-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathpredict.py
144 lines (124 loc) · 4.74 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import subprocess
import time
import json
import torch
from tqdm import tqdm
import soundfile as sf
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from cog import BasePredictor, Input, Path
MODEL_URL = "https://weights.replicate.delivery/default/declare-lab/tango.tar"
MODEL_CACHE = "tango_weights"
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, MODEL_CACHE)
self.models = {k: Tango(name=k) for k in ["tango2", "tango2-full"]}
def predict(
self,
prompt: str = Input(
description="Input prompt",
default="Quiet speech and then and airplane flying away",
),
model: str = Input(
description="choose a model",
choices=[
"tango2",
"tango2-full",
],
default="tango2",
),
steps: int = Input(description="inference steps", default=100),
guidance: float = Input(description="guidance scale", default=3),
) -> Path:
"""Run a single prediction on the model"""
tango = self.models[model]
audio = tango.generate(prompt, steps, guidance)
out = "/tmp/output.wav"
sf.write(out, audio, samplerate=16000)
return Path(out)
class Tango:
def __init__(self, name="tango2", path=MODEL_CACHE, device="cuda:0"):
# weights are downloaded from f"https://huggingface.co/declare-lab/{name}/tree/main" and saved to MODEL_CACHE
vae_config = json.load(open(f"{path}/{name}/vae_config.json"))
stft_config = json.load(open(f"{path}/{name}/stft_config.json"))
main_config = json.load(open(f"{path}/{name}/main_config.json"))
self.vae = AutoencoderKL(**vae_config).to(device)
self.stft = TacotronSTFT(**stft_config).to(device)
self.model = AudioDiffusion(**main_config).to(device)
vae_weights = torch.load(
f"{path}/{name}/pytorch_model_vae.bin", map_location=device
)
stft_weights = torch.load(
f"{path}/{name}/pytorch_model_stft.bin", map_location=device
)
main_weights = torch.load(
f"{path}/{name}/pytorch_model_main.bin", map_location=device
)
self.vae.load_state_dict(vae_weights)
self.stft.load_state_dict(stft_weights)
self.model.load_state_dict(main_weights)
self.vae.eval()
self.stft.eval()
self.model.eval()
self.scheduler = DDPMScheduler.from_pretrained(
main_config["scheduler_name"], subfolder="scheduler"
)
def chunks(self, lst, n):
"""Yield successive n-sized chunks from a list."""
for i in range(0, len(lst), n):
yield lst[i : i + n]
def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
"""Generate audio for a single prompt string."""
with torch.no_grad():
latents = self.model.inference(
[prompt],
self.scheduler,
steps,
guidance,
samples,
disable_progress=disable_progress,
)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
return wave[0]
def generate_for_batch(
self,
prompts,
steps=100,
guidance=3,
samples=1,
batch_size=8,
disable_progress=True,
):
"""Generate audio for a list of prompt strings."""
outputs = []
for k in tqdm(range(0, len(prompts), batch_size)):
batch = prompts[k : k + batch_size]
with torch.no_grad():
latents = self.model.inference(
batch,
self.scheduler,
steps,
guidance,
samples,
disable_progress=disable_progress,
)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
outputs += [item for item in wave]
if samples == 1:
return outputs
else:
return list(self.chunks(outputs, samples))