forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathprojection.rs
308 lines (269 loc) · 9.18 KB
/
projection.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Defines the projection execution plan. A projection determines which columns or expressions
//! are returned from a query. The SQL statement `SELECT a, b, a+b FROM t1` is an example
//! of a projection on table `t1` where the expressions `a`, `b`, and `a+b` are the
//! projection expressions. `SELECT` without `FROM` will only evaluate expressions.
use std::any::Any;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use crate::error::{DataFusionError, Result};
use crate::physical_plan::{
DisplayFormatType, ExecutionPlan, OptimizerHints, Partitioning, PhysicalExpr,
};
use arrow::datatypes::{Field, Schema, SchemaRef};
use arrow::error::Result as ArrowResult;
use arrow::record_batch::RecordBatch;
use super::{RecordBatchStream, SendableRecordBatchStream};
use async_trait::async_trait;
use crate::physical_plan::expressions::Column;
use futures::stream::Stream;
use futures::stream::StreamExt;
/// Execution plan for a projection
#[derive(Debug)]
pub struct ProjectionExec {
/// The projection expressions stored as tuples of (expression, output column name)
expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
/// The schema once the projection has been applied to the input
schema: SchemaRef,
/// The input plan
input: Arc<dyn ExecutionPlan>,
}
impl ProjectionExec {
/// Create a projection on an input
pub fn try_new(
expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
input: Arc<dyn ExecutionPlan>,
) -> Result<Self> {
let input_schema = input.schema();
let fields: Result<Vec<_>> = expr
.iter()
.map(|(e, name)| {
Ok(Field::new(
name,
e.data_type(&input_schema)?,
e.nullable(&input_schema)?,
))
})
.collect();
let schema = Arc::new(Schema::new(fields?));
Ok(Self {
expr,
schema,
input: input.clone(),
})
}
/// The projection expressions stored as tuples of (expression, output column name)
pub fn expr(&self) -> &[(Arc<dyn PhysicalExpr>, String)] {
&self.expr
}
/// The input plan
pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
&self.input
}
}
#[async_trait]
impl ExecutionPlan for ProjectionExec {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
/// Get the schema for this execution plan
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
vec![self.input.clone()]
}
/// Get the output partitioning of this plan
fn output_partitioning(&self) -> Partitioning {
self.input.output_partitioning()
}
fn with_new_children(
&self,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
match children.len() {
1 => Ok(Arc::new(ProjectionExec::try_new(
self.expr.clone(),
children[0].clone(),
)?)),
_ => Err(DataFusionError::Internal(
"ProjectionExec wrong number of children".to_string(),
)),
}
}
async fn execute(&self, partition: usize) -> Result<SendableRecordBatchStream> {
Ok(Box::pin(ProjectionStream {
schema: self.schema.clone(),
expr: self.expr.iter().map(|x| x.0.clone()).collect(),
input: self.input.execute(partition).await?,
}))
}
fn output_hints(&self) -> OptimizerHints {
let input_hints = self.input.output_hints();
if input_hints == OptimizerHints::default() {
return OptimizerHints::default();
}
let input_schema = self.input.schema();
let mut input_to_output = vec![None; input_schema.fields().len()];
for out_i in 0..self.expr.len() {
let column;
if let Some(c) = self.expr[out_i].0.as_any().downcast_ref::<Column>() {
column = c;
} else {
continue;
}
input_to_output[column.index()] = Some(out_i);
}
let single_value_columns = input_hints
.single_value_columns
.iter()
.filter_map(|i| input_to_output[*i])
.collect();
let mut sort_order = Vec::new();
if let Some(in_so) = input_hints.sort_order {
for in_col in in_so {
if let Some(out_col) = input_to_output[in_col] {
sort_order.push(out_col);
} else if input_hints.single_value_columns.contains(&in_col) {
continue;
} else {
break;
}
}
};
OptimizerHints {
single_value_columns,
sort_order: if sort_order.is_empty() {
None
} else {
Some(sort_order)
},
}
}
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default => {
let expr: Vec<String> = self
.expr
.iter()
.map(|(e, alias)| {
let e = e.to_string();
if &e != alias {
format!("{} as {}", e, alias)
} else {
e
}
})
.collect();
write!(f, "ProjectionExec: expr=[{}]", expr.join(", "))
}
}
}
}
fn batch_project(
batch: &RecordBatch,
expressions: &[Arc<dyn PhysicalExpr>],
schema: &SchemaRef,
) -> ArrowResult<RecordBatch> {
expressions
.iter()
.map(|expr| expr.evaluate(batch))
.map(|r| r.map(|v| v.into_array(batch.num_rows())))
.collect::<Result<Vec<_>>>()
.map_or_else(
|e| Err(DataFusionError::into_arrow_external_error(e)),
|arrays| RecordBatch::try_new(schema.clone(), arrays),
)
}
/// Projection iterator
struct ProjectionStream {
schema: SchemaRef,
expr: Vec<Arc<dyn PhysicalExpr>>,
input: SendableRecordBatchStream,
}
impl Stream for ProjectionStream {
type Item = ArrowResult<RecordBatch>;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
self.input.poll_next_unpin(cx).map(|x| match x {
Some(Ok(batch)) => Some(batch_project(&batch, &self.expr, &self.schema)),
other => other,
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
// same number of record batches
self.input.size_hint()
}
}
impl RecordBatchStream for ProjectionStream {
/// Get the schema
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::physical_plan::csv::{CsvExec, CsvReadOptions};
use crate::physical_plan::expressions::col;
use crate::test;
use futures::future;
#[tokio::test]
async fn project_first_column() -> Result<()> {
let schema = test::aggr_test_schema();
let partitions = 4;
let path = test::create_partitioned_csv("aggregate_test_100.csv", partitions)?;
let csv = CsvExec::try_new(
&path,
CsvReadOptions::new().schema(&schema),
None,
1024,
None,
)?;
// pick column c1 and name it column c1 in the output schema
let projection = ProjectionExec::try_new(
vec![(col("c1", &schema)?, "c1".to_string())],
Arc::new(csv),
)?;
let mut partition_count = 0;
let mut row_count = 0;
for partition in 0..projection.output_partitioning().partition_count() {
partition_count += 1;
let stream = projection.execute(partition).await?;
row_count += stream
.map(|batch| {
let batch = batch.unwrap();
assert_eq!(1, batch.num_columns());
batch.num_rows()
})
.fold(0, |acc, x| future::ready(acc + x))
.await;
}
assert_eq!(partitions, partition_count);
assert_eq!(100, row_count);
Ok(())
}
}