-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbiblio.bib
1282 lines (1150 loc) · 47.6 KB
/
biblio.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@inproceedings{defferrard2016convolutional,
title={Convolutional neural networks on graphs with fast localized spectral filtering},
author={Defferrard, Micha{\"e}l and Bresson, Xavier and Vandergheynst, Pierre},
booktitle={Advances in Neural Information Processing Systems},
pages={3844--3852},
year={2016}
}
@article{bronstein2017review,
title={Geometric deep learning: going beyond euclidean data},
author={Bronstein, Michael M and Bruna, Joan and LeCun, Yann and Szlam, Arthur and Vandergheynst, Pierre},
journal={IEEE Signal Processing Magazine},
volume={34},
number={4},
pages={18--42},
year={2017},
publisher={IEEE}
}
@article{hamilton2017review,
title={Representation learning on graphs: Methods and applications},
author={Hamilton, William L and Ying, Rex and Leskovec, Jure},
journal={IEEE Data Engineering Bulletin, arXiv:1709.05584},
archivePrefix = "arxiv",
year={2017}
}
% This one is over-selling.
@article{battaglia2018review,
title={Relational inductive biases, deep learning, and graph networks},
author={Battaglia, Peter W and Hamrick, Jessica B and Bapst, Victor and Sanchez-Gonzalez, Alvaro and Zambaldi, Vinicius and Malinowski, Mateusz and Tacchetti, Andrea and Raposo, David and Santoro, Adam and Faulkner, Ryan and others},
journal={arXiv:1806.01261},
archivePrefix = "arxiv",
year={2018}
}
@article{ktena2018metriclearning,
title={Metric learning with spectral graph convolutions on brain connectivity networks},
author={Ktena, Sofia Ira and Parisot, Sarah and Ferrante, Enzo and Rajchl, Martin and Lee, Matthew and Glocker, Ben and Rueckert, Daniel},
journal={NeuroImage},
volume={169},
pages={431--442},
year={2018},
publisher={Elsevier}
}
@inproceedings{parisot2017disease,
title={Spectral graph convolutions for population-based disease prediction},
author={Parisot, Sarah and Ktena, Sofia Ira and Ferrante, Enzo and Lee, Matthew and Moreno, Ricardo Guerrerro and Glocker, Ben and Rueckert, Daniel},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={177--185},
year={2017},
organization={Springer}
}
@article{seo2016gcrn,
title = {Structured Sequence Modeling with Graph Convolutional Recurrent Networks},
author = {Seo, Youngjoo and Defferrard, Micha\"el and Vandergheynst, Pierre and Bresson, Xavier},
journal = {arXiv:1612.07659},
archivePrefix = "arxiv",
year = {2016}
}
@article{li2018traffic,
title={Diffusion convolutional recurrent neural network: Data-driven traffic forecasting},
author={Li, Yaguang and Yu, Rose and Shahabi, Cyrus and Liu, Yan},
year={2018}
}
@inproceedings{monti2017recommendation,
title={Geometric matrix completion with recurrent multi-graph neural networks},
author={Monti, Federico and Bronstein, Michael and Bresson, Xavier},
booktitle={Advances in Neural Information Processing Systems},
pages={3697--3707},
year={2017}
}
@article{hop2018drugdesign,
title={Geometric Deep Learning Autonomously Learns Chemical Features That Outperform Those Engineered by Domain Experts},
author={Hop, Patrick and Allgood, Brandon and Yu, Jessen},
journal={Molecular pharmaceutics},
year={2018},
publisher={ACS Publications}
}
@inproceedings{qi2017pointcloudsegmentation,
title={3D Graph Neural Networks for RGBD Semantic Segmentation},
author={Qi, Xiaojuan and Liao, Renjie and Jia, Jiaya and Fidler, Sanja and Urtasun, Raquel},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={5199--5208},
year={2017}
}
@inproceedings{baque2018shape,
title={Geodesic Convolutional Shape Optimization},
author={Baqu{\'e}, Pierre and Remelli, Edoardo and Fleuret, Fran{\c{c}}ois and Fua, Pascal},
booktitle={International Conference on Machine Learning},
year={2018}
}
@article{cohen2017convolutional,
title={Convolutional networks for spherical signals},
author={Cohen, Taco and Geiger, Mario and Welling, Max},
journal={arXiv:1709.04893},
archivePrefix = "arxiv",
year={2017}
}
@article{cohen2018sphericalcnn,
title={Spherical CNNs},
author={Cohen, Taco S and Geiger, Mario and Koehler, Jonas and Welling, Max},
journal={arXiv:1801.10130},
archivePrefix = "arxiv",
year={2018}
}
@article{he2018cmbdl,
title={Analysis of Cosmic Microwave Background with Deep Learning},
author={He, Siyu and Ravanbakhsh, Siamak and Ho, Shirley},
year={2018}
}
@article{esteves2017sphericalcnn,
title={Learning SO(3) Equivariant Representations with Spherical CNNs},
author={Esteves, Carlos and Allen-Blanchette, Christine and Makadia, Ameesh and Daniilidis, Kostas},
journal={arXiv:1711.06721},
archivePrefix = "arxiv",
year={2017}
}
@article{kondor2018clebsch,
title={Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network},
author={Kondor, Risi and Lin, Zhen and Trivedi, Shubhendu},
journal={arXiv:1806.09231},
archivePrefix = "arxiv",
year={2018}
}
@inproceedings{coors2018spherenet,
author = {Benjamin Coors and Alexandru Paul Condurache and Andreas Geiger},
title = {SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images},
booktitle = {European Conference on Computer Vision},
year = {2018}
}
@inproceedings{su2017sphericalconv,
title={Learning spherical convolution for fast features from 360 imagery},
author={Su, Yu-Chuan and Grauman, Kristen},
booktitle={Advances in Neural Information Processing Systems},
pages={529--539},
year={2017}
}
@inproceedings{xiao2012recognizing,
title={Recognizing scene viewpoint using panoramic place representation},
author={Xiao, Jianxiong and Ehinger, Krista A and Oliva, Aude and Torralba, Antonio},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on},
pages={2695--2702},
year={2012},
organization={IEEE}
}
@inproceedings{zhang2014panocontext,
title={Panocontext: A whole-room 3d context model for panoramic scene understanding},
author={Zhang, Yinda and Song, Shuran and Tan, Ping and Xiao, Jianxiong},
booktitle={European Conference on Computer Vision},
pages={668--686},
year={2014},
organization={Springer}
}
@inproceedings{masci2015gcnn,
title={Geodesic convolutional neural networks on riemannian manifolds},
author={Masci, Jonathan and Boscaini, Davide and Bronstein, Michael and Vandergheynst, Pierre},
booktitle={Proceedings of the IEEE international conference on computer vision workshops},
pages={37--45},
year={2015}
}
@inproceedings{boscaini2016acnn,
title={Learning shape correspondence with anisotropic convolutional neural networks},
author={Boscaini, Davide and Masci, Jonathan and Rodol{\`a}, Emanuele and Bronstein, Michael},
booktitle={Advances in Neural Information Processing Systems},
pages={3189--3197},
year={2016}
}
@inproceedings{monti2017monet,
title={Geometric deep learning on graphs and manifolds using mixture model CNNs},
author={Monti, Federico and Boscaini, Davide and Masci, Jonathan and Rodola, Emanuele and Svoboda, Jan and Bronstein, Michael M},
booktitle={Proc. CVPR},
volume={1},
number={2},
pages={3},
year={2017}
}
@article{he2018analysis,
title={Analysis of Cosmic Microwave Background with Deep Learning},
author={He, Siyu and Ravanbakhsh, Siamak and Ho, Shirley},
year={2018}
}
@inproceedings{boomsma2017spherical,
title={Spherical convolutions and their application in molecular modelling},
author={Boomsma, Wouter and Frellsen, Jes},
booktitle={Advances in Neural Information Processing Systems},
pages={3436--3446},
year={2017}
}
@article{shuman2013emerging,
title={The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains},
author={Shuman, David I and Narang, Sunil K and Frossard, Pascal and Ortega, Antonio and Vandergheynst, Pierre},
journal={IEEE Signal Processing Magazine},
volume={30},
number={3},
pages={83--98},
year={2013},
publisher={IEEE}
}
@article{hammond2011wavelets,
title={Wavelets on graphs via spectral graph theory},
author={Hammond, David K and Vandergheynst, Pierre and Gribonval, R{\'e}mi},
journal={Applied and Computational Harmonic Analysis},
volume={30},
number={2},
pages={129--150},
year={2011},
publisher={Elsevier}
}
@inproceedings{long2015fcn,
title={Fully convolutional networks for semantic segmentation},
author={Long, Jonathan and Shelhamer, Evan and Darrell, Trevor},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={3431--3440},
year={2015}
}
@article{springenberg2014allconv,
title={Striving for simplicity: The all convolutional net},
author={Springenberg, Jost Tobias and Dosovitskiy, Alexey and Brox, Thomas and Riedmiller, Martin},
journal={arXiv preprint arXiv:1412.6806},
year={2014}
}
@article{le2018fgft,
title={approximate fast graph Fourier transforms via multi-layer sparse approximations},
author={Le Magoarou, Luc and Gribonval, R{\'e}mi and Tremblay, Nicolas},
journal={IEEE transactions on Signal and Information Processing over Networks},
volume={4},
number={2},
pages={407--420},
year={2018},
publisher={IEEE}
}
@article{gorski2005healpix,
title={HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere},
author={Gorski, Krzysztof M and Hivon, Eric and Banday, AJ and Wandelt, Benjamin D and Hansen, Frode K and Reinecke, Mstvos and Bartelmann, Matthia},
journal={The Astrophysical Journal},
volume={622},
number={2},
pages={759},
year={2005},
publisher={IOP Publishing}
}
@article{reinecke2013libsharp,
title={Libsharp--spherical harmonic transforms revisited},
author={Reinecke, Martin and Seljebotn, Dag Sverre},
journal={Astronomy \& Astrophysics},
volume={554},
pages={A112},
year={2013},
publisher={EDP Sciences}
}
@article{ronchi1996cubed,
title={The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry},
author={Ronchi, C and Iacono, R and Paolucci, Pier S},
journal={Journal of Computational Physics},
volume={124},
number={1},
pages={93--114},
year={1996},
publisher={Elsevier}
}
@inproceedings{khasanova2017graphomni,
author={P. Frossard and R. Khasanova},
booktitle={2017 IEEE International Conference on Computer Vision Workshops (ICCVW)},
title={Graph-Based Classification of Omnidirectional Images},
year={2017},
volume={},
number={},
pages={860-869},
ISSN={},
month={Oct},}
@inproceedings{khasanova2017tigranet,
title={Graph-based Isometry Invariant Representation Learning},
author={Khasanova, Renata and Frossard, Pascal},
booktitle={International Conference on Machine Learning},
pages={1847--1856},
year={2017}
}
@article{lin2013globalavgpooling,
title={Network in network},
author={Lin, Min and Chen, Qiang and Yan, Shuicheng},
journal={arXiv:1312.4400},
archivePrefix = "arxiv",
year={2013}
}
@inproceedings{li2015gatedgnn,
title={Gated graph sequence neural networks},
author={Li, Yujia and Tarlow, Daniel and Brockschmidt, Marc and Zemel, Richard},
booktitle={International Conference on Learning Representation},
year={2016}
}
@inproceedings{duvenaud2015gcn,
title={Convolutional networks on graphs for learning molecular fingerprints},
author={Duvenaud, David K and Maclaurin, Dougal and Iparraguirre, Jorge and Bombarell, Rafael and Hirzel, Timothy and Aspuru-Guzik, Al{\'a}n and Adams, Ryan P},
booktitle={Advances in neural information processing systems},
pages={2224--2232},
year={2015}
}
@inproceedings{wang2016learnhist,
title={Learnable histogram: Statistical context features for deep neural networks},
author={Wang, Zhe and Li, Hongsheng and Ouyang, Wanli and Wang, Xiaogang},
booktitle={European Conference on Computer Vision},
pages={246--262},
year={2016},
organization={Springer}
}
@inproceedings{kalchbrenner2014dcnn,
title={A Convolutional Neural Network for Modelling Sentences},
author={Kalchbrenner, Nal and Grefenstette, Edward and Blunsom, Phil},
booktitle={Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
volume={1},
pages={655--665},
year={2014}
}
@article{kondor2018equivariance,
title={On the generalization of equivariance and convolution in neural networks to the action of compact groups},
author={Kondor, Risi and Trivedi, Shubhendu},
journal={arXiv:1802.03690},
archivePrefix = "arxiv",
year={2018}
}
@article{mallat2012scattering,
title={Group invariant scattering},
author={Mallat, St{\'e}phane},
journal={Communications on Pure and Applied Mathematics},
volume={65},
number={10},
pages={1331--1398},
year={2012},
publisher={Wiley Online Library}
}
@article{lecun1998cnn,
title={Gradient-based learning applied to document recognition},
author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
journal={Proceedings of the IEEE},
volume={86},
number={11},
pages={2278--2324},
year={1998},
publisher={IEEE}
}
@inproceedings{ioffe2015batchnorm,
title={Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift},
author={Ioffe, Sergey and Szegedy, Christian},
booktitle={International Conference on Machine Learning},
pages={448--456},
year={2015}
}
@ARTICLE{chang2017curvedsky,
author = {{Chang}, C. and {Pujol}, A. and {Mawdsley}, B. and {Bacon}, D. and
{Elvin-Poole}, J. and {Melchior}, P. and {Kov{\'a}cs}, A. and
{Jain}, B. and {Leistedt}, B. and {Giannantonio}, T. and {Alarcon}, A. and
{Baxter}, E. and {Bechtol}, K. and {Becker}, M.~R. and {Benoit-L{\'e}vy}, A. and
{Bernstein}, G.~M. and {Bonnett}, C. and {Busha}, M.~T. and
{Rosell}, A.~C. and {Castander}, F.~J. and {Cawthon}, R. and
{da Costa}, L.~N. and {Davis}, C. and {De Vicente}, J. and {DeRose}, J. and
{Drlica-Wagner}, A. and {Fosalba}, P. and {Gatti}, M. and {Gaztanaga}, E. and
{Gruen}, D. and {Gschwend}, J. and {Hartley}, W.~G. and {Hoyle}, B. and
{Huff}, E.~M. and {Jarvis}, M. and {Jeffrey}, N. and {Kacprzak}, T. and
{Lin}, H. and {MacCrann}, N. and {Maia}, M.~A.~G. and {Ogando}, R.~L.~C. and
{Prat}, J. and {Rau}, M.~M. and {Rollins}, R.~P. and {Roodman}, A. and
{Rozo}, E. and {Rykoff}, E.~S. and {Samuroff}, S. and {S{\'a}nchez}, C. and
{Sevilla-Noarbe}, I. and {Sheldon}, E. and {Troxel}, M.~A. and
{Varga}, T.~N. and {Vielzeuf}, P. and {Vikram}, V. and {Wechsler}, R.~H. and
{Zuntz}, J. and {Abbott}, T.~M.~C. and {Abdalla}, F.~B. and
{Allam}, S. and {Annis}, J. and {Bertin}, E. and {Brooks}, D. and
{Buckley-Geer}, E. and {Burke}, D.~L. and {Kind}, M.~C. and
{Carretero}, J. and {Crocce}, M. and {Cunha}, C.~E. and {D'Andrea}, C.~B. and
{Desai}, S. and {Diehl}, H.~T. and {Dietrich}, J.~P. and {Doel}, P. and
{Estrada}, J. and {Neto}, A.~F. and {Fernandez}, E. and {Flaugher}, B. and
{Frieman}, J. and {Garc{\'{\i}}a-Bellido}, J. and {Gruendl}, R.~A. and
{Gutierrez}, G. and {Honscheid}, K. and {James}, D.~J. and {Jeltema}, T. and
{Johnson}, M.~W.~G. and {Johnson}, M.~D. and {Kent}, S. and
{Kirk}, D. and {Krause}, E. and {Kuehn}, K. and {Kuhlmann}, S. and
{Lahav}, O. and {Li}, T.~S. and {Lima}, M. and {March}, M. and
{Martini}, P. and {Menanteau}, F. and {Miquel}, R. and {Mohr}, J.~J. and
{Neilsen}, E. and {Nichol}, R.~C. and {Petravick}, D. and {Plazas}, A.~A. and
{Romer}, A.~K. and {Sako}, M. and {Sanchez}, E. and {Scarpine}, V. and
{Schubnell}, M. and {Smith}, M. and {Smith}, R.~C. and {Soares-Santos}, M. and
{Sobreira}, F. and {Suchyta}, E. and {Tarle}, G. and {Thomas}, D. and
{Tucker}, D.~L. and {Walker}, A.~R. and {Wester}, W. and {Zhang}, Y.
},
title = "{Dark Energy Survey Year 1 results: curved-sky weak lensing mass map}",
journal = {\mnras},
archivePrefix = "arxiv",
keywords = {gravitational lensing: weak, surveys, dark matter},
year = 2018,
month = apr,
volume = 475,
pages = {3165-3190},
adsurl = {http://adsabs.harvard.edu/abs/2018MNRAS.475.3165C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{mitra2011fastpixel,
author = {{Mitra}, S. and {Rocha}, G. and {G{\'o}rski}, K.~M. and {Huffenberger}, K.~M. and
{Eriksen}, H.~K. and {Ashdown}, M.~A.~J. and {Lawrence}, C.~R.
},
title = "{Fast Pixel Space Convolution for Cosmic Microwave Background Surveys with Asymmetric Beams and Complex Scan Strategies: FEBeCoP}",
journal = {\apjs},
archivePrefix = "arxiv",
keywords = {cosmic background radiation, methods: data analysis},
year = 2011,
month = mar,
volume = 193,
eid = {5},
pages = {5},
adsurl = {http://adsabs.harvard.edu/abs/2011ApJS..193....5M},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{wallis2017mappingdark,
author = {{Wallis}, C.~G.~R. and {McEwen}, J.~D. and {Kitching}, T.~D. and
{Leistedt}, B. and {Plouviez}, A.},
title = "{Mapping dark matter on the celestial sphere with weak gravitational lensing}",
journal = {arxiv:1703.09233},
archivePrefix = "arxiv",
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics},
year = 2017,
month = mar,
adsurl = {http://adsabs.harvard.edu/abs/2017arXiv170309233W},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{leistedt2016wavelet,
author = {{Leistedt}, B. and {McEwen}, J.~D. and {B{\"u}ttner}, M. and
{Peiris}, H.~V.},
title = "{Wavelet reconstruction of E and B modes for CMB polarization and cosmic shear analyses}",
journal = {\mnras},
archivePrefix = "arxiv",
keywords = {methods: statistical, cosmology: observations, large-scale structure of Universe},
year = 2017,
month = apr,
volume = 466,
pages = {3728-3740},
adsurl = {http://adsabs.harvard.edu/abs/2017MNRAS.466.3728L},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{planck2015cosmologicalparameters,
author = {{Planck Collaboration}},
title = "{Planck 2015 results. XIII. Cosmological parameters}",
journal = {\aap},
keywords = {cosmology: observations, cosmology: theory, cosmic background radiation,
cosmological parameters, Astrophysics - Cosmology and
Nongalactic Astrophysics},
year = 2016,
month = Sep,
volume = {594},
eid = {A13},
pages = {A13},
adsurl = {https://ui.adsabs.harvard.edu/#abs/2016A&A...594A..13P},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{HI4PI2016fullskyHI,
author = {{HI4PI Collaboration} and {Ben Bekhti}, N. and {Fl{\"o}er}, L. and
{Keller}, R. and {Kerp}, J. and {Lenz}, D. and {Winkel}, B. and
{Bailin}, J. and {Calabretta}, M.~R. and {Dedes}, L. and {Ford}, H.~A. and
{Gibson}, B.~K. and {Haud}, U. and {Janowiecki}, S. and {Kalberla}, P.~M.~W. and
{Lockman}, F.~J. and {McClure-Griffiths}, N.~M. and {Murphy}, T. and
{Nakanishi}, H. and {Pisano}, D.~J. and {Staveley-Smith}, L.
},
title = "{HI4PI: A full-sky H I survey based on EBHIS and GASS}",
journal = {\aap},
archivePrefix = "arxiv",
keywords = {surveys, ISM: atoms, techniques: spectroscopic},
year = 2016,
month = oct,
volume = 594,
eid = {A116},
pages = {A116},
adsurl = {http://adsabs.harvard.edu/abs/2016A%26A...594A.116H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{mcewen2011novelsampling,
author = {{McEwen}, J.~D. and {Wiaux}, Y.},
title = "{A Novel Sampling Theorem on the Sphere}",
journal = {IEEE Transactions on Signal Processing},
archivePrefix = "arxiv",
primaryClass = "cs.IT",
year = 2011,
month = dec,
volume = 59,
pages = {5876-5887},
adsurl = {http://adsabs.harvard.edu/abs/2011ITSP...59.5876M},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{santos2015cosmologySKA,
author = {{Santos}, M. and {Bull}, P. and {Alonso}, D. and {Camera}, S. and
{Ferreira}, P. and {Bernardi}, G. and {Maartens}, R. and {Viel}, M. and
{Villaescusa-Navarro}, F. and {Abdalla}, F.~B. and {Jarvis}, M. and
{Metcalf}, R.~B. and {Pourtsidou}, A. and {Wolz}, L.},
title = "{Cosmology from a SKA HI intensity mapping survey}",
journal = {Advancing Astrophysics with the Square Kilometre Array (AASKA14)},
archivePrefix = "arxiv",
year = 2015,
month = apr,
eid = {19},
pages = {19},
adsurl = {http://adsabs.harvard.edu/abs/2015aska.confE..19S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{komatsu2011sevenyear,
author = {{Komatsu}, E. and {Smith}, K.~M. and {Dunkley}, J. and {Bennett}, C.~L. and
{Gold}, B. and {Hinshaw}, G. and {Jarosik}, N. and {Larson}, D. and
{Nolta}, M.~R. and {Page}, L. and {Spergel}, D.~N. and {Halpern}, M. and
{Hill}, R.~S. and {Kogut}, A. and {Limon}, M. and {Meyer}, S.~S. and
{Odegard}, N. and {Tucker}, G.~S. and {Weiland}, J.~L. and {Wollack}, E. and
{Wright}, E.~L.},
title = "{Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation}",
journal = {\apjs},
archivePrefix = "arxiv",
primaryClass = "astro-ph.CO",
keywords = {cosmic background radiation, cosmology: observations, dark matter, early universe, space vehicles},
year = 2011,
month = feb,
volume = 192,
eid = {18},
pages = {18},
adsurl = {http://adsabs.harvard.edu/abs/2011ApJS..192...18K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{staggs2018recentdiscoveries,
author = {{Staggs}, S. and {Dunkley}, J. and {Page}, L.},
title = "{Recent discoveries from the cosmic microwave background: a review of recent progress}",
journal = {Reports on Progress in Physics},
year = 2018,
month = apr,
volume = 81,
number = 4,
eid = {044901},
pages = {044901},
adsurl = {http://adsabs.harvard.edu/abs/2018RPPh...81d4901S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{alam2017clusteringgalaxies,
author = {{Alam}, S. and {Ata}, M. and {Bailey}, S. and {Beutler}, F. and
{Bizyaev}, D. and {Blazek}, J.~A. and {Bolton}, A.~S. and {Brownstein}, J.~R. and
{Burden}, A. and {Chuang}, C.-H. and {Comparat}, J. and {Cuesta}, A.~J. and
{Dawson}, K.~S. and {Eisenstein}, D.~J. and {Escoffier}, S. and
{Gil-Mar{\'{\i}}n}, H. and {Grieb}, J.~N. and {Hand}, N. and
{Ho}, S. and {Kinemuchi}, K. and {Kirkby}, D. and {Kitaura}, F. and
{Malanushenko}, E. and {Malanushenko}, V. and {Maraston}, C. and
{McBride}, C.~K. and {Nichol}, R.~C. and {Olmstead}, M.~D. and
{Oravetz}, D. and {Padmanabhan}, N. and {Palanque-Delabrouille}, N. and
{Pan}, K. and {Pellejero-Ibanez}, M. and {Percival}, W.~J. and
{Petitjean}, P. and {Prada}, F. and {Price-Whelan}, A.~M. and
{Reid}, B.~A. and {Rodr{\'{\i}}guez-Torres}, S.~A. and {Roe}, N.~A. and
{Ross}, A.~J. and {Ross}, N.~P. and {Rossi}, G. and {Rubi{\~n}o-Mart{\'{\i}}n}, J.~A. and
{Saito}, S. and {Salazar-Albornoz}, S. and {Samushia}, L. and
{S{\'a}nchez}, A.~G. and {Satpathy}, S. and {Schlegel}, D.~J. and
{Schneider}, D.~P. and {Sc{\'o}ccola}, C.~G. and {Seo}, H.-J. and
{Sheldon}, E.~S. and {Simmons}, A. and {Slosar}, A. and {Strauss}, M.~A. and
{Swanson}, M.~E.~C. and {Thomas}, D. and {Tinker}, J.~L. and
{Tojeiro}, R. and {Maga{\~n}a}, M.~V. and {Vazquez}, J.~A. and
{Verde}, L. and {Wake}, D.~A. and {Wang}, Y. and {Weinberg}, D.~H. and
{White}, M. and {Wood-Vasey}, W.~M. and {Y{\`e}che}, C. and
{Zehavi}, I. and {Zhai}, Z. and {Zhao}, G.-B.},
title = "{The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample}",
journal = {\mnras},
archivePrefix = "arxiv",
keywords = {distance scale, large-scale structure of Universe, cosmology: observations},
year = 2017,
month = sep,
volume = 470,
pages = {2617-2652},
adsurl = {http://adsabs.harvard.edu/abs/2017MNRAS.470.2617A},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{troxel2017darkenergy,
author = {{Troxel}, M.~A. and {MacCrann}, N. and {Zuntz}, J. and {Eifler}, T.~F. and
{Krause}, E. and {Dodelson}, S. and {Gruen}, D. and {Blazek}, J. and
{Friedrich}, O. and {Samuroff}, S. and {Prat}, J. and {Secco}, L.~F. and
{Davis}, C. and {Fert{\'e}}, A. and {DeRose}, J. and {Alarcon}, A. and
{Amara}, A. and {Baxter}, E. and {Becker}, M.~R. and {Bernstein}, G.~M. and
{Bridle}, S.~L. and {Cawthon}, R. and {Chang}, C. and {Choi}, A. and
{De Vicente}, J. and {Drlica-Wagner}, A. and {Elvin-Poole}, J. and
{Frieman}, J. and {Gatti}, M. and {Hartley}, W.~G. and {Honscheid}, K. and
{Hoyle}, B. and {Huff}, E.~M. and {Huterer}, D. and {Jain}, B. and
{Jarvis}, M. and {Kacprzak}, T. and {Kirk}, D. and {Kokron}, N. and
{Krawiec}, C. and {Lahav}, O. and {Liddle}, A.~R. and {Peacock}, J. and
{Rau}, M.~M. and {Refregier}, A. and {Rollins}, R.~P. and {Rozo}, E. and
{Rykoff}, E.~S. and {S{\'a}nchez}, C. and {Sevilla-Noarbe}, I. and
{Sheldon}, E. and {Stebbins}, A. and {Varga}, T.~N. and {Vielzeuf}, P. and
{Wang}, M. and {Wechsler}, R.~H. and {Yanny}, B. and {Abbott}, T.~M.~C. and
{Abdalla}, F.~B. and {Allam}, S. and {Annis}, J. and {Bechtol}, K. and
{Benoit-L{\'e}vy}, A. and {Bertin}, E. and {Brooks}, D. and
{Buckley-Geer}, E. and {Burke}, D.~L. and {Carnero Rosell}, A. and
{Carrasco Kind}, M. and {Carretero}, J. and {Castander}, F.~J. and
{Crocce}, M. and {Cunha}, C.~E. and {D'Andrea}, C.~B. and {da Costa}, L.~N. and
{DePoy}, D.~L. and {Desai}, S. and {Diehl}, H.~T. and {Dietrich}, J.~P. and
{Doel}, P. and {Fernandez}, E. and {Flaugher}, B. and {Fosalba}, P. and
{Garc{\'{\i}}a-Bellido}, J. and {Gaztanaga}, E. and {Gerdes}, D.~W. and
{Giannantonio}, T. and {Goldstein}, D.~A. and {Gruendl}, R.~A. and
{Gschwend}, J. and {Gutierrez}, G. and {James}, D.~J. and {Jeltema}, T. and
{Johnson}, M.~W.~G. and {Johnson}, M.~D. and {Kent}, S. and
{Kuehn}, K. and {Kuhlmann}, S. and {Kuropatkin}, N. and {Li}, T.~S. and
{Lima}, M. and {Lin}, H. and {Maia}, M.~A.~G. and {March}, M. and
{Marshall}, J.~L. and {Martini}, P. and {Melchior}, P. and {Menanteau}, F. and
{Miquel}, R. and {Mohr}, J.~J. and {Neilsen}, E. and {Nichol}, R.~C. and
{Nord}, B. and {Petravick}, D. and {Plazas}, A.~A. and {Romer}, A.~K. and
{Roodman}, A. and {Sako}, M. and {Sanchez}, E. and {Scarpine}, V. and
{Schindler}, R. and {Schubnell}, M. and {Smith}, M. and {Smith}, R.~C. and
{Soares-Santos}, M. and {Sobreira}, F. and {Suchyta}, E. and
{Swanson}, M.~E.~C. and {Tarle}, G. and {Thomas}, D. and {Tucker}, D.~L. and
{Vikram}, V. and {Walker}, A.~R. and {Weller}, J. and {Zhang}, Y.
},
title = "{Dark Energy Survey Year 1 Results: Cosmological Constraints from Cosmic Shear}",
journal = {arxiv:1708.01538},
archivePrefix = "arxiv",
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics},
year = 2017,
month = aug,
adsurl = {http://adsabs.harvard.edu/abs/2017arXiv170801538T},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{hildebrandt2017kidscosmological,
author = {{Hildebrandt}, H. and {Viola}, M. and {Heymans}, C. and {Joudaki}, S. and
{Kuijken}, K. and {Blake}, C. and {Erben}, T. and {Joachimi}, B. and
{Klaes}, D. and {Miller}, L. and {Morrison}, C.~B. and {Nakajima}, R. and
{Verdoes Kleijn}, G. and {Amon}, A. and {Choi}, A. and {Covone}, G. and
{de Jong}, J.~T.~A. and {Dvornik}, A. and {Fenech Conti}, I. and
{Grado}, A. and {Harnois-D{\'e}raps}, J. and {Herbonnet}, R. and
{Hoekstra}, H. and {K{\"o}hlinger}, F. and {McFarland}, J. and
{Mead}, A. and {Merten}, J. and {Napolitano}, N. and {Peacock}, J.~A. and
{Radovich}, M. and {Schneider}, P. and {Simon}, P. and {Valentijn}, E.~A. and
{van den Busch}, J.~L. and {van Uitert}, E. and {Van Waerbeke}, L.
},
title = "{KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing}",
journal = {\mnras},
archivePrefix = "arxiv",
keywords = {gravitational lensing: weak, surveys, galaxies: photometry, cosmology: observations},
year = 2017,
month = feb,
volume = 465,
pages = {1454-1498},
adsurl = {http://adsabs.harvard.edu/abs/2017MNRAS.465.1454H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{koehlinger2017kidstomographic,
author = {{K{\"o}hlinger}, F. and {Viola}, M. and {Joachimi}, B. and {Hoekstra}, H. and
{van Uitert}, E. and {Hildebrandt}, H. and {Choi}, A. and {Erben}, T. and
{Heymans}, C. and {Joudaki}, S. and {Klaes}, D. and {Kuijken}, K. and
{Merten}, J. and {Miller}, L. and {Schneider}, P. and {Valentijn}, E.~A.
},
title = "{KiDS-450: the tomographic weak lensing power spectrum and constraints on cosmological parameters}",
journal = {\mnras},
archivePrefix = "arxiv",
keywords = {gravitational lensing: weak, cosmological parameters, cosmology: observations, large-scale structure of Universe},
year = 2017,
month = nov,
volume = 471,
pages = {4412-4435},
adsurl = {http://adsabs.harvard.edu/abs/2017MNRAS.471.4412K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{leistedt2012exactwavelets,
author = {{Leistedt}, B. and {McEwen}, J.~D.},
title = "{Exact Wavelets on the Ball}",
journal = {IEEE Transactions on Signal Processing},
archivePrefix = "arxiv",
primaryClass = "cs.IT",
year = 2012,
month = dec,
volume = 60,
pages = {6257-6269},
adsurl = {http://adsabs.harvard.edu/abs/2012ITSP...60.6257L},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{schmelze2017cosmologicalmodel,
author = {{Schmelzle}, J. and {Lucchi}, A. and {Kacprzak}, T. and {Amara}, A. and
{Sgier}, R. and {R{\'e}fr{\'e}gier}, A. and {Hofmann}, T.},
title = "{Cosmological model discrimination with Deep Learning}",
journal = {arxiv:1707.05167},
archivePrefix = "arxiv",
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics, Statistics - Machine Learning},
year = 2017,
month = jul,
adsurl = {http://adsabs.harvard.edu/abs/2017arXiv170705167S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{luciesmith2018machinelearning,
author = {{Lucie-Smith}, L. and {Peiris}, H.~V. and {Pontzen}, A. and
{Lochner}, M.},
title = "{Machine learning cosmological structure formation}",
journal = {\mnras},
archivePrefix = "arxiv",
keywords = {methods: statistical, galaxies: haloes, dark matter, large-scale structure of Universe},
year = 2018,
month = sep,
volume = 479,
pages = {3405-3414},
adsurl = {http://adsabs.harvard.edu/abs/2018MNRAS.479.3405L},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{gupta2018nongaussianinformation,
author = {{Gupta}, A. and {Matilla}, J.~M.~Z. and {Hsu}, D. and {Haiman}, Z.
},
title = "{Non-Gaussian information from weak lensing data via deep learning}",
journal = {\prd},
archivePrefix = "arxiv",
year = 2018,
month = may,
volume = 97,
number = 10,
eid = {103515},
pages = {103515},
adsurl = {http://adsabs.harvard.edu/abs/2018PhRvD..97j3515G},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{gillet2018deeplearning,
author = {{Gillet}, N. and {Mesinger}, A. and {Greig}, B. and {Liu}, A. and
{Ucci}, G.},
title = "{Deep learning from 21-cm images of the Cosmic Dawn}",
journal = {arxiv:1805.02699},
archivePrefix = "arxiv",
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics},
year = 2018,
month = may,
adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180502699G},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{aragoncalvo2018classyfyinglarge,
author = {{Aragon-Calvo}, M.~A.},
title = "{Classifying the Large Scale Structure of the Universe with Deep Neural Networks}",
journal = {arXiv:1804.00816},
archivePrefix = "arxiv",
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics},
year = 2018,
month = apr,
adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180400816A},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@INPROCEEDINGS{hassan2018reionizationmodels,
author = {{Hassan}, S. and {Liu}, A. and {Kohn}, S. and {Aguirre}, J.~E. and
{La Plante}, P. and {Lidz}, A.},
title = "{Reionization Models Classifier using 21cm Map Deep Learning}",
keywords = {methods: data analysis, galaxies: intergalactic medium, abundances, formation, evolution, quasars: general, cosmology: early universe},
booktitle = {IAU Symposium},
year = 2018,
series = {IAU Symposium},
volume = 333,
archivePrefix = "arxiv",
editor = {{Jeli{\'c}}, V. and {van der Hulst}, T.},
month = may,
pages = {47-51},
adsurl = {http://adsabs.harvard.edu/abs/2018IAUS..333...47H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{ciuca2017cnnstring,
author = {{Ciuca}, R. and {Hern{\'a}ndez}, O.~F. and {Wolman}, M.},
title = "{A Convolutional Neural Network For Cosmic String Detection in CMB Temperature Maps}",
journal = {arxiv:1708.08878},
archivePrefix = "arxiv",
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics, General Relativity and Quantum Cosmology, High Energy Physics - Phenomenology, High Energy Physics - Theory},
year = 2017,
month = aug,
adsurl = {http://adsabs.harvard.edu/abs/2017arXiv170808878C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@misc{abadi2016tensorflow,
title={ {TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems},
url={https://www.tensorflow.org/},
note={Software available from tensorflow.org},
author={
Mart\'{\i}n~Abadi and
Ashish~Agarwal and
Paul~Barham and
Eugene~Brevdo and
Zhifeng~Chen and
Craig~Citro and
Greg~S.~Corrado and
Andy~Davis and
Jeffrey~Dean and
Matthieu~Devin and
Sanjay~Ghemawat and
Ian~Goodfellow and
Andrew~Harp and
Geoffrey~Irving and
Michael~Isard and
Yangqing Jia and
Rafal~Jozefowicz and
Lukasz~Kaiser and
Manjunath~Kudlur and
Josh~Levenberg and
Dandelion~Man\'{e} and
Rajat~Monga and
Sherry~Moore and
Derek~Murray and
Chris~Olah and
Mike~Schuster and
Jonathon~Shlens and
Benoit~Steiner and
Ilya~Sutskever and
Kunal~Talwar and
Paul~Tucker and
Vincent~Vanhoucke and
Vijay~Vasudevan and
Fernanda~Vi\'{e}gas and
Oriol~Vinyals and
Pete~Warden and
Martin~Wattenberg and
Martin~Wicke and
Yuan~Yu and
Xiaoqiang~Zheng},
year={2015},
}
@misc{pygsp,
title = {PyGSP: Graph Signal Processing in Python},
author = {Defferrard, Micha\"el and Martin, Lionel and Pena, Rodrigo and Perraudin, Nathana\"el},
doi = {10.5281/zenodo.1003157},
url = {https://github.com/epfl-lts2/pygsp/},
}
@ARTICLE{crittenden1998exactlyazimuthal,
author = {{Crittenden}, R.~G. and {Turok}, N.~G.},
title = "{Exactly Azimuthal Pixelizations of the Sky}",
journal = {arxiv:9806374},
archivePrefix = "arxiv",
keywords = {Astrophysics},
year = 1998,
month = jun,
adsurl = {http://adsabs.harvard.edu/abs/1998astro.ph..6374C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{sgier2018fastgeneration,
author = {{Sgier}, R. and {R{\'e}fr{\'e}gier}, A. and {Amara}, A. and
{Nicola}, A.},
title = "{Fast Generation of Covariance Matrices for Weak Lensing}",
journal = {arxiv:1801.05745},
archivePrefix = "arxiv",
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics},
year = 2018,
month = jan,
adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180105745S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{howlett2015lpicola,
author = {{Howlett}, C. and {Manera}, M. and {Percival}, W.~J.},
title = "{L-PICOLA: A parallel code for fast dark matter simulation}",
journal = {Astronomy and Computing},
archivePrefix = "arxiv",
keywords = {Large-scale structure of universe, Methods: numerical},
year = 2015,
month = sep,
volume = 12,
pages = {109-126},
adsurl = {http://adsabs.harvard.edu/abs/2015A%26C....12..109H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{bartelman2010gravitationallensing,
author = {{Bartelmann}, M.},
title = "{Gravitational lensing}",
journal = {Classical and Quantum Gravity},
archivePrefix = "arxiv",
year = 2010,
month = dec,
volume = 27,
number = 23,
eid = {233001},
pages = {233001},
adsurl = {http://adsabs.harvard.edu/abs/2010CQGra..27w3001B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{patton2017cosmologicalconstraints,
author = {{Patton}, K. and {Blazek}, J. and {Honscheid}, K. and {Huff}, E. and
{Melchior}, P. and {Ross}, A.~J. and {Suchyta}, E.},
title = "{Cosmological constraints from the convergence 1-point probability distribution}",
journal = {\mnras},
archivePrefix = "arxiv",
keywords = {gravitational lensing: weak, cosmological parameters, large-scale structure of Universe, cosmology: observations},
year = 2017,
month = nov,
volume = 472,
pages = {439-446},
adsurl = {http://adsabs.harvard.edu/abs/2017MNRAS.472..439P},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{mohlenkamp1999fast,
title={A fast transform for spherical harmonics},
author={Mohlenkamp, Martin J},
journal={Journal of Fourier analysis and applications},
volume={5},
number={2-3},
pages={159--184},
year={1999},
publisher={Springer}
}
@article{rokhlin2006fast,
title={Fast algorithms for spherical harmonic expansions},
author={Rokhlin, Vladimir and Tygert, Mark},
journal={SIAM Journal on Scientific Computing},
volume={27},
number={6},
pages={1903--1928},
year={2006},
publisher={SIAM}
}
@article{perraudin2018global,
title={Global and local uncertainty principles for signals on graphs},
volume={7},
journal={APSIPA Transactions on Signal and Information Processing},
publisher={Cambridge University Press}, author={Perraudin, Nathanael and Ricaud, Benjamin and Shuman, David I and Vandergheynst, Pierre},
year={2018}
}