-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
575 lines (441 loc) · 22.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
## import libraries
import numpy as np
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
from tqdm import tqdm
import torch.optim as optim
import torch.nn.functional as F
from utils.dataloaders import context_inpainting_dataloader, segmentation_data_loader
from models import resnet18_encoderdecoder, resnet18_encoderdecoder_wbottleneck
from models import resnet18_coach_vae
import warnings
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True' # for mac
warnings.filterwarnings('ignore')
## fix seeds
torch.cuda.manual_seed(7)
torch.manual_seed(7)
np.random.seed(7)
device = 'cpu'
dataset_root = '/Users/darylfung/programming/Self-supervision-for-segmenting-overhead-imagery/datasets/'
model_root = '/Users/darylfung/programming/Self-supervision-for-segmenting-overhead-imagery/model/'
dataset = 'potsdam' #options are: spacenet, potsdam, deepglobe_roads, deepglobe_lands
architecture = 'resnet18_autoencoder_no_bottleneck' #options are: resnet18_autoencoder, resnet18_encoderdecoder_wbottleneck
use_coach = True #options are: True or Flase
self_supervised_split = 'train_crops_mac' #options are: train_10crops, train_25crops, train_50crops, train_crops
supervised_split = 'train_crops_mac'
# supervised_split = 'train_10crops' #options are: train_10crops, train_25crops, train_50crops, train_crops
experiment = dataset + '_' + architecture #model file suffix
if use_coach:
experiment += '_' + 'use_coach'
mean_bgr = np.array([85.5517787014, 92.6691667083, 86.8147645556]) # mean BGR values of images
std_bgr = np.array([32.8860206505, 31.7342205253, 31.5361127226]) # standard deviation BGR values of images
### set data paths
splits = None
train_image_list_path = None
train_img_root = None
train_gt_root = None
val_image_list = None
val_img_root = None
val_gt_root = None
nClasses = None
ignore_class = None
if dataset == 'spacenet':
train_img_root = dataset_root + 'spacenet/spacenet_processed/train/images/'
train_gt_root = dataset_root + 'spacenet_processed/train/gt/'
val_img_root = dataset_root + 'spacenet/spacenet_processed/val/images/'
val_gt_root = dataset_root + 'spacenet/spacenet_processed/val/gt/'
val_image_list = dataset_root + 'spacenet/splits/val_crops.txt'
train_image_list_path = dataset_root + 'spacenet/splits/'
nClasses = 2 ### number of classes for pixelwise classification
out = 'seg' ### process ground-truth as binary segmentation
elif dataset == 'potsdam':
train_img_root = dataset_root + 'potsdam/processed/train/images/'
train_gt_root = dataset_root + 'potsdam/processed/train/gt/'
val_img_root = dataset_root + 'potsdam/processed/val/images/'
val_gt_root = dataset_root + 'potsdam/processed/val/gt/'
val_image_list = dataset_root + 'potsdam/splits/val_crops_mac.txt'
train_image_list_path = dataset_root + 'potsdam/splits/'
nClasses = 6 ### number of classes for pixelwise classification
out = None ### do not process ground-truth
elif dataset == 'deepglobe_roads':
train_img_root = dataset_root + 'deepglobe_roads/processed/train/images/'
train_gt_root = dataset_root + 'deepglobe_roads/processed/train/gt/'
val_img_root = dataset_root + 'deepglobe_roads/processed/val/images/'
val_gt_root = dataset_root + 'deepglobe_roads/processed/val/gt/'
val_image_list = dataset_root + 'deepglobe_roads/splits/val_crops.txt'
train_image_list_path = dataset_root + 'deepglobe_roads/splits/'
nClasses = 2 ### number of classes for pixelwise classification
out = 'seg' ### process ground-truth as binary segmentation
elif dataset == 'deepglobe_lands':
train_img_root = dataset_root + 'deepglobe_lands/processed/train/images/'
train_gt_root = dataset_root + 'deepglobe_lands/processed/train/gt/'
val_img_root = dataset_root + 'deepglobe_lands/processed/val/images/'
val_gt_root = dataset_root + 'deepglobe_lands/processed/val/gt/'
val_image_list = dataset_root + 'deepglobe_lands/splits/val_crops.txt'
train_image_list_path = dataset_root + 'deepglobe_lands/splits/'
nClasses = 7 ### number of classes for pixelwise classification
out = None ### do not process ground-truth
ignore_class = 6
erase_shape = [16, 16] ### size of each block used to erase image
erase_count = 16 ### number of blocks to erase from image
rec_weight = 0.99 ### loss = rec_weight*loss_rec+ (1-rec_weight)*loss_con
train_loader = torch.utils.data.DataLoader(
context_inpainting_dataloader(img_root = train_img_root, image_list = train_image_list_path+self_supervised_split+'.txt', suffix=dataset,
mirror = True, resize=True, resize_shape=[256, 256], rotate = True,
erase_shape = erase_shape, erase_count = erase_count),
batch_size=128, shuffle = True)
val_loader = torch.utils.data.DataLoader(
context_inpainting_dataloader(img_root = val_img_root, image_list = val_image_list, suffix=dataset,
mirror = False, resize=False, resize_shape=[256, 256], rotate = False,
crop = True, erase_shape = erase_shape, erase_count = erase_count),
batch_size=32, shuffle = False)
def torch_to_np(input_, mask, target, output=None):
input_ = np.asarray(input_.numpy().transpose(1, 2, 0) + mean_bgr[np.newaxis, np.newaxis, :], dtype=np.uint8)[:, :,
::-1]
mask = np.asarray(mask[0].numpy(), dtype=np.uint8)
target = np.asarray(3 * std_bgr * (target.numpy().transpose(1, 2, 0)) + mean_bgr[np.newaxis, np.newaxis, :],
dtype=np.uint8)[:, :, ::-1]
if output is not None:
output = np.asarray(3 * std_bgr * (output.numpy().transpose(1, 2, 0)) + mean_bgr[np.newaxis, np.newaxis, :],
dtype=np.uint8)[:, :, ::-1]
return input_, mask, target, output
def visualize_self_sup(cols=3, net=None, coach=None, use_coach_masks=False):
fig, axs = plt.subplots(nrows=4, ncols=cols, figsize=(9, 9))
for batch_idx, (inputs_, masks, targets) in enumerate(val_loader):
if coach is None:
inputs_ = inputs_ * masks.float()
else:
masks, _, _ = coach.forward(inputs_.to(device), alpha=100, use_coach=use_coach_masks)
inputs_ = inputs_ * masks.float().cpu()
outputs = None
if cols == 4:
outputs = net.forward(inputs_.to(device)).cpu().data
input_, mask, target, output = torch_to_np(inputs_[0].cpu(), masks[0].cpu(), targets[0].cpu(),
outputs[0].cpu())
else:
input_, mask, target, _ = torch_to_np(inputs_[0].cpu(), masks[0].cpu(), targets[0].cpu())
axs[batch_idx, 0].imshow(input_)
axs[batch_idx, 1].imshow(mask, cmap='gray')
axs[batch_idx, 2].imshow(target)
if cols == 4:
axs[batch_idx, 3].imshow(output)
if batch_idx == 3:
break
axs[0, 0].set_title('input', fontsize=18)
axs[0, 1].set_title('mask', fontsize=18)
axs[0, 2].set_title('target', fontsize=18)
if cols == 4:
axs[0, 3].set_title('semantic inpainting', fontsize=18)
fig.tight_layout()
plt.show()
visualize_self_sup()
net = resnet18_encoderdecoder().to(device)
net_coach = None
if use_coach:
net_coach = resnet18_coach_vae(drop_ratio=0.75, device=device).to(device)
net_optimizer = None
coach_optimizer = None
best_loss = 1e5
train_loss = []
val_loss = []
coach_loss = []
def train_context_inpainting(epoch, net, net_optimizer, coach=None, use_coach_masks=False):
progbar = tqdm(total=len(train_loader), desc='Train')
net.train()
if coach is not None:
coach.eval()
train_loss.append(0)
for batch_idx, (inputs_, masks, targets) in enumerate(train_loader):
net_optimizer.zero_grad()
inputs_, masks, targets = Variable(inputs_.to(device)), Variable(masks.to(device).float()), Variable(targets.to(device))
if coach is not None:
masks, _, _ = coach.forward(inputs_, alpha=100, use_coach=use_coach_masks)
outputs_1 = net(inputs_ * masks)
mse_loss = (outputs_1 - targets) ** 2
mse_loss = -1 * F.threshold(-1 * mse_loss, -2, -2)
loss_rec = torch.sum(mse_loss * (1 - masks)) / torch.sum(1 - masks)
if coach is not None:
loss_con = torch.sum(mse_loss * masks) / torch.sum(masks)
else:
outputs_2 = net(inputs_ * (1 - masks))
mse_loss = (outputs_2 - targets) ** 2
mse_loss = -1 * F.threshold(-1 * mse_loss, -2, -2)
loss_con = torch.sum(mse_loss * masks) / torch.sum(masks)
total_loss = rec_weight * loss_rec + (1 - rec_weight) * loss_con
total_loss.backward()
net_optimizer.step()
train_loss[-1] += total_loss.data
progbar.set_description('Train (loss=%.4f)' % (train_loss[-1] / (batch_idx + 1)))
progbar.update(1)
train_loss[-1] = train_loss[-1] / len(train_loader)
def train_coach(epoch, net, coach, coach_optimizer):
progbar = tqdm(total=len(train_loader), desc='Coach')
coach.train()
net.eval()
coach_loss.append(0)
for batch_idx, (inputs_, masks, targets) in enumerate(train_loader):
coach_optimizer.zero_grad()
inputs_, targets = Variable(inputs_.to(device)), Variable(targets.to(device))
masks, mu, logvar = coach.forward(inputs_, alpha=1)
outputs = net(inputs_ * masks).detach()
mse_loss = (outputs - targets) ** 2
mse_loss = -1 * F.threshold(-1 * mse_loss, -2, -2)
loss_rec = torch.sum(mse_loss * (1 - masks)) / (3 * torch.sum(1 - masks))
mu = mu.mean(dim=2).mean(dim=2)
logvar = logvar.mean(dim=2).mean(dim=2)
KLD = 0
try:
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
except:
KLD = 0
total_loss = 1 - loss_rec + 1e-6 * KLD
total_loss.backward()
coach_optimizer.step()
coach_loss[-1] += total_loss.data
progbar.set_description('Coach (loss=%.4f)' % (coach_loss[-1] / (batch_idx + 1)))
progbar.update(1)
coach_loss[-1] = coach_loss[-1] / len(train_loader)
def val_context_inpainting(iter_, epoch, net, coach=None, use_coach_masks=False):
global best_loss
progbar = tqdm(total=len(val_loader), desc='Val')
net.eval()
if coach is not None:
coach.eval()
val_loss.append(0)
for batch_idx, (inputs_, masks, targets) in enumerate(val_loader):
inputs_, masks, targets = Variable(inputs_.to(device)), Variable(masks.to(device).float()), Variable(targets.to(device))
if coach is not None:
masks, _, _ = coach.forward(inputs_, alpha=100, use_coach=use_coach_masks)
outputs_1 = net(inputs_ * masks)
mse_loss = (outputs_1 - targets) ** 2
mse_loss = -1 * F.threshold(-1 * mse_loss, -2, -2)
loss_rec = torch.sum(mse_loss * (1 - masks)) / torch.sum(1 - masks)
outputs_2 = net(inputs_ * (1 - masks))
mse_loss = (outputs_2 - targets) ** 2
mse_loss = -1 * F.threshold(-1 * mse_loss, -2, -2)
loss_con = torch.sum(mse_loss * masks) / torch.sum(masks)
total_loss = rec_weight * loss_rec + (1 - rec_weight) * loss_con
val_loss[-1] += total_loss.data
progbar.set_description('Val (loss=%.4f)' % (val_loss[-1] / (batch_idx + 1)))
progbar.update(1)
val_loss[-1] = val_loss[-1] / len(val_loader)
if best_loss > val_loss[-1]:
best_loss = val_loss[-1]
print('Saving..')
state = {'context_inpainting_net': net, 'coach': coach}
torch.save(state, model_root + experiment + str(iter_) + '.ckpt.t7')
use_coach_masks = False
epochs = []
lrs = []
if use_coach:
epochs = [100, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30]
lrs = [[1e-1, 1e-2, 1e-3, 1e-4],
[1e-5, 1e-5, 1e-5, 1e-5],
[1e-5, 1e-5, 1e-5, 1e-5],
[1e-5, 1e-5, 1e-5, 1e-5],
[1e-5, 1e-5, 1e-5, 1e-5],
[1e-5, 1e-5, 1e-5, 1e-5],
[1e-5, 1e-5, 1e-5, 1e-5],
[1e-5, 1e-5, 1e-5, 1e-5],
[1e-5, 1e-5, 1e-5, 1e-5],
[1e-5, 1e-5, 1e-5, 1e-5],
[1e-5, 1e-5, 1e-5, 1e-5]]
else:
epochs = [100]
lrs = [[1e-1, 1e-2, 1e-3, 1e-4]]
progbar_1 = tqdm(total=len(epochs), desc='Iters')
for iter_ in range(0, len(epochs)):
best_loss = 1e5
if use_coach and iter_ > 0:
use_coach_masks = True
progbar_2 = tqdm(total=epochs[iter_], desc='Epochs')
optimizer_coach = optim.Adam(net_coach.parameters(), lr=1e-5)
for epoch in range(epochs[iter_]):
train_coach(epoch, net=net, coach=net_coach, coach_optimizer=optimizer_coach)
progbar_2.update(1)
net_optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
progbar_2 = tqdm(total=epochs[iter_], desc='Epochs')
for epoch in range(epochs[iter_]):
if epoch % 10 == 0:
if use_coach:
visualize_self_sup(cols=4, net=net.eval(), coach=net_coach.eval(), use_coach_masks=use_coach_masks)
else:
visualize_self_sup(cols=4, net=net.eval(), coach=None, use_coach_masks=use_coach_masks)
if epoch == 90:
net_optimizer = optim.SGD(net.parameters(), lr=lrs[iter_][3], momentum=0.9, weight_decay=5e-4)
if epoch == 80:
net_optimizer = optim.SGD(net.parameters(), lr=lrs[iter_][2], momentum=0.9, weight_decay=5e-4)
if epoch == 40:
net_optimizer = optim.SGD(net.parameters(), lr=lrs[iter_][1], momentum=0.9, weight_decay=5e-4)
if epoch == 0:
net_optimizer = optim.SGD(net.parameters(), lr=lrs[iter_][0], momentum=0.9, weight_decay=5e-4)
train_context_inpainting(epoch, net=net, net_optimizer=net_optimizer, coach=net_coach,
use_coach_masks=use_coach_masks)
val_context_inpainting(iter_, epoch, net=net, coach=net_coach, use_coach_masks=use_coach_masks)
progbar_2.update(1)
progbar_1.update(1)
from utils.printing import training_curves_loss
training_curves_loss(train_loss, val_loss)
del(net_coach)
del(net)
torch.cuda.empty_cache()
from models import FCNify_v2
iter_ = len(epochs) - 1 ### iter_ = 0 is semantic inpainting model, iter_ > 0 is trained against coach masks
net = torch.load(model_root + experiment + str(iter_) + '.ckpt.t7')['context_inpainting_net']
net_segmentation = FCNify_v2(net, n_class = nClasses).to(device)
optimizer_seg = None
del(net)
from loss import soft_iou
from metric import fast_hist, performMetrics
from utils.dataloaders import segmentation_data_loader
train_seg_loss = []
val_seg_loss = []
train_seg_iou = []
val_seg_iou = []
ITER_SIZE = 2 ### accumulate gradients over ITER_SIZE iterations
best_iou = 0.
train_seg_loader = torch.utils.data.DataLoader(
segmentation_data_loader(img_root = train_img_root, gt_root = train_gt_root, image_list = train_image_list_path+supervised_split+'.txt',
suffix=dataset, out=out, crop = True, crop_shape = [256, 256], mirror = True),
batch_size=32, num_workers=8, shuffle = True)
val_seg_loader = torch.utils.data.DataLoader(
segmentation_data_loader(img_root = val_img_root, gt_root = val_gt_root, image_list = val_image_list,
suffix=dataset, out=out, crop = False, mirror=False),
batch_size=8, num_workers=8, shuffle = False)
def train_segmentation(epoch, net_segmentation, seg_optimizer):
global train_seg_iou
progbar = tqdm(total=len(train_seg_loader), desc='Train')
net_segmentation.train()
train_seg_loss.append(0)
seg_optimizer.zero_grad()
hist = np.zeros((nClasses, nClasses))
for batch_idx, (inputs_, targets) in enumerate(train_seg_loader):
inputs_, targets = Variable(inputs_.to(device)), Variable(targets.to(device))
outputs = net_segmentation(inputs_)
total_loss = (1 - soft_iou(outputs, targets, ignore=ignore_class)) / ITER_SIZE
total_loss.backward()
if (batch_idx % ITER_SIZE == 0 and batch_idx != 0) or batch_idx == len(train_loader) - 1:
seg_optimizer.step()
seg_optimizer.zero_grad()
train_seg_loss[-1] += total_loss.data
_, predicted = torch.max(outputs.data, 1)
correctLabel = targets.view(-1, targets.size()[1], targets.size()[2])
hist += fast_hist(correctLabel.view(correctLabel.size(0), -1).cpu().numpy(),
predicted.view(predicted.size(0), -1).cpu().numpy(),
nClasses)
miou, p_acc, fwacc = performMetrics(hist)
progbar.set_description('Train (loss=%.4f, mIoU=%.4f)' % (train_seg_loss[-1] / (batch_idx + 1), miou))
progbar.update(1)
train_seg_loss[-1] = train_seg_loss[-1] / len(train_seg_loader)
miou, p_acc, fwacc = performMetrics(hist)
train_seg_iou += [miou]
def val_segmentation(epoch, net_segmentation):
global best_iou
global val_seg_iou
progbar = tqdm(total=len(val_seg_loader), desc='Val')
net_segmentation.eval()
val_seg_loss.append(0)
hist = np.zeros((nClasses, nClasses))
for batch_idx, (inputs_, targets) in enumerate(val_seg_loader):
inputs_, targets = Variable(inputs_.to(device)), Variable(targets.to(device))
outputs = net_segmentation(inputs_)
total_loss = 1 - soft_iou(outputs, targets, ignore=ignore_class)
val_seg_loss[-1] += total_loss.data
_, predicted = torch.max(outputs.data, 1)
correctLabel = targets.view(-1, targets.size()[1], targets.size()[2])
hist += fast_hist(correctLabel.view(correctLabel.size(0), -1).cpu().numpy(),
predicted.view(predicted.size(0), -1).cpu().numpy(),
nClasses)
miou, p_acc, fwacc = performMetrics(hist)
progbar.set_description('Val (loss=%.4f, mIoU=%.4f)' % (val_seg_loss[-1] / (batch_idx + 1), miou))
progbar.update(1)
val_seg_loss[-1] = val_seg_loss[-1] / len(val_seg_loader)
val_miou, _, _ = performMetrics(hist)
val_seg_iou += [val_miou]
if best_iou < val_miou:
best_iou = val_miou
print('Saving..')
state = {'net_segmentation': net_segmentation}
torch.save(state, model_root + experiment + 'segmentation' + '.ckpt.t7')
progbar = tqdm(total=100, desc='Epochs')
for epoch in range(0, 100):
if epoch == 90:
seg_optimizer = optim.SGD(net_segmentation.parameters(), lr=1e-6, momentum=0.9, weight_decay=5e-4)
elif epoch == 80:
seg_optimizer = optim.SGD(net_segmentation.parameters(), lr=1e-5, momentum=0.9, weight_decay=5e-4)
elif epoch == 60:
seg_optimizer = optim.SGD(net_segmentation.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
elif epoch == 0:
seg_optimizer = optim.SGD(net_segmentation.parameters(), lr=1e-3, momentum=0.9, weight_decay=5e-4)
train_segmentation(epoch, net_segmentation=net_segmentation, seg_optimizer=seg_optimizer)
val_segmentation(epoch, net_segmentation=net_segmentation)
progbar.update(1)
progbar = tqdm(total=100, desc='Epochs')
for epoch in range(0, 100):
if epoch == 90:
seg_optimizer = optim.SGD(net_segmentation.parameters(), lr=1e-6, momentum=0.9, weight_decay=5e-4)
elif epoch == 80:
seg_optimizer = optim.SGD(net_segmentation.parameters(), lr=1e-5, momentum=0.9, weight_decay=5e-4)
elif epoch == 60:
seg_optimizer = optim.SGD(net_segmentation.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
elif epoch == 0:
seg_optimizer = optim.SGD(net_segmentation.parameters(), lr=1e-3, momentum=0.9, weight_decay=5e-4)
train_segmentation(epoch, net_segmentation=net_segmentation, seg_optimizer=seg_optimizer)
val_segmentation(epoch, net_segmentation=net_segmentation)
progbar.update(1)
from utils.printing import segmentation_training_curves_loss, apply_color_map
segmentation_training_curves_loss(train_seg_loss, val_seg_loss, train_seg_iou, val_seg_iou)
del(net_segmentation)
torch.cuda.empty_cache()
c_map = np.asarray([[128, 128, 128], [128, 128, 0], [0, 64, 0], [0, 128, 0], [128, 0, 0], [0, 0, 0]])
def visualize_segmentation(net_segmentation):
val_seg_loader = torch.utils.data.DataLoader(
segmentation_data_loader(img_root=val_img_root, gt_root=val_gt_root, image_list=val_image_list,
suffix=dataset, out=out, crop=False, mirror=False),
batch_size=1, num_workers=8, shuffle=False)
fig, axs = plt.subplots(nrows=4, ncols=3, figsize=(9, 9))
for batch_idx, (inputs_, targets) in enumerate(val_seg_loader):
inputs_, targets = Variable(inputs_.to(device)), Variable(targets.to(device))
outputs = net_segmentation(inputs_)
_, predicted = torch.max(outputs.data, 1)
input_ = np.asarray(inputs_[0].cpu().numpy().transpose(1, 2, 0) + mean_bgr[np.newaxis, np.newaxis, :],
dtype=np.uint8)[:, :, ::-1]
axs[batch_idx, 0].imshow(input_)
axs[batch_idx, 1].imshow(apply_color_map(targets[0].cpu().data, c_map))
axs[batch_idx, 2].imshow(apply_color_map(predicted[0].cpu().data, c_map))
if batch_idx == 3:
break
axs[0, 0].set_title('input', fontsize=18)
axs[0, 1].set_title('GT', fontsize=18)
axs[0, 2].set_title('Pred', fontsize=18)
fig.tight_layout()
plt.show()
def evaluate_segmentation(net_segmentation):
net_segmentation.eval()
hist = np.zeros((nClasses, nClasses))
val_seg_loader = torch.utils.data.DataLoader(
segmentation_data_loader(img_root=val_img_root, gt_root=val_gt_root, image_list=val_image_list,
suffix=dataset, out=out, crop=False, mirror=False),
batch_size=1, num_workers=8, shuffle=False)
progbar = tqdm(total=len(val_seg_loader), desc='Eval')
hist = np.zeros((nClasses, nClasses))
for batch_idx, (inputs_, targets) in enumerate(val_seg_loader):
inputs_, targets = Variable(inputs_.to(device)), Variable(targets.to(device))
outputs = net_segmentation(inputs_)
_, predicted = torch.max(outputs.data, 1)
correctLabel = targets.view(-1, targets.size()[1], targets.size()[2])
hist += fast_hist(correctLabel.view(correctLabel.size(0), -1).cpu().numpy(),
predicted.view(predicted.size(0), -1).cpu().numpy(),
nClasses)
miou, p_acc, fwacc = performMetrics(hist)
progbar.set_description('Eval (mIoU=%.4f)' % (miou))
progbar.update(1)
miou, p_acc, fwacc = performMetrics(hist)
print('\n mIoU: ', miou)
print('\n Pixel accuracy: ', p_acc)
print('\n Frequency Weighted Pixel accuracy: ', fwacc)
net = torch.load(model_root + experiment + 'segmentation' + '.ckpt.t7')['net_segmentation'].to(device).eval() ### load the best model
evaluate_segmentation(net)
visualize_segmentation(net)