-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathsim_test.py
115 lines (100 loc) · 3.88 KB
/
sim_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
import datetime
import glob
import os
import types
import pandas as pd
from recogym import (
competition_score,
AgentInit,
)
if __name__ == "__main__":
import tensorflow as tf2
print(f'TensorFlow V2: {tf2.__version__}')
import tensorflow.compat.v1 as tf1
print(f'TensorFlow V2: {tf1.__version__}')
parser = argparse.ArgumentParser()
parser.add_argument('--P', type=int, default=100, help='Number of products')
parser.add_argument('--UO', type=int, default=100, help='Number of organic users to train on')
parser.add_argument('--U', type=int, default=100, help='Number of users to train on')
parser.add_argument('--Utest', type=int, default=1000, help='Number of users to test')
parser.add_argument('--seed', type=int, default=100, help='Seed')
parser.add_argument('--K', type=int, default=20, help='Number of latent factors')
parser.add_argument('--F', type=int, default=20,
help='Number of flips, how different is bandit from organic')
parser.add_argument('--log_epsilon', type=float, default=0.05,
help='Pop logging policy epsilon')
parser.add_argument('--sigma_omega', type=float, default=0.01, help='sigma_omega')
parser.add_argument('--entries_dir', type=str, default='my_entries',
help='directory with agent files for a leaderboard of small baselines for P small try setting to leaderboard_entries')
parser.add_argument('--with_cache', type=bool, default=False,
help='Do use cache for training data or not')
args = parser.parse_args()
P, UO, U, Utest, seed, num_flips, K, sigma_omega, log_epsilon, entries_dir, with_cache = (
args.P,
args.UO,
args.U,
args.Utest,
args.seed,
args.F,
args.K,
args.sigma_omega,
args.log_epsilon,
args.entries_dir,
args.with_cache,
)
print(args)
adf = []
start = datetime.datetime.now()
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
for agent_file in glob.glob(entries_dir + '/*.py'):
print(f'Agent: {agent_file}')
try:
tmp_module = types.ModuleType('tmp_module')
exec(
open(agent_file).read(),
tmp_module.__dict__
)
if hasattr(tmp_module, 'TestAgent'):
agent_class = tmp_module.TestAgent
agent_configs = tmp_module.test_agent_args
agent_name = 'Test Agent'
else:
if hasattr(tmp_module, 'agent'):
for agent_key in tmp_module.agent.keys():
agent_class = tmp_module.agent[agent_key][AgentInit.CTOR]
agent_configs = tmp_module.agent[agent_key][AgentInit.DEF_ARGS]
agent_name = agent_key
else:
print('There is no Agent to test!')
continue
df = competition_score(
P,
UO,
U,
Utest,
seed,
K,
num_flips,
log_epsilon,
sigma_omega,
agent_class,
agent_configs,
agent_name,
with_cache
)
df = df.join(pd.DataFrame({
'entry': [agent_file]
}))
print(df)
adf.append(df)
except Exception as ex:
print(f'Agent @ "{agent_file}" failed: {str(ex)}')
out_dir = entries_dir + '_' + str(P) + '_' + str(U) + '_' + str(Utest) + '_' + str(start)
os.mkdir(out_dir)
fp = open(out_dir + '/config.txt', 'w')
fp.write(str(args))
fp.close()
leaderboard = pd.concat(adf)
leaderboard = leaderboard.sort_values(by='q0.500', ascending=False)
leaderboard.to_csv(out_dir + '/leaderboard.csv')