-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhf_captcha_app.py
81 lines (67 loc) · 2.49 KB
/
hf_captcha_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import glob
import random
import numpy as np
import streamlit as st
import tensorflow as tf
import matplotlib.pyplot as plt
from huggingface_hub import from_pretrained_keras
@st.cache(allow_output_mutation=True)
def load_model():
generator = from_pretrained_keras("huggan/crypto-gan")
return generator
def generate(n_images, generator, seed=42, codings_size=100):
noise = tf.random.normal(shape=[n_images, codings_size], seed=seed)
generated_images = generator(noise, training=False)
return generated_images.numpy()
def get_captcha(images, indexes):
fake_idx = []
fig, axis = plt.subplots(3, 3, figsize=(10, 10))
axis = axis.flatten()
for ax_idx, idx in enumerate(indexes):
if indexes[idx] < n_fake:
fake_idx.append(idx)
axis[ax_idx].imshow(images[idx])
axis[ax_idx].set_title(f"Punk {ax_idx+1}")
axis[ax_idx].axis('off')
return fig, fake_idx
def get_challenge():
seed = random.randint(0, 1000)
real_idx = np.random.randint(low=0, high=len(real_files), size=n_real)
real_samples = np.array([plt.imread(real_files[idx]) for idx in real_idx])
generated_samples = generate(n_fake, generator, seed)
captcha_samples = np.concatenate((generated_samples, real_samples))
captcha_idx = [x for x in range(len(captcha_samples))]
random.shuffle(captcha_idx)
fig, fake_idx = get_captcha(captcha_samples, captcha_idx)
correct_answer = [f"Punk {x+1}" for x in fake_idx]
correct_answer.sort()
st.session_state.session_captcha = fig
st.session_state.correct = correct_answer
# Session captcha
if 'session_captcha' not in st.session_state:
st.session_state['session_captcha'] = None
if 'correct' not in st.session_state:
st.session_state['correct'] = []
n_real = 6
n_fake = 3
n_samples = n_real + n_fake
real_images_path = "./data/images"
real_files = glob.glob(f"{real_images_path}/*")
generator = load_model()
st.title("CryptoPunk Captcha")
st.header("Are you a human?")
st.subheader("Choose the 3 fake CryptoPunks")
if st.session_state.session_captcha is None:
get_challenge()
st.pyplot(st.session_state.session_captcha) # Display captcha
options = st.multiselect('Choose',[f"Punk {x+1}" for x in range(n_samples)]) # Selected options
to_verify = st.button("Verify")
if to_verify:
options.sort()
verified = st.session_state.correct == options
if verified:
st.write("Correct")
else:
st.write("Wrong")
get_challenge() # Refresh challenge
st.button("Try again?")