-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
79 lines (66 loc) · 3.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import sys
sys.path.append("./")
import torch
import odak
import numpy as np
import argparse
from odak.learn.lensless import spec_track
from src.datasets import *
from torch.utils.data import random_split
__title__ = 'SpecTrack'
def main(
settings_filename = 'settings/settings.txt',
static_dataset_dir = None,
motion_dataset_dir = None
):
parser = argparse.ArgumentParser(description=__title__)
parser.add_argument(
'--settings',
type = argparse.FileType('r'),
help = 'Filename for the settings file. Default is {}.'.format(settings_filename)
)
parser.add_argument(
'--static',
type = argparse.FileType('r'),
help = 'The directory of the static setting dataset'
)
parser.add_argument(
'--motion',
type = argparse.FileType('r'),
help = 'The directory of the dynamic setting dataset'
)
args = parser.parse_args()
if not isinstance(args.settings, type(None)):
settings_filename = str(args.settings.name)
settings = odak.tools.load_dictionary(settings_filename)
if not isinstance(args.static, type(None)):
static_dataset_dir = str(args.static.name)
else:
static_dataset_dir = settings["train dataset"]["static dataset directory"]
if not isinstance(args.motion, type(None)):
motion_dataset_dir = str(args.motion.name)
else:
motion_dataset_dir = settings["train dataset"]["motion dataset directory"]
process(settings, static_dataset_dir, motion_dataset_dir)
def process(settings, static_dataset_dir, motion_dataset_dir):
device = torch.device(settings["general"]["device"])
network = spec_track(
device=device
)
test_ratio = settings["model"]["train validation ratio"]
seed = settings["model"]["seed"]
num_epochs = settings["model"]["number of epochs"]
batch_size = settings["model"]["batch size"]
lr = settings["model"]["learning rate"]
weight_decay = settings["model"]["weight decay"]
output_dir = settings["model"]["output directory"]
num_workers = settings["model"]["number of workers"]
dataset = dataset(static_path=static_dataset_dir, motion_path=motion_dataset_dir)
generator = torch.Generator().manual_seed(seed)
train_set, test_set = random_split(dataset, [1-test_ratio, test_ratio], generator=generator)
print(f"The train dataset & test dataset ratio: {len(train_set)} {len(test_set)}")
trainloader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=num_workers)
testloader = DataLoader(test_set, batch_size=batch_size, shuffle=True, num_workers=num_workers)
network.fit(trainloader, testloader, number_of_epochs = num_epochs, learning_rate = lr, weight_decay = weight_decay, directory = output_dir)
if __name__ == "__main__":
sys.exit(main())