3ecb08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_db25e0c95dbd4fe58acc9c2e49009d2a", - "IPY_MODEL_58627b4f134842dca11108614dae515e", - "IPY_MODEL_4cf90d57769c4f3aae212728b54aba6a" - ], - "layout": "IPY_MODEL_924a2835da754654ae4815fa9f5ef2fb", - "tabbable": null, - "tooltip": null - } - }, - "66b9efd6c0844f4a916d16ba72b3d48e": { + "4e5ddda315dd424898bc3e19b40c8911": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4041,7 +4057,7 @@ "text_color": null } }, - "716682390a83470282205d2427adfa3c": { + "515057138d954b6ebf522b421c89d5f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4059,7 +4075,7 @@ "text_color": null } }, - "77a6a651adfb453fa5d94c5e24358725": { + "53b94fb45c8f40ac801a8583ce8a7a73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4074,39 +4090,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7dbf6f5ff049453eb1a13021b098acfa", + "layout": "IPY_MODEL_797d2e014b75484db3c4d231eb1ea0b4", "placeholder": "​", - "style": "IPY_MODEL_1b82d325bec94a47b9760cfd2a39a0df", + "style": "IPY_MODEL_85a1f5bf0cac46fa928b2505eed353ee", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:22<00:00, 1.36it/s]" } }, - "7cc6878891b34dc6b9eee074c27b9942": { + "605b331b013a4216a3a1d69843abfb9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_29cb9371753c4992adc2f03e9fded233", - "IPY_MODEL_4e185115a3fe481bb647f7f4518b4dfc", - "IPY_MODEL_23e3234032514e6680b01e2f25da0326" - ], - "layout": "IPY_MODEL_30f03336498f4516a6d36df879f490a1", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7dbf6f5ff049453eb1a13021b098acfa": { + "6d2092724d374342be5b8f9b4a89b9d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4159,23 +4167,7 @@ "width": null } }, - "80f77a5f99b34520abdbf09b57cc9c05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9244d510c1fe4a9f858e8d747a5fb295": { + "797d2e014b75484db3c4d231eb1ea0b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4228,7 +4220,43 @@ "width": null } }, - "924a2835da754654ae4815fa9f5ef2fb": { + "85a1f5bf0cac46fa928b2505eed353ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8b227e07b4534bf5bb14643f40e77d70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a1e0af03c0aa4af59354b9330442282e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4281,7 +4309,7 @@ "width": null } }, - "92739bcd527e4b43b2729ff01f60f8f6": { + "a38d8339b17a4450931b440a9b5583fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4297,35 +4325,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5003464293884ffa8065ab5b42f55410", + "layout": "IPY_MODEL_fde2f9b7dcca4cb7b2e34c2392682342", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4017c8df71354bda92d5349ae9fef4f0", + "style": "IPY_MODEL_103b031096294a14966691d435d6a362", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "aa70cd8ed63c447d882958ff5fbe6dd6": { - "model_module": "@jupyter-widgets/controls", + "aa8d1da8c49c4d2a884a06dab1f31831": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ad6f45a3725e4aafa3404454d480c462": { + "b476da5146714d8d93cca98c05787c7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4378,7 +4441,7 @@ "width": null } }, - "b02aada907ae490897286a7070c2059f": { + "b4cfe9721e084dcf8d5ed3d647c40487": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4431,7 +4494,54 @@ "width": null } }, - "c3029038eaec4733a5f0438439b843e5": { + "c8c2e28ad93b4bdd9fc175ec25c69050": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_106210816124408ca0e833f78c8c2750", + "IPY_MODEL_2dada95fdc0c47b88fb6c50ae7618090", + "IPY_MODEL_ecfa15309b0748c9a716660fa9b963b0" + ], + "layout": "IPY_MODEL_b476da5146714d8d93cca98c05787c7a", + "tabbable": null, + "tooltip": null + } + }, + "cfc0a965d67648e0a57cd05e92e22c4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a1e0af03c0aa4af59354b9330442282e", + "placeholder": "​", + "style": "IPY_MODEL_4e5ddda315dd424898bc3e19b40c8911", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "d01add5fe210416992ea136cad4f9a50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4449,23 +4559,31 @@ "text_color": null } }, - "d8067231e5354369991d63ab259e569b": { + "ea58fb54e03a45d5b2072a4db0195034": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f71171dbaac542ab888563268f45ef8c", + "IPY_MODEL_a38d8339b17a4450931b440a9b5583fd", + "IPY_MODEL_53b94fb45c8f40ac801a8583ce8a7a73" + ], + "layout": "IPY_MODEL_f5093f8381674d4c92872ec4fd9fa6e4", + "tabbable": null, + "tooltip": null } }, - "db25e0c95dbd4fe58acc9c2e49009d2a": { + "ecfa15309b0748c9a716660fa9b963b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4480,68 +4598,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b02aada907ae490897286a7070c2059f", + "layout": "IPY_MODEL_132a2934c1e94813804517068cca530c", "placeholder": "​", - "style": "IPY_MODEL_aa70cd8ed63c447d882958ff5fbe6dd6", + "style": "IPY_MODEL_515057138d954b6ebf522b421c89d5f2", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "e24577d1ffb640629f4e974978dd12fe": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 30/30 [00:00<00:00, 423.89it/s]" } }, - "f2dc1e15160a4a7da0af031122d9a662": { + "f5093f8381674d4c92872ec4fd9fa6e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4594,31 +4659,30 @@ "width": null } }, - "fc2a058975cf4670b5ea53ada4efa60e": { + "f71171dbaac542ab888563268f45ef8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_77a6a651adfb453fa5d94c5e24358725", - "IPY_MODEL_92739bcd527e4b43b2729ff01f60f8f6", - "IPY_MODEL_54e4956dd0ef45b88635518452443a61" - ], - "layout": "IPY_MODEL_ad6f45a3725e4aafa3404454d480c462", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d2092724d374342be5b8f9b4a89b9d9", + "placeholder": "​", + "style": "IPY_MODEL_8b227e07b4534bf5bb14643f40e77d70", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "fc49518bd58b48719e6296222d8ba180": { + "fde2f9b7dcca4cb7b2e34c2392682342": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 2936ca8bb..b9ef97a18 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:56.168205Z", - "iopub.status.busy": "2024-02-08T04:34:56.168034Z", - "iopub.status.idle": "2024-02-08T04:34:57.205458Z", - "shell.execute_reply": "2024-02-08T04:34:57.204912Z" + "iopub.execute_input": "2024-02-08T05:21:26.796223Z", + "iopub.status.busy": "2024-02-08T05:21:26.796052Z", + "iopub.status.idle": "2024-02-08T05:21:27.890548Z", + "shell.execute_reply": "2024-02-08T05:21:27.889969Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.208050Z", - "iopub.status.busy": "2024-02-08T04:34:57.207540Z", - "iopub.status.idle": "2024-02-08T04:34:57.225990Z", - "shell.execute_reply": "2024-02-08T04:34:57.225451Z" + "iopub.execute_input": "2024-02-08T05:21:27.893054Z", + "iopub.status.busy": "2024-02-08T05:21:27.892746Z", + "iopub.status.idle": "2024-02-08T05:21:27.911932Z", + "shell.execute_reply": "2024-02-08T05:21:27.911437Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.228346Z", - "iopub.status.busy": "2024-02-08T04:34:57.227916Z", - "iopub.status.idle": "2024-02-08T04:34:57.283231Z", - "shell.execute_reply": "2024-02-08T04:34:57.282803Z" + "iopub.execute_input": "2024-02-08T05:21:27.914373Z", + "iopub.status.busy": "2024-02-08T05:21:27.913935Z", + "iopub.status.idle": "2024-02-08T05:21:28.082310Z", + "shell.execute_reply": "2024-02-08T05:21:28.081788Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.285089Z", - "iopub.status.busy": "2024-02-08T04:34:57.284916Z", - "iopub.status.idle": "2024-02-08T04:34:57.288911Z", - "shell.execute_reply": "2024-02-08T04:34:57.288480Z" + "iopub.execute_input": "2024-02-08T05:21:28.084545Z", + "iopub.status.busy": "2024-02-08T05:21:28.084209Z", + "iopub.status.idle": "2024-02-08T05:21:28.088771Z", + "shell.execute_reply": "2024-02-08T05:21:28.088328Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.290970Z", - "iopub.status.busy": "2024-02-08T04:34:57.290645Z", - "iopub.status.idle": "2024-02-08T04:34:57.298491Z", - "shell.execute_reply": "2024-02-08T04:34:57.298062Z" + "iopub.execute_input": "2024-02-08T05:21:28.090816Z", + "iopub.status.busy": "2024-02-08T05:21:28.090483Z", + "iopub.status.idle": "2024-02-08T05:21:28.098465Z", + "shell.execute_reply": "2024-02-08T05:21:28.098061Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.300467Z", - "iopub.status.busy": "2024-02-08T04:34:57.300291Z", - "iopub.status.idle": "2024-02-08T04:34:57.302706Z", - "shell.execute_reply": "2024-02-08T04:34:57.302290Z" + "iopub.execute_input": "2024-02-08T05:21:28.100552Z", + "iopub.status.busy": "2024-02-08T05:21:28.100251Z", + "iopub.status.idle": "2024-02-08T05:21:28.102793Z", + "shell.execute_reply": "2024-02-08T05:21:28.102365Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.304634Z", - "iopub.status.busy": "2024-02-08T04:34:57.304375Z", - "iopub.status.idle": "2024-02-08T04:34:57.820042Z", - "shell.execute_reply": "2024-02-08T04:34:57.819446Z" + "iopub.execute_input": "2024-02-08T05:21:28.104759Z", + "iopub.status.busy": "2024-02-08T05:21:28.104437Z", + "iopub.status.idle": "2024-02-08T05:21:28.627194Z", + "shell.execute_reply": "2024-02-08T05:21:28.626590Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.822290Z", - "iopub.status.busy": "2024-02-08T04:34:57.822100Z", - "iopub.status.idle": "2024-02-08T04:34:59.439361Z", - "shell.execute_reply": "2024-02-08T04:34:59.438712Z" + "iopub.execute_input": "2024-02-08T05:21:28.629718Z", + "iopub.status.busy": "2024-02-08T05:21:28.629519Z", + "iopub.status.idle": "2024-02-08T05:21:30.345006Z", + "shell.execute_reply": "2024-02-08T05:21:30.344349Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.441941Z", - "iopub.status.busy": "2024-02-08T04:34:59.441397Z", - "iopub.status.idle": "2024-02-08T04:34:59.451265Z", - "shell.execute_reply": "2024-02-08T04:34:59.450745Z" + "iopub.execute_input": "2024-02-08T05:21:30.347698Z", + "iopub.status.busy": "2024-02-08T05:21:30.347087Z", + "iopub.status.idle": "2024-02-08T05:21:30.357476Z", + "shell.execute_reply": "2024-02-08T05:21:30.357044Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.453333Z", - "iopub.status.busy": "2024-02-08T04:34:59.453038Z", - "iopub.status.idle": "2024-02-08T04:34:59.456989Z", - "shell.execute_reply": "2024-02-08T04:34:59.456463Z" + "iopub.execute_input": "2024-02-08T05:21:30.359601Z", + "iopub.status.busy": "2024-02-08T05:21:30.359266Z", + "iopub.status.idle": "2024-02-08T05:21:30.363308Z", + "shell.execute_reply": "2024-02-08T05:21:30.362856Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.458991Z", - "iopub.status.busy": "2024-02-08T04:34:59.458687Z", - "iopub.status.idle": "2024-02-08T04:34:59.465944Z", - "shell.execute_reply": "2024-02-08T04:34:59.465410Z" + "iopub.execute_input": "2024-02-08T05:21:30.365471Z", + "iopub.status.busy": "2024-02-08T05:21:30.365138Z", + "iopub.status.idle": "2024-02-08T05:21:30.372669Z", + "shell.execute_reply": "2024-02-08T05:21:30.372107Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.468039Z", - "iopub.status.busy": "2024-02-08T04:34:59.467734Z", - "iopub.status.idle": "2024-02-08T04:34:59.578269Z", - "shell.execute_reply": "2024-02-08T04:34:59.577713Z" + "iopub.execute_input": "2024-02-08T05:21:30.374752Z", + "iopub.status.busy": "2024-02-08T05:21:30.374445Z", + "iopub.status.idle": "2024-02-08T05:21:30.486095Z", + "shell.execute_reply": "2024-02-08T05:21:30.485529Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.580205Z", - "iopub.status.busy": "2024-02-08T04:34:59.579900Z", - "iopub.status.idle": "2024-02-08T04:34:59.582454Z", - "shell.execute_reply": "2024-02-08T04:34:59.582023Z" + "iopub.execute_input": "2024-02-08T05:21:30.488417Z", + "iopub.status.busy": "2024-02-08T05:21:30.488030Z", + "iopub.status.idle": "2024-02-08T05:21:30.490919Z", + "shell.execute_reply": "2024-02-08T05:21:30.490384Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.584391Z", - "iopub.status.busy": "2024-02-08T04:34:59.584095Z", - "iopub.status.idle": "2024-02-08T04:35:01.501613Z", - "shell.execute_reply": "2024-02-08T04:35:01.500883Z" + "iopub.execute_input": "2024-02-08T05:21:30.493045Z", + "iopub.status.busy": "2024-02-08T05:21:30.492674Z", + "iopub.status.idle": "2024-02-08T05:21:32.504865Z", + "shell.execute_reply": "2024-02-08T05:21:32.504227Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:01.504393Z", - "iopub.status.busy": "2024-02-08T04:35:01.503839Z", - "iopub.status.idle": "2024-02-08T04:35:01.514594Z", - "shell.execute_reply": "2024-02-08T04:35:01.514050Z" + "iopub.execute_input": "2024-02-08T05:21:32.507962Z", + "iopub.status.busy": "2024-02-08T05:21:32.507270Z", + "iopub.status.idle": "2024-02-08T05:21:32.519238Z", + "shell.execute_reply": "2024-02-08T05:21:32.518685Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:01.516381Z", - "iopub.status.busy": "2024-02-08T04:35:01.516208Z", - "iopub.status.idle": "2024-02-08T04:35:01.562095Z", - "shell.execute_reply": "2024-02-08T04:35:01.561636Z" + "iopub.execute_input": "2024-02-08T05:21:32.521281Z", + "iopub.status.busy": "2024-02-08T05:21:32.521095Z", + "iopub.status.idle": "2024-02-08T05:21:32.670893Z", + "shell.execute_reply": "2024-02-08T05:21:32.670418Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 469861760..792189737 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -732,7 +732,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'change_pin', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'getting_spare_card', 'card_about_to_expire'}
    +Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'change_pin', 'getting_spare_card'}
     

    Let’s print the first example in the train set.

    diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index d24d88255..e6bc10dc9 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:04.398007Z", - "iopub.status.busy": "2024-02-08T04:35:04.397665Z", - "iopub.status.idle": "2024-02-08T04:35:06.939373Z", - "shell.execute_reply": "2024-02-08T04:35:06.938787Z" + "iopub.execute_input": "2024-02-08T05:21:36.479014Z", + "iopub.status.busy": "2024-02-08T05:21:36.478839Z", + "iopub.status.idle": "2024-02-08T05:21:39.260693Z", + "shell.execute_reply": "2024-02-08T05:21:39.260048Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.942203Z", - "iopub.status.busy": "2024-02-08T04:35:06.941711Z", - "iopub.status.idle": "2024-02-08T04:35:06.945187Z", - "shell.execute_reply": "2024-02-08T04:35:06.944736Z" + "iopub.execute_input": "2024-02-08T05:21:39.263272Z", + "iopub.status.busy": "2024-02-08T05:21:39.262890Z", + "iopub.status.idle": "2024-02-08T05:21:39.266644Z", + "shell.execute_reply": "2024-02-08T05:21:39.266095Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.947082Z", - "iopub.status.busy": "2024-02-08T04:35:06.946758Z", - "iopub.status.idle": "2024-02-08T04:35:06.949800Z", - "shell.execute_reply": "2024-02-08T04:35:06.949361Z" + "iopub.execute_input": "2024-02-08T05:21:39.268836Z", + "iopub.status.busy": "2024-02-08T05:21:39.268440Z", + "iopub.status.idle": "2024-02-08T05:21:39.271716Z", + "shell.execute_reply": "2024-02-08T05:21:39.271145Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.951625Z", - "iopub.status.busy": "2024-02-08T04:35:06.951369Z", - "iopub.status.idle": "2024-02-08T04:35:06.997911Z", - "shell.execute_reply": "2024-02-08T04:35:06.997500Z" + "iopub.execute_input": "2024-02-08T05:21:39.273756Z", + "iopub.status.busy": "2024-02-08T05:21:39.273496Z", + "iopub.status.idle": "2024-02-08T05:21:39.431458Z", + "shell.execute_reply": "2024-02-08T05:21:39.430885Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.999896Z", - "iopub.status.busy": "2024-02-08T04:35:06.999613Z", - "iopub.status.idle": "2024-02-08T04:35:07.003072Z", - "shell.execute_reply": "2024-02-08T04:35:07.002534Z" + "iopub.execute_input": "2024-02-08T05:21:39.433686Z", + "iopub.status.busy": "2024-02-08T05:21:39.433349Z", + "iopub.status.idle": "2024-02-08T05:21:39.436960Z", + "shell.execute_reply": "2024-02-08T05:21:39.436501Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.004956Z", - "iopub.status.busy": "2024-02-08T04:35:07.004665Z", - "iopub.status.idle": "2024-02-08T04:35:07.007970Z", - "shell.execute_reply": "2024-02-08T04:35:07.007435Z" + "iopub.execute_input": "2024-02-08T05:21:39.438986Z", + "iopub.status.busy": "2024-02-08T05:21:39.438652Z", + "iopub.status.idle": "2024-02-08T05:21:39.442126Z", + "shell.execute_reply": "2024-02-08T05:21:39.441657Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'getting_spare_card', 'card_about_to_expire'}\n" + "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'change_pin', 'getting_spare_card'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.009913Z", - "iopub.status.busy": "2024-02-08T04:35:07.009601Z", - "iopub.status.idle": "2024-02-08T04:35:07.012666Z", - "shell.execute_reply": "2024-02-08T04:35:07.012208Z" + "iopub.execute_input": "2024-02-08T05:21:39.444139Z", + "iopub.status.busy": "2024-02-08T05:21:39.443815Z", + "iopub.status.idle": "2024-02-08T05:21:39.446990Z", + "shell.execute_reply": "2024-02-08T05:21:39.446538Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.014589Z", - "iopub.status.busy": "2024-02-08T04:35:07.014274Z", - "iopub.status.idle": "2024-02-08T04:35:07.017484Z", - "shell.execute_reply": "2024-02-08T04:35:07.017043Z" + "iopub.execute_input": "2024-02-08T05:21:39.449158Z", + "iopub.status.busy": "2024-02-08T05:21:39.448790Z", + "iopub.status.idle": "2024-02-08T05:21:39.452098Z", + "shell.execute_reply": "2024-02-08T05:21:39.451644Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.019577Z", - "iopub.status.busy": "2024-02-08T04:35:07.019165Z", - "iopub.status.idle": "2024-02-08T04:35:10.758978Z", - "shell.execute_reply": "2024-02-08T04:35:10.758450Z" + "iopub.execute_input": "2024-02-08T05:21:39.454177Z", + "iopub.status.busy": "2024-02-08T05:21:39.453859Z", + "iopub.status.idle": "2024-02-08T05:21:43.818413Z", + "shell.execute_reply": "2024-02-08T05:21:43.817812Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.761717Z", - "iopub.status.busy": "2024-02-08T04:35:10.761342Z", - "iopub.status.idle": "2024-02-08T04:35:10.764293Z", - "shell.execute_reply": "2024-02-08T04:35:10.763801Z" + "iopub.execute_input": "2024-02-08T05:21:43.821245Z", + "iopub.status.busy": "2024-02-08T05:21:43.820824Z", + "iopub.status.idle": "2024-02-08T05:21:43.824334Z", + "shell.execute_reply": "2024-02-08T05:21:43.823797Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.766209Z", - "iopub.status.busy": "2024-02-08T04:35:10.765897Z", - "iopub.status.idle": "2024-02-08T04:35:10.768449Z", - "shell.execute_reply": "2024-02-08T04:35:10.768026Z" + "iopub.execute_input": "2024-02-08T05:21:43.826165Z", + "iopub.status.busy": "2024-02-08T05:21:43.825990Z", + "iopub.status.idle": "2024-02-08T05:21:43.828635Z", + "shell.execute_reply": "2024-02-08T05:21:43.828168Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.770307Z", - "iopub.status.busy": "2024-02-08T04:35:10.769984Z", - "iopub.status.idle": "2024-02-08T04:35:13.014309Z", - "shell.execute_reply": "2024-02-08T04:35:13.013691Z" + "iopub.execute_input": "2024-02-08T05:21:43.830526Z", + "iopub.status.busy": "2024-02-08T05:21:43.830206Z", + "iopub.status.idle": "2024-02-08T05:21:46.180921Z", + "shell.execute_reply": "2024-02-08T05:21:46.180150Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.017176Z", - "iopub.status.busy": "2024-02-08T04:35:13.016589Z", - "iopub.status.idle": "2024-02-08T04:35:13.024329Z", - "shell.execute_reply": "2024-02-08T04:35:13.023868Z" + "iopub.execute_input": "2024-02-08T05:21:46.184093Z", + "iopub.status.busy": "2024-02-08T05:21:46.183446Z", + "iopub.status.idle": "2024-02-08T05:21:46.191352Z", + "shell.execute_reply": "2024-02-08T05:21:46.190879Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.026211Z", - "iopub.status.busy": "2024-02-08T04:35:13.026031Z", - "iopub.status.idle": "2024-02-08T04:35:13.030054Z", - "shell.execute_reply": "2024-02-08T04:35:13.029615Z" + "iopub.execute_input": "2024-02-08T05:21:46.193506Z", + "iopub.status.busy": "2024-02-08T05:21:46.193111Z", + "iopub.status.idle": "2024-02-08T05:21:46.197017Z", + "shell.execute_reply": "2024-02-08T05:21:46.196578Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.031935Z", - "iopub.status.busy": "2024-02-08T04:35:13.031746Z", - "iopub.status.idle": "2024-02-08T04:35:13.034748Z", - "shell.execute_reply": "2024-02-08T04:35:13.034239Z" + "iopub.execute_input": "2024-02-08T05:21:46.198840Z", + "iopub.status.busy": "2024-02-08T05:21:46.198669Z", + "iopub.status.idle": "2024-02-08T05:21:46.201986Z", + "shell.execute_reply": "2024-02-08T05:21:46.201534Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.036619Z", - "iopub.status.busy": "2024-02-08T04:35:13.036448Z", - "iopub.status.idle": "2024-02-08T04:35:13.039213Z", - "shell.execute_reply": "2024-02-08T04:35:13.038788Z" + "iopub.execute_input": "2024-02-08T05:21:46.203999Z", + "iopub.status.busy": "2024-02-08T05:21:46.203703Z", + "iopub.status.idle": "2024-02-08T05:21:46.206673Z", + "shell.execute_reply": "2024-02-08T05:21:46.206231Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.041004Z", - "iopub.status.busy": "2024-02-08T04:35:13.040835Z", - "iopub.status.idle": "2024-02-08T04:35:13.047467Z", - "shell.execute_reply": "2024-02-08T04:35:13.047008Z" + "iopub.execute_input": "2024-02-08T05:21:46.208666Z", + "iopub.status.busy": "2024-02-08T05:21:46.208364Z", + "iopub.status.idle": "2024-02-08T05:21:46.215877Z", + "shell.execute_reply": "2024-02-08T05:21:46.215417Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.049366Z", - "iopub.status.busy": "2024-02-08T04:35:13.049196Z", - "iopub.status.idle": "2024-02-08T04:35:13.273122Z", - "shell.execute_reply": "2024-02-08T04:35:13.272656Z" + "iopub.execute_input": "2024-02-08T05:21:46.217922Z", + "iopub.status.busy": "2024-02-08T05:21:46.217631Z", + "iopub.status.idle": "2024-02-08T05:21:46.445403Z", + "shell.execute_reply": "2024-02-08T05:21:46.444769Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.275446Z", - "iopub.status.busy": "2024-02-08T04:35:13.275087Z", - "iopub.status.idle": "2024-02-08T04:35:13.485654Z", - "shell.execute_reply": "2024-02-08T04:35:13.485184Z" + "iopub.execute_input": "2024-02-08T05:21:46.447993Z", + "iopub.status.busy": "2024-02-08T05:21:46.447582Z", + "iopub.status.idle": "2024-02-08T05:21:46.623478Z", + "shell.execute_reply": "2024-02-08T05:21:46.622935Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.488027Z", - "iopub.status.busy": "2024-02-08T04:35:13.487654Z", - "iopub.status.idle": "2024-02-08T04:35:13.491219Z", - "shell.execute_reply": "2024-02-08T04:35:13.490753Z" + "iopub.execute_input": "2024-02-08T05:21:46.626118Z", + "iopub.status.busy": "2024-02-08T05:21:46.625719Z", + "iopub.status.idle": "2024-02-08T05:21:46.629542Z", + "shell.execute_reply": "2024-02-08T05:21:46.629055Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 5d2359635..cbe77b31e 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -625,7 +625,7 @@

    1. Install required dependencies and download data
    ---2024-02-08 04:35:16--  https://data.deepai.org/conll2003.zip
    +--2024-02-08 05:21:50--  https://data.deepai.org/conll2003.zip
     Resolving data.deepai.org (data.deepai.org)...
     
    @@ -634,9 +634,17 @@

    1. Install required dependencies and download data
    -185.93.1.250, 2400:52e0:1a00::718:1
    -Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.
    -HTTP request sent, awaiting response... 200 OK
    +143.244.50.89, 2400:52e0:1a01::954:1
    +Connecting to data.deepai.org (data.deepai.org)|143.244.50.89|:443... connected.
    +HTTP request sent, awaiting response...
    +
    + +
    +
    +
    +
    +
    +200 OK
     Length: 982975 (960K) [application/zip]
     Saving to: ‘conll2003.zip’
    @@ -657,25 +665,25 @@

    1. Install required dependencies and download data
    -

    conll2003.zip 100%[===================&gt;] 959.94K –.-KB/s in 0.1s

    +

    conll2003.zip 100%[===================&gt;] 959.94K 4.92MB/s in 0.2s

    -

    2024-02-08 04:35:16 (6.64 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    2024-02-08 05:21:51 (4.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    mkdir: cannot create directory ‘data’: File exists </pre>

    -

    conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

    +

    conll2003.zip 100%[===================>] 959.94K 4.92MB/s in 0.2s

    -

    2024-02-08 04:35:16 (6.64 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    2024-02-08 05:21:51 (4.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}

    -

    conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

    +

    conll2003.zip 100%[===================>] 959.94K 4.92MB/s in 0.2s

    -

    2024-02-08 04:35:16 (6.64 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    2024-02-08 05:21:51 (4.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    mkdir: cannot create directory ‘data’: File exists

    +
    +
    +
    +
    +
    +connected.
     
    -
    pred_probs.npz 63%[===========&gt; ] 10.25M 51.1MB/s
    +
    pred_probs.npz 1%[ ] 193.53K 925KB/s
    +

    </pre>

    +
    +
    +
    pred_probs.npz 1%[ ] 193.53K 925KB/s
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    pred_probs.npz 1%[ ] 193.53K 925KB/s

    +
    +
    +
    +
    +
    +
    +
    +
    pred_probs.npz 20%[===&gt; ] 3.38M 8.07MB/s

    </pre>

    -
    pred_probs.npz 63%[===========> ] 10.25M 51.1MB/s
    +
    pred_probs.npz 20%[===> ] 3.38M 8.07MB/s

    end{sphinxVerbatim}

    -

    pred_probs.npz 63%[===========> ] 10.25M 51.1MB/s

    +

    pred_probs.npz 20%[===> ] 3.38M 8.07MB/s

    -

    pred_probs.npz 100%[===================&gt;] 16.26M 48.1MB/s in 0.3s

    +

    pred_probs.npz 91%[=================&gt; ] 14.89M 23.7MB/s +pred_probs.npz 100%[===================&gt;] 16.26M 25.5MB/s in 0.6s

    -

    2024-02-08 04:35:17 (48.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +

    2024-02-08 05:21:52 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    </pre>

    -

    pred_probs.npz 100%[===================>] 16.26M 48.1MB/s in 0.3s

    +

    pred_probs.npz 91%[=================> ] 14.89M 23.7MB/s +pred_probs.npz 100%[===================>] 16.26M 25.5MB/s in 0.6s

    -

    2024-02-08 04:35:17 (48.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +

    2024-02-08 05:21:52 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    end{sphinxVerbatim}

    -

    pred_probs.npz 100%[===================>] 16.26M 48.1MB/s in 0.3s

    +

    pred_probs.npz 91%[=================> ] 14.89M 23.7MB/s +pred_probs.npz 100%[===================>] 16.26M 25.5MB/s in 0.6s

    -

    2024-02-08 04:35:17 (48.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +

    2024-02-08 05:21:52 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    [3]:
    diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb
    index b9cc787dc..c62fcd633 100644
    --- a/master/tutorials/token_classification.ipynb
    +++ b/master/tutorials/token_classification.ipynb
    @@ -75,10 +75,10 @@
        "id": "ae8a08e0",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:16.410970Z",
    -     "iopub.status.busy": "2024-02-08T04:35:16.410808Z",
    -     "iopub.status.idle": "2024-02-08T04:35:17.885044Z",
    -     "shell.execute_reply": "2024-02-08T04:35:17.884466Z"
    +     "iopub.execute_input": "2024-02-08T05:21:50.726788Z",
    +     "iopub.status.busy": "2024-02-08T05:21:50.726620Z",
    +     "iopub.status.idle": "2024-02-08T05:21:52.600696Z",
    +     "shell.execute_reply": "2024-02-08T05:21:52.600068Z"
         }
        },
        "outputs": [
    @@ -86,7 +86,7 @@
          "name": "stdout",
          "output_type": "stream",
          "text": [
    -      "--2024-02-08 04:35:16--  https://data.deepai.org/conll2003.zip\r\n",
    +      "--2024-02-08 05:21:50--  https://data.deepai.org/conll2003.zip\r\n",
           "Resolving data.deepai.org (data.deepai.org)... "
          ]
         },
    @@ -94,9 +94,16 @@
          "name": "stdout",
          "output_type": "stream",
          "text": [
    -      "185.93.1.250, 2400:52e0:1a00::718:1\r\n",
    -      "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n",
    -      "HTTP request sent, awaiting response... 200 OK\r\n",
    +      "143.244.50.89, 2400:52e0:1a01::954:1\r\n",
    +      "Connecting to data.deepai.org (data.deepai.org)|143.244.50.89|:443... connected.\r\n",
    +      "HTTP request sent, awaiting response... "
    +     ]
    +    },
    +    {
    +     "name": "stdout",
    +     "output_type": "stream",
    +     "text": [
    +      "200 OK\r\n",
           "Length: 982975 (960K) [application/zip]\r\n",
           "Saving to: ‘conll2003.zip’\r\n",
           "\r\n",
    @@ -109,9 +116,9 @@
          "output_type": "stream",
          "text": [
           "\r",
    -      "conll2003.zip       100%[===================>] 959.94K  --.-KB/s    in 0.1s    \r\n",
    +      "conll2003.zip       100%[===================>] 959.94K  4.92MB/s    in 0.2s    \r\n",
           "\r\n",
    -      "2024-02-08 04:35:16 (6.64 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
    +      "2024-02-08 05:21:51 (4.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
           "\r\n",
           "mkdir: cannot create directory ‘data’: File exists\r\n"
          ]
    @@ -131,9 +138,16 @@
          "name": "stdout",
          "output_type": "stream",
          "text": [
    -      "--2024-02-08 04:35:17--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
    -      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.32.209, 52.216.241.92, 52.217.130.65, ...\r\n",
    -      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.32.209|:443... connected.\r\n"
    +      "--2024-02-08 05:21:51--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
    +      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.109.243, 52.216.165.75, 52.216.36.145, ...\r\n",
    +      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.109.243|:443... "
    +     ]
    +    },
    +    {
    +     "name": "stdout",
    +     "output_type": "stream",
    +     "text": [
    +      "connected.\r\n"
          ]
         },
         {
    @@ -160,7 +174,15 @@
          "output_type": "stream",
          "text": [
           "\r",
    -      "pred_probs.npz       63%[===========>        ]  10.25M  51.1MB/s               "
    +      "pred_probs.npz        1%[                    ] 193.53K   925KB/s               "
    +     ]
    +    },
    +    {
    +     "name": "stdout",
    +     "output_type": "stream",
    +     "text": [
    +      "\r",
    +      "pred_probs.npz       20%[===>                ]   3.38M  8.07MB/s               "
          ]
         },
         {
    @@ -168,9 +190,10 @@
          "output_type": "stream",
          "text": [
           "\r",
    -      "pred_probs.npz      100%[===================>]  16.26M  48.1MB/s    in 0.3s    \r\n",
    +      "pred_probs.npz       91%[=================>  ]  14.89M  23.7MB/s               \r",
    +      "pred_probs.npz      100%[===================>]  16.26M  25.5MB/s    in 0.6s    \r\n",
           "\r\n",
    -      "2024-02-08 04:35:17 (48.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
    +      "2024-02-08 05:21:52 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
           "\r\n"
          ]
         }
    @@ -187,10 +210,10 @@
        "id": "439b0305",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:17.887413Z",
    -     "iopub.status.busy": "2024-02-08T04:35:17.887079Z",
    -     "iopub.status.idle": "2024-02-08T04:35:18.908219Z",
    -     "shell.execute_reply": "2024-02-08T04:35:18.907684Z"
    +     "iopub.execute_input": "2024-02-08T05:21:52.603109Z",
    +     "iopub.status.busy": "2024-02-08T05:21:52.602917Z",
    +     "iopub.status.idle": "2024-02-08T05:21:53.718005Z",
    +     "shell.execute_reply": "2024-02-08T05:21:53.717446Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -201,7 +224,7 @@
         "dependencies = [\"cleanlab\"]\n",
         "\n",
         "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
    -    "    %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n",
    +    "    %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n",
         "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
         "    %pip install $cmd\n",
         "else:\n",
    @@ -227,10 +250,10 @@
        "id": "a1349304",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:18.910770Z",
    -     "iopub.status.busy": "2024-02-08T04:35:18.910302Z",
    -     "iopub.status.idle": "2024-02-08T04:35:18.913807Z",
    -     "shell.execute_reply": "2024-02-08T04:35:18.913374Z"
    +     "iopub.execute_input": "2024-02-08T05:21:53.720615Z",
    +     "iopub.status.busy": "2024-02-08T05:21:53.720142Z",
    +     "iopub.status.idle": "2024-02-08T05:21:53.723864Z",
    +     "shell.execute_reply": "2024-02-08T05:21:53.723387Z"
         }
        },
        "outputs": [],
    @@ -280,10 +303,10 @@
        "id": "ab9d59a0",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:18.915726Z",
    -     "iopub.status.busy": "2024-02-08T04:35:18.915411Z",
    -     "iopub.status.idle": "2024-02-08T04:35:18.918230Z",
    -     "shell.execute_reply": "2024-02-08T04:35:18.917797Z"
    +     "iopub.execute_input": "2024-02-08T05:21:53.726015Z",
    +     "iopub.status.busy": "2024-02-08T05:21:53.725691Z",
    +     "iopub.status.idle": "2024-02-08T05:21:53.728578Z",
    +     "shell.execute_reply": "2024-02-08T05:21:53.728151Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -301,10 +324,10 @@
        "id": "519cb80c",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:18.920142Z",
    -     "iopub.status.busy": "2024-02-08T04:35:18.919798Z",
    -     "iopub.status.idle": "2024-02-08T04:35:27.926989Z",
    -     "shell.execute_reply": "2024-02-08T04:35:27.926383Z"
    +     "iopub.execute_input": "2024-02-08T05:21:53.730588Z",
    +     "iopub.status.busy": "2024-02-08T05:21:53.730254Z",
    +     "iopub.status.idle": "2024-02-08T05:22:02.922587Z",
    +     "shell.execute_reply": "2024-02-08T05:22:02.922022Z"
         }
        },
        "outputs": [],
    @@ -378,10 +401,10 @@
        "id": "202f1526",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:27.929541Z",
    -     "iopub.status.busy": "2024-02-08T04:35:27.929340Z",
    -     "iopub.status.idle": "2024-02-08T04:35:27.934958Z",
    -     "shell.execute_reply": "2024-02-08T04:35:27.934409Z"
    +     "iopub.execute_input": "2024-02-08T05:22:02.925250Z",
    +     "iopub.status.busy": "2024-02-08T05:22:02.924929Z",
    +     "iopub.status.idle": "2024-02-08T05:22:02.930371Z",
    +     "shell.execute_reply": "2024-02-08T05:22:02.929886Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -421,10 +444,10 @@
        "id": "a4381f03",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:27.936904Z",
    -     "iopub.status.busy": "2024-02-08T04:35:27.936728Z",
    -     "iopub.status.idle": "2024-02-08T04:35:28.262039Z",
    -     "shell.execute_reply": "2024-02-08T04:35:28.261376Z"
    +     "iopub.execute_input": "2024-02-08T05:22:02.932624Z",
    +     "iopub.status.busy": "2024-02-08T05:22:02.932228Z",
    +     "iopub.status.idle": "2024-02-08T05:22:03.297995Z",
    +     "shell.execute_reply": "2024-02-08T05:22:03.297346Z"
         }
        },
        "outputs": [],
    @@ -461,10 +484,10 @@
        "id": "7842e4a3",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:28.264636Z",
    -     "iopub.status.busy": "2024-02-08T04:35:28.264297Z",
    -     "iopub.status.idle": "2024-02-08T04:35:28.268345Z",
    -     "shell.execute_reply": "2024-02-08T04:35:28.267788Z"
    +     "iopub.execute_input": "2024-02-08T05:22:03.300463Z",
    +     "iopub.status.busy": "2024-02-08T05:22:03.300279Z",
    +     "iopub.status.idle": "2024-02-08T05:22:03.304705Z",
    +     "shell.execute_reply": "2024-02-08T05:22:03.304158Z"
         }
        },
        "outputs": [
    @@ -536,10 +559,10 @@
        "id": "2c2ad9ad",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:28.270309Z",
    -     "iopub.status.busy": "2024-02-08T04:35:28.270030Z",
    -     "iopub.status.idle": "2024-02-08T04:35:30.566284Z",
    -     "shell.execute_reply": "2024-02-08T04:35:30.565622Z"
    +     "iopub.execute_input": "2024-02-08T05:22:03.306754Z",
    +     "iopub.status.busy": "2024-02-08T05:22:03.306423Z",
    +     "iopub.status.idle": "2024-02-08T05:22:05.755355Z",
    +     "shell.execute_reply": "2024-02-08T05:22:05.754674Z"
         }
        },
        "outputs": [],
    @@ -561,10 +584,10 @@
        "id": "95dc7268",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:30.569402Z",
    -     "iopub.status.busy": "2024-02-08T04:35:30.568623Z",
    -     "iopub.status.idle": "2024-02-08T04:35:30.572686Z",
    -     "shell.execute_reply": "2024-02-08T04:35:30.572133Z"
    +     "iopub.execute_input": "2024-02-08T05:22:05.758476Z",
    +     "iopub.status.busy": "2024-02-08T05:22:05.757736Z",
    +     "iopub.status.idle": "2024-02-08T05:22:05.761956Z",
    +     "shell.execute_reply": "2024-02-08T05:22:05.761494Z"
         }
        },
        "outputs": [
    @@ -600,10 +623,10 @@
        "id": "e13de188",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:30.574726Z",
    -     "iopub.status.busy": "2024-02-08T04:35:30.574428Z",
    -     "iopub.status.idle": "2024-02-08T04:35:30.579908Z",
    -     "shell.execute_reply": "2024-02-08T04:35:30.579362Z"
    +     "iopub.execute_input": "2024-02-08T05:22:05.764107Z",
    +     "iopub.status.busy": "2024-02-08T05:22:05.763785Z",
    +     "iopub.status.idle": "2024-02-08T05:22:05.768721Z",
    +     "shell.execute_reply": "2024-02-08T05:22:05.768190Z"
         }
        },
        "outputs": [
    @@ -781,10 +804,10 @@
        "id": "e4a006bd",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:30.581974Z",
    -     "iopub.status.busy": "2024-02-08T04:35:30.581604Z",
    -     "iopub.status.idle": "2024-02-08T04:35:30.607040Z",
    -     "shell.execute_reply": "2024-02-08T04:35:30.606608Z"
    +     "iopub.execute_input": "2024-02-08T05:22:05.770716Z",
    +     "iopub.status.busy": "2024-02-08T05:22:05.770545Z",
    +     "iopub.status.idle": "2024-02-08T05:22:05.796512Z",
    +     "shell.execute_reply": "2024-02-08T05:22:05.795932Z"
         }
        },
        "outputs": [
    @@ -886,10 +909,10 @@
        "id": "c8f4e163",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:30.609082Z",
    -     "iopub.status.busy": "2024-02-08T04:35:30.608778Z",
    -     "iopub.status.idle": "2024-02-08T04:35:30.612868Z",
    -     "shell.execute_reply": "2024-02-08T04:35:30.612332Z"
    +     "iopub.execute_input": "2024-02-08T05:22:05.798717Z",
    +     "iopub.status.busy": "2024-02-08T05:22:05.798431Z",
    +     "iopub.status.idle": "2024-02-08T05:22:05.803963Z",
    +     "shell.execute_reply": "2024-02-08T05:22:05.803248Z"
         }
        },
        "outputs": [
    @@ -963,10 +986,10 @@
        "id": "db0b5179",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:30.614887Z",
    -     "iopub.status.busy": "2024-02-08T04:35:30.614588Z",
    -     "iopub.status.idle": "2024-02-08T04:35:32.021894Z",
    -     "shell.execute_reply": "2024-02-08T04:35:32.021397Z"
    +     "iopub.execute_input": "2024-02-08T05:22:05.805972Z",
    +     "iopub.status.busy": "2024-02-08T05:22:05.805666Z",
    +     "iopub.status.idle": "2024-02-08T05:22:07.269804Z",
    +     "shell.execute_reply": "2024-02-08T05:22:07.269179Z"
         }
        },
        "outputs": [
    @@ -1138,10 +1161,10 @@
        "id": "a18795eb",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-08T04:35:32.024066Z",
    -     "iopub.status.busy": "2024-02-08T04:35:32.023695Z",
    -     "iopub.status.idle": "2024-02-08T04:35:32.027757Z",
    -     "shell.execute_reply": "2024-02-08T04:35:32.027319Z"
    +     "iopub.execute_input": "2024-02-08T05:22:07.272129Z",
    +     "iopub.status.busy": "2024-02-08T05:22:07.271782Z",
    +     "iopub.status.idle": "2024-02-08T05:22:07.276036Z",
    +     "shell.execute_reply": "2024-02-08T05:22:07.275437Z"
         },
         "nbsphinx": "hidden"
        },
    diff --git a/versioning.js b/versioning.js
    index 677111260..3968cf916 100644
    --- a/versioning.js
    +++ b/versioning.js
    @@ -1,4 +1,4 @@
     var Version = {
       version_number: "v2.5.0",
    -  commit_hash: "2b6ad95c32cfaf3029361941cca8c4eaf2ac541e",
    +  commit_hash: "55409591737a9cc39ab0da67e9cf10ceac579900",
     };
    \ No newline at end of file