-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsnowxv.cpp
executable file
·300 lines (284 loc) · 11.3 KB
/
snowxv.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//copied from File snowx.f
// Subroutines and function subprograms for the Utah Energy Balance
// Snow Accumulation and Melt Model.
// David G. Tarboton, Utah Water Research Laboratory, Utah State University
//
// Last Change 9/9/12 to accommodate glacier melt.
//
//**********************************************************************************************
//
// Copyright (C) 2012 David Tarboton, Utah State University, [email protected]. http://hydrology.usu.edu/dtarb
//
// This file is part of UEB.
//
// UEB is open source software: you can redistribute it and/or modify it under the terms of the
// MIT Open Source License as published by the Open Source Initiative https://opensource.org/licenses/MIT.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// If you wish to use or incorporate this program (or parts of it) into
// other software that does not meet the MIT Open Source License
// conditions contact the author to request permission.
// David G. Tarboton
// Utah State University
// 8200 Old Main Hill
// Logan, UT 84322-8200
// USA
// http://hydrology.edu/dtarb/
// email: [email protected]
//
//**********************************************************************************************
//common declarations
#include "uebpgdecls.h"
//********UPDATEtime () Update time for each time step
void UPDATEtime(int &YEAR, int &MONTH, int &DAY, double &HOUR, double DT)
{
int DM; // 30/03/2004 ITB
// 30/03/2004 ITB
//real hour, dt // DGT Dec 10, 2004. Fixing ITB errors
int DMON[12] = {31,28,31,30,31,30,31,31,30,31,30,31};
HOUR = HOUR + DT;
DM = DMON[MONTH-1];
// check for leap years
if(MONTH == 2)
DM = lyear (YEAR);
while(HOUR >= 24.0)
{
HOUR = HOUR - 24.0;
DAY++;
}
while ( DAY > DM)
{
DAY = DAY - DM;
MONTH++;
if(MONTH>12){
MONTH = 1;
YEAR++;
}
//modified from the original by separating the above two lines in the if (month>12)
//#_6.27.13
DM = DMON[MONTH-1];
if(MONTH == 2)
DM= lyear(YEAR);
//}
}
return;
}
// ************************** lyear () ***************************
// function to return number of days in February checking for leap years
int lyear(int year)
{
int lyear; // Leap years are every 4 years
// - except for years that are multiples of centuries (e.g. 1800, 1900)
// - except again that when the century is divisible by 4 (e.g. 1600, 2000)
if( (year % 4 > 0) || ((year % 100 == 0) && (year %400 != 0)))
lyear=28;
else
lyear=29;
return lyear;
}
//**************************** atf () ****************************
// to get the atmospheric transmissivity using the Bristow and Campbell (1984) approach
void atf(float &atff,float trange,int month, float *dtbar, float a, float c)
{
//DIMENSION dtbar(12)
float b = 0.036* exp(-0.154*dtbar[month-1]);
atff = a*(1-exp(-b * pow(trange,c)));
// write(6,*)trange,month,a,c,dtbar(month),atf
return;
}
//************************** hourlyRI () To get hourly radiation index
void hyri(int YEAR, int MONTH, int DAY, float HOUR, float DT, float SLOPE, float AZI, float LAT, float &HRI, float &COSZEN)
{
float LP,LAT1;
// lp= latitude of equivalent plane in radians
// lat1 = latitude in radians
// lat = latitude in degrees
// a number that speaks for itself - every kissable digit
float PI=3.141592653589793238462643383279502884197169399375105820974944592308;
float CRAD = PI/180.0;
// crad = degree to radian conversion factor
// CONVERT timeS TO RADIANS FROM NOON
float T = (HOUR-12.0)*PI/12.0;
float DELT1= DT*PI/12.0;
// CONVERT angles TO RADIANS
float SLOPE1=SLOPE*CRAD;
float AZI1=AZI*CRAD;
LAT1=LAT*CRAD;
float FJULIAN = (float) julian(YEAR,MONTH,DAY);
float D = CRAD*23.5* sin((FJULIAN-82.0)*0.017214206321);
// 0.017214206321 is 2 pi / 365
// D is solar declination
LP=asin(sin(SLOPE1)*cos(AZI1)*cos(LAT1) + cos(SLOPE1)*sin(LAT1));
// LP is latitude of equivalent plane
// TD=ACOS(-TAN(LAT1)*TAN(D)) This formula abandoned 1/8/04
// to make the code work for polar conditions
// TD is half day length, i.e. the time from noon to sunset. Sunrise is at -TD
float tanprod = tan(LAT1)* tan(D);
float td;
if(tanprod > 1.0)
td=PI; // This is the condition for perpetual light
else if(tanprod < -1.)
td=0; // The condition for perpetual night
else
td=acos(-tanprod); // The condition where there is a sunrise and set
// Equivalent longitude offset. Modified on 1/8/04
// so that it correctly accounts for shift in longitude if equivalent
// plane slope goes over a pole. Achieved using atan2.
// DDT=ATAN(sin(AZI1)*sin(SLOPE1)/(cos(SLOPE1)*cos(LAT1)
// * -cos(AZI1)*sin(SLOPE1)*sin(LAT1)))
float ddt= atan2(sin(AZI1)*sin(SLOPE1), (cos(SLOPE1)*cos(LAT1) - cos(AZI1)*sin(SLOPE1)*sin(LAT1)));
// Now similar logic as before needs to be repeated for equivalent plane
// but with times reflecting
float tpeqp = tan(LP)*tan(D);
// Keep track of beginning and end of exposure of equiv plane to sunlight
float tpbeg, tpend;
if(tpeqp > 1.0)
{
tpbeg = -PI; // perpetual light
tpend= PI;
}
else if (tpeqp < -1.)
{
tpbeg=0.0; // perpetual dark
tpend=0.0 ;
}
else
{
tpbeg = -acos(-tpeqp) - ddt;
tpend = acos(-tpeqp) - ddt;
}
// Start and end times for integration of radiation exposure
// need to account for both horizon, slope and time step
float T1, T2;
T1 = findMax(T,tpbeg);
T1 = findMax(T1,-td);
T2 = findMin(T+DELT1,td);
T2 = findMin(T2,tpend);
// write(6,*)t1,t2
if(T2 <= T1)
HRI=0.0;
else
HRI = (sin(D)*sin(LP)*(T2-T1) + cos(D)*cos(LP)*(sin(T2+ddt) - sin(T1+ddt)) ) / (cos(SLOPE1)*DELT1);
// In the above the divide by cos slope normalizes illumination to per unit horizontal area
// There is a special case if tpbeg is less than -pi that occurs in polar regions
// where a poleward facing slope may be illuminated at night more than the day.
// Add this in
if(tpbeg < -PI)
{
T1 = findMax(T, 2*PI-tpbeg);
T1 = findMax(T1,-td);
T2 = findMin(T+DELT1,td);
if(T2 > T1)
{
HRI = HRI + (sin(D)*sin(LP)*(T2-T1) + cos(D)*cos(LP)*(sin(T2+ddt) - sin(T1+ddt))) / (cos(SLOPE1)*DELT1);
}
}
// for the purposes of calculating albedo we need a cosine of the
// illumination angle. This does not have slope correction so back
// this out again. This is an average over the time step
COSZEN = HRI*cos(SLOPE1);
// write(6,*)hri,coszen
return;
}
//***************************** JULIAN () ****************************
// To convert the real date to julian date
// YJS The Julian are change to a new version to take the Leap Yean into consideration
// in the old version, there are 365 days each year.
// FUNCTION JULIAN(MONTH,DAY)
int julian(int yy, int mm, int dd)
{
int julian;
int mmstrt[12] = {0,31,59,90,120,151,181,212,243,273,304,334};
int jday = mmstrt[mm-1] + dd;
int ileap = yy - ((int)(yy/4)) * 4 ;
if((ileap == 0) && (mm >=3))
jday = jday + 1;
julian = jday;
return julian;
}
//******************** For cloudiness fraction cf *********************
// Computes the incoming longwave radiation using satterlund Formula
// Modified 10/13/94 to account for cloudiness. Emissivity of cloud cover fraction is assumed to be 1.
void cloud(float as, float bs, float atff, float &cf)
{
//as = param(28) // Fraction of extraterrestaial radiation on cloudy day,Shuttleworth (1993)
//bs = param(29) // (as+bs):Fraction of extraterrestaial radiation on clear day, Shuttleworth (1993)
if (atff >= (as+bs))
cf=0; // Cloudiness fraction
else if(atff <= as)
cf=1;
else
cf = 1.0 - (atff - as)/bs;
return;
}
//************************************ QLIF ()*********************************
//???? long wave radiation from temperatrue and other weather variables??
//TBC_6.5.13
void qlif(float TA, float RH, float TK, float SBC, float &Ema, float &Eacl, float cf, float &qliff )
{
float TAK = TA + TK;
float EA = RH * svpw(TA);
//****************************************************** old option
//
Eacl = 1.08 * (1.0 - exp(-1*pow(EA/100.0, TAK/2016.0))); // Clear sky emissivity
Ema = (cf + (1.0 - cf)*Eacl); // Emissivity for cloudy sky
qliff = Ema * SBC * pow(TAK, 4); // Incoming longwave
return;
}
//The following were copied from functions.f90
//# 6.8.13
//THIS SUBROUTINE COMPUTES JULIAN DATE, GIVEN CALENDAR DATE AND time. INPUT CALENDAR DATE MUST BE GREGORIAN. INPUT time VALUE
//CAN BE IN ANY UT-LIKE time SCALE (UTC, UT1, TT, ETC.) - OUTPUT. //JULIAN DATE WILL HAVE SAME BASIS.
//ALGORITHM BY FLIEGEL AND //VAN FLANDERN. //SOURCE: http://aa.usno.navy.mil/software/novas/novas_f/novasf_intro.php
//I = YEAR (IN) //M = MONTH NUMBER (IN) //K = DAY OF MONTH (IN) //H = UT HOURS (IN) //TJD = JULIAN DATE (OUT)
double julian ( int I,int M, int K,double H)
{
double TJD,JD;
//JD=JULIAN DAY NO FOR DAY BEGINNING AT GREENWICH NOON ON GIVEN DATE
JD = K-32075 + 1461*(I+4800 + (M-14)/12) / 4 + 367*(M-2-(M-14)/12*12)/12-3*((I+4900+(M-14)/12)/100)/4;
TJD = JD - 0.5 + H/24.0;
//##%^_TBC 6.8.13 //pow(10,0) in place of D0
return TJD;
}
//THIS SUBROUTINE COMPUTES CALENDAR DATE AND time, GIVEN JULIAN DATE. INPUT JULIAN DATE CAN BE BASED ON ANY UT-LIKE time SCALE
//(UTC, UT1, TT, ETC.) - OUTPUT time VALUE WILL HAVE SAME BASIS. OUTPUT CALENDAR DATE WILL BE GREGORIAN.
//ALGORITHM BY FLIEGEL AND VAN FLANDERN. //SOURCE: http://aa.usno.navy.mil/software/novas/novas_f/novasf_intro.php
//TJD = JULIAN DATE (IN) //I = YEAR (OUT) //M = MONTH NUMBER (OUT) //K = DAY OF MONTH (OUT) //H = UT HOURS (OUT)
void calendardate (double TJD,int &I,int &M,int &K, double &H)
{
double DJD, JD;
int L, N;
DJD = TJD + 0.5;
JD = DJD;
H = fmod(DJD,1.0)*24; // 24.D0
//JD=JULIAN DAY NO FOR DAY BEGINNING AT GREENWICH NOON ON GIVEN DATE
L = JD + 68569;
N = 4*L/146097;
L = L - (146097*N+3)/4;
//I=YEAR, M=MONTH, K=DAY
I = 4000*(L+1)/1461001;
L = L - 1461*I/4 + 31;
M = 80*L/2447;
K = L - 2447*M/80;
L = M / 11;
M = M + 2 - 12*L;
I = 100*(N-49) + I + L;
return;
}