forked from AMAAI-Lab/Video2Music
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_regression.py
211 lines (173 loc) · 7.25 KB
/
train_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import csv
import shutil
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from torch.optim import Adam
from dataset.vevo_dataset import create_vevo_datasets
from model.video_regression import VideoRegression
from utilities.constants import *
from utilities.device import get_device, use_cuda
from utilities.lr_scheduling import LrStepTracker, get_lr
from utilities.argument_funcs import parse_train_args, print_train_args, write_model_params
from utilities.run_model_regression import train_epoch, eval_model
CSV_HEADER = ["Epoch", "Learn rate", "Avg Train loss", "Train RMSE", "Avg Eval loss", "Eval RMSE"]
BASELINE_EPOCH = -1
version = VERSION
split_ver = SPLIT_VER
split_path = "split_" + split_ver
num_epochs = 20
VIS_MODELS_ARR = [
"2d/clip_l14p"
]
regModel = "gru"
# lstm
# bilstm
# gru
# bigru
# main
def main( vm = "" , isPrintArgs = True ):
args = parse_train_args()
args.epochs = num_epochs
if isPrintArgs:
print_train_args(args)
if vm != "":
args.vis_models = vm
if args.is_video:
vis_arr = args.vis_models.split(" ")
vis_arr.sort()
vis_abbr_path = ""
for v in vis_arr:
vis_abbr_path = vis_abbr_path + "_" + VIS_ABBR_DIC[v]
vis_abbr_path = vis_abbr_path[1:]
else:
vis_abbr_path = "no_video"
if(args.force_cpu):
use_cuda(False)
print("WARNING: Forced CPU usage, expect model to perform slower")
print("")
os.makedirs( args.output_dir, exist_ok=True)
os.makedirs( os.path.join( args.output_dir, version) , exist_ok=True)
##### Output prep #####
params_file = os.path.join(args.output_dir, version, "model_params_regression.txt")
write_model_params(args, params_file)
weights_folder = os.path.join(args.output_dir, version, "weights_regression_" + regModel)
os.makedirs(weights_folder, exist_ok=True)
results_folder = os.path.join(args.output_dir, version)
os.makedirs(results_folder, exist_ok=True)
results_file = os.path.join(results_folder, "results_regression.csv")
best_rmse_file = os.path.join(results_folder, "best_rmse_weights.pickle")
best_text = os.path.join(results_folder, "best_epochs_regression.txt")
##### Tensorboard #####
if(args.no_tensorboard):
tensorboard_summary = None
else:
from torch.utils.tensorboard import SummaryWriter
tensorboad_dir = os.path.join(args.output_dir, version, "tensorboard_regression")
tensorboard_summary = SummaryWriter(log_dir=tensorboad_dir)
train_dataset, val_dataset, _ = create_vevo_datasets(
dataset_root = "./dataset/",
max_seq_chord = args.max_sequence_chord,
max_seq_video = args.max_sequence_video,
vis_models = args.vis_models,
emo_model = args.emo_model,
split_ver = SPLIT_VER,
random_seq = True)
total_vf_dim = 0
for vf in train_dataset[0]["semanticList"]:
total_vf_dim += vf.shape[1]
total_vf_dim += 1 # Scene_offset
total_vf_dim += 1 # Motion
# Emotion
if args.emo_model.startswith("6c"):
total_vf_dim += 6
else:
total_vf_dim += 5
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.n_workers, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.n_workers)
model = VideoRegression(max_sequence_video=args.max_sequence_video, total_vf_dim=total_vf_dim, regModel= regModel).to(get_device())
start_epoch = BASELINE_EPOCH
if(args.continue_weights is not None):
if(args.continue_epoch is None):
print("ERROR: Need epoch number to continue from (-continue_epoch) when using continue_weights")
assert(False)
else:
model.load_state_dict(torch.load(args.continue_weights))
start_epoch = args.continue_epoch
elif(args.continue_epoch is not None):
print("ERROR: Need continue weights (-continue_weights) when using continue_epoch")
assert(False)
eval_loss_func = nn.MSELoss()
train_loss_func = nn.MSELoss()
opt = Adam(model.parameters(), lr=1e-3, weight_decay=1e-5)
lr_scheduler = None
##### Tracking best evaluation accuracy #####
best_eval_rmse = float("inf")
best_eval_rmse_epoch = -1
best_eval_loss = float("inf")
best_eval_loss_epoch = -1
##### Results reporting #####
if(not os.path.isfile(results_file)):
with open(results_file, "w", newline="") as o_stream:
writer = csv.writer(o_stream)
writer.writerow(CSV_HEADER)
##### TRAIN LOOP #####
for epoch in range(start_epoch, args.epochs):
if(epoch > BASELINE_EPOCH):
print(SEPERATOR)
print("NEW EPOCH:", epoch+1)
print(SEPERATOR)
print("")
# Train
train_epoch(epoch+1, model, train_loader, train_loss_func, opt, lr_scheduler, args.print_modulus)
print(SEPERATOR)
print("Evaluating:")
else:
print(SEPERATOR)
print("Baseline model evaluation (Epoch 0):")
# Eval
train_loss, train_rmse, train_rmse_note_density, train_rmse_loudness = eval_model(model, train_loader, train_loss_func)
eval_loss, eval_rmse, eval_rmse_note_density, eval_rmse_loudness = eval_model(model, val_loader, eval_loss_func)
# Learn rate
lr = get_lr(opt)
print("Epoch:", epoch+1)
print("Avg train loss:", train_loss)
print("Avg train RMSE:", train_rmse)
print("Avg train RMSE (Note Density):", train_rmse_note_density)
print("Avg train RMSE (Loudness):", train_rmse_loudness)
print("Avg val loss:", eval_loss)
print("Avg val RMSE:", eval_rmse)
print("Avg val RMSE (Note Density):", eval_rmse_note_density)
print("Avg val RMSE (Loudness):", eval_rmse_loudness)
print(SEPERATOR)
print("")
new_best = False
if(eval_rmse < best_eval_rmse):
best_eval_rmse = eval_rmse
best_eval_rmse_epoch = epoch+1
torch.save(model.state_dict(), best_rmse_file)
new_best = True
# Writing out new bests
if(new_best):
with open(best_text, "w") as o_stream:
print("Best val RMSE epoch:", best_eval_rmse_epoch, file=o_stream)
print("Best val RMSE:", best_eval_rmse, file=o_stream)
print("")
print("Best val loss epoch:", best_eval_loss_epoch, file=o_stream)
print("Best val loss:", best_eval_loss, file=o_stream)
if((epoch+1) % args.weight_modulus == 0):
epoch_str = str(epoch+1).zfill(PREPEND_ZEROS_WIDTH)
path = os.path.join(weights_folder, "epoch_" + epoch_str + ".pickle")
torch.save(model.state_dict(), path)
with open(results_file, "a", newline="") as o_stream:
writer = csv.writer(o_stream)
writer.writerow([epoch+1, lr, train_loss, train_rmse, eval_loss, eval_rmse])
return
if __name__ == "__main__":
if len(VIS_MODELS_ARR) != 0 :
for vm in VIS_MODELS_ARR:
main(vm, False)
else:
main()