-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcloud_segmentation
executable file
·296 lines (239 loc) · 12.7 KB
/
cloud_segmentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#!/usr/bin/env python
import os
import cv2
from datasets.laserscan import SemLaserScan
from datasets.base_dataset import TRAVERSABILITY_COLOR_MAP, TRAVERSABILITY_LABELS, VOID_VALUE
from datasets.base_dataset import FLEXIBILITY_COLOR_MAP, FLEXIBILITY_LABELS
from traversability_estimation.utils import get_label_map, convert_label, visualize_cloud, visualize_imgs
import rospy
from sensor_msgs.msg import Image, PointCloud2
from ros_numpy import msgify, numpify
import numpy as np
from numpy.lib.recfunctions import structured_to_unstructured, unstructured_to_structured
import torch
import yaml
from threading import RLock
import rospkg
# pkg_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..'))
pkg_path = rospkg.RosPack().get_path('traversability_estimation')
def msgify_cloud(cloud, frame, stamp, names):
assert cloud.ndim == 2
cloud = unstructured_to_structured(cloud, names=names)
msg = msgify(PointCloud2, cloud)
msg.header.frame_id = frame
msg.header.stamp = stamp
return msg
def prob2entropy(p, axis=0, eps=1e-6):
p = np.clip(p, eps, 1.0 - eps)
h = np.sum(-p * np.log2(p), axis=axis)
return h
class CloudSegmentor:
def __init__(self, cloud_topic='cloud'):
self.lidar_frame = None
self.lidar_channels_H = int(rospy.get_param('~lidar_channels', 128))
self.lidar_beams_W = int(rospy.get_param('~lidar_beams', 1024))
self.lidar_fov_up = float(rospy.get_param('~lidar_fov_up', 45.0))
self.lidar_fov_down = float(rospy.get_param('~lidar_fov_down', -45.0))
self.range_projection = bool(rospy.get_param('~range_projection', False))
self.lock = RLock()
self.device = rospy.get_param('~device', 'cpu')
self.model_weights = rospy.get_param('~weights')
self.model_path = os.path.join(pkg_path, "config/weights/", "depth_cloud/%s" % self.model_weights)
# assert os.path.exists(self.model_path)
self.model = self.load_model()
rospy.loginfo('Loaded cloud segmentation model: %s', self.model_weights)
self.data_fields = [f[1:-1] for f in ['_x_', '_y_', '_z_', '_intensity_', '_depth_'] if f in self.model_weights]
if not self.data_fields:
self.data_fields = ['depth']
rospy.loginfo('Model takes as input: %s' % ','.join(self.data_fields))
self.model_output = 'labels'
if 'traversability' in self.model_weights.lower():
self.model_output = 'traversability'
elif 'flexibility' in self.model_weights.lower():
self.model_output = 'flexibility'
self.input_pc_fields = ['x', 'y', 'z']
self.output_pc_fields = ['x', 'y', 'z', self.model_output, 'cost', 'entropy']
self.cost_ind = rospy.get_param('~soft_label_ind', 1)
assert self.model_output in ['labels', 'traversability', 'flexibility']
if self.model_output == 'labels':
self.label_map = None
cfg = yaml.safe_load(open(os.path.join(pkg_path, "config/rellis.yaml"), 'r'))
self.color_map = cfg["color_map"]
self.CLASSES = [v for v in cfg['labels'].values()]
self.class_values = list(range(len(self.color_map)))
self.learning_map = cfg["learning_map"]
self.learning_map_inv = cfg["learning_map_inv"]
self.ignore_label = 0
else:
self.ignore_label = VOID_VALUE
if self.model_output == 'traversability':
self.color_map = TRAVERSABILITY_COLOR_MAP
self.CLASSES = [v for k, v in TRAVERSABILITY_LABELS.items()]
self.class_values = np.sort([k for k in TRAVERSABILITY_LABELS.keys()]).tolist()
elif self.model_output == 'flexibility':
self.color_map = FLEXIBILITY_COLOR_MAP
self.CLASSES = [v for k, v in FLEXIBILITY_LABELS.items()]
self.class_values = np.sort([k for k in FLEXIBILITY_LABELS.keys()]).tolist()
self.label_map = get_label_map(path=os.path.join(pkg_path, "config/rellis_to_%s.yaml" % self.model_output))
self.n_classes = len(self.CLASSES)
self.non_bg_classes = np.asarray(self.CLASSES)[np.asarray(self.class_values) != self.ignore_label]
self.scan = SemLaserScan(nclasses=len(self.non_bg_classes),
sem_color_dict=self.color_map,
project=True,
H=self.lidar_channels_H, W=self.lidar_beams_W,
fov_up=self.lidar_fov_up, fov_down=self.lidar_fov_down)
self.debug = rospy.get_param('~debug', False)
# point cloud which time stamp is older is not being processed
self.max_age = rospy.get_param('~max_age', 0.5)
self.segm_cloud_pub = rospy.Publisher(rospy.get_param('~cloud_out', 'cloud_out'), PointCloud2, queue_size=1)
self.resized_cloud_pub = rospy.Publisher('~resized_cloud', PointCloud2, queue_size=1)
self.depth_pub = rospy.Publisher('~depth', Image, queue_size=1)
self.cloud_sub = rospy.Subscriber(cloud_topic, PointCloud2, self.segment_cloud_cb)
rospy.loginfo('Point cloud segmentation node is ready.')
def label_to_color(self, label):
if len(label.shape) == 3:
C, H, W = label.shape
label = np.argmax(label, axis=0)
assert label.shape == (H, W)
if self.model_output == 'labels':
label = convert_label(label, inverse=False, label_mapping=self.learning_map_inv)
color = self.scan.sem_color_lut[label]
return color
def load_model(self):
if not os.path.exists(self.model_path):
url = 'http://subtdata.felk.cvut.cz/robingas/data/traversability_estimation/weights/depth_cloud/'
path = os.path.abspath(os.path.join(self.model_path, os.pardir))
print('Downloading model weights by running:')
print('wget %s/%s -P %s' % (url, self.model_weights, path))
os.system('wget %s/%s -P %s' % (url, self.model_weights, path))
model = torch.load(self.model_path, map_location=self.device)
model = model.eval()
return model
def resize_cloud(self, cloud):
H, W = cloud.shape[:2]
self.lidar_channels_H = H
self.lidar_beams_W = W
resized = []
for i in range(cloud.shape[2]):
c = cv2.resize(cloud[..., i], (self.lidar_channels_H, self.lidar_beams_W),
interpolation=cv2.INTER_LINEAR)
resized.append(c)
resized = np.stack(resized, axis=-1)
cloud = resized
rospy.loginfo('Point cloud resized to %s', resized.shape)
return cloud
def preprocessing(self, cloud):
if cloud.ndim == 3:
H, W, C = cloud.shape
if self.lidar_channels_H != H or self.lidar_beams_W != W:
self.lidar_channels_H = H
self.lidar_beams_W = W
self.scan = SemLaserScan(nclasses=self.n_classes,
sem_color_dict=self.color_map,
project=True,
H=H, W=W,
fov_up=self.lidar_fov_up, fov_down=self.lidar_fov_down)
cloud = self.resize_cloud(cloud)
rospy.loginfo('Point cloud resized to %s', cloud.shape)
if self.range_projection:
self.scan.set_points(points=cloud[..., :3].reshape((-1, 3)),
remissions=cloud[..., 3].reshape((-1, 3)) if cloud.shape[-1] >= 4 else None)
depth = self.scan.proj_range
else:
depth = np.linalg.norm(cloud[..., :3], ord=2, axis=-1)
depth = depth.reshape((self.lidar_channels_H, self.lidar_beams_W))
# depth_vis = cv2.resize(depth.astype('float'),
# (depth.shape[1] // 2, depth.shape[0] // 2),
# interpolation=cv2.INTER_LINEAR)
# cv2.imshow('Depth', depth_vis)
# cv2.waitKey(1)
depth = depth[None]
rospy.logdebug('Model input shape: %s', depth.shape)
assert depth.shape == (1, self.lidar_channels_H, self.lidar_beams_W)
return depth
def model_inference(self, depth):
# Apply inference preprocessing transforms
batch = torch.from_numpy(depth).unsqueeze(0).to(self.device)
with torch.no_grad():
pred = self.model(batch)['out']
rospy.loginfo('Segmented result shape: %s', pred.shape)
return pred
def postprocessing(self, pred_prob, xyz):
assert isinstance(pred_prob, torch.Tensor)
assert isinstance(xyz, np.ndarray)
pred_prob = torch.softmax(pred_prob.squeeze(0), dim=0).cpu().numpy()
assert pred_prob.ndim == 3
cost = pred_prob[self.cost_ind]
# label_soft_vis = cv2.resize(cost.astype('float'), (cost.shape[1] // 2, cost.shape[0] // 2),
# interpolation=cv2.INTER_LINEAR) / cost.max()
# cv2.imshow('Predicted labels', label_soft_vis)
# cv2.waitKey(1)
n_pts = cost.shape[0] * cost.shape[1]
xyz = xyz.reshape((n_pts, 3))
pred_class = np.argmax(pred_prob, axis=0)
entropy = prob2entropy(pred_prob, axis=0)
cost = cost.reshape((n_pts, 1))
pred_class = pred_class.reshape((n_pts, 1))
entropy = entropy.reshape((n_pts, 1))
output = np.concatenate([xyz, pred_class, cost, entropy], axis=1)
assert output.shape == (n_pts, 6)
rospy.logdebug('Output cloud shape: %s', output.shape)
return np.asarray(output, dtype=np.float32)
def segment_cloud_cb(self, pc_msg):
assert isinstance(pc_msg, PointCloud2)
self.lidar_frame = pc_msg.header.frame_id
# Discard old messages.
msg_stamp = rospy.Time.now()
age = (msg_stamp - pc_msg.header.stamp).to_sec()
if age > self.max_age:
rospy.logwarn('Cloud segmentation: Discarding points %.1f s > %.1f s old.', age, self.max_age)
return
t0 = rospy.Time.now().to_sec()
with self.lock:
# Transform local map to ground truth localization frame
cloud = numpify(pc_msg)
if not set(self.input_pc_fields) <= set(cloud.dtype.names):
rospy.logwarn('Point cloud does not contain all requested input fields. \nUsing only "x y z".')
self.input_pc_fields = ['x', 'y', 'z']
cloud = structured_to_unstructured(cloud[self.input_pc_fields])
rospy.logdebug('Point cloud of shape %s is received', cloud.shape)
depth = self.preprocessing(cloud)
t1 = rospy.Time.now().to_sec()
rospy.logdebug('Preprocessing took: %.3f [sec]' % (t1 - t0))
pred = self.model_inference(depth)
t2 = rospy.Time.now().to_sec()
rospy.logdebug('Model inference took: %.3f [sec]' % (t2 - t1))
if self.range_projection:
xyz = self.scan.proj_xyz
else:
xyz = cloud[..., :3]
output = self.postprocessing(pred, xyz=xyz)
t3 = rospy.Time.now().to_sec()
rospy.logdebug('Postprocessing took: %.3f [sec]' % (t3 - t2))
# grass_mask = output[:, 6] == 1
# bushes_mask = output[:, 6] == 9
# mean_height = min(np.mean(output[grass_mask, 2]), np.mean(output[bushes_mask, 2]))
# output[grass_mask, 2] = mean_height
# output[bushes_mask, 2] = mean_height
# publish segmented point cloud
segm_pc_msg = msgify_cloud(output, frame=pc_msg.header.frame_id, stamp=pc_msg.header.stamp,
names=self.output_pc_fields)
self.segm_cloud_pub.publish(segm_pc_msg)
if self.debug:
# publish depth image
power = 16
depth_img = np.copy(depth.squeeze()) # depth
depth_img[depth_img > 0] = depth_img[depth_img > 0] ** (1 / power)
depth_img[depth_img > 0] = (depth_img[depth_img > 0] - depth_img[depth_img > 0].min()) / \
(depth_img[depth_img > 0].max() - depth_img[depth_img > 0].min())
depth_msg = msgify(Image, depth_img, '32FC1')
depth_msg.header.stamp = pc_msg.header.stamp
depth_msg.header.frame_id = pc_msg.header.frame_id
self.depth_pub.publish(depth_msg)
t4 = rospy.Time.now().to_sec()
rospy.logdebug('Data publishing took: %.3f [sec]' % (t4 - t3))
rospy.loginfo('Point cloud processing time: %.3f [sec]' % (t4 - t0))
if __name__ == '__main__':
rospy.init_node('cloud_segmentation', log_level=rospy.INFO)
proc = CloudSegmentor(cloud_topic=rospy.get_param('~cloud_in', 'cloud_in'))
rospy.spin()