-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil_.py
374 lines (342 loc) · 12 KB
/
util_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import numpy as np, cv2, os
color = {i: np.random.randint(20, 255, 3) for i in range(3, 100000)}
color[1] = [255, 255, 255]
color[2] = [0, 0, 255]
def get_boundry_as_points(thresh):
border = get_boundry_img_matrix(thresh, bval = 255)
h,w=border.shape
i,j = np.unravel_index(np.argmax(border), (h,w))
border = padding2D_zero(border,1)
start = (i,j)
itr = 0
sign = [(0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1),(-1, 0), (-1, 1)]
a = 0
points = [start]
while itr < h*w:
full = 8
while full:
if border[i+1+sign[a][0], j+1+sign[a][1]]:
points.append((i+sign[a][0], j+sign[a][1]))
i,j = i+sign[a][0], j+sign[a][1]
a = (a+4+1)%8
break
a = (a + 1) % 8
full -= 1
if (i,j) == start:
break
border = remove_padding2D_zero(border, 1)
return points
def get_boundry_img_matrix(thresh, bval=1):
h, w = thresh.shape
thresh = padding2D_zero(thresh,1)
border = np.zeros(thresh.shape, dtype=np.uint8)
for i in range(1,h+1):
for j in range(1,w+1):
if thresh[i,j] == 0 and border[i,j] != bval:
if thresh[i,j+1] > 0:
border[i,j+1] = 1
if thresh[i+1,j] > 0:
border[i+1,j] = 1
if thresh[i,j-1] > 0:
border[i, j-1] = 1
if thresh[i - 1, j] > 0:
border[i-1, j] = 1
for i in range(1,h+1):
if thresh[i,1] > 0: border[i,1] = 1
if thresh[i,w] > 0: border[i,w] = 1
for j in range(1,w+1):
if thresh[1,j] > 0: border[1,j] = 1
if thresh[h,j] > 0: border[h,j] = 1
# thresh = remove_padding2D_zero(thresh,1)
border = remove_padding2D_zero(border,1)*bval
return border
def padding2D_zero(matrix, num=1, dtype=np.float32):
h, w = matrix.shape
matrix2 = np.concatenate((np.zeros((num, w), dtype=dtype), matrix, np.zeros((num, w), dtype=dtype)), axis=0)
matrix2 = np.concatenate((np.zeros((h + 2*num, num)), matrix2, np.zeros((h + 2*num, num))), axis=1)
return matrix2
def remove_padding2D_zero(matrix, num):
return matrix[num:-num, num:-num]
def generate_newcolorimg_by_padding(img, newh, neww):
h,w = img.shape[0:2]
# print("original size:", img.shape[0:2],)
if h > newh or w > neww:
if h > newh and w > neww:
if newh*w/h > neww:
dim = (int(neww*h/w),neww)
else:
dim = (newh, int(newh*w/h))
elif h > newh:
dim = (int(newh * w / h),newh)
else:
dim = (neww, int(neww * h / w))
img = cv2.resize(img, dim, interpolation=cv2.INTER_CUBIC)
h,w,c = img.shape
# print("after resize:",img.shape[0:2],)
h0 = newh - h
w0 = neww - w
h1 = int(h0/2)
w1 = int(w0/2)
newimg = img.copy()
if w0 != 0:
left_pad = np.zeros((h, w1, c), dtype=np.uint8)
right_pad = np.zeros((h, w0-w1, c), dtype=np.uint8)
newimg = np.concatenate((left_pad, img, right_pad), axis=1)
if h0 != 0:
top_pad = np.zeros((h1, neww, c), dtype=np.uint8)
bottom_pad = np.zeros((h0 - h1, neww, 3), dtype=np.uint8)
newimg = np.concatenate((top_pad, newimg, bottom_pad), axis=0)
# print("new size:",newimg.shape[0:2])
return newimg
def sober_operation(img):
h, w = img.shape
d = np.array([[1, 3, 1], [0, 0, 0], [-1, -3, -1]])
val=1
# d = np.array([[1, 8, 10, 8, 5], [4,10,20,10,4], [0, 0, 0,0,0], [-1, -8, -10, -8, -5], [-4,-10,-20,-10,-4]])
imgn = padding2D_zero(img, val)
gx = np.zeros(imgn.shape)
gy = np.zeros(imgn.shape)
# try:
for i in range(val, h+val):
for j in range(val, w+val):
gx[i, j] = np.sum(np.multiply(imgn[i - val:i + val+1, j - val:j + val+1], d))
gy[i, j] = np.sum(np.multiply(imgn[i - val:i + val+1, j - val:j + val+1], d.T))
# except ValueError:
# print
gx = remove_padding2D_zero(gx, val)
gy = remove_padding2D_zero(gy, val)
grad = np.sqrt(np.square(gx) + np.square(gy))
return grad.astype(np.uint8)
def edge_detection(img):
kernel = np.array([[1, 0, -1], [0, 0, 0], [-1, 0, 1]])
nimg = np.zeros(img.shape, dtype=np.uint8)
h, w = img.shape
img = padding2D_zero(img, 1)
for i in range(1, h):
for j in range(1, w):
nimg[i - 1, j - 1] = np.sum(img[i - 1:i + 2, j - 1:j + 2] * kernel)
img = remove_padding2D_zero(img, 1)
return remove_padding2D_zero(nimg, 1)
def cal_segment_area(mask):
h,w = mask.shape
s={}
for i in range(h):
for j in range(w):
if mask[i,j]:
if mask[i,j] in s:
if i < s[mask[i,j]][0]: s[mask[i, j]][0] = i
elif i > s[mask[i,j]][1]: s[mask[i, j]][1] = i
if j < s[mask[i,j]][2]: s[mask[i, j]][2] = j
elif j > s[mask[i,j]][3]: s[mask[i, j]][3] = j
if mask[i,j] not in s:
s[mask[i,j]] = [i,i,j,j]
for m in s:
s[m][1] += 1
s[m][3] += 1
return s
# def mdilute(img, kernel=(3, 3)):
# img = padding2D_zero(img, 1)
# for i in range(1, h):
# for j in range(1, w):
# nz = np.count_nonzero(img[i - 1:i + 2, j - 1:j + 2])
# if nz > 2 or (nz == 1 and img[i, j] == 0):
# img[i, j] = 255
# img = remove_padding2D_zero(img, 1)
# return img
def flood_filling(mask1):
####################################### filling color ##########################
# print("\tfilling Colour")
h, w = mask1.shape
ival=val = 3
mask1 = padding2D_zero(mask1, ival)
pcount = 0
ite=0
while 1:
count = 0
temp = mask1.copy()
for i in range(val, h + val):
for j in range(val, w + val):
if mask1[i,j] > 2:
if not np.any(mask1[i,j+1:j+val+1]):
temp[i,j+1:j+val+1] = np.ones(val)*mask1[i,j]
if not np.any(mask1[i,j-val:j]):
temp[i,j-val:j] = np.ones(val)*mask1[i,j]
if not np.any(mask1[i+1:i+val+1,j]):
temp[i+1:i+val+1,j] = np.ones(val)*mask1[i,j]
if not np.any(mask1[i-val:i,j]):
temp[i-val:i,j] = np.ones(val)*mask1[i,j]
elif mask1[i,j] == 0:
count += 1
if count == pcount:
if val == 1:
break
val -= 1
# print(val, count)
pcount = count
# display_mask('inside mask',temp)
# cv2.waitKey()
mask1 = temp.copy()
ite+=1
mask1 = remove_padding2D_zero(mask1, ival)
return mask1
def watershed(thresh):
from _8connected import get_8connected_v2
h,w = thresh.shape
val = 1
thresh = padding2D_zero(thresh, val)
pareas = 0
ite = 100
kernel = [
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],]
while ite:
# points = []
count=0
temp = thresh.copy()
for i in range(val, h + val):
for j in range(val, w + val):
if thresh[i, j] == 0 and np.any(thresh[i-val:i+val+1,j-val:j+val+1]):
temp[i-val:i+val+1,j-val:j+val+1] *= kernel
count += 1
# else:
# points.append((i,j))
if ite %2 == 0:
i = get_8connected_v2(thresh)
areas = len(set(i.reshape(i.shape[0] * i.shape[1]).tolist()))-1
# print(pareas, areas)
if count == 0 or pareas > areas:
# print(count, pareas, areas)
break
if ite %2 == 0:
pthresh = thresh.copy()
thresh = temp.copy()
pareas = areas
# cv2.imshow('watershed %d' % (ite), thresh)
# cv2.waitKey(0)
ite -= 1
cv2.destroyAllWindows()
a= remove_padding2D_zero(pthresh, val)
return a
def watershed2(thresh, mask_val):
h,w = thresh.shape
thresh = padding2D_zero(thresh, 4)
count = pcount= 0
ite = 20
while ite:
temp = thresh.copy()
for i in range(1, h + 1):
for j in range(1, w + 1):
if thresh[i, j] != mask_val and (thresh[i-1:i+2,j+4] != 0).all():
temp[i,j+1] = mask_val
if thresh[i, j] != mask_val and (thresh[i-1:i+2,j-4] != 0).all():
temp[i,j-1] = mask_val
if thresh[i, j] != mask_val and (thresh[i+4,j-1:j+2] != 0).all():
temp[i+1,j] = mask_val
if thresh[i, j] != mask_val and (thresh[i-4,j-1:j+2] != 0).all():
temp[i-1,j+1] = mask_val
else:
count+=1
thresh = temp.copy()
if count == pcount:
break
pcount = count
count = 0
thresh = remove_padding2D_zero(thresh, 4)
return thresh
def watershed3(thresh, mask_val):
h,w = thresh.shape
thresh = padding2D_zero(thresh, 2)
ite = 20
k = np.array([[1,1,1],[1,1,1],[1,1,1]])
while ite:
temp = thresh.copy()
for i in range(1, h + 1):
for j in range(1, w + 1):
if thresh[i, j] == mask_val:
temp[i-1:i+2,j-1:j+2] = mask_val*k
if np.count_nonzero((thresh[i-1:i+2,j-1:j+2] !=0) * (thresh[i-1:i+2,j-1:j+2] != mask_val)) >3 :
# temp = remove_padding2D_zero(temp, 1)
# return temp
continue
thresh = temp.copy()
# display_mask("sheded %d"%(ite),thresh)
# cv2.waitKey()
thresh = remove_padding2D_zero(thresh, 2)
return thresh
def get_mask_value_area(img, mask, mval):
h,w = img.shape
iimg = np.zeros(img.shape, dtype=np.uint8)
for i in range(h):
for j in range(w):
if mask[i,j] == mval:
iimg[i,j] = img[i,j]
return iimg
def display_mask(name, mask, sname=None):
mask_section = formMaskimg(mask)
cv2.imshow(name, mask_section)
# cv2.waitKey()
if sname:
cv2.imwrite(sname, mask_section)
return
def formMaskimg(mask):
return np.array([[color[pixel] if pixel else [0, 0, 0] for pixel in row] for row in mask], dtype = np.uint8)
def invert_gray(img):
return np.array([[255-pixel for pixel in row] for row in img], dtype=np.uint8)
def boundry_fill(mask):
h,w = mask.shape
mask= padding2D_zero(mask, 1)
bound = 1
ite = 15
while bound and ite:
bound = 0
for i in range(1, h + 1):
for j in range(1, w + 1):
if mask[i,j] == 1:
bound+=1
if mask[i,j+1] > 4:
mask[i,j] = mask[i,j+1]
elif mask[i+1,j] > 4:
mask[i,j] = mask[i+1,j]
elif mask[i,j-1] > 4:
mask[i,j] = mask[i,j-1]
elif mask[i-1,j] > 4:
mask[i,j] = mask[i-1,j]
ite-=1
mask = remove_padding2D_zero(mask, 1)
return mask
def get_files(indir):
indir = indir.rstrip('/')
flist = os.listdir(indir)
files = []
for f in flist:
f = indir + '/' + f
if os.path.isdir(f):
tfiles = get_files(f)
files += [tf for tf in tfiles]
else:
files.append(f)
return files
def otsu_threshold(gray):
h, w = gray.shape
count = {i: 0 for i in range(256)}
for i in range(h):
for j in range(w):
count[gray[i, j]] += 1
prob = np.array([count[i] / float(h * w) for i in sorted(count)])
means = np.array([prob[i] * (i + 1) for i in count])
mean = np.sum(means)
minvar = -np.inf
minT = 0
for t in range(256):
w1 = np.sum([i for i in prob[:t + 1]])
w2 = 1.0 - w1
if not w1 or not w2: continue
m1 = np.sum([i for i in means[:t + 1]])
mean1 = m1 / w1
mean2 = (mean - m1) / w2
bcvar = w1 * w2 * (mean2 - mean1) ** 2
if bcvar > minvar:
minvar = bcvar
minT = t
return minT