-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathrun_videop2p.py
664 lines (568 loc) · 29.8 KB
/
run_videop2p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
# Adapted from https://github.com/google/prompt-to-prompt/blob/main/null_text_w_ptp.ipynb
import os
from typing import Optional, Union, Tuple, List, Callable, Dict
from tqdm.notebook import tqdm
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
import torch.nn.functional as nnf
import numpy as np
import abc
import ptp_utils
import seq_aligner
import shutil
from torch.optim.adam import Adam
from PIL import Image
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer
from einops import rearrange
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
import cv2
import argparse
from omegaconf import OmegaConf
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
MY_TOKEN = ''
LOW_RESOURCE = False
NUM_DDIM_STEPS = 50
GUIDANCE_SCALE = 7.5
MAX_NUM_WORDS = 77
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
# need to adjust sometimes
mask_th = (.3, .3)
def main(
pretrained_model_path: str,
image_path: str,
prompt: str,
prompts: Tuple[str],
eq_params: Dict,
save_name: str,
is_word_swap: bool,
blend_word: Tuple[str] = None,
cross_replace_steps: float = 0.2,
self_replace_steps: float = 0.5,
video_len: int = 8,
fast: bool = False,
mixed_precision: str = 'fp32',
):
output_folder = os.path.join(pretrained_model_path, 'results')
if fast:
save_name_1 = os.path.join(output_folder, 'inversion_fast.gif')
save_name_2 = os.path.join(output_folder, '{}_fast.gif'.format(save_name))
else:
save_name_1 = os.path.join(output_folder, 'inversion.gif')
save_name_2 = os.path.join(output_folder, '{}.gif'.format(save_name))
if blend_word:
blend_word = (((blend_word[0],), (blend_word[1],)))
eq_params = dict(eq_params)
prompts = list(prompts)
cross_replace_steps = {'default_': cross_replace_steps,}
weight_dtype = torch.float32
if mixed_precision == "fp16":
weight_dtype = torch.float16
elif mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# Load the tokenizer
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_path,
subfolder="text_encoder",
).to(device, dtype=weight_dtype)
vae = AutoencoderKL.from_pretrained(
pretrained_model_path,
subfolder="vae",
).to(device, dtype=weight_dtype)
unet = UNet3DConditionModel.from_pretrained(
pretrained_model_path, subfolder="unet"
).to(device)
ldm_stable = TuneAVideoPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
).to(device)
try:
ldm_stable.disable_xformers_memory_efficient_attention()
except AttributeError:
print("Attribute disable_xformers_memory_efficient_attention() is missing")
tokenizer = ldm_stable.tokenizer # Tokenizer of class: [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
# A tokenizer breaks a stream of text into tokens, usually by looking for whitespace (tabs, spaces, new lines).
class LocalBlend:
def get_mask(self, maps, alpha, use_pool):
k = 1
maps = (maps * alpha).sum(-1).mean(2)
if use_pool:
maps = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k))
mask = nnf.interpolate(maps, size=(x_t.shape[3:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask = mask.gt(self.th[1-int(use_pool)])
mask = mask[:1] + mask
return mask
def __call__(self, x_t, attention_store, step):
self.counter += 1
if self.counter > self.start_blend:
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
maps = [item.reshape(self.alpha_layers.shape[0], -1, 8, 16, 16, MAX_NUM_WORDS) for item in maps]
maps = torch.cat(maps, dim=2)
mask = self.get_mask(maps, self.alpha_layers, True)
if self.substruct_layers is not None:
maps_sub = ~self.get_mask(maps, self.substruct_layers, False)
mask = mask * maps_sub
mask = mask.float()
mask = mask.reshape(-1, 1, mask.shape[-3], mask.shape[-2], mask.shape[-1])
x_t = x_t[:1] + mask * (x_t - x_t[:1])
return x_t
def __init__(self, prompts: List[str], words: [List[List[str]]], substruct_words=None, start_blend=0.2, th=(.3, .3)):
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
for i, (prompt, words_) in enumerate(zip(prompts, words)):
if type(words_) is str:
words_ = [words_]
for word in words_:
ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
alpha_layers[i, :, :, :, :, ind] = 1
if substruct_words is not None:
substruct_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)):
if type(words_) is str:
words_ = [words_]
for word in words_:
ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
substruct_layers[i, :, :, :, :, ind] = 1
self.substruct_layers = substruct_layers.to(device)
else:
self.substruct_layers = None
self.alpha_layers = alpha_layers.to(device)
self.start_blend = int(start_blend * NUM_DDIM_STEPS)
self.counter = 0
self.th=th
class EmptyControl:
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
def __call__(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return self.num_att_layers if LOW_RESOURCE else 0
@abc.abstractmethod
def forward (self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
if LOW_RESOURCE:
attn = self.forward(attn, is_cross, place_in_unet)
else:
h = attn.shape[0]
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
class SpatialReplace(EmptyControl):
def step_callback(self, x_t):
if self.cur_step < self.stop_inject:
b = x_t.shape[0]
x_t = x_t[:1].expand(b, *x_t.shape[1:])
return x_t
def __init__(self, stop_inject: float):
super(SpatialReplace, self).__init__()
self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS)
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [],
"down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32 ** 2:
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
class AttentionControlEdit(AttentionStore, abc.ABC):
def step_callback(self, x_t):
if self.local_blend is not None:
x_t = self.local_blend(x_t, self.attention_store, self.cur_step)
return x_t
def replace_self_attention(self, attn_base, att_replace, place_in_unet):
if att_replace.shape[2] <= 32 ** 2:
attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
return attn_base
else:
return att_replace
@abc.abstractmethod
def replace_cross_attention(self, attn_base, att_replace):
raise NotImplementedError
def forward(self, attn, is_cross: bool, place_in_unet: str):
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
h = attn.shape[0] // (self.batch_size)
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
attn_base, attn_repalce = attn[0], attn[1:]
if is_cross:
alpha_words = self.cross_replace_alpha[self.cur_step]
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
attn[1:] = attn_repalce_new
else:
attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet)
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
return attn
def __init__(self, prompts, num_steps: int,
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
self_replace_steps: Union[float, Tuple[float, float]],
local_blend: Optional[LocalBlend]):
super(AttentionControlEdit, self).__init__()
self.batch_size = len(prompts)
self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device)
if type(self_replace_steps) is float:
self_replace_steps = 0, self_replace_steps
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
self.local_blend = local_blend
class AttentionReplace(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
local_blend: Optional[LocalBlend] = None):
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device)
class AttentionRefine(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
return attn_replace
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
local_blend: Optional[LocalBlend] = None):
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
self.mapper, alphas = self.mapper.to(device), alphas.to(device)
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
class AttentionReweight(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
if self.prev_controller is not None:
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
return attn_replace
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer,
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None):
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
self.equalizer = equalizer.to(device)
self.prev_controller = controller
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float],
Tuple[float, ...]]):
if type(word_select) is int or type(word_select) is str:
word_select = (word_select,)
equalizer = torch.ones(1, 77)
for word, val in zip(word_select, values):
inds = ptp_utils.get_word_inds(text, word, tokenizer)
equalizer[:, inds] = val
return equalizer
def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int):
out = []
attention_maps = attention_store.get_average_attention()
num_pixels = res ** 2
for location in from_where:
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
if item.shape[1] == num_pixels:
cross_maps = item.reshape(8, 8, res, res, item.shape[-1])
out.append(cross_maps)
out = torch.cat(out, dim=1)
out = out.sum(1) / out.shape[1]
return out.cpu()
def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], self_replace_steps: float, blend_words=None, equilizer_params=None, mask_th=(.3,.3)) -> AttentionControlEdit:
if blend_words is None:
lb = None
else:
lb = LocalBlend(prompts, blend_word, th=mask_th)
if is_replace_controller:
controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
else:
controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
if equilizer_params is not None:
eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"])
controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps,
self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, controller=controller)
return controller
def load_512_seq(image_path, left=0, right=0, top=0, bottom=0, n_sample_frame=video_len, sampling_rate=1):
images = []
for file in sorted(os.listdir(image_path)):
images.append(file)
n_images = len(images)
sequence_length = (n_sample_frame - 1) * sampling_rate + 1
if n_images < sequence_length:
raise ValueError
frames = []
for index in range(n_sample_frame):
p = os.path.join(image_path, images[index])
image = np.array(Image.open(p).convert("RGB"))
h, w, c = image.shape
left = min(left, w-1)
right = min(right, w - left - 1)
top = min(top, h - left - 1)
bottom = min(bottom, h - top - 1)
image = image[top:h-bottom, left:w-right]
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = np.array(Image.fromarray(image).resize((512, 512)))
frames.append(image)
return np.stack(frames)
class NullInversion:
def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
return prev_sample
def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(self, latents, t, context):
noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
def get_noise_pred(self, latents, t, is_forward=True, context=None):
latents_input = torch.cat([latents] * 2)
if context is None:
context = self.context
guidance_scale = 1 if is_forward else GUIDANCE_SCALE
noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
if is_forward:
latents = self.next_step(noise_pred, t, latents)
else:
latents = self.prev_step(noise_pred, t, latents)
return latents
@torch.no_grad()
def latent2image(self, latents, return_type='np'):
latents = 1 / 0.18215 * latents.detach()
image = self.model.vae.decode(latents)['sample']
if return_type == 'np':
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = (image * 255).astype(np.uint8)
return image
@torch.no_grad()
def latent2image_video(self, latents, return_type='np'):
latents = 1 / 0.18215 * latents.detach()
latents = latents[0].permute(1, 0, 2, 3)
image = self.model.vae.decode(latents)['sample']
if return_type == 'np':
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).astype(np.uint8)
return image
@torch.no_grad()
def image2latent(self, image):
with torch.no_grad():
if type(image) is Image:
image = np.array(image)
if type(image) is torch.Tensor and image.dim() == 4:
latents = image
else:
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0).to(device, dtype=weight_dtype)
latents = self.model.vae.encode(image)['latent_dist'].mean
latents = latents * 0.18215
return latents
@torch.no_grad()
def image2latent_video(self, image):
with torch.no_grad():
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(0, 3, 1, 2).to(device).to(device, dtype=weight_dtype)
latents = self.model.vae.encode(image)['latent_dist'].mean
latents = rearrange(latents, "(b f) c h w -> b c f h w", b=1)
latents = latents * 0.18215
return latents
@torch.no_grad()
def init_prompt(self, prompt: str):
uncond_input = self.model.tokenizer(
[""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
text_input = self.model.tokenizer(
[prompt],
padding="max_length",
max_length=self.model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
self.context = torch.cat([uncond_embeddings, text_embeddings])
self.prompt = prompt
@torch.no_grad()
def ddim_loop(self, latent):
uncond_embeddings, cond_embeddings = self.context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in range(NUM_DDIM_STEPS):
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings)
latent = self.next_step(noise_pred, t, latent)
all_latent.append(latent)
return all_latent
@property
def scheduler(self):
return self.model.scheduler
@torch.no_grad()
def ddim_inversion(self, image):
latent = self.image2latent_video(image)
image_rec = self.latent2image_video(latent)
ddim_latents = self.ddim_loop(latent)
return image_rec, ddim_latents
def null_optimization(self, latents, num_inner_steps, epsilon):
uncond_embeddings, cond_embeddings = self.context.chunk(2)
uncond_embeddings_list = []
latent_cur = latents[-1]
# bar = tqdm(total=num_inner_steps * NUM_DDIM_STEPS)
for i in range(NUM_DDIM_STEPS):
uncond_embeddings = uncond_embeddings.clone().detach()
uncond_embeddings.requires_grad = True
optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
latent_prev = latents[len(latents) - i - 2]
t = self.model.scheduler.timesteps[i]
with torch.no_grad():
noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)
for j in range(num_inner_steps):
noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)
noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_cond - noise_pred_uncond)
latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
loss = nnf.mse_loss(latents_prev_rec, latent_prev)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_item = loss.item()
# bar.update()
if loss_item < epsilon + i * 2e-5:
break
# for j in range(j + 1, num_inner_steps):
# bar.update()
uncond_embeddings_list.append(uncond_embeddings[:1].detach())
with torch.no_grad():
context = torch.cat([uncond_embeddings, cond_embeddings])
latent_cur = self.get_noise_pred(latent_cur, t, False, context)
# bar.close()
return uncond_embeddings_list
def invert(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
self.init_prompt(prompt)
ptp_utils.register_attention_control(self.model, None)
image_gt = load_512_seq(image_path, *offsets)
if verbose:
print("DDIM inversion...")
image_rec, ddim_latents = self.ddim_inversion(image_gt)
if verbose:
print("Null-text optimization...")
uncond_embeddings = self.null_optimization(ddim_latents, num_inner_steps, early_stop_epsilon)
return (image_gt, image_rec), ddim_latents[-1], uncond_embeddings
def invert_(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
self.init_prompt(prompt)
ptp_utils.register_attention_control(self.model, None)
image_gt = load_512_seq(image_path, *offsets)
if verbose:
print("DDIM inversion...")
image_rec, ddim_latents = self.ddim_inversion(image_gt)
if verbose:
print("Null-text optimization...")
return (image_gt, image_rec), ddim_latents[-1], None
def __init__(self, model):
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False,
set_alpha_to_one=False)
self.model = model
self.tokenizer = self.model.tokenizer
self.model.scheduler.set_timesteps(NUM_DDIM_STEPS)
self.prompt = None
self.context = None
null_inversion = NullInversion(ldm_stable)
###############
# Custom APIs:
ldm_stable.enable_xformers_memory_efficient_attention()
if fast:
(image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert_(image_path, prompt, offsets=(0,0,0,0), verbose=True)
else:
(image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert(image_path, prompt, offsets=(0,0,0,0), verbose=True)
##### load uncond #####
# uncond_embeddings_load = np.load(uncond_embeddings_path)
# uncond_embeddings = []
# for i in range(uncond_embeddings_load.shape[0]):
# uncond_embeddings.append(torch.from_numpy(uncond_embeddings_load[i]).to(device))
#######################
##### save uncond #####
# uncond_embeddings = torch.cat(uncond_embeddings)
# uncond_embeddings = uncond_embeddings.cpu().numpy()
#######################
print("Start Video-P2P!")
controller = make_controller(prompts, is_word_swap, cross_replace_steps, self_replace_steps, blend_word, eq_params, mask_th=mask_th)
ptp_utils.register_attention_control(ldm_stable, controller)
generator = torch.Generator(device=device)
with torch.no_grad():
sequence = ldm_stable(
prompts,
generator=generator,
latents=x_t,
uncond_embeddings_pre=uncond_embeddings,
controller = controller,
video_length=video_len,
fast=fast,
).videos
sequence1 = rearrange(sequence[0], "c t h w -> t h w c")
sequence2 = rearrange(sequence[1], "c t h w -> t h w c")
inversion = []
videop2p = []
for i in range(sequence1.shape[0]):
inversion.append( Image.fromarray((sequence1[i] * 255).numpy().astype(np.uint8)) )
videop2p.append( Image.fromarray((sequence2[i] * 255).numpy().astype(np.uint8)) )
inversion[0].save(save_name_1, save_all=True, append_images=inversion[1:], optimize=False, loop=0, duration=250)
videop2p[0].save(save_name_2, save_all=True, append_images=videop2p[1:], optimize=False, loop=0, duration=250)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/videop2p.yaml")
parser.add_argument("--fast", action='store_true')
args = parser.parse_args()
main(**OmegaConf.load(args.config), fast=args.fast)