-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2024-07-04
142 lines (122 loc) · 3.7 KB
/
2024-07-04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
from scipy.special import gamma, beta
from sympy import symbols, integrate, diff, Function, pi, exp, sin, cos, tan, sqrt, I, Eq, dsolve, simplify
import sympy as sp
# Define symbols
x, t, v, theta, r = sp.symbols('x t v theta r')
phi = sp.Function('phi')(x, t)
n = sp.Function('n')(x, t)
v_x = sp.Function('v')(x, t)
f = sp.Function('f')(x, v, t)
C_f = sp.Function('C')(f)
psi = sp.Function('psi')(x, t)
V = sp.Function('V')(x, t)
g, m, hbar, nu = sp.symbols('g m hbar nu')
u = sp.Function('u')(x, t)
J = sp.Function('J')(x, t)
E = sp.Function('E')(x, t)
B = sp.Function('B')(x, t)
rho = sp.Function('rho')(x, t)
epsilon_0, mu_0 = symbols('epsilon_0 mu_0')
# Define equations
# Reynolds' Transport Theorem
RTT = integrate(diff(phi, t), x) - integrate(n * phi * v_x, x)
print("Reynolds' Transport Theorem:")
sp.pprint(RTT)
print("\n")
"""
Reynolds' Transport Theorem:
⌠
⌠ ⎮ ∂
- ⎮ n(x, t)⋅φ(x, t)⋅v(x, t) dx + ⎮ ──(φ(x, t)) dx
⌡ ⎮ ∂t
⌡
"""
# Boltzmann Transport Equation
BTE = sp.Function('F')(x, t) * diff(f, v) + v_x * diff(f, x) + diff(f, t) - C_f
print("Boltzmann Transport Equation:")
sp.pprint(BTE)
print("\n")
"""
∂ ∂ ∂
-C(f(x, v, t)) + F(x, t)⋅──(f(x, v, t)) + v(x, t)⋅──(f(x, v, t)) + ──(f(x, v,t))
∂v ∂x ∂t
"""
# Gross-Pitaevskii Equation
GPE = I * hbar * diff(psi, t) - V * psi - g * psi * abs(psi)**2 + (hbar**2 / (2 * m)) * diff(psi, x, x)
print("Gross-Pitaevskii Equation:")
sp.pprint(GPE)
print("\n")
"""
Gross-Pitaevskii Equation:
>>> sp.pprint(GPE)
2
2 ∂
h̅ ⋅───(ψ(x, t))
2
2 ∂x ∂
- g⋅ψ(x, t)⋅│ψ(x, t)│ + ─────────────── + ⅈ⋅h̅⋅──(ψ(x, t)) - V(x, t)⋅ψ(x, t)
2⋅m ∂t
"""
# Transform of Burgers' Equation
Burgers = -nu * diff(u, x, x) + u * diff(u, x) + diff(u, t)
print("Transform of Burgers' Equation:")
sp.pprint(Burgers)
print("\n")
"""
2
∂ ∂ ∂
- ν⋅───(u(x, t)) + u(x, t)⋅──(u(x, t)) + ──(u(x, t))
2 ∂x ∂t
∂x
"""
# Schrödinger Equation
Schrodinger = I * hbar * diff(psi, t) - V * psi
print("Schrödinger Equation:")
sp.pprint(Schrodinger)
print("\n")
"""
∂
ⅈ⋅h̅⋅──(ψ(x, t)) - V(x, t)⋅ψ(x, t)
∂t
"""
# Heat Equation
Heat = diff(u, t) - diff(u, x, x)
print("Heat Equation:")
sp.pprint(Heat)
print("\n")
"""
2
∂ ∂
──(u(x, t)) - ───(u(x, t))
∂t 2
∂x
"""
# Laplace's Equation
u, x, y, z = sp.symbols('u x y z')
Laplace = diff(u, x, x) + diff(u, y, y) + diff(u, z, z)
print("Laplace's Equation:")
sp.pprint(Laplace)
print("\n")
"""
0
"""
class rho:
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
def __call__(self, x, y, z):
return self.x + self.y + self.z
# Navier-Stokes Equations (Simplified form)
Navier_Stokes_x = sp.Function('u')(x, t) * sp.diff(sp.Function('u')(x, t), x) + sp.diff(sp.Function('u')(x, t), t)
print("Navier-Stokes Equation (x-component):")
sp.pprint(Navier_Stokes_x)
print("\n")
"""
∂ ∂
u(x, t)⋅──(u(x, t)) + ──(u(x, t))
∂x ∂t
"""