forked from info-beamer/package-scheduled-player
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheasing.lua
435 lines (365 loc) · 9.63 KB
/
easing.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
--
-- Adapted from
-- Tweener's easing functions (Penner's Easing Equations)
-- and http://code.google.com/p/tweener/ (jstweener javascript version)
--
--[[
Disclaimer for Robert Penner's Easing Equations license:
TERMS OF USE - EASING EQUATIONS
Open source under the BSD License.
Copyright © 2001 Robert Penner
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
]]
-- For all easing functions:
-- t = elapsed time
-- b = begin
-- c = change == ending - beginning
-- d = duration (total time)
local pow = math.pow
local sin = math.sin
local cos = math.cos
local pi = math.pi
local sqrt = math.sqrt
local abs = math.abs
local asin = math.asin
local function linear(t, b, c, d)
return c * t / d + b
end
local function inQuad(t, b, c, d)
t = t / d
return c * pow(t, 2) + b
end
local function outQuad(t, b, c, d)
t = t / d
return -c * t * (t - 2) + b
end
local function inOutQuad(t, b, c, d)
t = t / d * 2
if t < 1 then
return c / 2 * pow(t, 2) + b
else
return -c / 2 * ((t - 1) * (t - 3) - 1) + b
end
end
local function outInQuad(t, b, c, d)
if t < d / 2 then
return outQuad (t * 2, b, c / 2, d)
else
return inQuad((t * 2) - d, b + c / 2, c / 2, d)
end
end
local function inCubic (t, b, c, d)
t = t / d
return c * pow(t, 3) + b
end
local function outCubic(t, b, c, d)
t = t / d - 1
return c * (pow(t, 3) + 1) + b
end
local function inOutCubic(t, b, c, d)
t = t / d * 2
if t < 1 then
return c / 2 * t * t * t + b
else
t = t - 2
return c / 2 * (t * t * t + 2) + b
end
end
local function outInCubic(t, b, c, d)
if t < d / 2 then
return outCubic(t * 2, b, c / 2, d)
else
return inCubic((t * 2) - d, b + c / 2, c / 2, d)
end
end
local function inQuart(t, b, c, d)
t = t / d
return c * pow(t, 4) + b
end
local function outQuart(t, b, c, d)
t = t / d - 1
return -c * (pow(t, 4) - 1) + b
end
local function inOutQuart(t, b, c, d)
t = t / d * 2
if t < 1 then
return c / 2 * pow(t, 4) + b
else
t = t - 2
return -c / 2 * (pow(t, 4) - 2) + b
end
end
local function outInQuart(t, b, c, d)
if t < d / 2 then
return outQuart(t * 2, b, c / 2, d)
else
return inQuart((t * 2) - d, b + c / 2, c / 2, d)
end
end
local function inQuint(t, b, c, d)
t = t / d
return c * pow(t, 5) + b
end
local function outQuint(t, b, c, d)
t = t / d - 1
return c * (pow(t, 5) + 1) + b
end
local function inOutQuint(t, b, c, d)
t = t / d * 2
if t < 1 then
return c / 2 * pow(t, 5) + b
else
t = t - 2
return c / 2 * (pow(t, 5) + 2) + b
end
end
local function outInQuint(t, b, c, d)
if t < d / 2 then
return outQuint(t * 2, b, c / 2, d)
else
return inQuint((t * 2) - d, b + c / 2, c / 2, d)
end
end
local function inSine(t, b, c, d)
return -c * cos(t / d * (pi / 2)) + c + b
end
local function outSine(t, b, c, d)
return c * sin(t / d * (pi / 2)) + b
end
local function inOutSine(t, b, c, d)
return -c / 2 * (cos(pi * t / d) - 1) + b
end
local function outInSine(t, b, c, d)
if t < d / 2 then
return outSine(t * 2, b, c / 2, d)
else
return inSine((t * 2) -d, b + c / 2, c / 2, d)
end
end
local function inExpo(t, b, c, d)
if t == 0 then
return b
else
return c * pow(2, 10 * (t / d - 1)) + b - c * 0.001
end
end
local function outExpo(t, b, c, d)
if t == d then
return b + c
else
return c * 1.001 * (-pow(2, -10 * t / d) + 1) + b
end
end
local function inOutExpo(t, b, c, d)
if t == 0 then return b end
if t == d then return b + c end
t = t / d * 2
if t < 1 then
return c / 2 * pow(2, 10 * (t - 1)) + b - c * 0.0005
else
t = t - 1
return c / 2 * 1.0005 * (-pow(2, -10 * t) + 2) + b
end
end
local function outInExpo(t, b, c, d)
if t < d / 2 then
return outExpo(t * 2, b, c / 2, d)
else
return inExpo((t * 2) - d, b + c / 2, c / 2, d)
end
end
local function inCirc(t, b, c, d)
t = t / d
return(-c * (sqrt(1 - pow(t, 2)) - 1) + b)
end
local function outCirc(t, b, c, d)
t = t / d - 1
return(c * sqrt(1 - pow(t, 2)) + b)
end
local function inOutCirc(t, b, c, d)
t = t / d * 2
if t < 1 then
return -c / 2 * (sqrt(1 - t * t) - 1) + b
else
t = t - 2
return c / 2 * (sqrt(1 - t * t) + 1) + b
end
end
local function outInCirc(t, b, c, d)
if t < d / 2 then
return outCirc(t * 2, b, c / 2, d)
else
return inCirc((t * 2) - d, b + c / 2, c / 2, d)
end
end
local function inElastic(t, b, c, d, a, p)
if t == 0 then return b end
t = t / d
if t == 1 then return b + c end
if not p then p = d * 0.3 end
local s
if not a or a < abs(c) then
a = c
s = p / 4
else
s = p / (2 * pi) * asin(c/a)
end
t = t - 1
return -(a * pow(2, 10 * t) * sin((t * d - s) * (2 * pi) / p)) + b
end
-- a: amplitud
-- p: period
local function outElastic(t, b, c, d, a, p)
if t == 0 then return b end
t = t / d
if t == 1 then return b + c end
if not p then p = d * 0.3 end
local s
if not a or a < abs(c) then
a = c
s = p / 4
else
s = p / (2 * pi) * asin(c/a)
end
return a * pow(2, -10 * t) * sin((t * d - s) * (2 * pi) / p) + c + b
end
-- p = period
-- a = amplitud
local function inOutElastic(t, b, c, d, a, p)
if t == 0 then return b end
t = t / d * 2
if t == 2 then return b + c end
if not p then p = d * (0.3 * 1.5) end
if not a then a = 0 end
local s
if not a or a < abs(c) then
a = c
s = p / 4
else
s = p / (2 * pi) * asin(c / a)
end
if t < 1 then
t = t - 1
return -0.5 * (a * pow(2, 10 * t) * sin((t * d - s) * (2 * pi) / p)) + b
else
t = t - 1
return a * pow(2, -10 * t) * sin((t * d - s) * (2 * pi) / p ) * 0.5 + c + b
end
end
-- a: amplitud
-- p: period
local function outInElastic(t, b, c, d, a, p)
if t < d / 2 then
return outElastic(t * 2, b, c / 2, d, a, p)
else
return inElastic((t * 2) - d, b + c / 2, c / 2, d, a, p)
end
end
local function inBack(t, b, c, d, s)
if not s then s = 1.70158 end
t = t / d
return c * t * t * ((s + 1) * t - s) + b
end
local function outBack(t, b, c, d, s)
if not s then s = 1.70158 end
t = t / d - 1
return c * (t * t * ((s + 1) * t + s) + 1) + b
end
local function inOutBack(t, b, c, d, s)
if not s then s = 1.70158 end
s = s * 1.525
t = t / d * 2
if t < 1 then
return c / 2 * (t * t * ((s + 1) * t - s)) + b
else
t = t - 2
return c / 2 * (t * t * ((s + 1) * t + s) + 2) + b
end
end
local function outInBack(t, b, c, d, s)
if t < d / 2 then
return outBack(t * 2, b, c / 2, d, s)
else
return inBack((t * 2) - d, b + c / 2, c / 2, d, s)
end
end
local function outBounce(t, b, c, d)
t = t / d
if t < 1 / 2.75 then
return c * (7.5625 * t * t) + b
elseif t < 2 / 2.75 then
t = t - (1.5 / 2.75)
return c * (7.5625 * t * t + 0.75) + b
elseif t < 2.5 / 2.75 then
t = t - (2.25 / 2.75)
return c * (7.5625 * t * t + 0.9375) + b
else
t = t - (2.625 / 2.75)
return c * (7.5625 * t * t + 0.984375) + b
end
end
local function inBounce(t, b, c, d)
return c - outBounce(d - t, 0, c, d) + b
end
local function inOutBounce(t, b, c, d)
if t < d / 2 then
return inBounce(t * 2, 0, c, d) * 0.5 + b
else
return outBounce(t * 2 - d, 0, c, d) * 0.5 + c * .5 + b
end
end
local function outInBounce(t, b, c, d)
if t < d / 2 then
return outBounce(t * 2, b, c / 2, d)
else
return inBounce((t * 2) - d, b + c / 2, c / 2, d)
end
end
return {
linear = linear,
inQuad = inQuad,
outQuad = outQuad,
inOutQuad = inOutQuad,
outInQuad = outInQuad,
inCubic = inCubic ,
outCubic = outCubic,
inOutCubic = inOutCubic,
outInCubic = outInCubic,
inQuart = inQuart,
outQuart = outQuart,
inOutQuart = inOutQuart,
outInQuart = outInQuart,
inQuint = inQuint,
outQuint = outQuint,
inOutQuint = inOutQuint,
outInQuint = outInQuint,
inSine = inSine,
outSine = outSine,
inOutSine = inOutSine,
outInSine = outInSine,
inExpo = inExpo,
outExpo = outExpo,
inOutExpo = inOutExpo,
outInExpo = outInExpo,
inCirc = inCirc,
outCirc = outCirc,
inOutCirc = inOutCirc,
outInCirc = outInCirc,
inElastic = inElastic,
outElastic = outElastic,
inOutElastic = inOutElastic,
outInElastic = outInElastic,
inBack = inBack,
outBack = outBack,
inOutBack = inOutBack,
outInBack = outInBack,
inBounce = inBounce,
outBounce = outBounce,
inOutBounce = inOutBounce,
outInBounce = outInBounce,
}