-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
97 lines (84 loc) · 3.25 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from typing import Tuple
import torch
from torch import nn, Tensor
from torch.nn import functional as F
class EncoderBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int) -> None:
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=(2, 2))
self.bn = nn.BatchNorm2d(
num_features=out_channels,
track_running_stats=True,
eps=1e-3,
momentum=0.01,
)
self.relu = nn.LeakyReLU(negative_slope=0.2)
def forward(self, input: Tensor) -> Tuple[Tensor, Tensor]:
down = self.conv(F.pad(input, (1, 2, 1, 2), "constant", 0))
return down, self.relu(self.bn(down))
class DecoderBlock(nn.Module):
def __init__(
self, in_channels: int, out_channels: int, dropout_prob: float = 0.0
) -> None:
super().__init__()
self.tconv = nn.ConvTranspose2d(
in_channels, out_channels, kernel_size=5, stride=2
)
self.relu = nn.ReLU()
self.bn = nn.BatchNorm2d(
out_channels, track_running_stats=True, eps=1e-3, momentum=0.01
)
self.dropout = nn.Dropout(dropout_prob) if dropout_prob > 0 else nn.Identity()
def forward(self, input: Tensor) -> Tensor:
up = self.tconv(input)
# reverse padding
l, r, t, b = 1, 2, 1, 2
up = up[:, :, l:-r, t:-b]
return self.dropout(self.bn(self.relu(up)))
class UNet(nn.Module):
def __init__(
self,
n_layers: int = 6,
in_channels: int = 1,
) -> None:
super().__init__()
# DownSample layers
down_set = [in_channels] + [2 ** (i + 4) for i in range(n_layers)]
self.encoder_layers = nn.ModuleList(
[
EncoderBlock(in_channels=in_ch, out_channels=out_ch)
for in_ch, out_ch in zip(down_set[:-1], down_set[1:])
]
)
# UpSample layers
up_set = [1] + [2 ** (i + 4) for i in range(n_layers)]
up_set.reverse()
self.decoder_layers = nn.ModuleList(
[
DecoderBlock(
# doubled for concatenated inputs (skip connections)
in_channels=in_ch if i == 0 else in_ch * 2,
out_channels=out_ch,
# 50 % dropout... first 3 layers only
dropout_prob=0.5 if i < 3 else 0,
)
for i, (in_ch, out_ch) in enumerate(zip(up_set[:-1], up_set[1:]))
]
)
# reconstruct the final mask same as the original channels
self.up_final = nn.Conv2d(1, in_channels, kernel_size=4, dilation=2, padding=3)
self.sigmoid = nn.Sigmoid()
def forward(self, input: Tensor) -> Tensor:
encoder_outputs_pre_act = []
x = input
for down in self.encoder_layers:
conv, x = down(x)
encoder_outputs_pre_act.append(conv)
for i, up in enumerate(self.decoder_layers):
if i == 0:
x = up(encoder_outputs_pre_act.pop())
else:
# merge skip connection
x = up(torch.concat([encoder_outputs_pre_act.pop(), x], axis=1))
mask = self.sigmoid(self.up_final(x))
return mask * input