-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch.go
243 lines (208 loc) · 8.14 KB
/
batch.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// (c) 2022 Jacek Olszak
// This code is licensed under MIT license (see LICENSE for details)
package batch
import (
"context"
"fmt"
"sync"
"time"
)
// Options represent parameters for batch.Processor. They should be passed to StartProcessor function. All options
// (as the name suggest) are optional and have default values.
type Options[Resource any] struct {
// All batches will be run for at least MinDuration.
//
// By default, 100ms.
MinDuration time.Duration
// Batch will have timeout with MaxDuration. Context with this timeout will be passed to
// LoadResource and SaveResource functions, which can abort the batch by returning an error.
//
// By default, 2*MinDuration.
MaxDuration time.Duration
// LoadResource loads resource with given key from a database. Returning an error aborts the batch.
// This function is called in the beginning of each new batch.
//
// Context passed as a first parameter has a timeout calculated using batch MaxDuration.
// You can watch context cancellation in order to abort loading resource if it takes too long.
// Context is also cancelled after batch was ended.
//
// By default, returns zero-value Resource.
LoadResource func(_ context.Context, key string) (Resource, error)
// SaveResource saves resource with given key to a database. Returning an error aborts the batch.
// This function is called at the end of each batch.
//
// Context passed as a first parameter has a timeout calculated using batch MaxDuration.
// You can watch context cancellation in order to abort saving resource if it takes too long
// (thus aborting the entire batch). Context is also cancelled after batch was ended.
//
// By default, does nothing.
SaveResource func(_ context.Context, key string, _ Resource) error
}
// StartProcessor starts batch processor which will run operations in batches.
//
// Please note that Processor is a go-routine pool internally and should be stopped when no longer needed.
// Please use Processor.Stop method to stop it.
func StartProcessor[Resource any](options Options[Resource]) *Processor[Resource] {
options = options.withDefaults()
return &Processor[Resource]{
options: options,
stopped: make(chan struct{}),
batches: map[string]temporaryBatch[Resource]{},
metricBroker: &metricBroker{},
}
}
// Processor represents instance of batch processor which can be used to issue operations which run in a batch manner.
type Processor[Resource any] struct {
options Options[Resource]
stopped chan struct{}
allBatchesFinished sync.WaitGroup
mutex sync.Mutex
batches map[string]temporaryBatch[Resource]
metricBroker *metricBroker
}
type temporaryBatch[Resource any] struct {
incomingOperations chan operation[Resource]
closed chan struct{}
}
func (s Options[Resource]) withDefaults() Options[Resource] {
if s.LoadResource == nil {
s.LoadResource = func(context.Context, string) (Resource, error) {
var r Resource
return r, nil
}
}
if s.SaveResource == nil {
s.SaveResource = func(context.Context, string, Resource) error {
return nil
}
}
if s.MinDuration == 0 {
s.MinDuration = 100 * time.Millisecond
}
if s.MaxDuration == 0 {
s.MaxDuration = 2 * s.MinDuration
}
return s
}
// Run lets you run an operation on a resource with given key. Operation will run along other operations in batches.
// If there is no pending batch then the new batch will be started and will run for at least MinDuration. After the
// MinDuration no new operations will be accepted and SaveResource function will be called.
//
// Operations are run sequentially. No manual synchronization is required inside operation. Operation should be fast, which
// basically means that any I/O should be avoided at all cost. Operations (together with LoadResource and SaveResource)
// are run on a batch dedicated go-routine.
//
// Operation must leave Resource in a consistent state, so the next operation in batch can be executed on the same resource.
// When operation cannot be executed because some conditions are not met then operation should not change the state
// of resource at all. This could be achieved easily by dividing operation into two sections:
//
// - first section validates if operation is possible and returns error if not
// - second section change the Resource state
//
// Run ends when the entire batch has ended.
//
// Error is returned when batch is aborted or processor is stopped. Only LoadResource and SaveResource functions can abort
// the batch by returning an error. If error was reported for a batch, all Run calls assigned to this batch will get this error.
//
// Please always check the returned error. Operations which query the resource get uncommitted data. If there is
// a problem with saving changes to the database, then you could have a serious inconsistency between your db and what you've
// just sent to the users.
//
// Operation which is still waiting to be run can be canceled by cancelling ctx. If operation was executed but batch
// is pending then Run waits until batch ends. When ctx is cancelled then OperationCancelled error is returned.
func (p *Processor[Resource]) Run(ctx context.Context, key string, _operation func(Resource)) error {
select {
case <-p.stopped:
return ProcessorStopped
default:
}
result := make(chan error)
defer close(result)
operationMessage := operation[Resource]{
run: _operation,
result: result,
}
for {
tempBatch := p.temporaryBatch(key)
select {
case <-ctx.Done():
return OperationCancelled
case tempBatch.incomingOperations <- operationMessage:
err := <-result
if err != nil {
return fmt.Errorf("running batch failed for key '%s': %w", key, err)
}
return nil
case <-tempBatch.closed:
}
}
}
func (p *Processor[Resource]) temporaryBatch(key string) temporaryBatch[Resource] {
p.mutex.Lock()
defer p.mutex.Unlock()
batchChannel, ok := p.batches[key]
if !ok {
batchChannel.incomingOperations = make(chan operation[Resource])
batchChannel.closed = make(chan struct{})
p.batches[key] = batchChannel
go p.startBatch(key, batchChannel)
}
return batchChannel
}
func (p *Processor[Resource]) startBatch(key string, batchChannels temporaryBatch[Resource]) {
p.allBatchesFinished.Add(1)
defer p.allBatchesFinished.Done()
now := time.Now()
w := &batch[Resource]{
Options: p.options,
resourceKey: key,
incomingOperations: batchChannels.incomingOperations,
stopped: p.stopped,
softDeadline: now.Add(p.options.MinDuration),
hardDeadline: now.Add(p.options.MaxDuration),
}
w.process()
p.metricBroker.publish(w.metric)
p.mutex.Lock()
defer p.mutex.Unlock()
delete(p.batches, key)
close(batchChannels.closed)
}
// Stop ends all running batches. No new operations will be accepted.
// Stop blocks until all pending batches are ended and resources saved.
func (p *Processor[Resource]) Stop() {
close(p.stopped)
p.allBatchesFinished.Wait()
p.metricBroker.stop()
}
// SubscribeBatchMetrics subscribes to all batch metrics. Returned channel
// is closed after Processor was stopped. It is safe to execute
// method multiple times. Each call will create a new separate subscription.
//
// As soon as subscription is created all Metric messages **must be**
// consumed from the channel. Otherwise, Processor will block.
// Please note that slow consumer could potentially slow down entire Processor,
// limiting the amount of operations which can be run. The amount of batches
// per second can reach 100k, so be ready to handle such traffic. This
// basically means that Metric consumer should not directly do any blocking IO.
// Instead, it should aggregate data and publish it asynchronously.
func (p *Processor[Resource]) SubscribeBatchMetrics() <-chan Metric {
select {
case <-p.stopped:
closedChan := make(chan Metric)
close(closedChan)
return closedChan
default:
}
return p.metricBroker.subscribe()
}
// Metric contains measurements for one finished batch.
type Metric struct {
BatchStart time.Time
ResourceKey string
OperationCount int
LoadResourceDuration time.Duration
SaveResourceDuration time.Duration
TotalDuration time.Duration
Error error
}