-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprofile_undirected_hp_er.py
140 lines (95 loc) · 3.94 KB
/
profile_undirected_hp_er.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# from igraph import *
import igraph as ig
import easygraph as eg
from easygraph import multi_source_dijkstra
from easygraph.functions.graph_generator import erdos_renyi_M
from benchmark import benchmark
import sys
import random
import os
import numpy as np
n = 5
def random_nodes(nodes_num, start_idx, end_idx, seed=0):
random.seed(seed)
node_list = []
for i in range(nodes_num):
node_list.append(random.randint(start_idx, end_idx))
return node_list
def pre_data(path, file):
# print(file)
data = np.loadtxt(path+file,usecols=(0,1))
np.savetxt('directed_datasets/new_data_'+file, data, fmt='%i')
return 'directed_datasets/new_data_'+file
if __name__ == "__main__":
print('for directed networks..............')
n_sizelist = [10000, 50000, 100000, 200000]
for size in n_sizelist:
m = size * 2
# =======================EasyGraph=======================
benchmark('erdos_renyi_M(size, edge=m, directed=False)', globals=globals(), n=n)
print(f"Profiling dataset {size}")
print("Profiling loading")
print("=================")
print()
g = erdos_renyi_M(size, edge=m, directed=False).cpp()
print('*****************************')
print("Profiling shortest path")
print("=======================")
print()
# node_num: sample node for dijkstra
node_num = 1000
start_idx, end_idx = 0, len(g.nodes)-1
random_node_index_list = random_nodes(node_num, start_idx, end_idx)
nodes = list(g.nodes)
eg_node_list = []
for index in random_node_index_list:
eg_node_list.append(nodes[index])
# print("eg_node_list:",eg_node_list)
benchmark('multi_source_dijkstra(g, sources = eg_node_list)', globals=globals(), n=n)
# pagerank only apply for directed graph
# print("Profiling pagerank")
# print("=======================")
# print()
# benchmark('eg.pagerank(g,alpha=0.85)', globals=globals(), n=n)
print("Profiling k-core")
print("=======================")
print()
benchmark('eg.k_core(g)', globals=globals(), n=n)
print("Profiling closeness centrality")
print("=======================")
print()
benchmark('eg.closeness_centrality(g)', globals=globals(), n=n)
print("Profiling betweenness centrality")
print("=======================")
print()
benchmark('eg.betweenness_centrality(g)', globals=globals(), n=n)
# =======================igraph=======================
print(f"Profiling dataset {size}")
print("Profiling loading")
print("=================")
print()
benchmark('ig.Graph().Erdos_Renyi(n=size, m=m, directed=False)', globals=globals(), n=n)
g = ig.Graph().Erdos_Renyi(n=size, m=m, directed=False)
print(len(g.vs),len(g.es))
print("Profiling shortest path")
print("=======================")
print()
ig_node_list = [int(i) for i in eg_node_list]
benchmark("g.distances(source = ig_node_list,weights=[1]*len(g.es))", globals=globals(), n=n)
# pagerank only apply for directed graph
print("Profiling pagerank")
print("=======================")
print()
benchmark('g.pagerank(damping=0.85)', globals=globals(), n=n)
print("Profiling k-core")
print("=======================")
print()
benchmark('g.coreness()', globals=globals(), n=n)
print("Profiling closeness")
print("=======================")
print()
benchmark('g.closeness(weights=[1]*len(g.es))', globals=globals(), n=n)
print("Profiling betweenness")
print("=======================")
print()
benchmark('g.betweenness(directed=False,weights=[1]*len(g.es))', globals=globals(), n=n)