-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNORAPartitionTree.py
1230 lines (1031 loc) · 53.3 KB
/
NORAPartitionTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import time
import random
import numpy as np
import pandas as pd # for batch data loading, in generating sampled dataset
from rtree import index # this package is only used for constructing Rtree filter
from numpy import genfromtxt
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from mpl_toolkits.mplot3d import Axes3D
class QueryMBR:
'''
the MBR that bound overlapped queries
'''
def __init__(self, boundary, added_as_fist_query = True):
self.num_dims = len(boundary) / 2
self.boundary = boundary
self.num_query = 1
self.queries = []
self.bound_size = None # number of records this MBR overlaps
self.total_query_result_size = None # total query results size of all the queries inside this MBR
self.query_result_size = [] # record each query's result size
self.is_extended = False
self.ill_extended = False
if added_as_fist_query:
self.queries = [boundary]
def check_condition3(self, data_threshold):
'''
check whether this MBR satisfy the new bounding split condition 3:
1. every query size > BP - b
2. total_query_result_size + b > bound_size * num_query
'''
for size in self.query_result_size:
if size <= self.bound_size - data_threshold:
return False
if self.total_query_result_size + data_threshold <= self.bound_size * self.num_query:
return False
return True
class PartitionNode:
'''
A partition node, including both the internal and leaf nodes in the partition tree
'''
def __init__(self, num_dims = 0, boundary = [], nid = None, pid = None, is_irregular_shape_parent = False,
is_irregular_shape = False, num_children = 0, children_ids = [], is_leaf = True, node_size = 0):
# print("Initialize PartitionTree Root: num_dims",num_dims,"boundary:",boundary,"children_ids:",children_ids)
self.num_dims = num_dims # number of dimensions
# the domain, [l1,l2,..,ln, u1,u2,..,un,], for irregular shape partition, one need to exempt its siblings
self.boundary = boundary # I think the lower side should be inclusive and the upper side should be exclusive?
self.nid = nid # node id
self.pid = pid # parent id
self.is_irregular_shape_parent = is_irregular_shape_parent # whether the [last] child is an irregular shape partition
self.is_irregular_shape = is_irregular_shape # an irregular shape partition cannot be further split, and it must be a leaf node
self.num_children = num_children # number of children, should be 0, 2, or 3
self.children_ids = children_ids # if it's the irregular shape parent, then the last child should be the irregular partition
self.is_leaf = is_leaf
self.node_size = node_size # number of records in this partition
# the following attributes will not be serialized
self.dataset = None # only used in partition algorithms, temporary, should consist records that within this partition
self.queryset = None # only used in partition algorithms, temporary, should consist queries that overlap this partition
self.partitionable = True # only used in partition algorithms
self.query_MBRs = None # only used in partition algorithms, temporary
self.split_type = None # only used in partition algorithms
# Rtree filters
self.rtree_filters = None # a collection of MBRs, in the shape of boundary, used to indicate the data distribution
# beam search
self.depth = 0 # only used in beam search, root node depth is 0
def is_overlap(self, query):
'''
query is in plain form, i.e., [l1,l2,...,ln, u1,u2,...,un]
!query dimension should match the partition dimensions! i.e., all projected or all not projected
return 0 if no overlap
return 1 if overlap
return 2 if inside
'''
if len(query) != 2 * self.num_dims:
return -1 # error
overlap_flag = True
inside_flag = True
for i in range(self.num_dims):
if query[i] >= self.boundary[self.num_dims + i] or query[self.num_dims + i] <= self.boundary[i]:
overlap_flag = False
inside_flag = False
return 0
elif query[i] < self.boundary[i] or query[self.num_dims + i] > self.boundary[self.num_dims + i]:
inside_flag = False
if inside_flag:
return 2
elif overlap_flag:
return 1
else:
return 0
def is_overlap_np(self, query):
'''
the numpy version of the is_overlap function
the query here and boundary class attribute should in the form of numpy array
'''
if all((boundary[0:self.num_dims] > query[self.num_dims:]) | (boundary[self.num_dims:] <= query[0:self.num_dims])):
return 0 # no overlap
elif all((boundary[0:self.num_dims] >= query[0:self.num_dims]) & (boundary[self.num_dims:] <= query[self.num_dims:])):
return 2 # inside
else:
return 1 # overlap
def is_contain(self, point):
'''
used to determine wheter a data point is contained in this node
point: [dim1_value, dim2_value,...], should has the same dimensions as this node
'''
for i in range(self.num_dims):
if point[i] > self.boundary[self.num_dims + i] or point[i] < self.boundary[i]:
return False
return True
def get_candidate_cuts(self, extended = False):
'''
get the candidate cut positions
if extended is set to True, also add medians from all dimensions
'''
candidate_cut_pos = []
for query in self.queryset:
for dim in range(self.num_dims):
# check if the cut position is inside the partition, as the queryset are queries overlap this partition
if query[dim] >= self.boundary[dim] and query[dim] <= self.boundary[self.num_dims+dim]:
candidate_cut_pos.append((dim, query[dim]))
if query[self.num_dims+dim] >= self.boundary[dim] and query[self.num_dims+dim] <= self.boundary[self.num_dims+dim]:
candidate_cut_pos.append((dim, query[self.num_dims+dim]))
if extended:
for dim in range(self.num_dims):
split_value = np.median(self.dataset[:,dim])
candidate_cut_pos.append((dim, split_value))
return candidate_cut_pos
def if_split(self, split_dim, split_value, data_threshold, test = False): # rename: if_split_get_gain
'''
return the skip gain and children partition size if split a node from a given split dimension and split value
'''
#print("current_node.nid:", current_node.nid)
#print("current_node.is_leaf:", current_node.is_leaf)
#print("current_node.dataset is None:", current_node.dataset is None)
sub_dataset1_size = np.count_nonzero(self.dataset[:,split_dim] < split_value) # process time: 0.007
sub_dataset2_size = self.node_size - sub_dataset1_size
if sub_dataset1_size < data_threshold or sub_dataset2_size < data_threshold:
return False, 0, sub_dataset1_size, sub_dataset2_size
left_part, right_part, mid_part = self.split_queryset(split_dim, split_value)
num_overlap_child1 = len(left_part) + len(mid_part)
num_overlap_child2 = len(right_part) + len(mid_part)
if test:
print("num left part:",len(left_part), "num right part:",len(right_part), "num mid part:",len(mid_part))
print("left part:", left_part, "right part:", right_part, "mid part:",mid_part)
# temp_child_node1, temp_child_node2 = self.__if_split_get_child(split_dim, split_value)
skip_gain = len(self.queryset)*self.node_size - num_overlap_child1*sub_dataset1_size - num_overlap_child2*sub_dataset2_size
return True, skip_gain, sub_dataset1_size, sub_dataset2_size
def if_bounding_split(self, data_threshold, approximate = False, force_extend = False):
'''
# the split node is assumed to be >= 2b
approximate: whether use approximation (even distribution) to find the number of records within a partition
force_extend: whether extend the bounding partition to make its size greater than data_threshold, if possible
return availability, skip gain, and the (possible extended) bound
'''
max_bound = self.__max_bound(self.queryset)
bound_size = self.query_result_size(max_bound, approximate)
if bound_size is None:
return False, None, None
extended_bound = copy.deepcopy(max_bound)
if bound_size < data_threshold: # assume the partition is >= 2b, then we must be able to find the valid extension
if force_extend:
side = 0
for dim in range(self.num_dims):
valid, extended_bound, bound_size = self.__try_extend(extended_bound, dim, 0, data_threshold) # lower side
if valid:
break
valid, extended_bound, bound_size = self.__try_extend(extended_bound, dim, 1, data_threshold) # upper side
if valid:
break
else:
return False, None, None
remaining_size = self.node_size - bound_size
if remaining_size < data_threshold:
return False, None, None
cost_before_split = len(self.queryset) * self.node_size
cost_bound_split = len(self.queryset) * bound_size
skip_gain = cost_before_split - cost_bound_split
if force_extend:
return True, skip_gain, extended_bound
else:
return True, skip_gain, max_bound # TODO: should we also return the extended bound?
def if_new_bounding_split(self, data_threshold, approximate = False, force_extend = True):
'''
In this version, we try to generate a collection of MBR partitions if every MBR satisfy:
1. its size <= b; or
2. it contains only 1 query; or
3. |Q|*Core + b > its size * |Q|
OR (if the above failed) a single bounding partition and an irregular shape partition as the old version
'''
if self.query_MBRs is None or len(self.query_MBRs) == 0:
return False
check_valid = True
extended_flag = False
# simple pruning
if len(self.query_MBRs) * data_threshold > self.node_size:
check_valid = False
else:
for MBR in self.query_MBRs:
if MBR.bound_size <= data_threshold or MBR.num_query == 1 or MBR.check_condition3(data_threshold):
pass
else:
check_valid = False
break
if check_valid:
# try extend the MBRs to satisfy b, and check whether the extended MBRs overlap with others
for MBR in self.query_MBRs:
if MBR.bound_size < data_threshold:
MBR.boundary, MBR.bound_size = self.extend_bound(MBR.boundary, data_threshold)
MBR.is_extended = True
if MBR.bound_size > 2 * data_threshold:
MBR.ill_extended = True # if there are too many same key records
if MBR.is_extended:
extended_flag = True # also for historical extended MBRs !!!
# check if the extended MBRs overlaps each other
if extended_flag and len(self.query_MBRs) > 1:
for i in range(len(self.query_MBRs) - 1):
for j in range(i+1, len(self.query_MBRs)):
if self.query_MBRs[i].ill_extended or self.query_MBRs[j].ill_extended or self.__is_overlap(self.query_MBRs[i].boundary, self.query_MBRs[j].boundary):
#print("partition",self.nid,"found overlap of extended MBRs:", self.query_MBRs[i].boundary, self.query_MBRs[j].boundary)
check_valid = False
break
if not check_valid:
break
if len(self.query_MBRs) == 1 and self.query_MBRs[0].ill_extended: # in case there is only 1 MBR
check_valid = False
# check the remaining partition size, if it's not greater than b, return false
remaining_size = self.node_size
for MBR in self.query_MBRs:
remaining_size -= MBR.bound_size
if remaining_size < data_threshold:
check_valid = False
# if the above failed
if check_valid:
return True # since this is the optimal, we don't need to return skip
else:
# do we need to restore the MBRs?
# NO, when split cross a MBR, it will be rebuilt on both side
# In other cases, the extended MBR doesn't matter
return False
def if_dual_bounding_split(self, split_dim, split_value, data_threshold, approximate = False):
'''
check whether it's available to perform dual bounding split
return availability and skip gain
'''
# split queriese first
left_part, right_part, mid_part = self.split_queryset(split_dim, split_value)
max_bound_left = self.__max_bound(left_part)
max_bound_right = self.__max_bound(right_part)
# Should we only consider the case when left and right cannot be further split? i.e., [b,2b)
# this check logic is given in the PartitionAlgorithm, not here, as the split action should be general
naive_left_size = np.count_nonzero(self.dataset[:,split_dim] < split_value)
naive_right_size = self.node_size - naive_left_size
# get (irregular-shape) sub-partition size
left_size = self.query_result_size(max_bound_left, approximate)
if left_size is None: # there is no query within the left
left_size = naive_left_size # use the whole left part as its size
if left_size < data_threshold:
return False, None
right_size = self.query_result_size(max_bound_right, approximate)
if right_size is None: # there is no query within the right
right_size = naive_right_size # use the whole right part as its size
if right_size < data_threshold:
return False, None
remaining_size = self.node_size - left_size - right_size
if remaining_size < data_threshold:
return False, None
# check cost
cost_before_split = len(self.queryset) * self.node_size
cost_dual_split = len(left_part) * left_size + len(right_part) * right_size + len(mid_part) * remaining_size
for query in mid_part:
# if it overlap left bounding box
if max_bound_left is None or self.__is_overlap(max_bound_left, query) > 0:
cost_dual_split += left_size
# if it overlap right bounding box
if max_bound_right is None or self.__is_overlap(max_bound_right, query) > 0:
cost_dual_split += right_size
skip_gain = cost_before_split - cost_dual_split
return True, skip_gain
def num_query_crossed(self, split_dim, split_value):
'''
similar to the split_queryset function, but just return how many queries the intended split will cross
'''
count = 0
if self.queryset is not None:
for query in self.queryset:
if query[split_dim] < split_value and query[self.num_dims + split_dim] > split_value:
count += 1
return count
return None
def split_queryset(self, split_dim, split_value):
'''
split the queryset into 3 parts:
the left part, the right part, and those cross the split value
'''
if self.queryset is not None:
left_part = []
right_part = []
mid_part = []
for query in self.queryset:
if query[split_dim] >= split_value:
right_part.append(query)
elif query[self.num_dims + split_dim] <= split_value:
left_part.append(query)
elif query[split_dim] < split_value and query[self.num_dims + split_dim] > split_value:
mid_part.append(query)
return left_part, right_part, mid_part
def query_result_size(self, query, approximate = False):
'''
get the query result's size on this node
the approximate parameter is set to True, the use even distribution to approximate
'''
if query is None:
return None
result_size = 0
if approximate:
query_volume = 1
volume = 1
for d in range(self.num_dims):
query_volume *= query[self.num_dims + d] - query[d]
volume *= self.boundary[self.num_dims + d] - self.boundary[d]
result_size = int(query_volume / volume * self.node_size)
else:
constraints = []
for d in range(self.num_dims):
constraint_L = dataset[:,d] >= query[d]
constraint_U = dataset[:,d] <= query[self.num_dims + d]
constraints.append(constraint_L)
constraints.append(constraint_U)
constraint = np.all(constraints, axis=0)
result_size = np.count_nonzero(constraint)
return result_size
def split_query_MBRs(self, split_dim, split_value):
if self.query_MBRs is not None:
left_part = [] # totally in left
right_part = [] # totally in right
mid_part = []
for MBR in self.query_MBRs:
if MBR.boundary[split_dim] >= split_value:
right_part.append(MBR)
elif MBR.boundary[self.num_dims + split_dim] <= split_value:
left_part.append(MBR)
elif MBR.boundary[split_dim] < split_value and MBR.boundary[self.num_dims + split_dim] > split_value:
mid_part.append(MBR)
# process each mid_part MBR
overlap_left_part_queries = []
overlap_right_part_queries = []
for MBR in mid_part:
for query in MBR.queries:
if query[split_dim] < split_value:
overlap_left_part_queries.append(query)
if query[self.num_dims + split_dim] > split_value:
overlap_right_part_queries.append(query)
# generate MBRs for both part. Notice we cannot simply adjust the shape using original MBRs
mid_part_left_MBRs = self.generate_query_MBRs(overlap_left_part_queries)
mid_part_right_MBRs = self.generate_query_MBRs(overlap_right_part_queries)
left_part += mid_part_left_MBRs
right_part += mid_part_right_MBRs
return left_part, right_part
def generate_query_MBRs(self, queryset = None):
'''
bound the overlapped queries in this partition into MBRs
the MBRs will only contains the part inside this partition
'''
if queryset is None:
queryset = self.queryset
if len(queryset) == 0:
return []
query_MBRs = []
for query in queryset:
query_MBRs.append(QueryMBR(query, True))
#print("before merged, number of query MBRs:", len(query_MBRs))
while len(query_MBRs) >= 2:
new_query_MBRs = []
merged_qids = []
for i in range(len(query_MBRs)-1):
new_MBR = copy.deepcopy(query_MBRs[i])
if i in merged_qids:
continue
for j in range(i+1, len(query_MBRs)):
if j in merged_qids:
continue
if self.__is_overlap(query_MBRs[i].boundary, query_MBRs[j].boundary):
#print("merge:",i,j,query_MBRs[i].boundary,query_MBRs[j].boundary)
new_MBR = self.__merge_2MBRs(new_MBR, query_MBRs[j])
merged_qids.append(j)
new_query_MBRs.append(new_MBR)
#print("for iteration",i, "current new_query_MBRs size:",len(new_query_MBRs))
if len(query_MBRs)-1 not in merged_qids:
new_query_MBRs.append(query_MBRs[-1])
if len(query_MBRs) == len(new_query_MBRs):
break
else:
query_MBRs = copy.deepcopy(new_query_MBRs)
#print("after merged, number of query MBRs:", len(query_MBRs))
# bound each query MBRs by its partition boundary, and calculate the result size
for MBR in query_MBRs:
MBR.boundary = self.__max_bound_single(MBR.boundary)
MBR.bound_size = self.query_result_size(MBR.boundary)
for query in MBR.queries:
MBR.query_result_size.append(self.query_result_size(query))
MBR.total_query_result_size = sum(MBR.query_result_size)
self.query_MBRs = query_MBRs
return query_MBRs
def extend_bound(self, bound, data_threshold, print_info = False):
'''
extend a bound to be at least b, assume the bound is within the partition boundary
'''
side = 0
for dim in [2,0,1,4,3,5,6]: #[0,1,4,3,5,6,2]: #range(self.num_dims): # reranged by distinct values
if dim+1 > self.num_dims:
continue
valid, bound, bound_size = self.__try_extend(bound, dim, 0, data_threshold, print_info) # lower side
if print_info:
print("dim:",dim,"current bound:",bound,valid,bound_size)
if valid:
break
valid, bound, bound_size = self.__try_extend(bound, dim, 1, data_threshold, print_info) # upper side
if print_info:
print("dim:",dim,"current bound:",bound,valid,bound_size)
if valid:
break
return bound, bound_size
# = = = = = internal functions = = = = =
def __try_extend(self, current_bound, try_dim, side, data_threshold, print_info = False):
'''
side = 0: lower side
side = 1: upper side
return whether this extend has made bound greater than b, current extended bound, and the size
'''
# first try the extreme case
dim = try_dim
if side == 1:
dim += self.num_dims
extended_bound = copy.deepcopy(current_bound)
extended_bound[dim] = self.boundary[dim]
bound_size = self.query_result_size(extended_bound, approximate = False)
if bound_size < data_threshold:
return False, extended_bound, bound_size
# binary search in this extend direction
L, U = None, None
if side == 0:
L, U = self.boundary[dim], current_bound[dim]
else:
L, U = current_bound[dim], self.boundary[dim]
if print_info:
print("L,U:",L,U)
loop_count = 0
while L < U and loop_count < 30:
mid = (L+U)/2
extended_bound[dim] = mid
bound_size = self.query_result_size(extended_bound, approximate = False)
if bound_size < data_threshold:
L = mid
elif bound_size > data_threshold:
U = mid
if U - L < 0.00001:
break
else:
break
if print_info:
print("loop,L:",L,"U:",U,"mid:",mid,"extended_bound:",extended_bound,"size:",bound_size)
loop_count += 1
return bound_size >= data_threshold, extended_bound, bound_size
def __is_overlap(self, boundary, query):
'''
the difference between this function and the public is_overlap function lies in the boundary parameter
'''
if len(query) != 2 * self.num_dims:
return -1 # error
overlap_flag = True
inside_flag = True
for i in range(self.num_dims):
if query[i] >= boundary[self.num_dims + i] or query[self.num_dims + i] <= boundary[i]:
overlap_flag = False
inside_flag = False
return 0
elif query[i] < boundary[i] or query[self.num_dims + i] > boundary[self.num_dims + i]:
inside_flag = False
if inside_flag:
return 2
elif overlap_flag:
return 1
else:
return 0
def __merge_2MBRs(self, MBR1, MBR2):
'''
merge 2 MBRs into 1 (the first one)
in this step we do not consider whether the merged MBR exceeds the current partition
'''
for i in range(self.num_dims):
MBR1.boundary[i] = min(MBR1.boundary[i], MBR2.boundary[i])
MBR1.boundary[self.num_dims + i] = max(MBR1.boundary[self.num_dims + i], MBR2.boundary[self.num_dims + i])
MBR1.queries += MBR2.queries
MBR1.num_query += MBR2.num_query
return MBR1
def __max_bound(self, queryset):
'''
bound the queries by their maximum bounding rectangle !NOTE it is for a collection of queries!!!
then constraint the MBR by the node's boundary!
the return bound is in the same form as boundary
'''
if len(queryset) == 0:
return None
#if len(queryset) == 1:
# pass, I don't think there will be shape issue here
max_bound_L = np.amin(np.array(queryset)[:,0:self.num_dims],axis=0).tolist()
# bound the lower side with the boundary's lower side
max_bound_L = np.amax(np.array([max_bound_L, self.boundary[0:self.num_dims]]),axis=0).tolist()
max_bound_U = np.amax(np.array(queryset)[:,self.num_dims:],axis=0).tolist()
# bound the upper side with the boundary's upper side
max_bound_U = np.amin(np.array([max_bound_U, self.boundary[self.num_dims:]]),axis=0).tolist()
max_bound = max_bound_L + max_bound_U # concat
return max_bound
def __max_bound_single(self, query):
'''
bound anything in the shape of query by the current partition boundary
'''
for i in range(self.num_dims):
query[i] = max(query[i], self.boundary[i])
query[self.num_dims + i] = min(query[self.num_dims + i], self.boundary[self.num_dims + i])
return query
def __if_split_get_child(self, split_dim, split_value): # should I rename this to if_split_get_child
'''
return 2 child nodes if a split take place on given dimension with given value
This function is only used to simplify the skip calculation process, it does not really split the node
'''
boundary1 = self.boundary.copy()
boundary1[split_dim + self.num_dims] = split_value
boundary2 = self.boundary.copy()
boundary2[split_dim] = split_value
child_node1 = PartitionNode(self.num_dims, boundary1)
child_node2 = PartitionNode(self.num_dims, boundary2)
return child_node1, child_node2
class PartitionTree:
'''
The data structure that represent the partition layout, which also maintain the parent, children relation info
Designed to provide efficient online query and serialized ability
The node data structure could be checked from the PartitionNode class
'''
def __init__(self, num_dims = 0, boundary = []):
# the node id of root should be 0, its pid should be -1
# note this initialization does not need dataset and does not set node size!
self.pt_root = PartitionNode(num_dims, boundary, nid = 0, pid = -1, is_irregular_shape_parent = False,
is_irregular_shape = False, num_children = 0, children_ids = [], is_leaf = True, node_size = 0)
self.nid_node_dict = {0: self.pt_root} # node id to node dictionary
self.node_count = 1 # the root node
# = = = = = public functions (API) = = = = =
def save_tree(self, path):
node_list = self.__generate_node_list(self.pt_root) # do we really need this step?
serialized_node_list = self.__serialize(node_list)
#print(serialized_node_list)
np.savetxt(path, serialized_node_list, delimiter=',')
return serialized_node_list
def load_tree(self, path):
serialized_node_list = genfromtxt(path, delimiter=',')
self.__build_tree_from_serialized_node_list(serialized_node_list)
def query_single(self, query, using_rtree_filter = False):
'''
query is in plain form, i.e., [l1,l2,...,ln, u1,u2,...,un]
return the overlapped leaf partitions ids!
'''
partition_ids = self.__find_overlapped_partition(self.pt_root, query, using_rtree_filter)
return partition_ids
def query_batch(self, queries):
'''
to be implemented
'''
pass
def get_queryset_cost(self, queries):
'''
return the cost array directly
'''
costs = []
for query in queries:
overlapped_leaf_ids = self.query_single(query)
cost = 0
for nid in overlapped_leaf_ids:
cost += self.nid_node_dict[nid].node_size
costs.append(cost)
return costs
def evaluate_query_cost(self, queries, print_result = False, using_rtree_filter = False):
'''
get the logical IOs of the queris
return the average query cost
'''
total_cost = 0
case = 0
total_overlap_ids = {}
case_cost = {}
for query in queries:
cost = 0
overlapped_leaf_ids = self.query_single(query, using_rtree_filter)
total_overlap_ids[case] = overlapped_leaf_ids
for nid in overlapped_leaf_ids:
cost += self.nid_node_dict[nid].node_size
total_cost += cost
case_cost[case] = cost
case += 1
if print_result:
print("Total logical IOs:", total_cost)
print("Average logical IOs:", total_cost // len(queries))
for case, ids in total_overlap_ids.items():
print("query",case, ids, "cost:", case_cost[case])
return total_cost // len(queries)
def get_pid_for_data_point(self, point):
'''
get the corresponding leaf partition nid for a data point
point: [dim1_value, dim2_value...], contains the same dimenions as the partition tree
'''
return self.__find_resided_partition(self.pt_root, point)
def add_node(self, parent_id, child_node):
child_node.nid = self.node_count
self.node_count += 1
child_node.pid = parent_id
self.nid_node_dict[child_node.nid] = child_node
child_node.depth = self.nid_node_dict[parent_id].depth + 1
self.nid_node_dict[parent_id].children_ids.append(child_node.nid)
self.nid_node_dict[parent_id].num_children += 1
self.nid_node_dict[parent_id].is_leaf = False
def apply_split(self, parent_nid, split_dim, split_value, split_type = 0, extended_bound = None, approximate = False,
pretend = False):
'''
split_type = 0: split a node into 2 sub-nodes by a given dimension and value
split_type = 1: split a node by bounding split (will create an irregular shape partition)
split_type = 2: split a node by daul-bounding split (will create an irregular shape partition)
extended_bound is only used in split type 1
approximate: used for measure query result size
pretend: if pretend is True, return the split result, but do not apply this split
'''
parent_node = self.nid_node_dict[parent_nid]
if pretend:
parent_node = copy.deepcopy(self.nid_node_dict[parent_nid])
child_node1, child_node2 = None, None
if split_type == 0:
# create sub nodes
child_node1 = copy.deepcopy(parent_node)
child_node1.boundary[split_dim + child_node1.num_dims] = split_value
child_node1.children_ids = []
child_node2 = copy.deepcopy(parent_node)
child_node2.boundary[split_dim] = split_value
child_node2.children_ids = []
if parent_node.query_MBRs is not None:
MBRs1, MBRs2 = parent_node.split_query_MBRs(split_dim, split_value)
child_node1.query_MBRs = MBRs1
child_node2.query_MBRs = MBRs2
# if parent_node.dataset != None: # The truth value of an array with more than one element is ambiguous.
# https://stackoverflow.com/questions/36783921/valueerror-when-checking-if-variable-is-none-or-numpy-array
if parent_node.dataset is not None:
child_node1.dataset = parent_node.dataset[parent_node.dataset[:,split_dim] < split_value]
child_node1.node_size = len(child_node1.dataset)
child_node2.dataset = parent_node.dataset[parent_node.dataset[:,split_dim] >= split_value]
child_node2.node_size = len(child_node2.dataset)
if parent_node.queryset is not None:
left_part, right_part, mid_part = parent_node.split_queryset(split_dim, split_value)
child_node1.queryset = left_part + mid_part
child_node2.queryset = right_part + mid_part
# update current node
if not pretend:
self.add_node(parent_nid, child_node1)
self.add_node(parent_nid, child_node2)
self.nid_node_dict[parent_nid].split_type = "candidate cut"
elif split_type == 1: # must reach leaf node, hence no need to maintain dataset and queryset any more
child_node1 = copy.deepcopy(parent_node) # the bounding partition
child_node2 = copy.deepcopy(parent_node) # the remaining partition, i.e., irregular shape
child_node1.is_leaf = True
child_node2.is_leaf = True
child_node1.children_ids = []
child_node2.children_ids = []
max_bound = None
if extended_bound is not None:
max_bound = extended_bound
else:
max_bound = parent_node._PartitionNode__max_bound(parent_node.queryset)
child_node1.boundary = max_bound
child_node2.is_irregular_shape = True
bound_size = parent_node.query_result_size(max_bound, approximate = False)
remaining_size = parent_node.node_size - bound_size
child_node1.node_size = bound_size
child_node2.node_size = remaining_size
child_node1.partitionable = False
child_node2.partitionable = False
if not pretend:
self.add_node(parent_nid, child_node1)
self.add_node(parent_nid, child_node2)
self.nid_node_dict[parent_nid].is_irregular_shape_parent = True
self.nid_node_dict[parent_nid].split_type = "sole-bounding split"
elif split_type == 2: # must reach leaf node, hence no need to maintain dataset and queryset any more
child_node1 = copy.deepcopy(parent_node) # the bounding partition 1
child_node2 = copy.deepcopy(parent_node) # the bounding partition 2
child_node3 = copy.deepcopy(parent_node) # the remaining partition, i.e., irregular shape
child_node1.is_leaf = True
child_node2.is_leaf = True
child_node3.is_leaf = True
child_node1.children_ids = []
child_node2.children_ids = []
child_node3.children_ids = []
left_part, right_part, mid_part = parent_node.split_queryset(split_dim, split_value)
max_bound_1 = parent_node._PartitionNode__max_bound(left_part)
max_bound_2 = parent_node._PartitionNode__max_bound(right_part)
child_node1.boundary = max_bound_1
child_node2.boundary = max_bound_2
child_node3.is_irregular_shape = True
# Should we only consider the case when left and right cannot be further split? i.e., [b,2b)
# this check logic is given in the PartitionAlgorithm, not here, as the split action should be general
naive_left_size = np.count_nonzero(parent_node.dataset[:,split_dim] < split_value)
naive_right_size = parent_node.node_size - naive_left_size
# get (irregular-shape) sub-partition size
bound_size_1 = parent_node.query_result_size(max_bound_1, approximate)
if bound_size_1 is None: # there is no query within the left
bound_size_1 = naive_left_size # use the whole left part as its size
bound_size_2 = parent_node.query_result_size(max_bound_2, approximate)
if bound_size_2 is None: # there is no query within the right
bound_size_2 = naive_right_size # use the whole right part as its size
remaining_size = parent_node.node_size - bound_size_1 - bound_size_2
child_node1.node_size = bound_size_1
child_node2.node_size = bound_size_2
child_node3.node_size = remaining_size
child_node1.partitionable = False
child_node2.partitionable = False
child_node3.partitionable = False
if not pretend:
self.add_node(parent_nid, child_node1)
self.add_node(parent_nid, child_node2)
self.add_node(parent_nid, child_node3)
self.nid_node_dict[parent_nid].is_irregular_shape_parent = True
self.nid_node_dict[parent_nid].split_type = "dual-bounding split"
elif split_type == 3: # new bounding split, create a collection of MBR partitions
remaining_size = parent_node.node_size
for MBR in parent_node.query_MBRs:
child_node = copy.deepcopy(parent_node)
child_node.is_leaf = True
child_node.children_ids = []
child_node.boundary = MBR.boundary
child_node.node_size = MBR.bound_size
child_node.partitionable = False
remaining_size -= child_node.node_size
if not pretend:
self.add_node(parent_nid, child_node)
# the last irregular shape partition
child_node = copy.deepcopy(parent_node)
child_node.is_leaf = True
child_node.children_ids = []
child_node.is_irregular_shape = True
child_node.node_size = remaining_size
child_node.partitionable = False
if not pretend:
self.add_node(parent_nid, child_node)
self.nid_node_dict[parent_nid].is_irregular_shape_parent = True
self.nid_node_dict[parent_nid].split_type = "var-bounding split"
else:
print("Invalid Split Type!")
if not pretend:
del self.nid_node_dict[parent_nid].dataset
del self.nid_node_dict[parent_nid].queryset
#del self.nid_node_dict[parent_nid].query_MBRs
#self.nid_node_dict[parent_nid] = parent_node
return child_node1, child_node2
def get_leaves(self, use_partitionable = False):
nodes = []
if use_partitionable:
for nid, node in self.nid_node_dict.items():
if node.is_leaf and node.partitionable:
nodes.append(node)
else:
for nid, node in self.nid_node_dict.items():
if node.is_leaf:
nodes.append(node)
return nodes
def visualize(self, dims = [0, 1], queries = [], path = None):
'''
visualize the partition tree's leaf nodes
'''
if len(dims) == 2:
self.__visualize_2d(dims, queries, path)
else:
self.__visualize_3d(dims[0:3], queries, path)
# = = = = = internal functions = = = = =
def __generate_node_list(self, node):
'''
recursively add childrens into the list
'''
node_list = [node]
for nid in node.children_ids:
node_list += self.__generate_node_list(self.nid_node_dict[nid])
return node_list
def __serialize(self, node_list):
'''
convert object to attributes to save
'''
serialized_node_list = []
for node in node_list:
# follow the same order of attributes in partition class
attributes = [node.num_dims]
#attributes += node.boundary
if isinstance(node.boundary, list):
attributes += node.boundary
else:
attributes += node.boundary.tolist()
attributes.append(node.nid) # node id = its ow id
attributes.append(node.pid) # parent id
attributes.append(1 if node.is_irregular_shape_parent else 0)
attributes.append(1 if node.is_irregular_shape else 0)
attributes.append(node.num_children) # number of children
#attributes += node.children_ids
attributes.append(1 if node.is_leaf else 0)
attributes.append(node.node_size)
serialized_node_list.append(attributes)
return serialized_node_list
def __build_tree_from_serialized_node_list(self, serialized_node_list):
self.pt_root = None
self.nid_node_dict.clear()
pid_children_ids_dict = {}
for serialized_node in serialized_node_list:
num_dims = int(serialized_node[0])
boundary = serialized_node[1: 1+2*num_dims]
nid = int(serialized_node[1+2*num_dims]) # node id
pid = int(serialized_node[2+2*num_dims]) # parent id
is_irregular_shape_parent = False if serialized_node[3+2*num_dims] == 0 else True
is_irregular_shape = False if serialized_node[4+2*num_dims] == 0 else True
num_children = int(serialized_node[5+2*num_dims])
# children_ids = []
# if num_children != 0:
# children_ids = serialized_node[1+5+2*num_dims: 1+num_children+1+5+2*num_dims] # +1 for the end exclusive
# is_leaf = False if serialized_node[1+num_children+5+2*num_dims] == 0 else True
# node_size = serialized_node[2+num_children+5+2*num_dims] # don't use -1 in case of match error
is_leaf = False if serialized_node[6+2*num_dims] == 0 else True
node_size = int(serialized_node[7+2*num_dims])
node = PartitionNode(num_dims, boundary, nid, pid, is_irregular_shape_parent,
is_irregular_shape, num_children, [], is_leaf, node_size) # let the children_ids empty
self.nid_node_dict[nid] = node # update dict
if node.pid in pid_children_ids_dict:
pid_children_ids_dict[node.pid].append(node.nid)
else:
pid_children_ids_dict[node.pid] = [node.nid]