-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathdata_utils.py
258 lines (212 loc) · 9.24 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import string
import numpy as np
import librosa
import soundfile as sf
from textgrids import TextGrid
import jiwer
from unidecode import unidecode
import torch
import matplotlib.pyplot as plt
from absl import flags
FLAGS = flags.FLAGS
flags.DEFINE_string('normalizers_file', 'normalizers.pkl', 'file with pickled feature normalizers')
phoneme_inventory = ['aa','ae','ah','ao','aw','ax','axr','ay','b','ch','d','dh','dx','eh','el','em','en','er','ey','f','g','hh','hv','ih','iy','jh','k','l','m','n','nx','ng','ow','oy','p','r','s','sh','t','th','uh','uw','v','w','y','z','zh','sil']
def normalize_volume(audio):
rms = librosa.feature.rms(y=audio)
max_rms = rms.max() + 0.01
target_rms = 0.2
audio = audio * (target_rms/max_rms)
max_val = np.abs(audio).max()
if max_val > 1.0: # this shouldn't happen too often with the target_rms of 0.2
audio = audio / max_val
return audio
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global mel_basis, hann_window
if fmax not in mel_basis:
mel = librosa.filters.mel(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
spec = torch.view_as_real(spec)
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
spec = spectral_normalize_torch(spec)
return spec
def load_audio(filename, start=None, end=None, max_frames=None, renormalize_volume=False):
audio, r = sf.read(filename)
if len(audio.shape) > 1:
audio = audio[:,0] # select first channel of stero audio
if start is not None or end is not None:
audio = audio[start:end]
if renormalize_volume:
audio = normalize_volume(audio)
if r == 16000:
audio = librosa.resample(audio, orig_sr=16000, target_sr=22050)
else:
assert r == 22050
audio = np.clip(audio, -1, 1) # because resampling sometimes pushes things out of range
pytorch_mspec = mel_spectrogram(torch.tensor(audio, dtype=torch.float32).unsqueeze(0), 1024, 80, 22050, 256, 1024, 0, 8000, center=False)
mspec = pytorch_mspec.squeeze(0).T.numpy()
if max_frames is not None and mspec.shape[0] > max_frames:
mspec = mspec[:max_frames,:]
return mspec
def double_average(x):
assert len(x.shape) == 1
f = np.ones(9)/9.0
v = np.convolve(x, f, mode='same')
w = np.convolve(v, f, mode='same')
return w
def get_emg_features(emg_data, debug=False):
xs = emg_data - emg_data.mean(axis=0, keepdims=True)
frame_features = []
for i in range(emg_data.shape[1]):
x = xs[:,i]
w = double_average(x)
p = x - w
r = np.abs(p)
w_h = librosa.util.frame(w, frame_length=16, hop_length=6).mean(axis=0)
p_w = librosa.feature.rms(y=w, frame_length=16, hop_length=6, center=False)
p_w = np.squeeze(p_w, 0)
p_r = librosa.feature.rms(y=r, frame_length=16, hop_length=6, center=False)
p_r = np.squeeze(p_r, 0)
z_p = librosa.feature.zero_crossing_rate(p, frame_length=16, hop_length=6, center=False)
z_p = np.squeeze(z_p, 0)
r_h = librosa.util.frame(r, frame_length=16, hop_length=6).mean(axis=0)
s = abs(librosa.stft(np.ascontiguousarray(x), n_fft=16, hop_length=6, center=False))
# s has feature dimension first and time second
if debug:
plt.subplot(7,1,1)
plt.plot(x)
plt.subplot(7,1,2)
plt.plot(w_h)
plt.subplot(7,1,3)
plt.plot(p_w)
plt.subplot(7,1,4)
plt.plot(p_r)
plt.subplot(7,1,5)
plt.plot(z_p)
plt.subplot(7,1,6)
plt.plot(r_h)
plt.subplot(7,1,7)
plt.imshow(s, origin='lower', aspect='auto', interpolation='nearest')
plt.show()
frame_features.append(np.stack([w_h, p_w, p_r, z_p, r_h], axis=1))
frame_features.append(s.T)
frame_features = np.concatenate(frame_features, axis=1)
return frame_features.astype(np.float32)
class FeatureNormalizer(object):
def __init__(self, feature_samples, share_scale=False):
""" features_samples should be list of 2d matrices with dimension (time, feature) """
feature_samples = np.concatenate(feature_samples, axis=0)
self.feature_means = feature_samples.mean(axis=0, keepdims=True)
if share_scale:
self.feature_stddevs = feature_samples.std()
else:
self.feature_stddevs = feature_samples.std(axis=0, keepdims=True)
def normalize(self, sample):
sample -= self.feature_means
sample /= self.feature_stddevs
return sample
def inverse(self, sample):
sample = sample * self.feature_stddevs
sample = sample + self.feature_means
return sample
def combine_fixed_length(tensor_list, length):
total_length = sum(t.size(0) for t in tensor_list)
if total_length % length != 0:
pad_length = length - (total_length % length)
tensor_list = list(tensor_list) # copy
tensor_list.append(torch.zeros(pad_length,*tensor_list[0].size()[1:], dtype=tensor_list[0].dtype, device=tensor_list[0].device))
total_length += pad_length
tensor = torch.cat(tensor_list, 0)
n = total_length // length
return tensor.view(n, length, *tensor.size()[1:])
def decollate_tensor(tensor, lengths):
b, s, d = tensor.size()
tensor = tensor.view(b*s, d)
results = []
idx = 0
for length in lengths:
assert idx + length <= b * s
results.append(tensor[idx:idx+length])
idx += length
return results
def splice_audio(chunks, overlap):
chunks = [c.copy() for c in chunks] # copy so we can modify in place
assert np.all([c.shape[0]>=overlap for c in chunks])
result_len = sum(c.shape[0] for c in chunks) - overlap*(len(chunks)-1)
result = np.zeros(result_len, dtype=chunks[0].dtype)
ramp_up = np.linspace(0,1,overlap)
ramp_down = np.linspace(1,0,overlap)
i = 0
for chunk in chunks:
l = chunk.shape[0]
# note: this will also fade the beginning and end of the result
chunk[:overlap] *= ramp_up
chunk[-overlap:] *= ramp_down
result[i:i+l] += chunk
i += l-overlap
return result
def print_confusion(confusion_mat, n=10):
# axes are (pred, target)
target_counts = confusion_mat.sum(0) + 1e-4
aslist = []
for p1 in range(len(phoneme_inventory)):
for p2 in range(p1):
if p1 != p2:
aslist.append(((confusion_mat[p1,p2]+confusion_mat[p2,p1])/(target_counts[p1]+target_counts[p2]), p1, p2))
aslist.sort()
aslist = aslist[-n:]
max_val = aslist[-1][0]
min_val = aslist[0][0]
val_range = max_val - min_val
print('Common confusions (confusion, accuracy)')
for v, p1, p2 in aslist:
p1s = phoneme_inventory[p1]
p2s = phoneme_inventory[p2]
print(f'{p1s} {p2s} {v*100:.1f} {(confusion_mat[p1,p1]+confusion_mat[p2,p2])/(target_counts[p1]+target_counts[p2])*100:.1f}')
def read_phonemes(textgrid_fname, max_len=None):
tg = TextGrid(textgrid_fname)
phone_ids = np.zeros(int(tg['phones'][-1].xmax*86.133)+1, dtype=np.int64)
phone_ids[:] = -1
phone_ids[-1] = phoneme_inventory.index('sil') # make sure list is long enough to cover full length of original sequence
for interval in tg['phones']:
phone = interval.text.lower()
if phone in ['', 'sp', 'spn']:
phone = 'sil'
if phone[-1] in string.digits:
phone = phone[:-1]
ph_id = phoneme_inventory.index(phone)
phone_ids[int(interval.xmin*86.133):int(interval.xmax*86.133)] = ph_id
assert (phone_ids >= 0).all(), 'missing aligned phones'
if max_len is not None:
phone_ids = phone_ids[:max_len]
assert phone_ids.shape[0] == max_len
return phone_ids
class TextTransform(object):
def __init__(self):
self.transformation = jiwer.Compose([jiwer.RemovePunctuation(), jiwer.ToLowerCase()])
self.chars = string.ascii_lowercase+string.digits+' '
def clean_text(self, text):
text = unidecode(text)
text = self.transformation(text)
return text
def text_to_int(self, text):
text = self.clean_text(text)
return [self.chars.index(c) for c in text]
def int_to_text(self, ints):
return ''.join(self.chars[i] for i in ints)