This repository has been archived by the owner on Jun 21, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathdata_generator_calc.py
98 lines (95 loc) · 3.97 KB
/
data_generator_calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
from datasets import load_dataset
from prompts import retrieval_prompt
from data_generation.retrieval import RetrievalPostprocessing
from data_generation.calendar import CalendarPostprocessing
from data_generation.calculator import CalculatorPostprocessing
from data_generation.api_checker import check_apis_available
import json
import time
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='do some continuations')
parser.add_argument('--device_id', type=int, default=0)
parser.add_argument("--num_devices", type=int, default=8)
args = parser.parse_args()
gpt_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
prompt_tokens = gpt_tokenizer(retrieval_prompt, return_tensors="pt")["input_ids"]
start_tokens = [
gpt_tokenizer("[")["input_ids"][0],
gpt_tokenizer(" [")["input_ids"][0],
]
end_tokens = [
gpt_tokenizer("]")["input_ids"][0],
gpt_tokenizer(" ]")["input_ids"][0],
] # TODO: keep second?
api_handler = CalculatorPostprocessing(start_tokens, end_tokens)
model = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-j-6B",
revision="float16",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).cuda()
dataset = load_dataset("c4", "en", split="train", streaming=True)
iter_data = iter(dataset)
test = False
counter = 0
file_counter = 0
found_examples = 0
output_dataset = list()
start_time = time.process_time()
num_examples = int(25000.0/float(args.num_devices))
start_count = -1
if os.path.isfile(f"calc_data_{args.device_id}.json"):
with open(f"calc_data_{args.device_id}.json") as f:
output_dataset = json.load(f)
start_count = output_dataset[-1]['file_index']
for item in output_dataset:
num_examples -= len(item['calculator_outputs'])
while found_examples < num_examples:
data = next(iter_data)
if file_counter < start_count:
file_counter += 1
continue
if file_counter % args.num_devices != args.device_id:
file_counter += 1
continue
available = check_apis_available(data, gpt_tokenizer)
test = available.calculator
if test:
data_outputs = api_handler.parse_article(data, model, gpt_tokenizer)
if len(data_outputs) == 0:
eta_s = (num_examples - found_examples) * (time.process_time() - start_time) / max(1, found_examples)
eta_m = eta_s // 60
eta_h = eta_m // 60
eta_m = eta_m - (eta_h * 60)
eta_s = eta_s - ((eta_m * 60) + (eta_h * 60 * 60))
print(f"device {args.device_id} Found: {found_examples}/{num_examples}, ETA: {eta_h}H:{eta_m}M:{eta_s}s")
continue
output_dataset.append(
{
"file_index": file_counter,
"text": data["text"],
"calculator_outputs": data_outputs
}
)
prev_found = found_examples
found_examples += len(output_dataset[-1]["calculator_outputs"])
eta_s = (num_examples - found_examples) * (time.process_time()-start_time) / max(1, found_examples)
eta_m = eta_s // 60
eta_h = eta_m // 60
eta_m = eta_m - (eta_h*60)
eta_s = eta_s - ((eta_m*60) + (eta_h*60*60))
print(f"device {args.device_id} Found: {found_examples}/{num_examples}, ETA: {eta_h}H:{eta_m}M:{eta_s}s")
if found_examples//100 > prev_found//100:
with open(f"calc_data_{args.device_id}.json", 'w') as f:
json.dump(output_dataset, f, indent=2)
counter += 1
file_counter += 1
with open(f"calc_data_{args.device_id}.json", 'w') as f:
json.dump(output_dataset, f, indent=2)