forked from zhirongw/lemniscate.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
290 lines (244 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import argparse
import os
import sys
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import datasets
import models
import math
from lib.NCEAverage import NCEAverage
from lib.LinearAverage import LinearAverage
from lib.NCECriterion import NCECriterion
from lib.utils import AverageMeter
from test import NN, kNN
import pdb
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.03, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--test-only', action='store_true', help='test only')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='gloo', type=str,
help='distributed backend')
parser.add_argument('--low-dim', default=128, type=int,
metavar='D', help='feature dimension')
parser.add_argument('--nce-k', default=4096, type=int,
metavar='K', help='number of negative samples for NCE')
parser.add_argument('--nce-t', default=0.07, type=float,
metavar='T', help='temperature parameter for softmax')
parser.add_argument('--nce-m', default=0.5, type=float,
help='momentum for non-parametric updates')
parser.add_argument('--iter_size', default=1, type=int,
help='caffe style iter size')
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
print(args)
args.distributed = args.world_size > 1
if args.distributed:
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size)
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch](low_dim=args.low_dim)
if not args.distributed:
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
else:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolderInstance(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.2,1.)),
transforms.RandomGrayscale(p=0.2),
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
# train_loader = None
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolderInstance(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
# define lemniscate and loss function (criterion)
ndata = train_dataset.__len__()
if args.nce_k > 0:
lemniscate = NCEAverage(args.low_dim, ndata, args.nce_k, args.nce_t, args.nce_m).cuda()
criterion = NCECriterion(ndata).cuda()
else:
lemniscate = LinearAverage(args.low_dim, ndata, args.nce_t, args.nce_m).cuda()
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
# pdb.set_trace()
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint.get('best_prec1', 0)
model.load_state_dict(checkpoint['state_dict'])
lemniscate = checkpoint['lemniscate']
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
if args.evaluate:
kNN(0, model, lemniscate, train_loader, val_loader, 200, args.nce_t, 1) #recompute memory
return
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train(train_loader, model, lemniscate, criterion, optimizer, epoch)
# evaluate on validation set
prec1 = NN(epoch, model, lemniscate, train_loader, val_loader)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'lemniscate': lemniscate,
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, is_best)
# evaluate KNN after last epoch
kNN(0, model, lemniscate, train_loader, val_loader, 200, args.nce_t)
def train(train_loader, model, lemniscate, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
# switch to train mode
model.train()
end = time.time()
optimizer.zero_grad()
for i, (input, _, index) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
index = index.cuda(async=True)
# compute output
feature = model(input)
output = lemniscate(feature, index)
loss = criterion(output, index) / args.iter_size
loss.backward()
# measure accuracy and record loss
losses.update(loss.item() * args.iter_size, input.size(0))
if (i+1) % args.iter_size == 0:
# compute gradient and do SGD step
optimizer.step()
optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses))
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 100 epochs"""
lr = args.lr
if epoch < 120:
lr = args.lr
elif epoch >= 120 and epoch < 160:
lr = args.lr * 0.1
else:
lr = args.lr * 0.01
#lr = args.lr * (0.1 ** (epoch // 100))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()