-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate_report.tex
112 lines (74 loc) · 2.65 KB
/
template_report.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
\documentclass{article}
\usepackage{booktabs}
\usepackage{graphicx}
\usepackage[section]{placeins}
\begin{document}
\title{ECHR-OD Benchmarks Report}
\maketitle
\tableofcontents
\section*{Introduction}
This report has been generated automatically from a template.
\section{Dataset descriptions}
This section contains a description of the datasets used for the benchmarks.
Table \ref{table:binary_datasets} describes binary datasets. Table \ref{table:multiclass_datasets} describes the multiclass dataset and Table \ref{table:multilabel_datasets} describes the multilabel dataset.
\input{data/analysis/tables/binary_datasets_summary.tex}~\\
\newpage
\input{data/analysis/tables/multiclass_datasets_summary.tex}~\\
\newpage
\input{data/analysis/tables/multilabel_datasets_summary.tex}~\\
\newpage
\begin{figure}
\centering
\includegraphics[scale=0.6]{data/analysis/labels_per_cases.png}
\caption{Histogram representing the number of labels per cases for the multilabel dataset.}
\end{figure}
\section{Binary Classification}
\subsection{Best Results per Article}
This section presents the best results for several evaluation metrics and each article. It also reports the corresponding flavor.
\noindent
\BLOCK{ for x in best_tables }
\input{data/analysis/tables/\VAR{x}}~\\
%\newpage
\BLOCK{ endfor }
\subsection{Summary \& Method ranking}
\BLOCK{ for x in summary_tables }
\input{data/analysis/tables/\VAR{x}}~\\
%\newpage
\BLOCK{ endfor }
\subsection{Detailed Results}
This section presents the results for each method on each article and for all evaluation metrics.
It also reports the best normalized confusion matrices for each article.\\
\noindent
\BLOCK{ for x in binary_tables }
\input{data/analysis/tables/\VAR{x}}~\\
%\newpage
\BLOCK{ endfor }
\BLOCK{ for x in binary_cm }
\begin{figure}[!htb]
\centering
\includegraphics[scale=0.5]{data/analysis/cm/\VAR{x}}
\end{figure}
\BLOCK{ endfor }
\newpage
\section{Multiclass Classification}
This section presents the results for each method on each article and for all evaluation metrics.
It also reports the best normalized confusion matrices for each article.\\
\noindent
\BLOCK{ for x in multiclass_tables }
\input{data/analysis/tables/\VAR{x}}~\\
\BLOCK{ endfor }
~\\\newpage
\BLOCK{ for x in multiclass_cm }
\begin{figure}[!htb]
\centering
\includegraphics[scale=0.7]{data/analysis/cm/\VAR{x}}
\end{figure}
\BLOCK{ endfor }
\newpage
\section{Multilabel Classification}
This section presents the results for each method on each article and for all evaluation metrics.\\
\noindent
\BLOCK{ for x in multilabel_tables }
\input{data/analysis/tables/\VAR{x}}~\\
\BLOCK{ endfor }
\end{document}