We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Found this when I was playing with the skeleton of 'SyntheticModel'
In [31]: run robust/synthetic_model/synthetic_model.py nominal cost = 3.356158 box uncertainty using Simple Conservative formulation: cost : 3.904778 relative cost : 1.16346667827 number of constraints : 7 setup time : 0.171999931335 solve time : 0.0460000038147 elliptical uncertainty using Simple Conservative formulation: cost : 3.904778 relative cost : 1.16346667827 number of constraints : 7 setup time : 0.161999940872 solve time : 0.0520000457764 --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\synthetic_model\synthetic_model.py in <module>() 46 method_names[method_name]['boyd'], 47 method_names[method_name]['simpleModel'], ---> 48 uncertainty_set) 49 print_robust_results(robust_model, robust_model_solution, nominal_solution, method_name) C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\synthetic_model\synthetic_model.py in robustify_synthetic_model(the_model, is_two_term, is_boyd, is_simple_model, the_uncertainty_set, the_min_number_of_linear_sections, the_max_number_of_linear_sections, the_verbosity, the_linearization_tolerance) 16 linearizationTolerance=the_linearization_tolerance, 17 minNumOfLinearSections=the_min_number_of_linear_sections, ---> 18 maxNumOfLinearSections=the_max_number_of_linear_sections) 19 return the_robust_model, the_robust_model_solution 20 C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\robust.py in robustsolve(self, verbosity, **options) 233 def robustsolve(self, verbosity=1, **options): 234 if self._robust_model is None: --> 235 self.setup(verbosity, **options) 236 try: 237 sol = self._robust_model.solve(verbosity=verbosity) C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\robust.py in setup(self, verbosity, **options) 180 large_posynomials = self.large_gp_posynomials + large_sp_posynomials 181 --> 182 permutation_indices = self.new_permutation_indices(old_solution, large_posynomials) 183 184 two_term_data_posynomials = [] C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\robust.py in new_permutation_indices(self, solution, large_posynomials) 446 permutation_indices = [] 447 for two_term_approximation in large_posynomials: --> 448 permutation_indices.append(self.find_permutation_with_minimum_value(two_term_approximation, solution)) 449 return permutation_indices 450 C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\robust.py in find_permutation_with_minimum_value(self, two_term_approximation, solution) 365 for i in range(len(two_term_approximation.list_of_permutations)): 366 temp_value = self. \ --> 367 calculate_value_of_two_term_approximated_posynomial(two_term_approximation, i, solution) 368 if temp_value < minimum_value: 369 minimum_value = temp_value C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\robust.py in calculate_value_of_two_term_approximated_posynomial(self, two_term_approximation, index_of_permutation, solution) 333 values = [] 334 --> 335 mons = two_term_approximation.chop() 336 337 for i in range(number_of_two_terms): AttributeError: 'TwoTermApproximation' object has no attribute 'chop' In [32]: run robust/synthetic_model/synthetic_model.py nominal cost = 3.356158 box uncertainty using Simple Conservative formulation: cost : 3.904778 relative cost : 1.16346667827 number of constraints : 7 setup time : 0.203999996185 solve time : 0.0469999313354 elliptical uncertainty using Simple Conservative formulation: cost : 3.904778 relative cost : 1.16346667827 number of constraints : 7 setup time : 0.204999923706 solve time : 0.0510001182556 --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\synthetic_model\synthetic_model.py in <module>() 46 method_names[method_name]['boyd'], 47 method_names[method_name]['simpleModel'], ---> 48 uncertainty_set) 49 print_robust_results(robust_model, robust_model_solution, nominal_solution, method_name) C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\synthetic_model\synthetic_model.py in robustify_synthetic_model(the_model, is_two_term, is_boyd, is_simple_model, the_uncertainty_set, the_min_number_of_linear_sections, the_max_number_of_linear_sections, the_verbosity, the_linearization_tolerance) 16 linearizationTolerance=the_linearization_tolerance, 17 minNumOfLinearSections=the_min_number_of_linear_sections, ---> 18 maxNumOfLinearSections=the_max_number_of_linear_sections) 19 return the_robust_model, the_robust_model_solution 20 C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\robust.py in robustsolve(self, verbosity, **options) 233 def robustsolve(self, verbosity=1, **options): 234 if self._robust_model is None: --> 235 self.setup(verbosity, **options) 236 try: 237 sol = self._robust_model.solve(verbosity=verbosity) C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\robust.py in setup(self, verbosity, **options) 180 large_posynomials = self.large_gp_posynomials + large_sp_posynomials 181 --> 182 permutation_indices = self.new_permutation_indices(old_solution, large_posynomials) 183 184 two_term_data_posynomials = [] C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\robust.py in new_permutation_indices(self, solution, large_posynomials) 446 def new_permutation_indices(self, solution, large_posynomials): 447 permutation_indices = [] --> 448 for two_term_approximation in large_posynomials: 449 permutation_indices.append(self.find_permutation_with_minimum_value(two_term_approximation, solution)) 450 return permutation_indices C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\robust.py in find_permutation_with_minimum_value(self, two_term_approximation, solution) 365 minimum_index = len(two_term_approximation.list_of_permutations) 366 for i in range(len(two_term_approximation.list_of_permutations)): --> 367 temp_value = self. \ 368 calculate_value_of_two_term_approximated_posynomial(two_term_approximation, i, solution) 369 if temp_value < minimum_value: C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\robust.py in calculate_value_of_two_term_approximated_posynomial(self, two_term_approximation, index_of_permutation, solution) 333 values = [] 334 --> 335 print two_term_approximation 336 mons = two_term_approximation.chop() 337 AttributeError: 'TwoTermApproximation' object has no attribute 'chop' In [33]: quit() C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust>cd robust C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust>cd synthetic_model C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\synthetic_model>ipython2 Python 2.7.13 |Anaconda 2.4.1 (64-bit)| (default, May 11 2017, 13:17:26) [MSC v.1500 64 bit (AMD64)] Type "copyright", "credits" or "license" for more information. IPython 4.0.1 -- An enhanced Interactive Python. ? -> Introduction and overview of IPython's features. %quickref -> Quick reference. help -> Python's own help system. object? -> Details about 'object', use 'object??' for extra details. In [1]: run synthetic_model.py File "c:\users\berk\dropbox (mit)\mit graduate school\code\robust\robust\robust.py", line 335 print two_term_approximation ^ SyntaxError: invalid syntax In [2]: run synthetic_model.py nominal cost = 3.356158 box uncertainty using Simple Conservative formulation: cost : 3.904778 relative cost : 1.16346667827 number of constraints : 7 setup time : 0.18700003624 solve time : 0.0629999637604 elliptical uncertainty using Simple Conservative formulation: cost : 3.904778 relative cost : 1.16346667827 number of constraints : 7 setup time : 0.171999931335 solve time : 0.0620000362396 TwoTermApproximation(a*x + a^-1*x + a^-2*x^2 + a^3*x^1.3) --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\synthetic_model\synthetic_model.py in <module>() 46 method_names[method_name]['boyd'], 47 method_names[method_name]['simpleModel'], ---> 48 uncertainty_set) 49 print_robust_results(robust_model, robust_model_solution, nominal_solution, method_name) C:\Users\Berk\Dropbox (MIT)\MIT Graduate School\Code\robust\robust\synthetic_model\synthetic_model.py in robustify_synthetic_model(the_model, is_two_term, is_boyd, is_simple_model, the_uncertainty_set, the_min_number_of_linear_sections, the_max_number_of_linear_sections, the_verbosity, the_linearization_tolerance) 16 linearizationTolerance=the_linearization_tolerance, 17 minNumOfLinearSections=the_min_number_of_linear_sections, ---> 18 maxNumOfLinearSections=the_max_number_of_linear_sections) 19 return the_robust_model, the_robust_model_solution 20 c:\users\berk\dropbox (mit)\mit graduate school\code\robust\robust\robust.py in robustsolve(self, verbosity, **options) 233 def robustsolve(self, verbosity=1, **options): 234 if self._robust_model is None: --> 235 self.setup(verbosity, **options) 236 try: 237 sol = self._robust_model.solve(verbosity=verbosity) c:\users\berk\dropbox (mit)\mit graduate school\code\robust\robust\robust.py in setup(self, verbosity, **options) 180 large_posynomials = self.large_gp_posynomials + large_sp_posynomials 181 --> 182 permutation_indices = self.new_permutation_indices(old_solution, large_posynomials) 183 184 two_term_data_posynomials = [] c:\users\berk\dropbox (mit)\mit graduate school\code\robust\robust\robust.py in new_permutation_indices(self, solution, large_posynomials) 447 permutation_indices = [] 448 for two_term_approximation in large_posynomials: --> 449 permutation_indices.append(self.find_permutation_with_minimum_value(two_term_approximation, solution)) 450 return permutation_indices 451 c:\users\berk\dropbox (mit)\mit graduate school\code\robust\robust\robust.py in find_permutation_with_minimum_value(self, two_term_approximation, solution) 366 for i in range(len(two_term_approximation.list_of_permutations)): 367 temp_value = self. \ --> 368 calculate_value_of_two_term_approximated_posynomial(two_term_approximation, i, solution) 369 if temp_value < minimum_value: 370 minimum_value = temp_value c:\users\berk\dropbox (mit)\mit graduate school\code\robust\robust\robust.py in calculate_value_of_two_term_approximated_posynomial(self, two_term_approximation, index_of_permutation, solution) 334 335 print(two_term_approximation) --> 336 mons = two_term_approximation.chop() 337 338 for i in range(number_of_two_terms): AttributeError: 'TwoTermApproximation' object has no attribute 'chop'
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Found this when I was playing with the skeleton of 'SyntheticModel'
The text was updated successfully, but these errors were encountered: