-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
executable file
·241 lines (196 loc) · 7.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import torch
import math as m
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import DataLoader
# from torch.utils.tensorboard import SummaryWriter
import wandb as logger
from tqdm import tqdm
from omegaconf import OmegaConf
from hifiapi import HIFIapi
from fs_two.utils.model import get_model, get_param_num
from fs_two.utils.tools import to_device, log, synth_one_sample
from fs_two.model import FastSpeech2Loss
from fs_two.dataset import Dataset
from fs_two.evaluate import evaluate
def main_train_step(
model,
batch,
step,
optimizer,
cfg,
Loss,
):
grad_acc_step = cfg.train_config["optimizer"]["grad_acc_step"]
grad_clip_thresh = cfg.train_config["optimizer"]["grad_clip_thresh"]
output = model(*(batch[2:]))
losses = Loss(batch, output)
total_loss = losses[0]
# Backward
total_loss = total_loss / grad_acc_step
total_loss.backward()
losses = [l.item() / grad_acc_step for l in losses[1:]]
if step % grad_acc_step == 0:
# Clipping gradients to avoid gradient explosion
# Update weights
# optimizer.update_lr()
nn.utils.clip_grad_norm_(model.parameters(), grad_clip_thresh)
optimizer.step_and_update_lr()
optimizer.zero_grad()
return losses, output
def train_logger(losses, step, total_step, outer_bar, log, logger):
losses = [sum(losses)] + losses
message1 = "Step {}/{}, ".format(step, total_step)
message2 = """Total Loss: {:.4f},
Mel Loss: {:.4f},
Pitch Loss: {:.4f},
Energy Loss: {:.4f},
Duration Loss: {:.4f}
Mean pitch: {:.4f}
Std pitch: {:.4f}
""".format(
*losses
)
outer_bar.write(message1 + message2)
log(logger, "train", step, losses=losses)
def main(cfg):
print("Prepare training ...")
device = cfg.gpu
# Get dataset
dataset = Dataset(
"train.txt",
cfg.preprocess_config,
cfg.train_config,
sort=True,
drop_last=True,
)
batch_size = cfg.train_config["optimizer"]["batch_size"]
group_size = 4 # Set this larger than 1 to enable sorting in Dataset
assert batch_size * group_size < len(dataset)
loader = DataLoader(
dataset,
batch_size=batch_size * group_size,
shuffle=True,
collate_fn=dataset.collate_fn,
num_workers=4,
)
# Prepare model
model, optimizer = get_model(cfg, device, train=True)
# model = nn.DataParallel(model)
num_param = get_param_num(model)
Loss = FastSpeech2Loss(cfg.preprocess_config, cfg.model_config)
print("Number of FastSpeech2 Parameters:", num_param)
# Load vocoder
vocoder = HIFIapi(cfg, cfg.gpu)
# Init logger
for p in cfg.train_config["path"].values():
os.makedirs(p, exist_ok=True)
os.environ["WANDB_API_KEY"] = cfg.logger.wandb_key
if cfg.logger.offline:
os.environ["WANDB_MODE"] = "offline"
logger.init(name=cfg.exp_name, project="FS2", reinit=True)
# Training
step = cfg.tts.restore_step + 1
epoch = 1
total_step = cfg.train_config["step"]["total_step"]
outer_bar = tqdm(total=total_step, desc="Training", position=0)
outer_bar.n = cfg.tts.restore_step
outer_bar.update()
if cfg.run_debug_eval:
print("RUN SANITY CHECK EVAL:")
message = evaluate(model, 0, cfg, logger, "val", vocoder, cfg.gpu)
while True:
inner_bar = tqdm(
total=len(loader), desc="Epoch {}".format(epoch), position=1
)
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device)
# Forward
losses, output = main_train_step(
model,
batch,
step,
optimizer,
cfg,
Loss,
)
if step % cfg.train_config.step.log_step == 0:
train_logger(
losses,
step,
total_step,
outer_bar,
log,
logger,
)
if step % cfg.train_config.step.synth_step == 0:
(
fig,
wav_reconstruction,
wav_prediction,
tag,
) = synth_one_sample(
batch,
output,
vocoder,
cfg.model_config,
cfg.preprocess_config,
)
log(
logger,
"train",
fig=fig,
tag="Training/step_{}_{}".format(step, tag),
)
sampling_rate = cfg.preprocess_config["preprocessing"][
"audio"
]["sampling_rate"]
log(
logger,
"train",
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_reconstructed".format(
step, tag
),
)
log(
logger,
"train",
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_synthesized".format(step, tag),
)
if step % cfg.train_config.step.val_step == 0:
model.eval()
message = evaluate(
model, step, cfg, logger, "val", vocoder, cfg.gpu
)
outer_bar.write(message)
model.train()
if step % cfg.train_config.step.save_step == 0:
model_weight = model.state_dict()
embed_weight = model_weight["speaker_emb.weight"]
del model_weight["speaker_emb.weight"]
torch.save(
{
"model": model_weight,
"embedding": embed_weight,
"optimizer": optimizer._optimizer.state_dict(),
},
os.path.join(
cfg.train_config["path"]["ckpt_path"],
"{}.pth.tar".format(step),
),
)
if step == total_step:
quit()
step += 1
outer_bar.update(1)
inner_bar.update(1)
epoch += 1
if __name__ == "__main__":
configs = OmegaConf.load("./config.yaml")
main(configs)