-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmodel.py
executable file
·110 lines (85 loc) · 4.05 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from __future__ import print_function
import numpy as np
import tensorflow as tf
import time
import random
import math
class Model:
def __init__(self, config, N, dims, X_target):
self.config = config
self.N = N
self.dims = dims
self.labels = tf.placeholder(tf.int32, shape=[None, 1])
self.inputs = tf.placeholder(tf.int32, shape=[None])
self.X_target = tf.constant(X_target, dtype=tf.float32)
self.X_new = tf.nn.embedding_lookup(self.X_target, self.inputs)
############ define variables for autoencoder ##################
self.layers = len(config.struct)
self.struct = config.struct
self.W = {}
self.b = {}
struct = self.struct
# encode module
for i in range(self.layers - 1):
name_W = 'encoder_W_' + str(i)
name_b = 'encoder_b_' + str(i)
self.W[name_W] = tf.get_variable(name_W, [struct[i], struct[i + 1]],
initializer=tf.contrib.layers.xavier_initializer())
self.b[name_b] = tf.get_variable(name_b, [struct[i + 1]], initializer=tf.zeros_initializer())
# decode module
struct.reverse()
for i in range(self.layers - 1):
name_W = 'decoder_W_' + str(i)
name_b = 'decoder_b_' + str(i)
self.W[name_W] = tf.get_variable(name_W, [struct[i], struct[i + 1]],
initializer=tf.contrib.layers.xavier_initializer())
self.b[name_b] = tf.get_variable(name_b, [struct[i + 1]], initializer=tf.zeros_initializer())
self.struct.reverse()
############## define input ###################
self.X = tf.placeholder(tf.float32, shape=[None, config.struct[0]])
self.make_compute_graph()
self.loss_ae = self.make_autoencoder_loss()
# compute gradients for deep autoencoder
self.train_opt_ae = tf.train.AdamOptimizer(config.ae_learning_rate).minimize(self.loss_ae)
############ define variables for skipgram ####################
# construct variables for nce loss
self.nce_weights = tf.get_variable('nce_weights', [self.N, self.dims],
initializer=tf.contrib.layers.xavier_initializer())
self.nce_biases = tf.get_variable('nce_biases', [self.N], initializer=tf.zeros_initializer())
self.loss_sg = self.make_skipgram_loss()
# compute gradients for skipgram
self.train_opt_sg = tf.train.AdamOptimizer(config.sg_learning_rate).minimize(self.loss_sg)
def make_skipgram_loss(self):
loss = tf.reduce_sum(tf.nn.sampled_softmax_loss(
weights=self.nce_weights,
biases=self.nce_biases,
labels=self.labels,
inputs=self.Y,
num_sampled=self.config.num_sampled,
num_classes=self.N))
return loss
def make_compute_graph(self):
def encoder(X):
for i in range(self.layers - 1):
name_W = 'encoder_W_' + str(i)
name_b = 'encoder_b_' + str(i)
X = tf.nn.tanh(tf.matmul(X, self.W[name_W]) + self.b[name_b])
return X
def decoder(X):
for i in range(self.layers - 1):
name_W = 'decoder_W_' + str(i)
name_b = 'decoder_b_' + str(i)
X = tf.nn.tanh(tf.matmul(X, self.W[name_W]) + self.b[name_b])
return X
self.Y = encoder(self.X)
self.X_reconstruct = decoder(self.Y)
def make_autoencoder_loss(self):
def get_autoencoder_loss(X, newX):
return tf.reduce_sum(tf.pow((newX - X), 2))
def get_reg_loss(weights, biases):
reg = tf.add_n([tf.nn.l2_loss(w) for w in weights.values()])
reg += tf.add_n([tf.nn.l2_loss(b) for b in biases.values()])
return reg
loss_autoencoder = get_autoencoder_loss(self.X_new, self.X_reconstruct)
loss_reg = get_reg_loss(self.W, self.b)
return self.config.alpha * loss_autoencoder + self.config.reg * loss_reg