-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtestDelay.cpp
93 lines (77 loc) · 3.19 KB
/
testDelay.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cstdint>
#include <chrono>
#include "Generators.hpp"
#include "DelaySmooth.hpp"
int main() {
typedef double real;
using std::chrono::high_resolution_clock;
using std::chrono::duration_cast;
using std::chrono::duration;
using std::chrono::microseconds;
std::ofstream csvFile("DelaySmooth.csv", std::ofstream::trunc);
csvFile << std::fixed << std::setprecision(17);
std::cout << std::fixed << std::setprecision(17);
const int vecLen = 4096;
real** inVec = new real*[2];
real** outVec = new real*[2];
for (size_t i = 0; i < 2; i++) {
inVec[i] = new real[vecLen];
outVec[i] = new real[vecLen];
}
real SR = 48000.0;
size_t delay = 1000;
Generators<real> generators;
DelaySmooth<uint16_t, real> delayline(delay, delay);
/* Setup delay line. */
delayline.SetDelay(delay);
delayline.SetInterpolationTime(delay);
delayline.Reset();
/* Fill input and output vectors to generate a CSV file. */
generators.ProcessNoise(inVec[0], vecLen);
generators.ProcessNoise(inVec[1], vecLen);
delayline.Process(inVec, outVec, vecLen);
for (size_t i = 0; i < vecLen; i++) {
csvFile << i << "," << inVec[0][i] << "," << inVec[1][i] << "," << outVec[0][i] << "," << outVec[1][i] << "\n";
}
/* Execution time measurement variables. */
double averageTime = 0;
double standardDeviation = 0;
const size_t iterations = 100000;
double times[iterations];
for (size_t i = 0; i < iterations; i++) {
/* We run the delay line process function "iterations" times
* measuring the execution time at each run. We then accumulate
* the results and store the single times in an array for later
* use. */
auto t0 = high_resolution_clock::now();
delayline.Process(inVec, outVec, vecLen);
auto t1 = high_resolution_clock::now();
duration<double, std::micro> timeDuration = t1 - t0;
times[i] = timeDuration.count();
averageTime += timeDuration.count();
/* Regenerate the input vector at each run. */
generators.ProcessNoise(inVec[0], vecLen);
generators.ProcessNoise(inVec[1], vecLen);
}
/* Compute the execution time average. */
averageTime /= double(iterations);
/* Compute the relative standard deviation. Note that for a
* measurement to be significant, the standard deviation percentage
* should be low. */
for (size_t i = 0; i < iterations; i++) {
standardDeviation = standardDeviation +
std::pow((times[i] - averageTime), 2.0);
}
standardDeviation /= double(iterations);
standardDeviation = std::sqrt(standardDeviation);
standardDeviation /= averageTime;
std::cout << "Iterations: " << iterations << std::endl;
std::cout << "Average execution time (microsecond): " << averageTime << std::endl;
std::cout << "Relative standard deviation (%): " << (standardDeviation * 100.0) << std::endl;
std::cout << "The program has generated the file DelaySmooth.csv containing one vector of input and output samples." << std::endl;
csvFile.close();
return 0;
}