-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment.R
206 lines (182 loc) · 9.49 KB
/
experiment.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
## Citation----------------------
# Matsuyoshi D, Watanabe K (submitted) People have modest, not good,
# insight into their face recognition ability:
# a comparison between developmental prosopagnosia questionnaires.
library("dplyr")
library("ggplot2")
library("psych")
library("cocor")
library("MBESS")
library("rgr")
library("coin")
colorset <- c("#FF0000","#0000FF")
## Load DATA ----------------------
qdata <- read.table("facememory_questionnaire.data",header=T)
bdata <- read.table("facememory_behavior.data",header=T)
## Preprocessing ----
bdata$mean <- apply(bdata[,c("Stage1","Stage2","Stage3")],1,sum)/72
# Reverse items
HKcols = c("HK1", "HK4", "HK6", "HK7", "HK8", "HK9", "HK10", "HK12", "CONF")
qdata[,HKcols] <- 6 - qdata[,HKcols]
PIcols = c("PI8", "PI9", "PI13", "PI17", "PI19")
qdata[,PIcols] <- 6 - qdata[,PIcols]
# Create HK summary statistics
qdata$HKDP <- apply(qdata[,paste("HK",c(1:9,14:15),sep="")],1,sum)
qdata$HKDummy <- apply(qdata[paste("HK",c(10:13),sep="")],1,sum)
qdata$HKall <- apply(qdata[,paste("HK",1:15,sep="")],1,sum)
# Create PIDP summary statistics
qdata$PIDP <- apply(qdata[,paste("PI",1:20,sep="")],1,sum)
qdata$All <- qdata$HKDP + qdata$PIDP + qdata$CONF
## Data summary ----
summary(qdata)
summary(qdata[qdata$Sex=="Female",])
summary(qdata[qdata$Sex=="Male",])
psych::describe(qdata)
psych::describeBy(qdata,qdata$Sex)
summary(bdata)
summary(bdata[bdata$Sex=="Female",])
summary(bdata[bdata$Sex=="Male",])
psych::describe(bdata)
psych::describeBy(bdata,bdata$Sex)
## Correlations ----
# Pearson
cor.pears <- cor.test(qdata$PIDP,qdata$HKDP)
cor.pears
cor.pears.HK <- cor.test(qdata$HKDP,bdata$mean)
cor.pears.HK
cor.pears.PI <- cor.test(qdata$PIDP,bdata$mean)
cor.pears.PI
# Spearman
cor.spear.HK <- cor.test(qdata$HKDP,bdata$mean,method="spearman")
cor.spear.HK
cor.spear.PI <- cor.test(qdata$PIDP,bdata$mean,method="spearman")
cor.spear.PI
# All data
cor.pears.All <- cor.test(qdata$All,bdata$mean)
cor.pears.All
cor.spear.All <- cor.test(qdata$All,bdata$mean,method="spearman")
cor.spear.All
cor.spear.HK$conf.int[1] <- tanh(atanh(cor.spear.HK$estimate) - qt(0.95/2 + .5, length(qdata$HKDP)) * 1/sqrt(length(qdata$HKDP) - 3) )
cor.spear.HK$conf.int[2] <- tanh(atanh(cor.spear.HK$estimate) + qt(0.95/2 + .5, length(qdata$HKDP)) * 1/sqrt(length(qdata$HKDP) - 3) )
cor.spear.PI$conf.int[1] <- tanh(atanh(cor.spear.PI$estimate) - qt(0.95/2 + .5, length(qdata$PIDP)) * 1/sqrt(length(qdata$PIDP) - 3) )
cor.spear.PI$conf.int[2] <- tanh(atanh(cor.spear.PI$estimate) + qt(0.95/2 + .5, length(qdata$PIDP)) * 1/sqrt(length(qdata$PIDP) - 3) )
coin::spearman_test(qdata$HKDP ~ bdata$mean, distribution = "approximate")
coin::spearman_test(qdata$PIDP ~ bdata$mean, distribution = "approximate")
## MISC ----
# Correlation with all items
cor.test(qdata$All,bdata$mean)
# Correlation with dummy items
cor.test(qdata$HKDummy,bdata$mean)
cor.test(qdata$HK10,bdata$mean)
cor.test(qdata$HK11,bdata$mean)
cor.test(qdata$HK12,bdata$mean)
cor.test(qdata$HK13,bdata$mean)
## HK11 ggplot ----------------------
QBdata <- data.frame(HKDP=qdata$HKDP,PIDP=qdata$PIDP,Sex=qdata$Sex,Behavior=bdata$mean*100)
cortextHK <- sprintf("r = %.4f [95%% CI: %.4f, %.4f]\n(p = %g)\n%s = %.4f [95%% CI: %.4f, %.4f]\n(p = %g)",cor.pears.HK$estimate,cor.pears.HK$conf.int[1],cor.pears.HK$conf.int[2],cor.pears.HK$p.value,paste("\u03C1"),cor.spear.HK$estimate,cor.spear.HK$conf.int[1],cor.spear.HK$conf.int[2],cor.spear.HK$p.value,paste("\u03C1"))
theme0 <- function(...) theme( legend.position = "none",
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(0,"null"),
axis.ticks = element_blank(),
axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.border=element_rect(color=NA),...)
hk_p1A <- ggplot(QBdata, aes(x=HKDP, y=Behavior,colour=Sex)) +
geom_point(shape=16,size=3,alpha=1) +
# plot a regression line
geom_smooth(method=lm, se=FALSE) +
# scale settings
scale_x_continuous("HK11", expand=c(0,0), limits = c(10, 45), breaks=seq(10, 45, by=10)) +
scale_y_continuous("Face Memory (%)", expand=c(0,0), limits = c(40, 100), breaks=seq(40, 100, by=10)) +
scale_colour_manual(values=colorset) +
scale_fill_manual(values=colorset) +
# theme settings
#coord_fixed() +
#geom_abline(slope=slp,intercept=int,color="black",size=1) + #PCA
#geom_abline(slope=result$coefficients[2],intercept=result$coefficients[1],color="black",size=1) + #LM
annotate("text", x=-Inf,y=Inf,hjust=-.2,vjust=1.1, label=cortextHK) +
theme_bw() +
theme(legend.position="none",plot.margin=unit(c(0,0,0,0),"points")) +
theme(plot.background = element_blank(),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_rect(),
axis.title.x = element_text(face="bold", size=12),
axis.title.y = element_text(face="bold", size=12, angle=90),
axis.text.y=element_text(angle=0, hjust=0.5), # rotate the Y axis text anticlockwise 90 degrees, and centre it (0 left, 0.5 centre, 1 right)
legend.title = element_blank(),
legend.key.size = unit(1.5, "lines"),
legend.position = c(0.85,0.15),
legend.key = element_blank() # provides a border to the coloured squares in the legend
)
hk_p1A
## PI20 ggplot ----------------------
cortextPI <- sprintf("r = %.4f [95%% CI: %.4f, %.4f]\n(p = %g)\n%s = %.4f [95%% CI: %.4f, %.4f]\n(p = %g)",cor.pears.PI$estimate,cor.pears.PI$conf.int[1],cor.pears.PI$conf.int[2],cor.pears.PI$p.value,paste("\u03C1"),cor.spear.PI$estimate,cor.spear.PI$conf.int[1],cor.spear.PI$conf.int[2],cor.spear.PI$p.value,paste("\u03C1"))
pi_p1A <- ggplot(QBdata, aes(x=PIDP, y=Behavior,colour=Sex)) +
geom_point(shape=16,size=3,alpha=1) +
# plot a regression line
geom_smooth(method=lm, se=FALSE) +
# scale settings
scale_x_continuous("PI20", expand=c(0,0), limits = c(25, 85), breaks=seq(30, 80, by=10)) +
scale_y_continuous("Face Memory (%)", expand=c(0,0), limits = c(40, 100), breaks=seq(40, 100, by=10)) +
scale_colour_manual(values=colorset) +
scale_fill_manual(values=colorset) +
# theme settings
#coord_fixed() +
#geom_abline(slope=slp,intercept=int,color="black",size=1) + #PCA
#geom_abline(slope=result$coefficients[2],intercept=result$coefficients[1],color="black",size=1) + #LM
annotate("text", x=-Inf,y=Inf,hjust=-.2,vjust=1.1, label=cortextPI) +
theme_bw() +
theme(legend.position="none",plot.margin=unit(c(0,0,0,0),"points")) +
theme(plot.background = element_blank(),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_rect(),
axis.title.x = element_text(face="bold", size=12),
axis.title.y = element_text(face="bold", size=12, angle=90),
axis.text.y=element_text(angle=0, hjust=0.5), # rotate the Y axis text anticlockwise 90 degrees, and centre it (0 left, 0.5 centre, 1 right)
legend.title = element_blank(),
legend.key.size = unit(1.5, "lines"),
legend.position = c(0.85,0.15),
legend.key = element_blank() # provides a border to the coloured squares in the legend
)
pi_p1A
## Sex differences in behavior ----
psych::describe(QBdata)
psych::describeBy(QBdata,QBdata$Sex)
t.test(QBdata$HKDP[qdata$Sex=="Female"],QBdata$HKDP[qdata$Sex=="Male"],var.equal = T)
t.test(QBdata$PIDP[qdata$Sex=="Female"],QBdata$PIDP[qdata$Sex=="Male"],var.equal = T)
x <- QBdata$Behavior[qdata$Sex=="Female"]
y <- QBdata$Behavior[qdata$Sex=="Male"]
t.test(x,y,var.equal = T)
md <- mean(x,na.rm=T) - mean(y,na.rm=T)
diff_sd <- sqrt(((length(x)-1)*var(x,na.rm=T)+(length(y)-1)*var(y,na.rm=T))/(length(x)+length(y)-2)) ## denominator -2
smd <- md/diff_sd # d
MBESS::ci.smd(smd=smd,n.1=length(x), n.2=length(y))
rgr::gx.ks.test(QBdata$HKDP[qdata$Sex=="Female"],QBdata$HKDP[qdata$Sex=="Male"])
rgr::gx.ks.test(QBdata$PIDP[qdata$Sex=="Female"],QBdata$PIDP[qdata$Sex=="Male"])
rgr::gx.ks.test(QBdata$Behavior[qdata$Sex=="Female"],QBdata$Behavior[qdata$Sex=="Male"])
## Questionnaire difference (HK11 vs PI20) in behavior-score correlation
cocor::cocor.dep.groups.overlap(cor(bdata$mean,qdata$PIDP),
cor(bdata$mean,qdata$HKDP),
cor(qdata$PIDP,qdata$HKDP),
length(bdata$mean))
## Sex differences in the score-behavior correlation
# HK
cor.test(qdata$HKDP[qdata$Sex=="Female"],bdata$mean[qdata$Sex=="Female"])
cor.test(qdata$HKDP[qdata$Sex=="Male"],bdata$mean[qdata$Sex=="Male"])
cocor::cocor.indep.groups(cor(qdata$HKDP[qdata$Sex=="Female"],bdata$mean[qdata$Sex=="Female"]),
cor(qdata$HKDP[qdata$Sex=="Male"],bdata$mean[qdata$Sex=="Male"]),
sum(qdata$Sex=="Female"),sum(qdata$Sex=="Male"))
# PI
cor.test(qdata$PIDP[qdata$Sex=="Female"],bdata$mean[qdata$Sex=="Female"])
cor.test(qdata$PIDP[qdata$Sex=="Male"],bdata$mean[qdata$Sex=="Male"])
cocor::cocor.indep.groups(cor(qdata$PIDP[qdata$Sex=="Female"],bdata$mean[qdata$Sex=="Female"]),
cor(qdata$PIDP[qdata$Sex=="Male"],bdata$mean[qdata$Sex=="Male"]),
sum(qdata$Sex=="Female"),sum(qdata$Sex=="Male"))