forked from google/active-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_data.py
284 lines (243 loc) · 9.13 KB
/
create_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Make datasets and save specified directory.
Downloads datasets using scikit datasets and can also parse csv file
to save into pickle format.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from io import BytesIO
import os
import pickle
import StringIO
import tarfile
import urllib2
import keras.backend as K
from keras.datasets import cifar10
from keras.datasets import cifar100
from keras.datasets import mnist
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_20newsgroups_vectorized
from sklearn.datasets import fetch_mldata
from sklearn.datasets import load_breast_cancer
from sklearn.datasets import load_iris
import sklearn.datasets.rcv1
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from google.apputils import app
import gflags as flags
from tensorflow import gfile
flags.DEFINE_string('save_dir', '/tmp/data',
'Where to save outputs')
flags.DEFINE_string('datasets', '',
'Which datasets to download, comma separated.')
FLAGS = flags.FLAGS
class Dataset(object):
def __init__(self, X, y):
self.data = X
self.target = y
def get_csv_data(filename):
"""Parse csv and return Dataset object with data and targets.
Create pickle data from csv, assumes the first column contains the targets
Args:
filename: complete path of the csv file
Returns:
Dataset object
"""
f = gfile.GFile(filename, 'r')
mat = []
for l in f:
row = l.strip()
row = row.replace('"', '')
row = row.split(',')
row = [float(x) for x in row]
mat.append(row)
mat = np.array(mat)
y = mat[:, 0]
X = mat[:, 1:]
data = Dataset(X, y)
return data
def get_wikipedia_talk_data():
"""Get wikipedia talk dataset.
See here for more information about the dataset:
https://figshare.com/articles/Wikipedia_Detox_Data/4054689
Downloads annotated comments and annotations.
"""
ANNOTATED_COMMENTS_URL = 'https://ndownloader.figshare.com/files/7554634'
ANNOTATIONS_URL = 'https://ndownloader.figshare.com/files/7554637'
def download_file(url):
req = urllib2.Request(url)
response = urllib2.urlopen(req)
return response
# Process comments
comments = pd.read_table(
download_file(ANNOTATED_COMMENTS_URL), index_col=0, sep='\t')
# remove newline and tab tokens
comments['comment'] = comments['comment'].apply(
lambda x: x.replace('NEWLINE_TOKEN', ' '))
comments['comment'] = comments['comment'].apply(
lambda x: x.replace('TAB_TOKEN', ' '))
# Process labels
annotations = pd.read_table(download_file(ANNOTATIONS_URL), sep='\t')
# labels a comment as an atack if the majority of annoatators did so
labels = annotations.groupby('rev_id')['attack'].mean() > 0.5
# Perform data preprocessing, should probably tune these hyperparameters
vect = CountVectorizer(max_features=30000, ngram_range=(1, 2))
tfidf = TfidfTransformer(norm='l2')
X = tfidf.fit_transform(vect.fit_transform(comments['comment']))
y = np.array(labels)
data = Dataset(X, y)
return data
def get_keras_data(dataname):
"""Get datasets using keras API and return as a Dataset object."""
if dataname == 'cifar10_keras':
train, test = cifar10.load_data()
elif dataname == 'cifar100_coarse_keras':
train, test = cifar100.load_data('coarse')
elif dataname == 'cifar100_keras':
train, test = cifar100.load_data()
elif dataname == 'mnist_keras':
train, test = mnist.load_data()
else:
raise NotImplementedError('dataset not supported')
X = np.concatenate((train[0], test[0]))
y = np.concatenate((train[1], test[1]))
if dataname == 'mnist_keras':
# Add extra dimension for channel
num_rows = X.shape[1]
num_cols = X.shape[2]
X = X.reshape(X.shape[0], 1, num_rows, num_cols)
if K.image_data_format() == 'channels_last':
X = X.transpose(0, 2, 3, 1)
y = y.flatten()
data = Dataset(X, y)
return data
# TODO(lishal): remove regular cifar10 dataset and only use dataset downloaded
# from keras to maintain image dims to create tensor for tf models
# Requires adding handling in run_experiment.py for handling of different
# training methods that require either 2d or tensor data.
def get_cifar10():
"""Get CIFAR-10 dataset from source dir.
Slightly redundant with keras function to get cifar10 but this returns
in flat format instead of keras numpy image tensor.
"""
url = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
def download_file(url):
req = urllib2.Request(url)
response = urllib2.urlopen(req)
return response
response = download_file(url)
tmpfile = BytesIO()
while True:
# Download a piece of the file from the connection
s = response.read(16384)
# Once the entire file has been downloaded, tarfile returns b''
# (the empty bytes) which is a falsey value
if not s:
break
# Otherwise, write the piece of the file to the temporary file.
tmpfile.write(s)
response.close()
tmpfile.seek(0)
tar_dir = tarfile.open(mode='r:gz', fileobj=tmpfile)
X = None
y = None
for member in tar_dir.getnames():
if '_batch' in member:
filestream = tar_dir.extractfile(member).read()
batch = pickle.load(StringIO.StringIO(filestream))
if X is None:
X = np.array(batch['data'], dtype=np.uint8)
y = np.array(batch['labels'])
else:
X = np.concatenate((X, np.array(batch['data'], dtype=np.uint8)))
y = np.concatenate((y, np.array(batch['labels'])))
data = Dataset(X, y)
return data
def get_mldata(dataset):
# Use scikit to grab datasets and save them save_dir.
save_dir = FLAGS.save_dir
filename = os.path.join(save_dir, dataset[1]+'.pkl')
if not gfile.Exists(save_dir):
gfile.MkDir(save_dir)
if not gfile.Exists(filename):
if dataset[0][-3:] == 'csv':
data = get_csv_data(dataset[0])
elif dataset[0] == 'breast_cancer':
data = load_breast_cancer()
elif dataset[0] == 'iris':
data = load_iris()
elif dataset[0] == 'newsgroup':
# Removing header information to make sure that no newsgroup identifying
# information is included in data
data = fetch_20newsgroups_vectorized(subset='all', remove=('headers'))
tfidf = TfidfTransformer(norm='l2')
X = tfidf.fit_transform(data.data)
data.data = X
elif dataset[0] == 'rcv1':
sklearn.datasets.rcv1.URL = (
'http://www.ai.mit.edu/projects/jmlr/papers/'
'volume5/lewis04a/a13-vector-files/lyrl2004_vectors')
sklearn.datasets.rcv1.URL_topics = (
'http://www.ai.mit.edu/projects/jmlr/papers/'
'volume5/lewis04a/a08-topic-qrels/rcv1-v2.topics.qrels.gz')
data = sklearn.datasets.fetch_rcv1(
data_home='/tmp')
elif dataset[0] == 'wikipedia_attack':
data = get_wikipedia_talk_data()
elif dataset[0] == 'cifar10':
data = get_cifar10()
elif 'keras' in dataset[0]:
data = get_keras_data(dataset[0])
else:
try:
data = fetch_mldata(dataset[0])
except:
raise Exception('ERROR: failed to fetch data from mldata.org')
X = data.data
y = data.target
if X.shape[0] != y.shape[0]:
X = np.transpose(X)
assert X.shape[0] == y.shape[0]
data = {'data': X, 'target': y}
pickle.dump(data, gfile.GFile(filename, 'w'))
def main(argv):
del argv # Unused.
# First entry of tuple is mldata.org name, second is the name that we'll use
# to reference the data.
datasets = [('mnist (original)', 'mnist'), ('australian', 'australian'),
('heart', 'heart'), ('breast_cancer', 'breast_cancer'),
('iris', 'iris'), ('vehicle', 'vehicle'), ('wine', 'wine'),
('waveform ida', 'waveform'), ('german ida', 'german'),
('splice ida', 'splice'), ('ringnorm ida', 'ringnorm'),
('twonorm ida', 'twonorm'), ('diabetes_scale', 'diabetes'),
('mushrooms', 'mushrooms'), ('letter', 'letter'), ('dna', 'dna'),
('banana-ida', 'banana'), ('letter', 'letter'), ('dna', 'dna'),
('newsgroup', 'newsgroup'), ('cifar10', 'cifar10'),
('cifar10_keras', 'cifar10_keras'),
('cifar100_keras', 'cifar100_keras'),
('cifar100_coarse_keras', 'cifar100_coarse_keras'),
('mnist_keras', 'mnist_keras'),
('wikipedia_attack', 'wikipedia_attack'),
('rcv1', 'rcv1')]
if FLAGS.datasets:
subset = FLAGS.datasets.split(',')
datasets = [d for d in datasets if d[1] in subset]
for d in datasets:
print(d[1])
get_mldata(d)
if __name__ == '__main__':
app.run()