-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy path22-subset.Rmd
212 lines (152 loc) · 4.22 KB
/
22-subset.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Subset Selection
**Instructor's Note: This chapter is currently missing the usual narrative text. Hopefully it will be added later.**
```{r}
data(Hitters, package = "ISLR")
```
```{r}
sum(is.na(Hitters))
sum(is.na(Hitters$Salary))
Hitters = na.omit(Hitters)
sum(is.na(Hitters))
```
## AIC, BIC, and Cp
### `leaps` Package
```{r, message = FALSE, warning = FALSE}
library(leaps)
```
### Best Subset
```{r}
fit_all = regsubsets(Salary ~ ., Hitters)
summary(fit_all)
```
```{r}
fit_all = regsubsets(Salary ~ ., data = Hitters, nvmax = 19)
fit_all_sum = summary(fit_all)
names(fit_all_sum)
```
```{r}
fit_all_sum$bic
```
```{r}
par(mfrow = c(2, 2))
plot(fit_all_sum$rss, xlab = "Number of Variables", ylab = "RSS", type = "b")
plot(fit_all_sum$adjr2, xlab = "Number of Variables", ylab = "Adjusted RSq", type = "b")
best_adj_r2 = which.max(fit_all_sum$adjr2)
points(best_adj_r2, fit_all_sum$adjr2[best_adj_r2],
col = "red",cex = 2, pch = 20)
plot(fit_all_sum$cp, xlab = "Number of Variables", ylab = "Cp", type = 'b')
best_cp = which.min(fit_all_sum$cp)
points(best_cp, fit_all_sum$cp[best_cp],
col = "red", cex = 2, pch = 20)
plot(fit_all_sum$bic, xlab = "Number of Variables", ylab = "BIC", type = 'b')
best_bic = which.min(fit_all_sum$bic)
points(best_bic, fit_all_sum$bic[best_bic],
col = "red", cex = 2, pch = 20)
```
### Step-wise Methods
```{r}
fit_fwd = regsubsets(Salary ~ ., data = Hitters, nvmax = 19, method = "forward")
fit_fwd_sum = summary(fit_fwd)
```
```{r}
fit_bwd = regsubsets(Salary ~ ., data = Hitters, nvmax = 19, method = "backward")
fit_bwd_sum = summary(fit_bwd)
```
```{r}
coef(fit_fwd, 7)
coef(fit_bwd, 7)
coef(fit_all, 7)
```
```{r}
fit_bwd_sum = summary(fit_bwd)
which.min(fit_bwd_sum$cp)
coef(fit_bwd, which.min(fit_bwd_sum$cp))
```
```{r}
fit = lm(Salary ~ ., data = Hitters)
fit_aic_back = step(fit, trace = FALSE)
coef(fit_aic_back)
```
## Validated RMSE
```{r}
set.seed(42)
num_vars = ncol(Hitters) - 1
trn_idx = sample(c(TRUE, FALSE), nrow(Hitters), rep = TRUE)
tst_idx = (!trn_idx)
fit_all = regsubsets(Salary ~ ., data = Hitters[trn_idx, ], nvmax = num_vars)
test_mat = model.matrix(Salary ~ ., data = Hitters[tst_idx, ])
test_err = rep(0, times = num_vars)
for (i in seq_along(test_err)) {
coefs = coef(fit_all, id = i)
pred = test_mat[, names(coefs)] %*% coefs
test_err[i] <- sqrt(mean((Hitters$Salary[tst_idx] - pred) ^ 2))
}
test_err
```
```{r}
plot(test_err, type='b', ylab = "Test Set RMSE", xlab = "Number of Predictors")
```
```{r}
which.min(test_err)
coef(fit_all, which.min(test_err))
```
```{r}
class(fit_all)
```
```{r}
predict.regsubsets = function(object, newdata, id, ...) {
form = as.formula(object$call[[2]])
mat = model.matrix(form, newdata)
coefs = coef(object, id = id)
xvars = names(coefs)
mat[, xvars] %*% coefs
}
```
```{r}
rmse = function(actual, predicted) {
sqrt(mean((actual - predicted) ^ 2))
}
```
```{r}
num_folds = 5
num_vars = 19
set.seed(1)
folds = caret::createFolds(Hitters$Salary, k = num_folds)
fold_error = matrix(0, nrow = num_folds, ncol = num_vars,
dimnames = list(paste(1:5), paste(1:19)))
for(j in 1:num_folds) {
train_fold = Hitters[-folds[[j]], ]
validate_fold = Hitters[ folds[[j]], ]
best_fit = regsubsets(Salary ~ ., data = train_fold, nvmax = 19)
for (i in 1:num_vars) {
pred = predict(best_fit, validate_fold, id = i)
fold_error[j, i] = rmse(actual = validate_fold$Salary,
predicted = pred)
}
}
cv_error = apply(fold_error, 2, mean)
cv_error
```
```{r}
plot(cv_error, type='b', ylab = "Corss-Validated RMSE", xlab = "Number of Predictors")
```
```{r}
fit_all = regsubsets(Salary ~ ., data = Hitters, nvmax = num_vars)
coef(fit_all, which.min(cv_error))
```
## External Links
- []() -
## RMarkdown
The RMarkdown file for this chapter can be found [**here**](14-subset.Rmd). The file was created using `R` version `r paste0(version$major, "." ,version$minor)` and the following packages:
- Base Packages, Attached
```{r, echo = FALSE}
sessionInfo()$basePkgs
```
- Additional Packages, Attached
```{r, echo = FALSE}
names(sessionInfo()$otherPkgs)
```
- Additional Packages, Not Attached
```{r, echo = FALSE}
names(sessionInfo()$loadedOnly)
```