-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathplot-icu-forecast.py
executable file
·673 lines (549 loc) · 19.6 KB
/
plot-icu-forecast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
#!/usr/bin/env python3.10
# by Dr. Torben Menke https://entorb.net
# https://github.com/entorb/COVID-19-Coronavirus-German-Regions
"""
forecast of ICU hospitals
"""
import datetime as dt
import locale
import multiprocessing as mp
import os
import time
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
import helper
# Set German date format for plots: Okt instead of Oct
locale.setlocale(locale.LC_ALL, "de_DE.UTF-8")
timestart = time.time()
# from matplotlib.dates import MonthLocator, YearLocator, WeekdayLocator
# import matplotlib.ticker as ticker
# Matplotlib setup
# Agg to prevent "Fail to allocate bitmap"
mpl.use("Agg") # Cairo
# info : see icu-forecase/howto
# model:
# 1. calculating a moving sum of 21-day-cases
# 2. calculating the ratio of the icu-beds to the 21-day-cases-sum
# 3. calculating the average of that ratio for the last 7 days
# 4. assuming this ratio is constant for the forecast
# 5. use last weeks case data to model the future cases, using different 7-day-change models
# 6. calculate the moving sum of 21-days-cases
# 7. multiply by found ratio icu-beds to the 21-day-cases-sum to convert to beds
# TODO:
# switch data source to Risklayer?
# parallel / multiprocessing to speedup
# if cases series has more data than divi data, use them instead of dropping them
# -> it is the opposite case: divi reports data of today at 12:15, RKI today of yesterday...
# Done
# draw a line from max betten
# zoomed plot
# support 1 chart per district as well as grouped ones
# sum total
# sum per bundesland: Berlin missing
# use new complete DIVI dataset in data/de-divi/tsv/latest.tsv
#
# setup
#
dir_out = "plots-python/icu-forecast/"
os.makedirs(dir_out + "/single", exist_ok=True)
os.makedirs(dir_out + "/de-district-group", exist_ok=True)
os.makedirs(dir_out + "/de-states", exist_ok=True)
# how many weeks shall we look into the future
weeks_forcast = 2
#
# 1. data functions
#
def load_divi_data() -> pd.DataFrame:
"""
load complete set of all divi data
calc betten_belegt
old: rename faelle_covid_aktuell_invasiv_beatmet -> betten_covid
new: rename faelle_covid_aktuell -> betten_covid
"""
df = pd.read_csv(
"cache/de-divi/latest.csv",
sep=",",
parse_dates=[
"date",
],
usecols=[
"date",
"bundesland",
"gemeindeschluessel",
"faelle_covid_aktuell",
"betten_frei",
"betten_belegt",
],
)
df["betten_ges"] = df["betten_frei"] + df["betten_belegt"]
# check for for bad values
if df["faelle_covid_aktuell"].isnull().values.any():
raise Exception("ERROR: faelle_covid_aktuell has bad values")
if df["betten_ges"].isnull().values.any():
raise Exception("ERROR: betten_ges has bad values")
df = df.rename(
columns={
"faelle_covid_aktuell": "betten_covid",
},
errors="raise",
)
return df
# exit()
# print(len(df_divi_all))
# exit(90)
def sum_divi_data(
mode,
df_divi_all: pd.DataFrame,
l_lk_ids: tuple = (),
bl_id: int = -1,
) -> pd.DataFrame:
"""
filters df_divi_all by l_lk_ids bl_id or all
sums up betten_covid and betten_ges
mode
de-district
de-district-group: multiple districts, requires filename
de-state
DE-total
"""
df = df_divi_all
if mode == "de-district" or mode == "de-district-group":
assert len(l_lk_ids) > 0
# filter on list of lk_ids
df = df[df["gemeindeschluessel"].isin(l_lk_ids)]
assert len(df) > 0, f"ERROR: no divi data for lk_ids: {l_lk_ids}"
elif mode == "de-state":
assert type(bl_id) == int
df = df_divi_all[df_divi_all["bundesland"] == bl_id]
assert len(df) > 0, f"ERROR: no divi data for bl_id: {bl_id}"
elif mode == "DE-total":
pass
# sum up
df = df.groupby(["date"]).agg({"betten_covid": "sum", "betten_ges": "sum"})
df.index = pd.to_datetime(df.index)
date_last = pd.to_datetime(df.index[-1]).date()
# I needed to reindex the divi df to close gaps by 0!!!
idx = pd.date_range("2020-01-01", date_last)
df = df.reindex(idx, fill_value=0)
# print(df.tail())
return df
# l_lk_ids = ("02000", "11000")
# df_divi = sum_lk_divi_data(l_lk_ids)
# exit()
def load_and_sum_lk_case_data(l_lk_ids: tuple) -> pd.DataFrame:
"""
l_lk_ids : list of lk_ids:str
grouping of lk data
sum up their daily Cases_New
calc 21-day-moving sum
"""
for lk_id in l_lk_ids:
assert type(lk_id) == int, f"not integer {lk_id}"
# initialize new dataframe
df_sum = pd.DataFrame()
for lk_id in l_lk_ids:
if lk_id in (16056,): # Eisenach
continue
# load cases data
if lk_id == 11000: # Berlin
file_cases = "data/de-states/de-state-BE.tsv"
else:
file_cases = (
f'data/de-districts/de-district_timeseries-{"%05d" % lk_id}.tsv'
)
# skip missing files
if not os.path.isfile(file_cases):
print(f"ERROR: file not found: {file_cases}")
exit(1)
df_file_cases = pd.read_csv(
file_cases,
sep="\t",
index_col="Date",
parse_dates=[
"Date",
],
)
# df_file_cases = helper.pandas_set_date_index(df_file_cases)
# check for bad values
if df_file_cases["Cases_New"].isnull().values.any():
raise f"ERROR: {lk_id}: df_file_cases has bad values"
# df_file_cases['Cases_New'] = df_file_cases['Cases_New'].fillna(0)
if "Cases_New" not in df_sum.columns:
df_sum["Cases_New"] = df_file_cases["Cases_New"]
else:
df_sum["Cases_New"] += df_file_cases["Cases_New"]
# print(df_sum.tail(30))
return df_sum
def load_bl_case_data(bl_code: str) -> pd.DataFrame:
"""
Bundesland-Data
"""
# load cases data
file_cases = f"data/de-states/de-state-{bl_code}.tsv"
# skip missing files
assert os.path.isfile(file_cases), f"ERROR: file not found {file_cases}"
df = pd.read_csv(
file_cases,
sep="\t",
index_col="Date",
parse_dates=[
"Date",
],
)
# print(df.head())
# df = helper.pandas_set_date_index(df)
df = df["Cases_New"].to_frame()
# print(df.head())
# check for bad values
if df["Cases_New"].isnull().values.any():
raise f"ERROR: {file_cases} has bad values"
return df
def join_cases_divi(df_cases: pd.DataFrame, df_divi: pd.DataFrame) -> pd.DataFrame:
# initialize new dataframe
# print(df_cases.head())
# print(df_divi.head())
df_sum = df_cases
del df_cases
df_sum["betten_covid"] = df_divi["betten_covid"]
df_sum["betten_ges"] = df_divi["betten_ges"]
df_sum["Cases_New_roll_sum_21"] = (
df_sum["Cases_New"].rolling(window=21, min_periods=1).sum()
)
df_sum["quote_betten_covid_pro_cases_roll_sum_21"] = (
df_sum["betten_covid"] / df_sum["Cases_New_roll_sum_21"]
)
df_sum["betten_belegt_roll"] = (
df_sum["betten_covid"].rolling(window=7, min_periods=1).mean()
)
# after calc of 21-day sum we can remove dates prior to april 2020 where there is no DIVI data available
df_sum = df_sum.loc["2020-04-01":]
return df_sum
def forecast(df_data: pd.DataFrame, l_prognosen_prozente: tuple, quote: float):
"""
Fälle der letzten Woche für X Wochen in die Zukunft prognostizieren
returns list of dataframes
"""
# date_today = date_divi_data
# case data is often older than divi data, so we use that data (being the index of df_data)
date_today = pd.to_datetime(df_data.index[-1]).date()
df_last21 = df_data["Cases_New"].tail(21).to_frame(name="Cases_New")
ds_last7 = df_data["Cases_New"].tail(7)
assert len(ds_last7) == 7
assert len(df_last21) == 21
l_df_prognosen = []
# gen as many df as prozente given
for proz in l_prognosen_prozente:
df_prognose = pd.DataFrame()
for week in range(1, weeks_forcast + 1):
for i in range(1, 7 + 1):
day = date_today + dt.timedelta(days=+i + 7 * (week - 1))
case_prognose = ds_last7[i - 1] * pow(1 + proz / 100, week)
# new_row = {"Date": day, "Cases_New": case_prognose}
# df_prognose = df_prognose.append(new_row, ignore_index=True)
df_new_row = pd.DataFrame({"Date": [day], "Cases_New": [case_prognose]})
df_prognose = pd.concat([df_prognose, df_new_row])
df_prognose = helper.pandas_set_date_index(df_prognose)
l_df_prognosen.append(df_prognose)
# calc 21 day sum
for i in range(len(l_df_prognosen)):
df_prognose = l_df_prognosen[i]
# prepend last 21 days to calc the 21 day sum
# df_prognose = df_last21.append(df_prognose)
df_prognose = pd.concat([df_last21, df_prognose])
df_prognose["Cases_New_roll_sum_21"] = (
df_prognose["Cases_New"].rolling(window=21, min_periods=1).sum()
)
# drop the 21 days again
df_prognose = df_prognose.iloc[21:]
df_prognose["betten_covid_calc"] = (
quote * df_prognose["Cases_New_roll_sum_21"]
).round(1)
l_df_prognosen[i] = df_prognose
return l_df_prognosen
#
# 2. plotting functions
#
def plot_2_its_per_21day_cases(
df: pd.DataFrame, filename: str, landkreis_name: str
) -> None:
"""
plot 2.png
"""
fig, axes = plt.subplots(figsize=(8, 6))
colors = ("blue", "black")
myPlot = df["quote_betten_covid_pro_cases_roll_sum_21"].plot( # noqa: F841
linewidth=2.0,
legend=False,
zorder=1,
color=colors[0],
)
plt.title(f"{landkreis_name}: Quote ITS-Belegung pro 21-Tages-Fallzahl")
axes.set_xlabel("")
axes.set_ylabel("")
# color of label and ticks
axes.yaxis.label.set_color(colors[0])
axes.tick_params(axis="y", colors=colors[0])
# grid
axes.set_axisbelow(True) # for grid below the lines
axes.grid(zorder=-1)
date_min2 = pd.to_datetime(df.index[-60]).date()
date_max2 = pd.to_datetime(df.index[-1]).date()
axes.set_xlim([date_min2, date_max2])
df = df.loc[date_min2:]
y_min = df["quote_betten_covid_pro_cases_roll_sum_21"].min()
y_max = df["quote_betten_covid_pro_cases_roll_sum_21"].max()
axes.set_ylim(y_min, y_max)
fig.set_tight_layout(True)
plt.savefig(fname=filename, format="png")
def plot_it(
df_divi: pd.DataFrame,
l_df_prognosen: tuple,
l_prognosen_prozente: tuple,
filepath: str,
landkreis_name: str,
) -> None:
fig, axes = plt.subplots(figsize=(8, 6))
# drop some data from the plot
date_min = "2020-09-01"
date_max = str(pd.to_datetime(l_df_prognosen[0].index[-1]).date())
date_today = str(pd.to_datetime(df_divi.index[-1]).date())
df_divi = df_divi.loc[date_min:]
max_value = int(df_divi["betten_covid"].max())
max_value_date = df_divi["betten_covid"].idxmax()
max_value_date_str = str(max_value_date.date()) # datetime to date
myPlot = df_divi.iloc[:]["betten_covid"].plot( # noqa: F841
linewidth=1.0,
zorder=1,
label="_nolegend_",
)
# FIXME:
# "Exception has occurred: ConversionError"
# "Failed to convert value(s) to axis units: array"
# axes.hlines(
# y=max_value,
# xmin=max_value_date_str,
# xmax=date_max,
# color="grey",
# linestyles="--",
# )
l_df_prognosen[0]["betten_covid_calc"].plot(
linewidth=2.0,
label=f"{l_prognosen_prozente[0]}% (aktuell)",
)
for i in reversed(range(1, len(l_df_prognosen))):
l_df_prognosen[i]["betten_covid_calc"].plot(
linewidth=2.0,
label=f"{l_prognosen_prozente[i]}%",
)
axes.set_ylim(
0,
)
axes.tick_params(right=True, labelright=True)
# {weeks_forcast} Wochen
global weeks_forcast
title = f"{landkreis_name}: {weeks_forcast} Wochen Prognose ITS Bettenbedarf"
plt.title(title)
axes.set_xlabel("")
axes.set_ylabel("Bedarf an ITS Betten durch COVID Patienten")
axes.set_axisbelow(True) # for grid below the lines
axes.grid(zorder=-1)
helper.mpl_add_text_source(date=date_today)
plt.legend(title="Inzidenz-Prognose")
# axes.locstr = 'lower left'
fig.set_tight_layout(True)
plt.savefig(fname=filepath, format="png")
# zoomed plot
# TODO: better title?
# plt.title(title + " zoom")
date_min2 = pd.to_datetime(df_divi.index[-45]).date()
date_max2 = pd.to_datetime(l_df_prognosen[0].index[-1]).date()
axes.set_xlim([date_min2, date_max2])
# set grid to week
# no, because than the month info is lost
# wloc = WeekdayLocator()
# axes.xaxis.set_major_locator(wloc)
t = axes.text(
pd.to_datetime(df_divi.index[-15]).date(),
max_value,
"bisheriges Maximum",
verticalalignment="center",
horizontalalignment="center",
)
t.set_bbox(dict(facecolor="white", edgecolor="white", alpha=0.75))
# print(date_today)
# print(df.tail())
# print(l_df_prognosen[0].head())
# axes.vlines(x=date_today, ymin=0, ymax=10000,
# color='grey', linestyles='--')
plt.savefig(fname=filepath.replace(".png", "-zoom.png"), format="png")
# cleanup
fig.clf()
axes.cla()
plt.close("all")
plt.close(fig)
plt.close()
def doit_de_district(lk_id: int, df_divi_all: pd.DataFrame) -> None:
"""
for multiprocessing
"""
assert type(lk_id) == int
doit(mode="de-district", df_divi_all=df_divi_all, l_lk_ids=(lk_id,))
def doit_de_state(bl_id: int, df_divi_all: pd.DataFrame) -> None:
"""
for multiprocessing
"""
assert type(bl_id) == int
doit(mode="de-state", df_divi_all=df_divi_all, bl_id=bl_id)
def doit(
mode="de-district",
df_divi_all: pd.DataFrame = None,
title="",
l_lk_ids: tuple = (),
bl_id: int = -1,
filename="",
) -> None:
"""
mode:
de-district: 1 Landkreis
de-district-group: multiple districts, requires filename
de-state
DE-total
"""
assert mode in ("de-district", "de-district-group", "de-state", "DE-total")
# ensure lk_ids are a unique list
l_lk_ids = list(set(l_lk_ids))
if 16056 in l_lk_ids: # Eisenach
l_lk_ids.remove(16056)
l_lk_ids = tuple(l_lk_ids)
if mode == "de-district":
assert len(l_lk_ids) == 1
lk_id = l_lk_ids[0]
assert lk_id > 1000, f"lk_id {lk_id} is invalid"
df_divi = sum_divi_data(mode=mode, df_divi_all=df_divi_all, l_lk_ids=l_lk_ids)
if l_lk_ids[0] == 11000: # Berlin
# Berlin as it is 1 set in DIVI, but multiple in RKI
title = "Berlin"
df_cases = load_bl_case_data(bl_code="BE")
else:
df_cases = load_and_sum_lk_case_data(l_lk_ids=l_lk_ids)
title = helper.d_lk_name_from_lk_id["%05d" % lk_id]
filepath = f'{dir_out}/single/{"%05d" % lk_id}.png'
elif mode == "de-district-group":
assert filename != "", f"ERROR: filename missing for {title}"
assert len(l_lk_ids) > 0, f"ERROR lk_ids empty for {title}"
assert title != "", f"ERROR: title empty for filename {filename}"
# print(title)
# print(l_lk_ids)
df_divi = sum_divi_data(mode=mode, df_divi_all=df_divi_all, l_lk_ids=l_lk_ids)
df_cases = load_and_sum_lk_case_data(l_lk_ids=l_lk_ids)
filepath = f"{dir_out}/de-district-group/{filename}.png"
elif mode == "de-state":
df_divi = sum_divi_data(mode=mode, df_divi_all=df_divi_all, bl_id=bl_id)
bl_code = helper.d_BL_code_from_BL_ID[int(bl_id)]
df_cases = load_bl_case_data(bl_code=bl_code)
title = helper.d_BL_name_from_BL_Code[bl_code]
filepath = f"{dir_out}/de-states/{bl_code}.png"
elif mode == "DE-total":
df_divi = sum_divi_data(mode=mode, df_divi_all=df_divi_all)
df_cases = load_bl_case_data(bl_code="DE-total")
filepath = f"{dir_out}/de-states/DE-total.png"
title = "Deutschland gesamt"
# filter out data newer than latest DIVI data
# print(df.tail(3))
df_cases = df_cases[df_cases.index <= df_divi.index[-1]]
# print(df.tail(3))
df_data = join_cases_divi(df_cases=df_cases, df_divi=df_divi)
# print(df_data.tail())
quote = df_data["quote_betten_covid_pro_cases_roll_sum_21"].tail(7).mean()
# Inzidenzänderung
# inzidenz diese Woche
inzidenz1 = df_data["Cases_New"].tail(7).sum()
inzidenz2 = df_data["Cases_New"].tail(14).sum() - inzidenz1
if inzidenz2 != 0:
change = round((inzidenz1 / inzidenz2 - 1) * 100, 1)
else:
change = 0
l_prognosen_prozente = (change, -25, 0, 25, 50)
l_df_prognosen = forecast(
df_data=df_data,
l_prognosen_prozente=l_prognosen_prozente,
quote=quote,
)
if mode == "DE-total":
print("Dates")
print("DIVI", pd.to_datetime(df_divi.index[-1]).date())
print("DE: cases", pd.to_datetime(df_cases.index[-1]).date())
print("DE: forecast", pd.to_datetime(l_df_prognosen[0].index[0]).date())
# TODO
plot_it(
df_divi=df_divi,
l_df_prognosen=l_df_prognosen,
l_prognosen_prozente=l_prognosen_prozente,
filepath=filepath,
landkreis_name=title,
)
def main() -> None:
# now via multiprocessing
pool = mp.Pool(processes=mp.cpu_count())
df_divi_all = load_divi_data()
print("DE-total")
doit(mode="DE-total", df_divi_all=df_divi_all)
print("de-states")
l1 = range(1, 16 + 1)
l2 = [df_divi_all] * len(l1)
res = pool.starmap(func=doit_de_state, iterable=zip(l1, l2)) # noqa: F841
print("de-district-group")
# groups generated via icu-groups.py
l_groupes = helper.read_json_file("data/de-divi/lk-groups.json")
for d in l_groupes:
title = d["title"]
my_id = d["id"]
l_lk_ids = [int(x) for x in d["lk_ids"]]
doit(
mode="de-district-group",
df_divi_all=df_divi_all,
title=title,
l_lk_ids=l_lk_ids,
filename=str(my_id),
)
print("de-districts")
l_lk_ids = helper.read_json_file("data/de-divi/lkids.json")
l_pile_of_work = []
for lk_id in l_lk_ids:
lk_id = int(lk_id)
if lk_id == 16056: # Eisenach
continue
# doit(mode="de-district", l_lk_ids=(lk_id,))
l_pile_of_work.append(lk_id)
l1 = l_pile_of_work
l2 = [df_divi_all] * len(l1)
res = pool.starmap(doit_de_district, iterable=zip(l1, l2)) # noqa: F841
#
# Tests
#
# Unna: 4 Wochen Prognose für @doc_emed
# print("Unna")
# weeks_forcast = 4
# doit(mode="de-district", l_lk_ids=(5978,))
# Modelltests mit Daten von Erlangen
# print("Erlangen")
# doit(mode="de-district", l_lk_ids=(9562,))
# l_lk_ids = (14612, 14628, 14625, 14627, 14626) # Cluster DD
# l_lk_ids = (14612,) # DD
# l_lk_ids = (9563, 9573) # Fürth SK+LK
# l_lk_ids = (9562, 9572, 9474) # Erlangen Umland
# df_divi = sum_divi_data(
# mode="de-district", df_divi_all=df_divi_all, l_lk_ids=l_lk_ids
# )
# df_cases = load_and_sum_lk_case_data(l_lk_ids=l_lk_ids)
# df_data = join_cases_divi(df_cases=df_cases, df_divi=df_divi)
# # l_lk_ids = helper.read_json_file("data/de-divi/lkids.json")
# plot_2_its_per_21day_cases(
# df=df_data,
# filename="out.png",
# landkreis_name=helper.d_lk_name_from_lk_id["%05d" % l_lk_ids[0]],
# )
print("runtime: %ds on %d CPUs" % (time.time() - timestart, mp.cpu_count()))
if __name__ == "__main__":
main()