-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathtojsonl.rs
385 lines (342 loc) · 14.7 KB
/
tojsonl.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#![allow(unused_assignments)]
static USAGE: &str = r#"
Smartly converts CSV to a newline-delimited JSON (JSONL/NDJSON).
By computing stats on the CSV first, it "smartly" infers the appropriate JSON data type
for each column (string, number, boolean, null).
It will infer a column as boolean if its cardinality is 2, and the first character of
the values are one of the following case-insensitive combinations:
t/f; t/null; 1/0; 1/null; y/n & y/null are treated as true/false.
The `tojsonl` command will reuse a `stats.csv.data.jsonl` file if it exists and is
current (i.e. stats generated with --cardinality and --infer-dates options) and will
skip recomputing stats.
For examples, see https://github.com/dathere/qsv/blob/master/tests/test_tojsonl.rs.
Usage:
qsv tojsonl [options] [<input>]
qsv tojsonl --help
Tojsonl options:
--trim Trim leading and trailing whitespace from fields
before converting to JSON.
--no-boolean Do not infer boolean fields.
-j, --jobs <arg> The number of jobs to run in parallel.
When not set, the number of jobs is set to the
number of CPUs detected.
-b, --batch <size> The number of rows per batch to load into memory,
before running in parallel. Automatically determined
for CSV files with more than 50000 rows.
Set to 0 to load all rows in one batch.
Set to 1 to force batch optimization even for files with
less than 50000 rows.
[default: 50000]
Common options:
-h, --help Display this message
-d, --delimiter <arg> The field delimiter for reading CSV data.
Must be a single character. (default: ,)
-o, --output <file> Write output to <file> instead of stdout.
--memcheck Check if there is enough memory to load the entire
CSV into memory using CONSERVATIVE heuristics.
-Q, --quiet Do not display enum/const list inferencing messages.
"#;
use std::{fmt::Write, path::PathBuf, str::FromStr};
use rayon::{
iter::{IndexedParallelIterator, ParallelIterator},
prelude::IntoParallelRefIterator,
};
use serde::Deserialize;
use serde_json::{Map, Value};
use strum_macros::EnumString;
use super::schema::infer_schema_from_stats;
use crate::{
config::{Config, Delimiter},
util, CliError, CliResult,
};
#[derive(Deserialize, Clone)]
struct Args {
arg_input: Option<String>,
flag_trim: bool,
flag_no_boolean: bool,
flag_jobs: Option<usize>,
flag_batch: usize,
flag_delimiter: Option<Delimiter>,
flag_output: Option<String>,
flag_memcheck: bool,
flag_quiet: bool,
}
impl From<std::fmt::Error> for CliError {
fn from(err: std::fmt::Error) -> CliError {
CliError::Other(err.to_string())
}
}
#[derive(PartialEq, EnumString)]
#[strum(ascii_case_insensitive)]
enum JsonlType {
Boolean,
String,
Number,
Integer,
Null,
}
pub fn run(argv: &[&str]) -> CliResult<()> {
let args: Args = util::get_args(USAGE, argv)?;
let tmpdir = tempfile::tempdir()?;
let work_input = util::process_input(
vec![PathBuf::from(
// if no input file is specified, read from stdin "-"
args.arg_input.clone().unwrap_or_else(|| "-".to_string()),
)],
&tmpdir,
"",
)?;
// safety: there's at least one valid element in work_input
let input_filename = work_input[0]
.canonicalize()?
.into_os_string()
.into_string()
.unwrap();
let conf = Config::new(Some(&input_filename)).delimiter(args.flag_delimiter);
// we're loading the entire file into memory, we need to check avail mem
util::mem_file_check(
&std::path::PathBuf::from(input_filename.clone()),
false,
args.flag_memcheck,
)?;
// use regular CSV reader count on Windows
// as the polars-powered count_rows is failing CI tests on Windows
// I suspect there is an optimization in Polars that is causing this
// CI test flakiness
#[cfg(windows)]
let record_count = util::count_rows_regular(&conf)?;
#[cfg(not(windows))]
let record_count = util::count_rows(&conf)?;
// we're calling the schema command to infer data types and enums
let schema_args = util::SchemaArgs {
// we only do three, as we're only inferring boolean based on enum
// i.e. we only inspect a field if its boolean if its domain
// is just two values. if its more than 2, that's all we need know
// for boolean inferencing
flag_enum_threshold: 3,
// ignore case for enum constraints
// so we can properly infer booleans. e.g. if a field has a domain of
// True, False, true, false, TRUE, FALSE that it is still a boolean
// with a case-insensitive cardinality of 2
flag_ignore_case: true,
flag_strict_dates: false,
flag_pattern_columns: crate::select::SelectColumns::parse("")?,
// json doesn't have a date type, so don't infer dates
flag_dates_whitelist: "none".to_string(),
flag_prefer_dmy: false,
flag_force: false,
flag_stdout: false,
flag_jobs: Some(util::njobs(args.flag_jobs)),
flag_no_headers: false,
flag_delimiter: args.flag_delimiter,
arg_input: Some(input_filename.clone()),
flag_memcheck: args.flag_memcheck,
};
// build schema for each field by their inferred type, min/max value/length, and unique values
let properties_map: Map<String, Value> =
match infer_schema_from_stats(&schema_args, &input_filename, args.flag_quiet) {
Ok(map) => map,
Err(e) => {
return fail_clierror!("Failed to infer field types: {e}");
},
};
let mut rdr = conf.reader()?;
// TODO: instead of abusing csv writer to write jsonl file
// just use a normal buffered writer
let mut wtr = Config::new(args.flag_output.as_ref())
.flexible(true)
.no_headers(true)
.quote_style(csv::QuoteStyle::Never)
.writer()?;
let headers = rdr.headers()?.clone();
// if there are less than 3 records, we can't infer boolean fields
let no_boolean = if record_count < 3 {
true
} else {
args.flag_no_boolean
};
let mut lowercase_buffer = String::new();
// create a vec lookup about inferred field data types
let mut field_type_vec: Vec<JsonlType> = Vec::with_capacity(headers.len());
for (_field_name, field_def) in &properties_map {
let Some(field_map) = field_def.as_object() else {
return fail!("Cannot create field map");
};
let prelim_type = field_map.get("type").unwrap();
let field_values_enum = field_map.get("enum");
// log::debug!("prelim_type: {prelim_type} field_values_enum: {field_values_enum:?}");
if !no_boolean {
// check if a field has a boolean data type
// by checking its enum constraint
if let Some(domain) = field_values_enum {
if let Some(vals) = domain.as_array() {
// if this field only has a domain of two values
if vals.len() == 2 {
let val1 = if vals[0].is_null() {
'_'
} else {
// check the first domain value, if its an integer
// see if its 1 or 0
if let Some(int_val) = vals[0].as_u64() {
match int_val {
1 => '1',
0 => '0',
_ => '*', // its something else
}
} else if let Some(str_val) = vals[0].as_str() {
// else, if its a string, get the first character of val1 lowercase
boolcheck(str_val, &mut lowercase_buffer)
} else {
'*'
}
};
// same as above, but for the 2nd domain value
let val2 = if vals[1].is_null() {
'_'
} else if let Some(int_val) = vals[1].as_u64() {
match int_val {
1 => '1',
0 => '0',
_ => '*',
}
} else if let Some(str_val) = vals[1].as_str() {
boolcheck(str_val, &mut lowercase_buffer)
} else {
'*'
};
// log::debug!("val1: {val1} val2: {val2}");
// check if the domain of two values is truthy or falsy
// i.e. if first character, case-insensitive is "t", "1" or "y" - truthy
// "f", "0", "n" or null - falsy
// if it is, infer a boolean field
if let ('t', 'f' | '_')
| ('f' | '_', 't')
| ('1', '0' | '_')
| ('0' | '_', '1')
| ('y', 'n' | '_')
| ('n' | '_', 'y') = (val1, val2)
{
field_type_vec.push(JsonlType::Boolean);
continue;
}
}
}
}
}
// ok to use index access and unwrap here as we know
// we have at least one element in the prelim_type as_array
field_type_vec.push(
JsonlType::from_str(
prelim_type.as_array().unwrap()[0]
.as_str()
.unwrap_or("null"),
)
.unwrap_or(JsonlType::String),
);
}
// amortize memory allocation by reusing record
#[allow(unused_assignments)]
let mut batch_record = csv::StringRecord::new();
let num_jobs = util::njobs(args.flag_jobs);
// reuse batch buffers
let batchsize = util::optimal_batch_size(&conf, args.flag_batch, num_jobs);
let mut batch = Vec::with_capacity(batchsize);
let mut batch_results = Vec::with_capacity(batchsize);
// main loop to read CSV and construct batches for parallel processing.
// each batch is processed via Rayon parallel iterator.
// loop exits when batch is empty.
'batch_loop: loop {
for _ in 0..batchsize {
match rdr.read_record(&mut batch_record) {
Ok(true) => batch.push(std::mem::take(&mut batch_record)),
Ok(false) => break, // nothing else to add to batch
Err(e) => {
return fail_clierror!("Error reading file: {e}");
},
}
}
if batch.is_empty() {
// break out of infinite loop when at EOF
break 'batch_loop;
}
// process batch in parallel
batch
.par_iter()
.map(|record_item| {
let mut record = record_item.clone();
let mut json_string = String::new();
let mut temp_string2 = String::new();
let mut header_key = Value::String(String::new());
let mut temp_val = Value::String(String::new());
if args.flag_trim {
record.trim();
}
write!(json_string, "{{").unwrap();
for (idx, field) in record.iter().enumerate() {
let field_val = if let Some(field_type) = field_type_vec.get(idx) {
match field_type {
JsonlType::String => {
if field.is_empty() {
"null"
} else {
// we round-trip thru serde_json to escape the str
// per json spec (https://www.json.org/json-en.html)
temp_val = field.into();
temp_string2 = temp_val.to_string();
&temp_string2
}
},
JsonlType::Null => "null",
JsonlType::Integer | JsonlType::Number => field,
JsonlType::Boolean => {
if let 't' | 'y' | '1' = boolcheck(field, &mut temp_string2) {
"true"
} else {
"false"
}
},
}
} else {
"null"
};
header_key = headers[idx].into();
if field_val.is_empty() {
write!(json_string, r#"{header_key}:null,"#).unwrap();
} else {
write!(json_string, r#"{header_key}:{field_val},"#).unwrap();
}
}
json_string.pop(); // remove last comma
json_string.push('}');
record.clear();
record.push_field(&json_string);
record
})
.collect_into_vec(&mut batch_results);
// rayon collect() guarantees original order, so we can just append results each batch
for result_record in &batch_results {
wtr.write_record(result_record)?;
}
batch.clear();
} // end of batch loop
Ok(wtr.flush()?)
}
#[inline]
/// check if a field is a boolean
/// by checking the first character of the field
/// and the field's domain is true/false, yes/no
fn boolcheck(field_str: &str, lowercase_buffer: &mut String) -> char {
let mut chars = field_str.chars();
let mut first_char = chars.next().unwrap_or('_');
first_char.make_ascii_lowercase();
if field_str.len() < 2 {
return first_char;
}
// we use to_lowercase_into to avoid allocations for this function
// which is called in a hot loop
util::to_lowercase_into(field_str, lowercase_buffer);
match lowercase_buffer.as_str() {
"true" | "false" | "yes" | "no" => first_char,
_ => '_',
}
}