This repository has been archived by the owner on May 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathorganize_folder_structure.py
232 lines (161 loc) · 8.11 KB
/
organize_folder_structure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import shutil
from time import time
import re
import argparse
import numpy as np
import SimpleITK as sitk
import scipy.ndimage as ndimage
from utils.NiftiDataset import *
def numericalSort(value):
numbers = re.compile(r'(\d+)')
parts = numbers.split(value)
parts[1::2] = map(int, parts[1::2])
return parts
def lstFiles(Path):
images_list = [] # create an empty list, the raw image data files is stored here
for dirName, subdirList, fileList in os.walk(Path):
for filename in fileList:
if ".nii.gz" in filename.lower():
images_list.append(os.path.join(dirName, filename))
elif ".nii" in filename.lower():
images_list.append(os.path.join(dirName, filename))
elif ".mhd" in filename.lower():
images_list.append(os.path.join(dirName, filename))
images_list = sorted(images_list, key=numericalSort)
return images_list
def Align(image, reference):
image_array = sitk.GetArrayFromImage(image)
label_origin = reference.GetOrigin()
label_direction = reference.GetDirection()
label_spacing = reference.GetSpacing()
image = sitk.GetImageFromArray(image_array)
image.SetOrigin(label_origin)
image.SetSpacing(label_spacing)
image.SetDirection(label_direction)
return image
def CropBackground(image, label):
size_new = (240, 240, 120)
def Normalization(image):
"""
Normalize an image to 0 - 255 (8bits)
"""
normalizeFilter = sitk.NormalizeImageFilter()
resacleFilter = sitk.RescaleIntensityImageFilter()
resacleFilter.SetOutputMaximum(255)
resacleFilter.SetOutputMinimum(0)
image = normalizeFilter.Execute(image) # set mean and std deviation
image = resacleFilter.Execute(image) # set intensity 0-255
return image
image2 = Normalization(image)
label2 = Normalization(label)
threshold = sitk.BinaryThresholdImageFilter()
threshold.SetLowerThreshold(20)
threshold.SetUpperThreshold(255)
threshold.SetInsideValue(1)
threshold.SetOutsideValue(0)
roiFilter = sitk.RegionOfInterestImageFilter()
roiFilter.SetSize([size_new[0], size_new[1], size_new[2]])
image_mask = threshold.Execute(image2)
image_mask = sitk.GetArrayFromImage(image_mask)
image_mask = np.transpose(image_mask, (2, 1, 0))
import scipy
centroid = scipy.ndimage.measurements.center_of_mass(image_mask)
x_centroid = np.int(centroid[0])
y_centroid = np.int(centroid[1])
roiFilter.SetIndex([int(x_centroid - (size_new[0]) / 2), int(y_centroid - (size_new[1]) / 2), 0])
label_crop = roiFilter.Execute(label)
image_crop = roiFilter.Execute(image)
return image_crop, label_crop
def Registration(image, label):
image, image_sobel, label, label_sobel, = image, image, label, label
Gaus = sitk.GradientMagnitudeRecursiveGaussianImageFilter()
image_sobel = Gaus.Execute(image_sobel)
label_sobel = Gaus.Execute(label_sobel)
fixed_image = label_sobel
moving_image = image_sobel
initial_transform = sitk.CenteredTransformInitializer(fixed_image,
moving_image,
sitk.Euler3DTransform(),
sitk.CenteredTransformInitializerFilter.GEOMETRY)
registration_method = sitk.ImageRegistrationMethod()
# Similarity metric settings.
registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50)
registration_method.SetMetricSamplingStrategy(registration_method.RANDOM)
registration_method.SetMetricSamplingPercentage(0.1)
registration_method.SetInterpolator(sitk.sitkLinear)
# Optimizer settings.
registration_method.SetOptimizerAsGradientDescent(learningRate=1.0, numberOfIterations=100,
convergenceMinimumValue=1e-6, convergenceWindowSize=10)
registration_method.SetOptimizerScalesFromPhysicalShift()
# Setup for the multi-resolution framework.
registration_method.SetShrinkFactorsPerLevel(shrinkFactors=[4, 2, 1])
registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2, 1, 0])
registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn()
# Don't optimize in-place, we would possibly like to run this cell multiple times.
registration_method.SetInitialTransform(initial_transform, inPlace=False)
final_transform = registration_method.Execute(sitk.Cast(fixed_image, sitk.sitkFloat32),
sitk.Cast(moving_image, sitk.sitkFloat32))
image = sitk.Resample(image, fixed_image, final_transform, sitk.sitkLinear, 0.0,
moving_image.GetPixelID())
return image, label
parser = argparse.ArgumentParser()
parser.add_argument('--images', default='./Data_folder/T1', help='path to the images a (early frames)')
parser.add_argument('--labels', default='./Data_folder/T2', help='path to the images b (late frames)')
parser.add_argument('--split', default=50, help='number of images for testing')
parser.add_argument('--resolution', default=(1.6,1.6,1.6), help='new resolution to resample the all data')
args = parser.parse_args()
if __name__ == "__main__":
list_images = lstFiles(args.images)
list_labels = lstFiles(args.labels)
reference_image = list_labels[0] # setting a reference image to have all data in the same coordinate system
reference_image = sitk.ReadImage(reference_image)
reference_image = resample_sitk_image(reference_image, spacing=args.resolution, interpolator='linear')
if not os.path.isdir('./Data_folder/train'):
os.mkdir('./Data_folder/train')
if not os.path.isdir('./Data_folder/test'):
os.mkdir('./Data_folder/test')
for i in range(len(list_images)-int(args.split)):
save_directory_images = './Data_folder/train/images'
save_directory_labels = './Data_folder/train/labels'
if not os.path.isdir(save_directory_images):
os.mkdir(save_directory_images)
if not os.path.isdir(save_directory_labels):
os.mkdir(save_directory_labels)
a = list_images[int(args.split)+i]
b = list_labels[int(args.split)+i]
print(a)
label = sitk.ReadImage(b)
image = sitk.ReadImage(a)
label, reference_image = Registration(label, reference_image)
image, label = Registration(image, label)
image = resample_sitk_image(image, spacing=args.resolution, interpolator='linear')
label = resample_sitk_image(label, spacing=args.resolution, interpolator='linear')
# image = Align(image, reference_image)
# label = Align(label, reference_image)
label_directory = os.path.join(str(save_directory_labels), str(i) + '.nii')
image_directory = os.path.join(str(save_directory_images), str(i) + '.nii')
sitk.WriteImage(image, image_directory)
sitk.WriteImage(label, label_directory)
for i in range(int(args.split)):
save_directory_images = './Data_folder/test/images'
save_directory_labels = './Data_folder/test/labels'
if not os.path.isdir(save_directory_images):
os.mkdir(save_directory_images)
if not os.path.isdir(save_directory_labels):
os.mkdir(save_directory_labels)
a = list_images[i]
b = list_labels[i]
print(a)
label = sitk.ReadImage(b)
image = sitk.ReadImage(a)
label, reference_image = Registration(label, reference_image)
image, label = Registration(image, label)
image = resample_sitk_image(image, spacing=args.resolution, interpolator='linear')
label = resample_sitk_image(label, spacing=args.resolution, interpolator='linear')
# image = Align(image, reference_image)
# label = Align(label, reference_image)
label_directory = os.path.join(str(save_directory_labels), str(i) + '.nii')
image_directory = os.path.join(str(save_directory_images), str(i) + '.nii')
sitk.WriteImage(image, image_directory)
sitk.WriteImage(label, label_directory)