-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathClustering_full.Rmd
264 lines (217 loc) · 10.2 KB
/
Clustering_full.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
title: "Clustering"
output:
html_document:
fig_width: 15
fig_height: 9
code_folding: show
df_print: paged
theme: yeti
highlight: tango
toc: yes
toc_float:
collapsed: false
smooth_scroll: false
number_sections: true
pdf_document:
fig_caption: yes
toc: yes
---
# Clustering of all samples
Data quality assessment and quality control (i.e. the removal of insufficiently good data) are essential steps of any data analysis. These steps should typically be performed very early in the analysis of a new data set, preceding or in parallel to the differential expression testing.
We define the term quality as fitness for purpose. Our purpose is the detection of differentially expressed genes, and we are looking in particular for samples whose experimental treatment suffered from an anormality that renders the data points obtained from these particular samples detrimental to our purpose.
In this page, you will see all of the analysis performed to understand which samples are potentially going to negatively impact the downstream analysis.
```{r, include=FALSE}
knitr::opts_chunk$set(cache=TRUE)
source('functions.R')
library(org.Hs.eg.db)
library("org.Mmu.eg.db")
library(org.Ss.eg.db)
library(DESeq2)
library(pheatmap)
library(dplyr)
library(RColorBrewer)
library(pheatmap)
library(yaml)
library(rhdf5)
library(biomaRt)
library(tximport)
library(ensembldb)
library(EnsDb.Hsapiens.v86)
library(EnsDb.Mmusculus.v79)
```
```{r yaml, echo=TRUE,warning=FALSE,message=FALSE,error=FALSE, include=FALSE}
params <- read_yaml("config.yml")
```
```{r import , echo=TRUE,warning=FALSE,message=FALSE,error=FALSE, include=FALSE}
if(params$kallisto){
print("kallisto input detected")
design_files <- 'full.csv'
# load in the sample metadata file
sample_table <- read.csv("kallisto_input.csv")
if (dir.exists(params$kallisto_dir)) {
path <- file.path(params$kallisto_dir, sample_table$Sample, "abundance.h5")
sample_table <- dplyr::mutate(sample_table, path = path)
if(params$species == "human"){
# Create the tx2gene file that will map transcripts to genes
Tx <- transcripts(EnsDb.Hsapiens.v86, columns=c("tx_id", "gene_id", "symbol"))
Tx <- as_tibble(Tx)
Tx <- dplyr::rename(Tx, target_id = tx_id, ens_gene = gene_id, ext_gene = symbol)
Tx <- dplyr::select(Tx, "target_id", "ens_gene", "ext_gene")
}else if(params$species == "mouse"){
Tx <- transcripts(EnsDb.Mmusculus.v79, columns=c("tx_id", "gene_id", "symbol"))
Tx <- as_tibble(Tx)
Tx <- dplyr::rename(Tx, target_id = tx_id, ens_gene = gene_id, ext_gene = symbol)
Tx <- dplyr::select(Tx, "target_id", "ens_gene", "ext_gene")
}else if(params$species == "macaque"){
orgSymbols <- keys(org.Mmu.eg.db, keytype="ENSEMBL")
mart <- useMart(dataset = "mmulatta_gene_ensembl", biomart='ensembl')
tx2gene <- getBM(attributes = c('ensembl_gene_id', 'ensembl_gene_id_version', 'ensembl_transcript_id', 'ensembl_transcript_id_version','entrezgene_id'),
filters = 'ensembl_gene_id',
values = orgSymbols,
mart = mart)
Tx <- tx2gene %>% dplyr::select(ensembl_transcript_id, ensembl_gene_id)
colnames(Tx) <- c("TXNAME", "GENEID")
}else if(params$species == "pig"){
ensembl = useMart(biomart="ENSEMBL_MART_ENSEMBL",
dataset="sscrofa_gene_ensembl",
host="uswest.ensembl.org",
ensemblRedirect = FALSE)
orgSymbols <- unlist(getBM(attributes = 'ensembl_gene_id', mart=ensembl))
mart <- useMart(dataset = "sscrofa_gene_ensembl", biomart='ensembl', host="uswest.ensembl.org")
tx2gene <- getBM(attributes = c('ensembl_gene_id', 'ensembl_gene_id_version', 'ensembl_transcript_id', 'ensembl_transcript_id_version','entrezgene_id'),
filters = 'ensembl_gene_id',
values = orgSymbols,
mart = mart)
Tx <- tx2gene %>% dplyr::select(ensembl_transcript_id, ensembl_gene_id)
colnames(Tx) <- c("TXNAME", "GENEID")
}else if(params$species == "rabbit"){
ensembl = useMart(biomart="ENSEMBL_MART_ENSEMBL",
dataset="ocuniculus_gene_ensembl",
host="uswest.ensembl.org",
ensemblRedirect = FALSE)
orgSymbols <- unlist(getBM(attributes = 'ensembl_gene_id', mart=ensembl))
mart <- useMart(dataset = "ocuniculus_gene_ensembl", biomart='ensembl', host="uswest.ensembl.org")
tx2gene <- getBM(attributes = c('ensembl_gene_id', 'ensembl_gene_id_version', 'ensembl_transcript_id', 'ensembl_transcript_id_version','entrezgene_id'),
filters = 'ensembl_gene_id',
values = orgSymbols,
mart = mart)
Tx <- tx2gene %>% dplyr::select(ensembl_transcript_id, ensembl_gene_id)
colnames(Tx) <- c("TXNAME", "GENEID")
}else{ print('please supply a valid species within the config.yml file')}
# import Kallisto transcript counts into R using Tximport
Txi_gene <- tximport(path,
type = "kallisto",
tx2gene = Tx,
txOut = FALSE, # TRUE outputs transcripts, FALSE outputs gene-level data
countsFromAbundance = "lengthScaledTPM",
ignoreTxVersion = TRUE)
# Write the counts to an object (used for metadata and clustering)
df_mRNA <- Txi_gene$counts %>%
round() %>%
data.frame()
colnames(df_mRNA) <- sample_table$Sample
meta_data <- sample_table
rownames(meta_data) <- meta_data$Sample
assign(paste("meta_data", 'full.csv', sep = "."), meta_data)
} else {
print("Please add path to the kallisto dir in the config.yml file as it seems to be missing")
}
}else{
if (file.exists("featurecounts.tsv.gz")) {
design_files <- list.files(pattern = "full.csv")
df_mRNA <- read.table(gzfile("featurecounts.tsv.gz"), sep = "\t", header = TRUE, row.names = 1)
colnames(df_mRNA) <- gsub(".", "-", x = colnames(df_mRNA), fixed = T)
} else {
print("Please add featurecounts.tsv.gz into the project folder as it seems to be missing")
}
if (file.exists(design_files[1])) {
for (i in design_files){
meta_data <- read.table(i, sep=",", header = TRUE)
rownames(meta_data) <- meta_data$Sample
df_mRNA = df_mRNA[,rownames(meta_data)]
all(rownames(meta_data) %in% colnames(df_mRNA))
assign(paste("meta_data", i, sep = "."), meta_data)
}
} else {
print("No design files were detected please add a file called design_<test>_<control>_<test>_<column>.csv. Please refer to documentation on github for more ifnormation")
}
}
```
```{r dds, include=FALSE}
if(params$kallisto){
for (i in design_files) {
meta_data <- get(gsub("SAMPLE_FILE",i , "meta_data.SAMPLE_FILE"))
design <- as.formula(meta_data$model[1])
# Create a DESeqDataSet object named dds
dds <- DESeqDataSetFromTximport(Txi_gene,
colData = meta_data,
design = design)
dds <- estimateSizeFactors(dds)
# Filtering: keep samples that have a count of higher than 1
dds <- dds[ rowSums(counts(dds)) > 1, ]
assign(paste("dds_full", i, sep = "."), dds)
}
}else{
for (i in design_files) {
meta_data <- get(gsub("SAMPLE_FILE",i , "meta_data.SAMPLE_FILE"))
model <- as.character(meta_data$model[[1]])
dds <- run_deseq2_full(df_mRNA, meta_data, model)
assign(paste("dds_full", i, sep = "."), dds)}
}
```
# Heatmap of counts matrix {.tabset .tabset-fade}
To explore a count matrix, it is often instructive to look at it as a heatmap. Below we show how to produce such a heatmap for various transformations of the data. I have plotted a heatmap of the top 200 highly expressed genes to determine if the samples cluster together by condition.
```{r heatmap, echo=FALSE}
for (i in design_files) {
dds <- get(gsub("SAMPLE_FILE",i , "dds_full.SAMPLE_FILE"))
meta_data <- get(gsub("SAMPLE_FILE",i , "meta_data.SAMPLE_FILE"))
vsd <- varianceStabilizingTransformation(dds, blind=FALSE)
select <- order(rowMeans(counts(dds, normalized=TRUE)), decreasing=TRUE)[1:200]
data = colData(dds)[,1]
df <- as.data.frame(data)
annotation <- data.frame(Var1 = meta_data[2], Var2 = meta_data[3])
rownames(annotation) <- colnames(assay(vsd))
name <- gsub(".csv","",i)
cat("### ",name,"\n")
pheatmap(assay(vsd)[select,], cluster_rows = FALSE, show_rownames = FALSE,
cluster_cols = TRUE, annotation =annotation)
cat('\n\n')
}
```
# Heatmap of sample-to-sample distances {.tabset .tabset-fade}
Another use of the transformed data is sample clustering. Here, we apply the dist function to the transpose of the transformed count matrix to get sample-to-sample distances.
A heatmap of this distance matrix gives us an overview over similarities and dissimilarities between samples. We have to provide a hierarchical clustering hc to the heatmap function based on the sample distances, or else the heatmap function would calculate a clustering based on the distances between the rows/columns of the distance matrix.
```{r sampledist, echo=FALSE}
for (i in design_files) {
dds <- get(gsub("SAMPLE_FILE",i , "dds_full.SAMPLE_FILE"))
meta_data <- get(gsub("SAMPLE_FILE",i , "meta_data.SAMPLE_FILE"))
vsd <- varianceStabilizingTransformation(dds, blind=FALSE)
sampleDists <- dist(t(assay(vsd)))
samplDistMatrix <- as.matrix(sampleDists)
rownames(samplDistMatrix) <- meta_data[[2]]
colnames(samplDistMatrix) <- meta_data[[2]]
colors <- colorRampPalette(rev(brewer.pal(9, "Blues")) )(255)
assign(paste("vsd", i, sep = "."), vsd)
name <- gsub(".csv","",i)
cat("### ",name,"\n")
pheatmap(samplDistMatrix,
clustering_distance_cols = sampleDists,
clustering_distance_rows = sampleDists,
color = colors)
cat('\n\n')
}
```
# PCA analysis of the samples {.tabset .tabset-fade}
Related to the distance matrix is the PCA plot, which shows the samples in the 2D plane spanned by their first two principal components. This type of plot is useful for visualizing the overall effect of experimental covariates and batch effects.
## PCA - group
```{r pca, echo=FALSE}
for (i in design_files) {
vsd <- get(gsub("SAMPLE_FILE",i , "vsd.SAMPLE_FILE"))
meta_data <- get(gsub("SAMPLE_FILE",i , "meta_data.SAMPLE_FILE"))
name <- gsub(".csv","",i)
cat("### ",name,"\n")
print(plotPCA(vsd, intgroup=c(as.character(colnames(meta_data[2])))))
cat('\n\n')
}
```