-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathCNN2.py
56 lines (48 loc) · 1.67 KB
/
CNN2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
import numpy as np
batch size = 128
num_classes = 2
epochs = 12
# input image dimensions
img_rows, img_cols = 500, 500
channels = 3
fashion_mnist = keras.datasets.fashion_mnist
# Data split:
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_train = x_train.reshape(300, img_rows, img_cols, 1)
x_test = x_test.rehapse(300,img_rows, img_cols,1 )
# Binary class matrix: y = [0, 1] would be no-marker when the classes are [marker, no-marker]
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(filters=32,
kernel_size=(3,3),
activation='relu',
input_shape=(500,500,1)))
model.add(MaxPooling2D(pool_size=(2,2),
strides=2))
model.add(Conv2D(filters=32,
kernel_size=(3,3),
activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2),
strides=2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.adam,
metric=['accuracy']
)
model.fit(x_train,y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test,y_test))
score=model.evaluat(x_test,y_test,verbose=0)
print('Test loss:', score[0])
print('Test accurayc:', score[1])