-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrite_record_demo.py
79 lines (54 loc) · 2.68 KB
/
write_record_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import tensorflow as tf
import numpy as np
TFRECORD_FILE = "data.tfrecords"
def _Float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def create_tfrecord(tfrecords_filename="data.tfrecords",
predictors=np.asarray([[1.1, 2.2], [4.5, 3.3], [8.7, 6.7]]),
gnd_truths=np.asarray([1.2, 2.3, 3.1])):
"""The function for creating a tfrecord file.
This function takes input as the protobuff file-name and the storable
dataset values. Through a loop this function converts the input values into a
serializable string format and saves into a protobuff format. This function
stores the dataset in the filename specified by the input argument.
Args:
predictors: A numpy array(M*N) contains 'np.float32' elements.
This variable contains the feature values matrix.
gnd_truths: A numpy array(M*1) contains 'np.float32' elements.
This variable contains the observed survival values vector.
Returns:
None
"""
writer = tf.python_io.TFRecordWriter(tfrecords_filename)
assert len(predictors) == len(gnd_truths), 'Input records length mismatch !!'
for predictor, gnd_truth in zip(predictors, gnd_truths):
print(predictor, gnd_truth)
predictor_string = predictor.tostring()
gnd_truth_string = gnd_truth.tostring()
# print(feature_string, gnd_truth_string)
example = tf.train.Example(features=tf.train.Features(feature={
'predictor_string': _bytes_feature(tf.compat.as_bytes(predictor_string)),
'gnd_truth_string': _bytes_feature(tf.compat.as_bytes(gnd_truth_string))
}))
writer.write(example.SerializeToString())
'''
This code is for save tf.record as one shot !
features_string = features.tostring()
gnd_truth_string = gnd_truth.tostring()
example = tf.train.Example(features=tf.train.Features(feature={
'features_string': _bytes_feature(tf.compat.as_bytes(features_string)),
'gnd_truth_string': _bytes_feature(tf.compat.as_bytes(gnd_truth_string))
}))
writer.write(example.SerializeToString())
'''
writer.close()
if __name__ == '__main__':
PREDICTORS = np.asarray([[1.1, 2.2], [4.5, 3.3], [8.7, 6.7]], dtype=np.float32)
GND_TRUTHS = np.asarray([1.2, 2.3, 3.1], dtype=np.float32)
create_tfrecord(TFRECORD_FILE, PREDICTORS, GND_TRUTHS)