-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrx.py
298 lines (254 loc) · 12.5 KB
/
rx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""
/*
Radio Autoencoder receiver: rate Fs complex samples in, features out.
Bare bones acquisition that find a valid modem frame, and decodes the
entire sample using a fixed timing and freq offset estimate. Works
OK for 10 second samples, tested on many HF channels around the world
in April 2024 OTA test campaign.
Copyright (c) 2024 by David Rowe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import os
import argparse
import numpy as np
from matplotlib import pyplot as plt
import torch
from radae import RADAE,complex_bpf,acquisition,receiver_one
parser = argparse.ArgumentParser()
parser.add_argument('model_name', type=str, help='path to model in .pth format')
parser.add_argument('rx', type=str, help='path to input file of rate Fs rx samples in ..IQIQ...f32 format')
parser.add_argument('features_hat', type=str, help='path to output feature file in .f32 format')
parser.add_argument('--latent-dim', type=int, help="number of symbols produces by encoder, default: 80", default=80)
parser.add_argument('--write_latent', type=str, default="", help='path to output file of latent vectors z[latent_dim] in .f32 format')
parser.add_argument('--pilots', action='store_true', help='insert pilot symbols')
parser.add_argument('--ber_test', type=str, default="", help='symbols are PSK bits, compare to z.f32 file to calculate BER')
parser.add_argument('--plots', action='store_true', help='display various plots')
parser.add_argument('--pilot_eq', action='store_true', help='use pilots to EQ data symbols using classical DSP')
parser.add_argument('--freq_offset', type=float, help='manually specify frequency offset')
parser.add_argument('--cp', type=float, default=0.0, help='Length of cyclic prefix in seconds [--Ncp..0], (default 0)')
parser.add_argument('--coarse_mag', action='store_true', help='Coarse magnitude correction (fixes --gain)')
parser.add_argument('--time_offset', type=int, default=0, help='sampling time offset in samples')
parser.add_argument('--no_bpf', action='store_false', dest='bpf', help='disable BPF')
parser.add_argument('--bottleneck', type=int, default=1, help='1-1D rate Rs, 2-2D rate Rs, 3-2D rate Fs time domain')
parser.add_argument('--write_Dt', type=str, default="", help='Write D(t,f) matrix on last modem frame')
parser.add_argument('--acq_test', action='store_true', help='Acquisition test mode')
parser.add_argument('--fmax_target', type=float, default=0.0, help='Acquisition test mode freq offset target (default 0.0)')
parser.add_argument('--acq_time_target', type=float, default=1.0, help='Acquisition test mode mean acquisition time target (default 1.0)')
parser.add_argument('--rx_one', action='store_true', help='Use single frame receiver')
parser.add_argument('--stateful', action='store_true', help='use stateful core decoder')
parser.set_defaults(bpf=True)
args = parser.parse_args()
# make sure we don't use a GPU
os.environ['CUDA_VISIBLE_DEVICES'] = ""
device = torch.device("cpu")
latent_dim = args.latent_dim
nb_total_features = 36
num_features = 20
num_used_features = 20
# load model from a checkpoint file
model = RADAE(num_features, latent_dim, EbNodB=100, ber_test=args.ber_test, rate_Fs=True,
pilots=args.pilots, pilot_eq=args.pilot_eq, eq_mean6 = False, cyclic_prefix=args.cp,
coarse_mag=args.coarse_mag,time_offset=args.time_offset, bottleneck=args.bottleneck,
stateful_decoder=args.stateful)
checkpoint = torch.load(args.model_name, map_location='cpu', weights_only=True)
model.load_state_dict(checkpoint['state_dict'], strict=False)
model.core_decoder_statefull_load_state_dict()
M = model.M
Ncp = model.Ncp
Ns = model.Ns # number of data symbols between pilots
Nmf = int((Ns+1)*(M+Ncp)) # number of samples in one modem frame
Nc = model.Nc
w = model.w.cpu().detach().numpy()
# load rx rate_Fs samples, BPF to remove some of the noise and improve acquisition
rx = np.fromfile(args.rx, dtype=np.csingle)
print(f"samples: {len(rx):d} Nmf: {Nmf:d} modem frames: {len(rx)/Nmf}")
# TODO: fix contrast of spectrogram - it's not very useful
if args.plots:
fig, ax = plt.subplots(2, 1,figsize=(6,12))
ax[0].specgram(rx,NFFT=256,Fs=model.Fs)
ax[0].set_title('Before BPF')
ax[0].axis([0,len(rx)/model.Fs,0,3000])
Ntap = 0
if args.bpf:
Ntap=101
bandwidth = 1.2*(w[Nc-1] - w[0])*model.Fs/(2*np.pi)
centre = (w[Nc-1] + w[0])*model.Fs/(2*np.pi)/2
print(f"Input BPF bandwidth: {bandwidth:f} centre: {centre:f}")
bpf = complex_bpf(Ntap, model.Fs, bandwidth,centre)
rx = bpf.bpf(rx)
if args.plots:
ax[1].specgram(rx,NFFT=256,Fs=model.Fs)
ax[1].axis([0,len(rx)/model.Fs,0,3000])
ax[1].set_title('After BPF')
# Acquisition - 1 sample resolution timing, coarse/fine freq offset estimation
if args.pilots:
p = np.array(model.p)
frange = 100 # coarse grid -frange/2 ... + frange/2
fstep = 2.5 # coarse grid spacing in Hz
Fs = model.Fs
Rs = model.Rs
acq = acquisition(Fs,Rs,M,Ncp,Nmf,p,model.pend)
# optional acq_test variables
tmax_candidate_target = Ncp + Ntap/2
acq_pass = 0
acq_fail = 0
tmax_candidate = 0
acquired = False
state = "search"
mf = 1
if len(args.write_Dt):
fD=open(args.write_Dt,'wb')
while not acquired and len(rx) >= 2*Nmf+M:
candidate, tmax, fmax = acq.detect_pilots(rx[:2*Nmf+M+Ncp])
if len(args.write_Dt):
acq.Dt1.tofile(fD)
# post process with a state machine that looks for 3 consecutive matches with about the same timing offset
print(f"{mf:2d} state: {state:10s} Dthresh: {acq.Dthresh:8.2f} Dtmax12: {acq.Dtmax12:8.2f} tmax: {tmax:4d} tmax_candidate: {tmax_candidate:4d} fmax: {fmax:6.2f}")
next_state = state
if state == "search":
if candidate:
next_state = "candidate"
tmax_candidate = tmax
valid_count = 1
elif state == "candidate":
if candidate and np.abs(tmax-tmax_candidate) < 0.02*M:
valid_count = valid_count + 1
if valid_count > 3:
if args.acq_test:
next_state = "search"
ffine_range = np.arange(fmax-10,fmax+10,0.25)
tfine_range = np.arange(tmax-1,tmax+2)
tmax,fmax = acq.refine(rx, tmax, fmax, tfine_range, ffine_range)
# allow 2ms spread in timing (MPP channel extremes) and +/- 5 Hz in freq, which fine freq can take care of
coarse_timing_ok = np.abs(tmax - tmax_candidate_target) < 0.0025*Fs
coarse_freq_ok = np.abs(fmax - args.fmax_target) <= 5.0
print(f"Acquired! Timing: {coarse_timing_ok:d} Freq: {coarse_freq_ok:d} ",end='')
if coarse_timing_ok and coarse_freq_ok:
acq_pass = acq_pass + 1
print("")
else:
acq_fail = acq_fail + 1
print(f"fmax: {fmax:6.2f} targ: {args.fmax_target:6.2f}")
else:
print("Acquired!")
acquired = True
else:
next_state = "search"
state = next_state
# advance one frame and repeat
rx = rx[Nmf:-1]
mf += 1
if args.acq_test:
mean_acq_time = (Nmf*mf/Fs)/acq_pass
pfail = acq_fail/(acq_pass+acq_fail)
print(f"Acq Test Passes: {acq_pass:d} Fails: {acq_fail:d} Pfail: {pfail:5.2f} Mean Acq time: {mean_acq_time:5.2f} s")
if (pfail < 0.2) and (mean_acq_time < args.acq_time_target):
print("PASS")
if not acquired:
print("Acquisition failed....")
quit()
# frequency refinement, use two sets of pilots
ffine_range = np.arange(fmax-10,fmax+10,0.25)
tfine_range = np.arange(tmax-1,tmax+2)
tmax,fmax = acq.refine(rx, tmax, fmax, tfine_range, ffine_range)
print(f"refined fmax: {fmax:f}")
if args.plots:
fig, ax = plt.subplots(2, 1,figsize=(6,12))
ax[0].set_title('Dt complex plane')
ax[0].plot(acq.Dt1[:,acq.f_ind_max].real, acq.Dt1[:,acq.f_ind_max].imag,'b+')
circle1 = plt.Circle((0,0), radius=acq.Dthresh, color='r')
ax[0].add_patch(circle1)
ax[1].hist(np.abs(acq.Dt1[:,acq.f_ind_max]))
ax[1].set_title('|Dt| histogram')
fig1, ax1 = plt.subplots(2, 1,figsize=(6,12))
ax1[0].plot(acq.fcoarse_range, np.abs(acq.Dt1[tmax,:]),'b+')
ax1[0].set_title('|Dt| against f (coarse)')
ax1[1].plot(ffine_range, np.abs(acq.D_fine),'b+')
ax1[1].set_title('|Dt| against f (fine)')
rx = rx[tmax-Ncp:]
if args.freq_offset is not None:
fmax = args.freq_offset
print(fmax)
w = 2*np.pi*fmax/Fs
rx = rx*np.exp(-1j*w*np.arange(len(rx)))
# push model to device and run receiver
rx = torch.tensor(rx, dtype=torch.complex64)
model.to(device)
rx = rx.to(device)
if args.rx_one:
receiver = receiver_one(model.latent_dim,model.Fs,model.M,model.Ncp,model.Wfwd,
model.Nc,model.Ns,model.w,model.P,model.bottleneck,
model.pilot_gain,model.time_offset,model.coarse_mag)
Nmodem_frames = (len(rx)-(M+Ncp))//Nmf
features_hat = torch.empty(1,0,model.feature_dim)
z_hat = torch.empty(1,0,model.latent_dim)
#print(Nmodem_frames,features_hat.shape)
for f in range(Nmodem_frames):
z_hat1 = receiver.receiver_one(rx[f*Nmf:(f+1)*Nmf+M+Ncp])
#print(z_hat1.shape)
assert(z_hat1.shape[1] == model.Nzmf)
for i in range(model.Nzmf):
features_hat = torch.cat([features_hat, model.core_decoder_statefull(z_hat1[:,i:i+1,:])],dim=1)
z_hat = torch.cat([z_hat, z_hat1],dim=1)
#print(f,features_hat.shape,z_hat.shape)
else:
features_hat, z_hat = model.receiver(rx)
z_hat = z_hat.cpu().detach().numpy().flatten().astype('float32')
# BER test useful for calibrating link. To measure BER we compare the received symnbols
# to the known transmitted symbols. However due to acquisition delays we may have lost several
# modem frames in the received sequence.
if len(args.ber_test):
# every time acq shifted Nmf (one modem frame of samples), we shifted this many latents:
num_latents_per_modem_frame = model.Nzmf*model.latent_dim
#print(num_latents_per_modem_frame)
z = np.fromfile(args.ber_test, dtype=np.float32)
#print(z.shape, z_hat.shape)
best_BER = 1
# to find best alignment look for lowerest BER over a range of shifts
for f in np.arange(20):
n_syms = min(len(z),len(z_hat))
n_errors = np.sum(-z[:n_syms]*z_hat[:n_syms]>0)
n_bits = len(z)
BER = n_errors/n_bits
if BER < best_BER:
best_BER = BER
print(f"f: {f:2d} n_bits: {n_bits:d} n_errors: {n_errors:d} BER: {BER:5.3f}")
z = z[num_latents_per_modem_frame:]
#errors = torch.sign(-z*z_hat) > 0
#errors = torch.reshape(errors,(-1,latent_dim))
#print(errors.shape)
#print(torch.sum(errors,dim=1))
features_hat = torch.cat([features_hat, torch.zeros_like(features_hat)[:,:,:16]], dim=-1)
features_hat = features_hat.cpu().detach().numpy().flatten().astype('float32')
features_hat.tofile(args.features_hat)
# write real valued latent vectors
if len(args.write_latent):
z_hat.tofile(args.write_latent)
if args.plots:
plt.figure(4)
plt.plot(z_hat[0:-2:2], z_hat[1:-1:2],'+')
plt.title('Scatter')
plt.show(block=False)
plt.pause(0.001)
input("hit[enter] to end.")
plt.close('all')