diff --git a/refinements/multipoly.v b/refinements/multipoly.v index a4f9389..1a41a0f 100644 --- a/refinements/multipoly.v +++ b/refinements/multipoly.v @@ -1,7 +1,7 @@ (** Authors: Erik Martin-Dorel and Pierre Roux, 2016-2017 *) Require Import ZArith NArith FMaps FMapAVL. From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq. -From mathcomp Require Import choice finfun tuple fintype ssralg bigop. +From mathcomp Require Import choice finfun tuple fintype order ssralg bigop. From CoqEAL Require Import hrel. From CoqEAL Require Import refinements. From CoqEAL Require Import param binord binnat. @@ -653,20 +653,20 @@ rewrite -ltEmnm. case: (boolP (m1 == m2)) => /= [E|]. { suff: mnmc_eq_seq m1' m2'. { move=> E'; symmetry. - move: E => /eqP ->; rewrite order.Order.POrderTheory.ltxx. + move: E => /eqP ->; rewrite Order.POrderTheory.ltxx. apply negbTE; apply /negP => K. by apply (E.lt_not_eq K). } by apply /mnmc_eq_seqP; rewrite -(Rseqmultinom_eq rm1 rm2). } move=> nE. -rewrite /mnmc_lt_seq /order.Order.lt /=. +rewrite /mnmc_lt_seq /Order.lt /=. rewrite mpoly.ltmc_def eq_sym nE /=. have rmdeg := refine_mdeg n; rewrite refinesE in rmdeg. rewrite /eq_op /eq_N /lt_op /lt_N. rewrite /mnmc_le. -rewrite order.Order.SeqLexiOrder.Exports.lexi_cons. +rewrite Order.SeqLexiOrder.Exports.lexi_cons. rewrite (rmdeg _ _ (refinesP rm1)) (rmdeg _ _ (refinesP rm2)) => {rmdeg}. -rewrite /order.Order.le /=. -rewrite (_ : order.Order.SeqLexiOrder.le _ _ = mnmc_lt_seq_aux m1' m2'). +rewrite /Order.le /=. +rewrite (_ : Order.SeqLexiOrder.le _ _ = mnmc_lt_seq_aux m1' m2'). { rewrite leq_eqVlt. apply/idP/idP. { case eqP => /= He. @@ -713,12 +713,12 @@ have rt2 : refines Rseqmultinom [multinom Tuple st2] t2. { by move: (@refine_size _ _ _ rm2)=> /= /eqP; rewrite eqSS=> /eqP. } move=> i; move: (refine_nth (fintype.lift ord0 i) rm2). by rewrite /= =>->; rewrite !multinomE !(tnth_nth 0%N) /=. } -rewrite /order.Order.lt /= /eq_op /eq_N /lt_op /lt_N. +rewrite /Order.lt /= /eq_op /eq_N /lt_op /lt_N. move: (@refine_nth _ _ _ ord0 rm1) => /=. rewrite multinomE /spec_N (tnth_nth 0%N) /= => <-. move: (@refine_nth _ _ _ ord0 rm2) => /=. rewrite multinomE /spec_N (tnth_nth 0%N) /= => <-. -rewrite /order.Order.le /=. +rewrite /Order.le /=. apply/idP/idP. { rewrite leq_eqVlt. move=> /andP [/orP [Heq12|Hlt12] /implyP Himpl]. @@ -1003,7 +1003,7 @@ apply: (path.sorted_eq mpoly.lemc_trans mpoly.lemc_anti). by rewrite -/(path.sorted _ (h' :: t')) -Ht'; apply IH. } case_eq l=> [//|h t Hl] /= /(path.pathP (@mnm0_seq n, 0)) H. apply/(path.pathP 0%MM)=> i; rewrite size_map=> Hi. - rewrite /mnmc_le -leEmnm order.Order.POrderTheory.le_eqVlt; apply/orP; right. + rewrite /mnmc_le -leEmnm Order.POrderTheory.le_eqVlt; apply/orP; right. rewrite (nth_map (@mnm0_seq n, 0)) //; move/allP in Hs. move: (H _ Hi); rewrite /lef/is_true=><-; apply refinesP. eapply refines_apply; [eapply refines_apply; [by apply refine_mnmc_lt|]|].