-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
775 lines (743 loc) · 40.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta charset="utf-8">
<meta property="og:title" content="Diffusion Classifier" />
<meta property="og:description" content="Your Diffusion Model is Secretly a Zero-Shot Classifier" />
<meta property="og:url" content="https://diffusion-classifier.github.io/" />
<meta property="og:image" content="https://diffusion-classifier.github.io//static/images/preview.jpeg" />
<meta property="og:image:width" content="1200" />
<meta property="og:image:height" content="628" />
<meta name="description"
content="Diffusion Classifier leverages pretrained diffusion models to perform zero-shot classification without additional training." />
<meta name="keywords"
content="diffusion models, generative models, zero-shot learning, supervised learning, classification, Bayes' theorem, evidence lower bound (ELBO), Monte Carlo estimation, computer vision, deep learning, robustness" />
<meta name="viewport" content="initial-scale=1" />
<!-- twitter -->
<meta name="twitter:card" content="summary_large_image" />
<meta name="twitter:title" content="Diffusion Classifier" />
<meta name="twitter:description"
content="Diffusion Classifier leverages pretrained diffusion models to perform zero-shot classification without additional training." />
<meta name="twitter:url" content="https://diffusion-classifier.github.io/" />
<meta name="twitter:image" content="https://diffusion-classifier.github.io/static/images/preview.jpeg" />
<meta name="twitter:site" content="@pathak2206" />
<meta name="twitter:image" content="https://diffusion-classifier.github.io/static/images/preview.jpeg" />
<meta name="twitter:image:src" content="https://diffusion-classifier.github.io/static/images/preview.jpeg" />
<meta name="twitter:image_alt" content="Diffusion Classifier" />
<title>Diffusion Classifier</title>
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-RYWGEJGP6S"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() { dataLayer.push(arguments); }
gtag('js', new Date());
gtag('config', 'G-RYWGEJGP6S');
</script>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="stylesheet" href="https://use.typekit.net/iag3ven.css">
<!-- <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/themes/prism-coy.min.css"/> -->
<link rel="stylesheet" href="./static/css/prism.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/prism.min.js">
</script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/prism-bibtex.min.js">
</script>
<link rel="icon"
href="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text y=%22.9em%22 font-size=%2290%22>🔎</text></svg>">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://d3js.org/d3.v3.min.js" charset="utf-8"></script>
<script src="https://d3js.org/topojson.v1.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<!-- mathjax -->
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<p style="padding: 20px;" />
<h1 class="title is-1 publication-title">
<span id="main-title">
Your Diffusion Model is Secretly a Zero-Shot Classifier
</span>
</h1>
<div class="is-size-5 publication-authors">
<!-- TODO: FIX -->
<span class="author-block">
<a href="http://alexanderli.com/" target="_blank">Alexander C.
Li</a>
</span>
<span class="author-block">
<a href="https://mihirp1998.github.io/" target="_blank">Mihir Prabhudesai</a>
</span>
<span class="author-block">
<a href="https://shivamduggal4.github.io/" target="_blank">Shivam Duggal</a>
</span>
<span class="author-block">
<a href="https://ellisbrown.github.io/" target="_blank">Ellis Brown</a>
</span>
<span class="author-block">
<a href="https://www.cs.cmu.edu/~dpathak/" target="_blank">Deepak Pathak</a>
</span>
</div>
<p style="padding: 0.25rem;" />
<div class="is-size-5 publication-authors">
<span class="author-block">Carnegie Mellon University</span><br>
<span class="author-block">ICCV 2023</span>
<!-- <br style="line-height: 2px" /> -->
<!-- <span class="author-block" style="font-size: 0.7em; font-style: italic;"><sup>*</sup>Equal
contribution</span> -->
</div>
<p style="padding: 20px;" />
<div class="buttons is-centered">
<button class="external-link button is-medium is-ghost publication-links is-rounded">
<a href="https://arxiv.org/abs/2303.16203" target="_blank"
style="text-decoration:none;">
<span class="icon is-small">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</button>
<button class="external-link button is-medium is-ghost publication-links is-rounded">
<a href="./static/docs/DiffusionClassifier.pdf" target="_blank">
<span class="icon is-small">
<i class="fas fa-file-pdf"></i>
</span>
<span>pdf</span>
</a>
</button>
<!-- <button class="external-link button is-medium is-ghost publication-links is-rounded">
<a href="https://youtu.be/1hYtGZ0CUSA" target="_blank">
<span class="icon">
<i class="fab fa-youtube"></i>
</span><span>video</span>
</a>
</button> -->
<!-- <button class="external-link button is-medium is-ghost publication-links is-rounded">
<a href="./static/docs/InternetExplorer.pptx" target="_blank">
<span class="icon is-small">
<i class="fas fa-file-powerpoint"></i>
</span>
<span>slides</span>
</a>
</button> -->
<button class="external-link button is-medium is-ghost publication-links is-rounded">
<a href="https://github.com/diffusion-classifier/diffusion-classifier" target="_blank">
<span class="icon is-small">
<i class="fab fa-github"></i>
</span>
<span>code</span>
</a>
</button>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- hack to pull the below up vertically -->
<span style="display:block; margin-top:-1.75em;"/>
<!-- Method Overview -->
<section class="section" id="method-overview">
<div class="container is-max-widescreen">
<div class="columns is-centered has-text-centered">
<div class="column" style="border-radius: 10px; background-color: rgb(245,245,245)">
<h2 class="title is-3">
<span class="method-name">"Diffusion Classifier"</span>
</h2>
<p style="padding: 10px;" />
<div id="method-overview-wrapper">
<img src="./static/images/arch_figure.jpg" alt="Diffusion Classifier method."
class="method-overview-full-img method-overview" draggable="false" />
</div>
<p style="padding: 10px;" />
<div class="method-overview-text has-text-justified">
<p>
Given an input image \(\mathbf x \) and text conditioning \(\mathbf c\),
<!-- (e.g., text for Stable Diffusion or class index for DiT), -->
we use a diffusion model to choose
the class that best fits this image.
Our approach, <span class="method-name">Diffusion Classifier</span>, is
theoretically motivated through the variational view of
diffusion models and uses the ELBO to approximate
\(\log p_{\theta}(\mathbf x|\mathbf c).\)
Diffusion Classifier chooses the conditioning
\(\mathbf c\)
that best predicts the noise added to the input image. Diffusion Classifier can be used
to extract a
<i>zero-shot classifier from a text-to-image model</i> (like Stable Diffusion) and a
<i>standard classifier from a class-conditional model</i> (like DiT) without any
additional training.
</p>
</div>
</div>
</div>
</div>
</div>
</section>
<!--/ Method Overview -->
<!-- <p style="padding: 10px;" /> -->
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-three-quarters">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
The recent wave of large-scale text-to-image diffusion models has dramatically increased our
text-based image generation abilities. These models can generate realistic images for a staggering
variety of prompts and exhibit impressive compositional generalization abilities. Almost all use
cases thus far have solely focused on sampling; however, diffusion models can also provide
conditional density estimates, which are useful for tasks beyond image generation. In this paper,
we show that the density estimates from large-scale text-to-image diffusion models like Stable
Diffusion can be leveraged to perform zero-shot classification <i>without any additional training.</i>
Our generative approach to classification, which we call <span class="method-name">Diffusion Classifier</span>, attains strong
results on a variety of benchmarks and outperforms alternative methods of extracting knowledge from
diffusion models. Although a gap remains between generative and discriminative approaches on zero-shot
recognition tasks, our diffusion-based approach has significantly stronger multimodal compositional
reasoning ability than competing discriminative approaches. Finally, we use Diffusion Classifier to
extract standard classifiers from class-conditional diffusion models trained on ImageNet. Our models
achieve strong classification performance using only weak augmentations and exhibit qualitatively
better "effective robustness" to distribution shift. Overall, our results are a step toward using
generative over discriminative models for downstream tasks.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
<!-- Paper video. -->
<!-- <p style="padding: 20px;" /> -->
<!-- <div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Video</h2>
<div class="publication-video">
<iframe width="560" height="315" src="https://www.youtube.com/embed/1hYtGZ0CUSA"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen></iframe>
</div>
</div>
</div> -->
<!--/ Paper video. -->
</div>
</section>
<p style="padding: 20px;" />
<!-- Derivation. -->
<section>
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-three-quarters">
<h2 class="title is-3">
Classification with diffusion models
</h2>
<div class="content has-text-justified">
<p class="equation-text">
In general, classification using a conditional generative model can be done by using Bayes'
theorem on the model predictions and the prior \(p(\mathbf{c})\) over labels
\(\{\mathbf{c}_i\}\):
</p>
<p class="equation">
\begin{equation}
p_\theta(\mathbf{c}_i \mid \mathbf{x}) = \frac{p(\mathbf{c}_i)\ p_\theta(\mathbf{x} \mid
\mathbf{c}_i)}{\sum_j p(\mathbf{c}_j)\ p_\theta(\mathbf{x} \mid \mathbf{c}_j)}
\label{eq:bayes}
\end{equation}
</p>
<p class="equation-text">
A uniform prior over \(\{\mathbf{c}_i\}\) (<i>i.e.,</i> \(p(\mathbf{c}_i) = \frac{1}{N}\))
is natural and leads to all of the \(p(\mathbf{c})\) terms cancelling. For diffusion models,
computing \(\log p_\theta(\mathbf{x}\mid \mathbf{c})\) is intractable, so we approximate it
with the ELBO (see paper §3.1), from which we have dropped constant and weighting terms:
</p>
<p class="equation">
\begin{align}
\text{ELBO} \approx - \mathbb{E}_{t, \epsilon}[\|\epsilon - \epsilon_\theta(\mathbf{x}_t,
\mathbf{c}_i)\|^2]
\label{eq:elbo}
\end{align}
</p>
<p class="equation-text">
We plug the modified ELBO Eq. \ref{eq:elbo} into Eq. \ref{eq:bayes} to obtain the
posterior over
\(\{\mathbf{c}_i\}_{i=1}^N\):
</p>
<p class="equation">
\begin{align}
p_\theta(\mathbf{c}_i \mid \mathbf{x})
&\approx \frac{\exp\{- \mathbb{E}_{t, \epsilon}[\|\epsilon - \epsilon_\theta(\mathbf{x}_t,
\mathbf{c}_i)\|^2]\}}{\sum_j \exp\{- \mathbb{E}_{t, \epsilon}[\|\epsilon -
\epsilon_\theta(\mathbf{x}_t, \mathbf{c}_j)\|^2]\}}
\label{eq:posterior}
\end{align}
</p>
<p class="equation-text">
We compute an unbiased Monte Carlo estimate of each expectation by sampling \(N\) \((t_i,
\epsilon_i)\) pairs, with \(t_i \sim [1, 1000]\) and \(\epsilon \sim \mathcal{N}(0, I)\),
and computing
</p>
<p class="equation">
\begin{align}
\frac{1}{N}\sum_{i=1}^N \left\|\epsilon_i - \epsilon_\theta(\sqrt{\bar
\alpha_{t_i}}\mathbf{x} + \sqrt{1-\bar\alpha_{t_i}} \epsilon_i, \mathbf{c}_j)\right\|^2
\label{eq:monte_carlo}
\end{align}
</p>
<p class="equation-text">
By plugging Eq. \ref{eq:monte_carlo} into Eq. \ref{eq:posterior}, we can extract a
classifier from <i>any</i> conditional diffusion model.
This method, which we call <span class="method-name">Diffusion Classifier</span>, is a
<i>powerful, hyperparameter-free approach that leverages pretrained diffusion models for
classification without any additional training.</i>
Diffusion Classifier can be used to extract a zero-shot
classifier from a text-to-image model like <a target="_blank"
href="https://github.com/Stability-AI/stablediffusion">Stable Diffusion</a>, to extract
a standard
classifier from a class-conditional diffusion model like <a target="_blank"
href="https://arxiv.org/abs/2212.09748">DiT</a>, and so on.
</p>
</div>
</div>
</div>
</div>
</section>
<!--/ Derivation. -->
<p style="padding: 20px;" />
<section class="section">
<!-- Zero Shot. -->
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-three-quarters">
<h2 class="title is-3">Zero-shot Classification</h2>
<div class="content has-text-justified">
<p>
We build <span class="method-name">Diffusion Classifier</span> on top of
<a target="_blank" href="https://github.com/Stability-AI/stablediffusion">Stable
Diffusion</a>, a
text-to-image latent diffusion model trained on a filtered subset of <a target="_blank"
href="https://laion.ai/blog/laion-5b/">LAION-5B</a>.
Our zero-shot classification method is
competitive with CLIP and significantly outperforms the zero-shot diffusion model baseline
that trains a
classifier on synthetic SD data. It also generally outperforms the baseline trained on
Stable Diffusion
features, especially on complex datasets like ImageNet. This is especially impressive since
the "SD Features"
baseline uses the entire training set to train a classifier.
</p>
</div>
</div>
</div>
</div>
<p style="padding: 20px;" />
<div class="is-centered has-text-centered">
<div class="table-container is-max-desktop">
<table style="width:100%">
<caption>
Zero-shot classification performance on a suite of tasks.
</caption>
<tr>
<th></th>
<th>Zero-shot?</th>
<th>Food</th>
<th>CIFAR10</th>
<th>FGVC</th>
<th>Pets</th>
<th>Flowers</th>
<th>STL10</th>
<th>ImageNet</th>
<th>ObjectNet</th>
</tr>
<tr>
<td colspan="11" style="border-bottom: 1px solid #ddd;"></td>
</tr>
<tr>
<td>Synthetic SD Data</td>
<!-- <td>✓</td> -->
<td style="color:lime">✓</td>
<td>12.6</td>
<td>35.3</td>
<!-- add spaces to make it render inline -->
<td> 9.4</td>
<td>31.3</td>
<td>22.1</td>
<td>38.0</td>
<td>18.9</td>
<td> 5.2</td>
</tr>
<tr>
<td>SD Features</td>
<td style="color:red">✗</td>
<td style="color:lightgray">73.0</td>
<td style="color:lightgray">84.0</td>
<td style="color:lightgray"><b>35.2</b></td>
<td style="color:lightgray">75.9</td>
<td style="color:lightgray"><b>70.0</b></td>
<td style="color:lightgray">87.2</td>
<td style="color:lightgray">56.6</td>
<td style="color:lightgray">10.2</td>
</tr>
<tr>
<td><span class="method-name">Diffusion Classifier</span></td>
<td style="color:lime">✓</td>
<td><b>77.7</b></td>
<td><b>88.5</b></td>
<td>26.4</td>
<td><b>87.3</b></td>
<td>66.3</td>
<td><b>95.4</b></td>
<td><b>61.4</b></td>
<td><b>43.4</b></td>
</tr>
<tr>
<td colspan="11" style="border-bottom: 1px solid #ddd;"></td>
</tr>
<tr>
<td>CLIP ResNet50</td>
<td style="color:lime">✓</td>
<td>81.1</td>
<td>75.6</td>
<td>19.3</td>
<td>85.4</td>
<td>65.9</td>
<td>94.3</td>
<td>58.2</td>
<td>40.0</td>
</tr>
<tr>
<td>OpenCLIP ViT-H/14</td>
<td style="color:lime">✓</td>
<td>92.7</td>
<td>97.3</td>
<td>42.3</td>
<td>94.6</td>
<td>79.9</td>
<td>98.3</td>
<td>76.8</td>
<td>69.2</td>
</tr>
</table>
</div>
</div>
<!--/ Zero Shot. -->
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-three-quarters">
<h2 class="title is-3">Compositional Reasoning</h2>
<div class="content has-text-justified">
<p>
We compare our zero-shot <span class="method-name">Diffusion Classifier</span> method to
CLIP and OpenCLIP on
<a href="https://arxiv.org/abs/2204.03162" target="_blank">Winoground</a>,
a popular benchmark for evaluating the visio-linguistic compositional reasoning abilities of
vision-language models. This benchmark tests whether models can match captions to the
correct images when certain entities are swapped in the captions.
</p>
</div>
</div>
</div>
<p style="padding: 10px;" />
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-three-fourths">
<figure>
<img src="./static/images/winoground.jpeg" alt="Winoground examples" id="winoground-image"
draggable="false" />
<figcaption>
Results on selected Winoground image-caption pairs.
</figcaption>
</figure>
</div>
</div>
</div>
<p style="padding: 20px;" />
<div class="columns is-centered has-text-centered">
<div class="column is-three-quarters">
<div class="content has-text-justified">
<p>
<span class="method-name">Diffusion Classifier</span> significantly outperforms both contrastive baselines.
Since Stable Diffusion uses the same text
encoder as OpenCLIP ViT-H/14, this improvement must come from better cross-modal binding of
concepts to images. Overall, we find it surprising that Stable Diffusion, trained with only
sample generation in mind, can be repurposed into such a good classifier and reasoner.
</p>
</div>
</div>
</div>
<div class="table-container is-max-desktop is-centered">
<table style="width:70%">
<caption>
Zero-shot reasoning results on Winoground
</caption>
<thead>
<tr>
<th>Model</th>
<th>Object</th>
<th>Relation</th>
<th>Both</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="11" style="border-bottom: 1px solid #ddd;"></td>
</tr>
<tr>
<td>Random Chance</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>CLIP ViT-L/14</td>
<td>27.0</td>
<td>25.8</td>
<td>57.7</td>
<td>28.2</td>
</tr>
<tr>
<td>OpenCLIP ViT-H/14</td>
<td>39.0</td>
<td>26.6</td>
<td>57.7</td>
<td>33.0</td>
</tr>
<tr>
<td><span class="method-name">Diffusion Classifier</span></td>
<td><strong>46.1</strong></td>
<td><strong>29.2</strong></td>
<td><strong>80.8</strong></td>
<td><strong>38.5</strong></td>
</tr>
</tbody>
</table>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-three-quarters">
<h2 class="title is-3">Strong Standard Classification Ability</h2>
<div class="content has-text-justified">
<p>
We use <span class="method-name">Diffusion Classifier</span> to obtain a standard 1000-way
classifier on ImageNet from a pretrained <a target="_blank"
href="https://arxiv.org/abs/2303.16203">Diffusion Transformer</a> (DiT) model. DiT is a
class-conditional diffusion model trained solely on ImageNet-1k, with only random horizontal
flips and no regularization. We compare Diffusion Classifier in this setting to strong
discriminative classifiers like ResNet-101 and ViT-B/16 in the table below.
We highlight cells in green where Diffusion Classifier outperforms.
</p>
</div>
</div>
</div>
<div class="table-container is-max-desktop is-centered">
<table>
<caption>
Diffusion Classifier performs well ID and OOD.
</caption>
<thead>
<tr>
<th rowspan="2">Method</th>
<th colspan="1" style="text-align: right !important;">ID</th>
<th colspan="3" style="text-align: center !important;">OOD</th>
</tr>
<tr>
<th>IN</th>
<th>IN-v2</th>
<th>IN-A</th>
<th>ObjectNet</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="11" style="border-bottom: 1px solid #ddd;"></td>
</tr>
<tr>
<td>ResNet-18</td>
<td class="table-highlight">70.3</td>
<td class="table-highlight">57.3</td>
<td class="table-highlight">1.1</td>
<td class="table-highlight">27.2</td>
</tr>
<tr>
<td>ResNet-34</td>
<td class="table-highlight">73.8</td>
<td class="table-highlight">61.0</td>
<td class="table-highlight">1.9</td>
<td class="table-highlight">31.6</td>
</tr>
<tr>
<td>ResNet-50</td>
<td class="table-highlight">76.7</td>
<td class="table-highlight">63.2</td>
<td class="table-highlight">0.0</td>
<td>36.4</td>
</tr>
<tr>
<td>ResNet-101</td>
<td class="table-highlight">77.7</td>
<td class="table-highlight">65.5</td>
<td class="table-highlight">4.7</td>
<td>39.1</td>
</tr>
<tr>
<td>ViT-L/32</td>
<td class="table-highlight">77.9</td>
<td class="table-highlight">64.4</td>
<td class="table-highlight">11.9</td>
<td class="table-highlight">32.1</td>
</tr>
<tr>
<td>ViT-L/16</td>
<td>80.4</td>
<td>67.5</td>
<td class="table-highlight">16.7</td>
<td>36.8</td>
</tr>
<tr>
<td>ViT-B/16</td>
<td>81.2</td>
<td>69.6</td>
<td class="table-highlight">20.8</td>
<td>39.9</td>
</tr>
<tr>
<td><span class="method-name">Diffusion Classifier (256x256)</span></td>
<td>77.5</td>
<td>64.6</td>
<td>20.0</td>
<td>32.1</td>
</tr>
<tr>
<td><span class="method-name">Diffusion Classifier (512x512)</span></td>
<td>79.1</td>
<td>66.7</td>
<td>30.2</td>
<td>33.9</td>
</tr>
</tbody>
</table>
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-three-quarters">
<div class="content has-text-justified">
<p>
Diffusion Classifier achieves 79.1% top-1 accuracy on ImageNet, which is stronger than ResNet-101 and ViT-L/32.
<strong>To the best of our knowledge, our approach is the first generative modeling approach
to achieve ImageNet accuracy comparable with highly competitive discriminative classifiers.</strong>
This is especially impressive since the discriminative models are trained with highly tuned learning rate
schedules, augmentation strategies, and regularization.
</p>
</div>
</div>
</div>
<p style="padding: 10px;" />
<div class="container is-three-quarters">
<div class="columns is-centered has-text-centered">
<div class="column is-three-quarters">
<figure>
<img src="./static/images/imagenetA_robustness.svg" alt="Effective robustness on ImageNet-A" id="robustness-image"
draggable="false" />
<figcaption>
Diffusion Classifier exhibits "effective robustness," where it achieves much better OOD accuracy than expected based on its ID accuracy.
</figcaption>
</figure>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="section" id="paper">
<div class="container is-mobile">
<div class="columns is-centered has-text-centered">
<div class="container content">
<h2 class="title is-3">BibTeX</h2>
<div id="bibtex" class="column has-text-justified is-centered">
<!-- https://github.com/SaswatPadhi/prismjs-bibtex -->
<pre><code class="language-bibtex">@InProceedings{li2023diffusion,
author = {Li, Alexander C. and Prabhudesai, Mihir and Duggal, Shivam and Brown, Ellis and Pathak, Deepak},
title = {Your Diffusion Model is Secretly a Zero-Shot Classifier},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2023},
pages = {2206-2217}
}</code></pre>
</div>
</div>
</div>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<!-- TODO: UPDATE -->
<a class="icon-link" href="https://arxiv.org/abs/2303.16203" target="_blank">
<i class="ai ai-arxiv"></i>
</a>
<!-- TODO: UPDATE -->
<a class="icon-link" href="./static/docs/DiffusionClassifier.pdf" target="_blank">
<i class="fas fa-file-pdf"></i>
</a>
<!--
<a class="icon-link" href="https://youtu.be/1hYtGZ0CUSA" target="_blank">
<i class="fab fa-youtube"></i>
</a> -->
<!--
<a class="icon-link" href="./static/docs/InternetExplorer.pptx" target="_blank">
<i class="fas fa-file-powerpoint"></i>
</a> -->
<a class="icon-link" href="https://github.com/diffusion-classifier/diffusion-classifier"
target="_blank">
<i class="fab fa-github"></i>
</a>
</div>
<div class="columns is-centered">
<div class="content">
<p>
Page source code was adapted from
<a href="https://nerfies.github.io" target="_blank">here</a>
and
<a href="https://internet-explorer-ssl.github.io"
target="_blank">here</a>,
and can be found in <a
href="https://github.com/diffusion-classifier/diffusion-classifier.github.io"
target="_blank">this repository</a>.
</p>
</div>
</div>
</footer>
<script src="./static/js/index.js"></script>
<script src="./static/js/prism.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/prism-bibtex.js"
integrity="sha256-+dK6uqUp/DnP6ef97s8XcoynBnGe5vM5gvBECH0EB3U=" crossorigin="anonymous">
</script>
</body>
</html>