-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathhelper.py
executable file
·168 lines (138 loc) · 4.75 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# coding: utf-8
# YuanYang
import math
import cv2
import numpy as np
def nms(boxes, overlap_threshold, mode='Union'):
"""
non max suppression
Parameters:
----------
box: numpy array n x 5
input bbox array
overlap_threshold: float number
threshold of overlap
mode: float number
how to compute overlap ratio, 'Union' or 'Min'
Returns:
-------
index array of the selected bbox
"""
# if there are no boxes, return an empty list
if len(boxes) == 0:
return []
# if the bounding boxes integers, convert them to floats
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1, y1, x2, y2, score = [boxes[:, i] for i in range(5)]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(score)
# keep looping while some indexes still remain in the indexes list
while len(idxs) > 0:
# grab the last index in the indexes list and add the index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
inter = w * h
if mode == 'Min':
overlap = inter / np.minimum(area[i], area[idxs[:last]])
else:
overlap = inter / (area[i] + area[idxs[:last]] - inter)
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlap_threshold)[0])))
return pick
def adjust_input(in_data):
"""
adjust the input from (h, w, c) to ( 1, c, h, w) for network input
Parameters:
----------
in_data: numpy array of shape (h, w, c)
input data
Returns:
-------
out_data: numpy array of shape (1, c, h, w)
reshaped array
"""
if in_data.dtype is not np.dtype('float32'):
out_data = in_data.astype(np.float32)
else:
out_data = in_data
out_data = out_data.transpose((2,0,1))
out_data = np.expand_dims(out_data, 0)
out_data = (out_data - 127.5)*0.0078125
return out_data
def generate_bbox(map, reg, scale, threshold):
"""
generate bbox from feature map
Parameters:
----------
map: numpy array , n x m x 1
detect score for each position
reg: numpy array , n x m x 4
bbox
scale: float number
scale of this detection
threshold: float number
detect threshold
Returns:
-------
bbox array
"""
stride = 2
cellsize = 12
t_index = np.where(map>threshold)
# find nothing
if t_index[0].size == 0:
return np.array([])
dx1, dy1, dx2, dy2 = [reg[0, i, t_index[0], t_index[1]] for i in range(4)]
reg = np.array([dx1, dy1, dx2, dy2])
score = map[t_index[0], t_index[1]]
boundingbox = np.vstack([np.round((stride*t_index[1]+1)/scale),
np.round((stride*t_index[0]+1)/scale),
np.round((stride*t_index[1]+1+cellsize)/scale),
np.round((stride*t_index[0]+1+cellsize)/scale),
score,
reg])
return boundingbox.T
def detect_first_stage(img, net, scale, threshold):
"""
run PNet for first stage
Parameters:
----------
img: numpy array, bgr order
input image
scale: float number
how much should the input image scale
net: PNet
worker
Returns:
-------
total_boxes : bboxes
"""
height, width, _ = img.shape
hs = int(math.ceil(height * scale))
ws = int(math.ceil(width * scale))
im_data = cv2.resize(img, (ws,hs))
# adjust for the network input
input_buf = adjust_input(im_data)
output = net.predict(input_buf)
boxes = generate_bbox(output[1][0,1,:,:], output[0], scale, threshold)
if boxes.size == 0:
return None
# nms
pick = nms(boxes[:,0:5], 0.5, mode='Union')
boxes = boxes[pick]
return boxes
def detect_first_stage_warpper( args ):
return detect_first_stage(*args)