-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtweakablegpt.py
219 lines (175 loc) · 7.59 KB
/
tweakablegpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.nn import functional as F
class GPTConfig:
def __init__(self, vocab_size, max_position_embeddings, n_layer, n_head, n_embd):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.n_layer = n_layer
self.n_head = n_head
self.n_embd = n_embd
class CustomAttention(nn.Module):
def __init__(self, embed_dim, num_heads, alpha=0.5):
super(CustomAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == embed_dim
), "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim**-0.5
self.qkv_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=False)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False)
# Custom initialization for linear layers
for name, param in self.qkv_proj.named_parameters():
if "weight" in name:
init.normal_(param, mean=0, std=alpha * (1 / embed_dim) ** 0.5)
for name, param in self.out_proj.named_parameters():
if "weight" in name:
init.normal_(param, mean=0, std=alpha * (1 / embed_dim) ** 0.5)
def forward(self, x, mask=None):
batch_size, seq_length, _ = x.size()
qkv = self.qkv_proj(x)
qkv = qkv.reshape(
batch_size, seq_length, self.num_heads, 3 * self.head_dim
) # [B, L, nh, 3 * d]
q, k, v = qkv.chunk(3, dim=-1)
q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v)) # [B nh L d]
# torch version should be greater than 2.1.0 to use scale kwarg (https://github.com/pytorch/pytorch/pull/95259)
attn_output = F.scaled_dot_product_attention(
q, k, v, attn_mask=mask, is_causal=True, scale=1 / self.head_dim
) # mup
attn_output = attn_output.transpose(1, 2).reshape(
batch_size, seq_length, self.embed_dim
)
output = self.out_proj(attn_output)
return output
class GPTBlock(nn.Module):
def __init__(self, config):
super(GPTBlock, self).__init__()
self.attention = CustomAttention(config.n_embd, config.n_head)
self.mlp = nn.Sequential(
nn.Linear(config.n_embd, 4 * config.n_embd),
nn.GELU(),
nn.Linear(4 * config.n_embd, config.n_embd),
)
self.ln_1 = nn.LayerNorm(config.n_embd, eps=1e-5)
self.ln_2 = nn.LayerNorm(config.n_embd, eps=1e-5)
for name, param in self.mlp.named_parameters():
if "weight" in name:
init.normal_(param, mean=0, std=0.5 * (1 / config.n_embd) ** 0.5)
else:
init.zeros_(param)
def forward(self, x):
attn_output = self.attention(self.ln_1(x))
x = x + attn_output
x = x + self.mlp(self.ln_2(x))
return x
class GPTModel(nn.Module):
def __init__(self, config, alpha=0.5):
super(GPTModel, self).__init__()
self.config = config
self.embed = nn.Embedding(config.vocab_size, config.n_embd)
self.pos_embed = nn.Parameter(
torch.zeros(1, config.max_position_embeddings, config.n_embd)
)
self.blocks = nn.Sequential(*[GPTBlock(config) for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(config.n_embd)
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.loss_fn = nn.CrossEntropyLoss()
init.normal_(self.head.weight, mean=0, std=alpha * (1 / config.n_embd))
init.normal_(self.embed.weight, mean=0, std=alpha * 3.3)
def gradient_checkpointing_enabled(self, ds_config):
from deepspeed.runtime.activation_checkpointing import checkpointing
checkpointing.configure(mpu_=None, deepspeed_config=ds_config)
self._gradient_checkpointing_func = checkpointing.checkpoint
self.num_checkpoints = ds_config['activation_checkpointing']['number_checkpoints']
def forward(self, input_ids, attention_mask=None, output_hidden_states=False):
position_ids = torch.arange(
0, input_ids.size(1), dtype=torch.long, device=input_ids.device
)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
hidden_states = []
x = self.embed(input_ids) + self.pos_embed[:, : input_ids.size(1), :]
if output_hidden_states:
hidden_states.append(x)
print('x.size()', x.size())
if hasattr(self, '_gradient_checkpointing_func') and self.training:
l, total_num_layers = 0, len(self.blocks)
def custom(start, end):
def custom_forward(x):
for i, layer in enumerate(self.blocks[start:end]):
x = layer(x)
return x
return custom_forward
while l < total_num_layers:
if output_hidden_states:
raise NotImplementedError("idc layerwise output :)")
x = self._gradient_checkpointing_func(custom(l, l+self.num_checkpoints), x)
l += self.num_checkpoints
else:
for block in self.blocks:
x = block(x)
if output_hidden_states:
hidden_states.append(x)
x = self.ln_f(x)
logits = self.head(x).float()
outputs = {"logits": logits}
if input_ids is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = input_ids[..., 1:].contiguous()
loss = self.loss_fn(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
outputs["loss"] = loss
if output_hidden_states:
outputs["hidden_states"] = hidden_states
return outputs
if __name__ == "__main__":
import torch
import torch.optim as optim
def train_and_generate(model, sequence, config, device="cuda:0"):
model.to(device)
model.train()
optimizer = optim.Adam(model.parameters(), lr=0.0001)
epochs = 500
inputs = torch.tensor([sequence], dtype=torch.long).to(device)
for epoch in range(epochs):
optimizer.zero_grad()
output = model(inputs)
loss = output["loss"]
loss.backward()
optimizer.step()
if epoch % 50 == 0:
print(f"Epoch {epoch}, Loss: {loss.item()}")
model.eval()
input_ids = torch.tensor([[sequence[0]]], dtype=torch.long).to(device)
generated_sequence = [sequence[0]]
for _ in range(len(sequence) - 1):
with torch.no_grad():
output = model(input_ids)
logits = output["logits"]
predicted_token_id = torch.argmax(logits[:, -1, :], dim=-1).item()
generated_sequence.append(predicted_token_id)
input_ids = torch.cat(
[
input_ids,
torch.tensor([[predicted_token_id]], dtype=torch.long).to(
device
),
],
dim=1,
)
return generated_sequence
config = GPTConfig(
vocab_size=50257,
max_position_embeddings=1024,
n_layer=4,
n_head=4,
n_embd=768,
)
model = GPTModel(config)
sequence = list(range(11))
generated_sequence = train_and_generate(model, sequence, config)
print("Generated Sequence:", generated_sequence)