-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
173 lines (148 loc) · 6.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import sys
sys.path.append("./")
import argparse
import torch
import odak
import numpy as np
import threading
import csv
import cv2
from odak.learn.lensless import spec_track
from src.util import pre_process, extract_numbers
from src.datasets import *
from os import listdir, makedirs
__title__ = 'SpecTrack'
def main(
settings_filename = 'settings/settings.txt',
samples_dir = None,
weights_dir = None,
output_dir = None,
visual = False,
):
parser = argparse.ArgumentParser(description=__title__)
parser.add_argument(
'--settings',
type = argparse.FileType('r'),
help = 'Filename for the settings file. Default is {}.'.format(settings_filename)
)
parser.add_argument(
'--weights',
type = argparse.FileType('r'),
help = 'Filename for the weights file.'
)
parser.add_argument(
'--input',
type = argparse.FileType('r'),
help = 'Foldername for the input laser speckle data to estimate.'
)
parser.add_argument(
'--output',
type = argparse.FileType('r'),
help = 'Output directory of the recorded estimations.'
)
parser.add_argument(
'--visual',
action=argparse.BooleanOptionalAction,
help = 'Flag to control if show a window with speckle images and estimations.'
)
args = parser.parse_args()
if not isinstance(args.settings, type(None)):
settings_filename = str(args.settings.name)
settings = odak.tools.load_dictionary(settings_filename)
if not isinstance(args.weights, type(None)):
samples_dir = str(args.weights.name)
else:
samples_dir = settings["general"]["samples directory"]
if not isinstance(args.input, type(None)):
weights_dir = str(args.input.name)
else:
weights_dir = settings["general"]["weights directory"]
if not isinstance(args.output, type(None)):
output_dir = str(args.output.name)
else:
output_dir = settings["general"]["output directory"]
if not isinstance(args.visual, type(None)):
visual = bool(args.visual)
else:
visual = settings["general"]["visual"]
process(
settings,
samples_dir,
weights_dir,
output_dir,
visual,
)
def process(settings, samples_dir, weights_dir, output_dir, visual):
"""
Process samples, record outputs to a CSV file, and optionally display results using OpenCV.
Parameters
----------
settings : dict
Dictionary containing general settings.
samples_dir : str
Directory containing sample frames.
weights_dir : str
Directory containing model weights.
output_dir : str
Directory to save the output CSV file.
visual : bool
Flag to control if to show the visual.
"""
device = torch.device(settings["general"]["device"])
network = spec_track(device=device)
network.load_weights(filename=weights_dir)
network.eval()
frames = listdir(samples_dir)
frames = sorted(frames, key=extract_numbers)
makedirs(output_dir, exist_ok=True)
csv_file = join(output_dir, 'output_results.csv')
header = ['Frame', 'Y_Rotation', 'Z_Rotation', 'Depth_cm']
with open(csv_file, 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(header)
# Use tqdm for progress bar
for idx in tqdm(range(len(frames) - 4), desc="Processing frames"):
if frames[idx].endswith(".png"):
data = torch.zeros((1, 0, 0, 0))
for i in range(5):
frame_path = join(samples_dir, frames[idx + i])
frame = odak.learn.tools.load_image(
frame_path,
normalizeby=255,
torch_style=True
).unsqueeze(0).unsqueeze(0)
frame = pre_process(frame)
frame = odak.learn.tools.crop_center(frame).to(device)
if data.shape[1] == 0:
data = frame
continue
if data.shape[1] < 5:
data = torch.concatenate((data, frame), dim=1)
if data.shape[1] == 5:
with torch.no_grad():
predict = network.forward(data.float())
yR, zR, zT = odak.tools.convert_to_numpy(predict.squeeze(0))
if yR:
yR = np.rad2deg(yR * np.pi) if yR > 0 else 0
zR = np.rad2deg(zR * np.pi) if zR > 0 else 0
zT = zT * 5000
depth_cm = round(16 + (12 / 5000 * zT), 1)
# Write to CSV
writer.writerow([idx, round(yR, 2), round(zR, 2), depth_cm])
# print(f"Frame: {idx}, Y rotation: {round(yR, 2)}°, Z rotation: {round(zR, 2)}°, Depth: {depth_cm} cm")
if visual:
# Load the image for visualization
img = cv2.imread(frame_path)
# Add text to the image
text = f"Frame: {idx}, Y: {round(yR, 2)}°, Z: {round(zR, 2)}°, Depth: {depth_cm} cm"
cv2.putText(img, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
# Display the image
cv2.imshow('Frame with Estimations', img)
# Wait for a short time and check for 'q' key to quit
if cv2.waitKey(1) & 0xFF == ord('q'):
break
print(f"Processing complete. Results saved to {csv_file}")
if visual:
cv2.destroyAllWindows()
if __name__ == "__main__":
sys.exit(main())