forked from mdeff/fma
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreation.py
executable file
·239 lines (184 loc) · 7.49 KB
/
creation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#!/usr/bin/env python3
# FMA: A Dataset For Music Analysis
# Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson, EPFL LTS2.
import os
import sys
import shutil
import pickle
import zipfile
import subprocess as sp
from datetime import datetime
from tqdm import tqdm, trange
import pandas as pd
import utils
TIME = datetime(2017, 4, 1).timestamp()
README = """This .zip archive is part of the FMA, a dataset for music analysis.
Code & data: https://github.com/mdeff/fma
Paper: https://arxiv.org/abs/1612.01840
Each .mp3 is licensed by its artist.
The content's integrity can be verified with sha1sum -c checksums.
"""
def download_metadata():
fma = utils.FreeMusicArchive(os.environ.get('FMA_KEY'))
max_tid = int(fma.get_recent_tracks()[0][0])
print('Largest track id: {}'.format(max_tid))
not_found = {}
id_range = trange(max_tid, desc='tracks')
tracks, not_found['tracks'] = fma.get_all('track', id_range)
id_range = tqdm(tracks['album_id'].unique(), desc='albums')
albums, not_found['albums'] = fma.get_all('album', id_range)
id_range = tqdm(tracks['artist_id'].unique(), desc='artists')
artists, not_found['artists'] = fma.get_all('artist', id_range)
genres = fma.get_all_genres()
for dataset in 'tracks', 'albums', 'artists', 'genres':
eval(dataset).sort_index(axis=0, inplace=True)
eval(dataset).sort_index(axis=1, inplace=True)
eval(dataset).to_csv('raw_' + dataset + '.csv')
pickle.dump(not_found, open('not_found.pickle', 'wb'))
def _create_subdirs(dst_dir, tracks):
# Get write access.
if not os.path.exists(dst_dir):
os.makedirs(dst_dir)
os.chmod(dst_dir, 0o777)
# Create writable sub-directories.
n_folders = max(tracks.index) // 1000 + 1
for folder in range(n_folders):
dst = os.path.join(dst_dir, '{:03d}'.format(folder))
if not os.path.exists(dst):
os.makedirs(dst)
os.chmod(dst, 0o777)
def download_data(dst_dir):
dst_dir = os.path.abspath(dst_dir)
tracks = pd.read_csv('raw_tracks.csv', index_col=0)
_create_subdirs(dst_dir, tracks)
fma = utils.FreeMusicArchive(os.environ.get('FMA_KEY'))
not_found = pickle.load(open('not_found.pickle', 'rb'))
not_found['audio'] = []
# Download missing tracks.
for tid in tqdm(tracks.index):
dst = utils.get_audio_path(dst_dir, tid)
if not os.path.exists(dst):
try:
fma.download_track(tracks.at[tid, 'track_file'], dst)
except: # requests.HTTPError
not_found['audio'].append(tid)
pickle.dump(not_found, open('not_found.pickle', 'wb'))
def convert_duration(x):
times = x.split(':')
seconds = int(times[-1])
minutes = int(times[-2])
try:
minutes += 60 * int(times[-3])
except IndexError:
pass
return seconds + 60 * minutes
def trim_audio(dst_dir):
dst_dir = os.path.abspath(dst_dir)
fma_full = os.path.join(dst_dir, 'fma_full')
fma_large = os.path.join(dst_dir, 'fma_large')
tracks = pd.read_csv('raw_tracks.csv', index_col=0)
_create_subdirs(fma_large, tracks)
not_found = pickle.load(open('not_found.pickle', 'rb'))
not_found['clips'] = []
for tid in tqdm(tracks.index):
duration = convert_duration(tracks.at[tid, 'track_duration'])
src = utils.get_audio_path(fma_full, tid)
dst = utils.get_audio_path(fma_large, tid)
if tid in not_found['audio']:
continue
elif os.path.exists(dst):
continue
elif duration <= 30:
shutil.copyfile(src, dst)
else:
start = duration // 2 - 15
command = ['ffmpeg', '-i', src,
'-ss', str(start), '-t', '30',
'-acodec', 'copy', dst]
try:
sp.run(command, check=True, stderr=sp.DEVNULL)
except sp.CalledProcessError:
not_found['clips'].append(tid)
for tid in not_found['clips']:
try:
os.remove(utils.get_audio_path(fma_large, tid))
except FileNotFoundError:
pass
pickle.dump(not_found, open('not_found.pickle', 'wb'))
def normalize_permissions_times(dst_dir):
dst_dir = os.path.abspath(dst_dir)
for dirpath, dirnames, filenames in tqdm(os.walk(dst_dir)):
for name in filenames:
dst = os.path.join(dirpath, name)
os.chmod(dst, 0o444)
os.utime(dst, (TIME, TIME))
for name in dirnames:
dst = os.path.join(dirpath, name)
os.chmod(dst, 0o555)
os.utime(dst, (TIME, TIME))
def create_zips(dst_dir):
def get_filepaths(subset):
filepaths = []
tids = tracks.index[tracks['set', 'subset'] <= subset]
for tid in tids:
filepaths.append(utils.get_audio_path('', tid))
return filepaths
def get_checksums(base_dir, filepaths):
"""Checksums are assumed to be stored in order for efficiency."""
checksums = []
with open(os.path.join(dst_dir, base_dir, 'checksums')) as f:
for filepath in filepaths:
exist = False
for line in f:
if filepath == line[42:-1]:
exist = True
break
if not exist:
raise ValueError('checksum not found: {}'.format(filepath))
checksums.append(line)
return checksums
def create_zip(zip_filename, base_dir, filepaths):
# Audio: all compressions are the same.
# CSV: stored > deflated > BZIP2 > LZMA.
# LZMA is close to BZIP2 and too recent to be widely available (unzip).
compression = zipfile.ZIP_BZIP2
zip_filepath = os.path.join(dst_dir, zip_filename)
with zipfile.ZipFile(zip_filepath, 'x', compression) as zf:
def info(name):
name = os.path.join(zip_filename[:-4], name)
info = zipfile.ZipInfo(name, (2017, 4, 1, 0, 0, 0))
info.external_attr = 0o444 << 16 | 0o2 << 30
return info
zf.writestr(info('README.txt'), README, compression)
checksums = get_checksums(base_dir, filepaths)
zf.writestr(info('checksums'), ''.join(checksums), compression)
for filepath in tqdm(filepaths):
src = os.path.join(dst_dir, base_dir, filepath)
dst = os.path.join(zip_filename[:-4], filepath)
zf.write(src, dst)
os.chmod(zip_filepath, 0o444)
os.utime(zip_filepath, (TIME, TIME))
METADATA = [
'not_found.pickle',
'raw_genres.csv', 'raw_albums.csv',
'raw_artists.csv', 'raw_tracks.csv',
'tracks.csv', 'genres.csv',
'raw_echonest.csv', 'echonest.csv', 'features.csv',
]
create_zip('fma_metadata.zip', 'fma_metadata', METADATA)
tracks = utils.load('tracks.csv')
create_zip('fma_small.zip', 'fma_large', get_filepaths('small'))
create_zip('fma_medium.zip', 'fma_large', get_filepaths('medium'))
create_zip('fma_large.zip', 'fma_large', get_filepaths('large'))
create_zip('fma_full.zip', 'fma_full', get_filepaths('large'))
if __name__ == "__main__":
if sys.argv[1] == 'metadata':
download_metadata()
elif sys.argv[1] == 'data':
download_data(sys.argv[2])
elif sys.argv[1] == 'clips':
trim_audio(sys.argv[2])
elif sys.argv[1] == 'normalize':
normalize_permissions_times(sys.argv[2])
elif sys.argv[1] == 'zips':
create_zips(sys.argv[2])