-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
36 lines (34 loc) · 1.24 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
##Dixon Styres
##secuPy
#production model
from __future__ import division
from sklearn import neighbors
from sklearn.preprocessing import StandardScaler
import traceback
import numpy as np
class KNNModel():
#test data, test labels, train data, train labels
def __init__(self, trainData, trainLabel, testData, testLabel):
self.trainData = trainData
self.trainLabel = trainLabel
self.testData = testData
self.testLabel = testLabel
self.knnModel = neighbors.KNeighborsClassifier()
self.scaler = StandardScaler()
def run(self):
#standardize features using z score
self.trainData = self.scaler.fit_transform(self.trainData)
self.testData = self.scaler.transform(self.testData)
#startup and fit model, default k
self.knnModel.fit(self.trainData, self.trainLabel)
print("Model Ready")
sd = self.knnModel.predict(self.testData)
def predict(self, log):
try:
#so we can standardize a single sample.
log = self.scaler.transform(np.reshape(log, (1,-1)))
#predict for one sample
type = self.knnModel.predict(log)
return type
except:
return [0]