forked from BrainJS/brain.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgru.js
121 lines (113 loc) · 3 KB
/
gru.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import Matrix from './matrix';
import RandomMatrix from './matrix/random-matrix';
import RNN from './rnn';
export default class GRU extends RNN {
getModel(hiddenSize, prevSize) {
return {
// update Gate
//wzxh
updateGateInputMatrix: new RandomMatrix(hiddenSize, prevSize, 0.08),
//wzhh
updateGateHiddenMatrix: new RandomMatrix(hiddenSize, hiddenSize, 0.08),
//bz
updateGateBias: new Matrix(hiddenSize, 1),
// reset Gate
//wrxh
resetGateInputMatrix: new RandomMatrix(hiddenSize, prevSize, 0.08),
//wrhh
resetGateHiddenMatrix: new RandomMatrix(hiddenSize, hiddenSize, 0.08),
//br
resetGateBias: new Matrix(hiddenSize, 1),
// cell write parameters
//wcxh
cellWriteInputMatrix: new RandomMatrix(hiddenSize, prevSize, 0.08),
//wchh
cellWriteHiddenMatrix: new RandomMatrix(hiddenSize, hiddenSize, 0.08),
//bc
cellWriteBias: new Matrix(hiddenSize, 1)
};
}
/**
*
* @param {Equation} equation
* @param {Matrix} inputMatrix
* @param {Matrix} previousResult
* @param {Object} hiddenLayer
* @returns {Matrix}
*/
getEquation(equation, inputMatrix, previousResult, hiddenLayer) {
let sigmoid = equation.sigmoid.bind(equation);
let add = equation.add.bind(equation);
let multiply = equation.multiply.bind(equation);
let multiplyElement = equation.multiplyElement.bind(equation);
let tanh = equation.tanh.bind(equation);
let allOnes = equation.allOnes.bind(equation);
let cloneNegative = equation.cloneNegative.bind(equation);
// update gate
let updateGate = sigmoid(
add(
add(
multiply(
hiddenLayer.updateGateInputMatrix,
inputMatrix
),
multiply(
hiddenLayer.updateGateHiddenMatrix,
previousResult
)
),
hiddenLayer.updateGateBias
)
);
// reset gate
let resetGate = sigmoid(
add(
add(
multiply(
hiddenLayer.resetGateInputMatrix,
inputMatrix
),
multiply(
hiddenLayer.resetGateHiddenMatrix,
previousResult
)
),
hiddenLayer.resetGateBias
)
);
// cell
let cell = tanh(
add(
add(
multiply(
hiddenLayer.cellWriteInputMatrix,
inputMatrix
),
multiply(
hiddenLayer.cellWriteHiddenMatrix,
multiplyElement(
resetGate,
previousResult
)
)
),
hiddenLayer.cellWriteBias
)
);
// compute hidden state as gated, saturated cell activations
// negate updateGate
return add(
multiplyElement(
add(
allOnes(updateGate.rows, updateGate.columns),
cloneNegative(updateGate)
),
cell
),
multiplyElement(
previousResult,
updateGate
)
);
}
}