-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcommunicability_wei.m
37 lines (33 loc) · 1.33 KB
/
communicability_wei.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
function [C,subg] = communicability_wei(W,local)
%COMMUNICABILITY_WEI Global communicability, local communicability.
%
% Cglob = communicability_wei(W);
% Clocal = communicability_wei(W,1);
%
% The global comunicability is the average communicability of all edges
% Gij where i~=j
%
% The local communicability is the average communicability computed on
% each node excluding edges Gij where i=j
%
% Subgraph centrality is a local metric (recursive or self-communicability) computed on each node, i.e. Gij where i=j.
%
% Inputs: A, binary undirected or directed connection matrix
% local, optional argument
% local=0 computes global (default)
% local=1 computes local
%
% Output: Cglob, global communicability (scalar)
% Cloc, local communicability (vector)
%
% -David Grayson 2014
n = size(W,1);
G=expm(W./sqrt(sum(W)'*sum(W))); %communicability matrix
subg=G(1:n+1:end); %subgraph centrality (vector)
if exist('local','var') && local
G(1:n+1:end) = 0; %set diagonal to 0
C=sum(G)/(n-1); %local communicability (vector)
else
G(1:n+1:end) = 0; %set diagonal to 0
C=sum(G(:))/(n*(n-1)); %total communicability (scalar)
end