-
Notifications
You must be signed in to change notification settings - Fork 171
/
raft_paper_test.go
814 lines (736 loc) · 25.2 KB
/
raft_paper_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
This file contains tests which verify that the scenarios described
in the raft paper (https://raft.github.io/raft.pdf) are
handled by the raft implementation correctly. Each test focuses on
several sentences written in the paper. This could help us to prevent
most implementation bugs.
Each test is composed of three parts: init, test and check.
Init part uses simple and understandable way to simulate the init state.
Test part uses Step function to generate the scenario. Check part checks
outgoing messages and state.
*/
package raft
import (
"fmt"
"sort"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
pb "go.etcd.io/raft/v3/raftpb"
)
func TestFollowerUpdateTermFromMessage(t *testing.T) {
testUpdateTermFromMessage(t, StateFollower)
}
func TestCandidateUpdateTermFromMessage(t *testing.T) {
testUpdateTermFromMessage(t, StateCandidate)
}
func TestLeaderUpdateTermFromMessage(t *testing.T) {
testUpdateTermFromMessage(t, StateLeader)
}
// testUpdateTermFromMessage tests that if one server’s current term is
// smaller than the other’s, then it updates its current term to the larger
// value. If a candidate or leader discovers that its term is out of date,
// it immediately reverts to follower state.
// Reference: section 5.1
func testUpdateTermFromMessage(t *testing.T, state StateType) {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
switch state {
case StateFollower:
r.becomeFollower(1, 2)
case StateCandidate:
r.becomeCandidate()
case StateLeader:
r.becomeCandidate()
r.becomeLeader()
}
r.Step(pb.Message{Type: pb.MsgApp, Term: 2})
assert.Equal(t, uint64(2), r.Term)
assert.Equal(t, StateFollower, r.state)
}
// TestRejectStaleTermMessage tests that if a server receives a request with
// a stale term number, it rejects the request.
// Our implementation ignores the request instead.
// Reference: section 5.1
func TestRejectStaleTermMessage(t *testing.T) {
called := false
fakeStep := func(_ *raft, _ pb.Message) error {
called = true
return nil
}
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
r.step = fakeStep
r.loadState(pb.HardState{Term: 2})
r.Step(pb.Message{Type: pb.MsgApp, Term: r.Term - 1})
assert.False(t, called)
}
// TestStartAsFollower tests that when servers start up, they begin as followers.
// Reference: section 5.2
func TestStartAsFollower(t *testing.T) {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
assert.Equal(t, StateFollower, r.state)
}
// TestLeaderBcastBeat tests that if the leader receives a heartbeat tick,
// it will send a MsgHeartbeat with m.Index = 0, m.LogTerm=0 and empty entries
// as heartbeat to all followers.
// Reference: section 5.2
func TestLeaderBcastBeat(t *testing.T) {
// heartbeat interval
hi := 1
r := newTestRaft(1, 10, hi, newTestMemoryStorage(withPeers(1, 2, 3)))
r.becomeCandidate()
r.becomeLeader()
for i := 0; i < 10; i++ {
mustAppendEntry(r, pb.Entry{Index: uint64(i) + 1})
}
for i := 0; i < hi; i++ {
r.tick()
}
msgs := r.readMessages()
sort.Sort(messageSlice(msgs))
assert.Equal(t, []pb.Message{
{From: 1, To: 2, Term: 1, Type: pb.MsgHeartbeat},
{From: 1, To: 3, Term: 1, Type: pb.MsgHeartbeat},
}, msgs)
}
func TestFollowerStartElection(t *testing.T) {
testNonleaderStartElection(t, StateFollower)
}
func TestCandidateStartNewElection(t *testing.T) {
testNonleaderStartElection(t, StateCandidate)
}
// testNonleaderStartElection tests that if a follower receives no communication
// over election timeout, it begins an election to choose a new leader. It
// increments its current term and transitions to candidate state. It then
// votes for itself and issues RequestVote RPCs in parallel to each of the
// other servers in the cluster.
// Reference: section 5.2
// Also if a candidate fails to obtain a majority, it will time out and
// start a new election by incrementing its term and initiating another
// round of RequestVote RPCs.
// Reference: section 5.2
func testNonleaderStartElection(t *testing.T, state StateType) {
// election timeout
et := 10
r := newTestRaft(1, et, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
switch state {
case StateFollower:
r.becomeFollower(1, 2)
case StateCandidate:
r.becomeCandidate()
}
for i := 1; i < 2*et; i++ {
r.tick()
}
r.advanceMessagesAfterAppend()
assert.Equal(t, uint64(2), r.Term)
assert.Equal(t, StateCandidate, r.state)
assert.True(t, r.trk.Votes[r.id])
msgs := r.readMessages()
sort.Sort(messageSlice(msgs))
assert.Equal(t, []pb.Message{
{From: 1, To: 2, Term: 2, Type: pb.MsgVote},
{From: 1, To: 3, Term: 2, Type: pb.MsgVote},
}, msgs)
}
// TestLeaderElectionInOneRoundRPC tests all cases that may happen in
// leader election during one round of RequestVote RPC:
// a) it wins the election
// b) it loses the election
// c) it is unclear about the result
// Reference: section 5.2
func TestLeaderElectionInOneRoundRPC(t *testing.T) {
tests := []struct {
size int
votes map[uint64]bool
state StateType
}{
// win the election when receiving votes from a majority of the servers
{1, map[uint64]bool{}, StateLeader},
{3, map[uint64]bool{2: true, 3: true}, StateLeader},
{3, map[uint64]bool{2: true}, StateLeader},
{5, map[uint64]bool{2: true, 3: true, 4: true, 5: true}, StateLeader},
{5, map[uint64]bool{2: true, 3: true, 4: true}, StateLeader},
{5, map[uint64]bool{2: true, 3: true}, StateLeader},
// return to follower state if it receives vote denial from a majority
{3, map[uint64]bool{2: false, 3: false}, StateFollower},
{5, map[uint64]bool{2: false, 3: false, 4: false, 5: false}, StateFollower},
{5, map[uint64]bool{2: true, 3: false, 4: false, 5: false}, StateFollower},
// stay in candidate if it does not obtain the majority
{3, map[uint64]bool{}, StateCandidate},
{5, map[uint64]bool{2: true}, StateCandidate},
{5, map[uint64]bool{2: false, 3: false}, StateCandidate},
{5, map[uint64]bool{}, StateCandidate},
}
for i, tt := range tests {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(idsBySize(tt.size)...)))
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
r.advanceMessagesAfterAppend()
for id, vote := range tt.votes {
r.Step(pb.Message{From: id, To: 1, Term: r.Term, Type: pb.MsgVoteResp, Reject: !vote})
}
assert.Equal(t, tt.state, r.state, "#%d", i)
assert.Equal(t, uint64(1), r.Term, "#%d", i)
}
}
// TestFollowerVote tests that each follower will vote for at most one
// candidate in a given term, on a first-come-first-served basis.
// Reference: section 5.2
func TestFollowerVote(t *testing.T) {
tests := []struct {
vote uint64
nvote uint64
wreject bool
}{
{None, 2, false},
{None, 3, false},
{2, 2, false},
{3, 3, false},
{2, 3, true},
{3, 2, true},
}
for i, tt := range tests {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
r.loadState(pb.HardState{Term: 1, Vote: tt.vote})
r.Step(pb.Message{From: tt.nvote, To: 1, Term: 1, Type: pb.MsgVote})
assert.Equal(t, []pb.Message{
{From: 1, To: tt.nvote, Term: 1, Type: pb.MsgVoteResp, Reject: tt.wreject},
}, r.msgsAfterAppend, "#%d", i)
}
}
// TestCandidateFallback tests that while waiting for votes,
// if a candidate receives an AppendEntries RPC from another server claiming
// to be leader whose term is at least as large as the candidate's current term,
// it recognizes the leader as legitimate and returns to follower state.
// Reference: section 5.2
func TestCandidateFallback(t *testing.T) {
tests := []pb.Message{
{From: 2, To: 1, Term: 1, Type: pb.MsgApp},
{From: 2, To: 1, Term: 2, Type: pb.MsgApp},
}
for i, tt := range tests {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
require.Equal(t, StateCandidate, r.state, "#%d", i)
r.Step(tt)
assert.Equal(t, StateFollower, r.state, "#%d", i)
assert.Equal(t, tt.Term, r.Term, "#%d", i)
}
}
func TestFollowerElectionTimeoutRandomized(t *testing.T) {
SetLogger(discardLogger)
defer SetLogger(defaultLogger)
testNonleaderElectionTimeoutRandomized(t, StateFollower)
}
func TestCandidateElectionTimeoutRandomized(t *testing.T) {
SetLogger(discardLogger)
defer SetLogger(defaultLogger)
testNonleaderElectionTimeoutRandomized(t, StateCandidate)
}
// testNonleaderElectionTimeoutRandomized tests that election timeout for
// follower or candidate is randomized.
// Reference: section 5.2
func testNonleaderElectionTimeoutRandomized(t *testing.T, state StateType) {
et := 10
r := newTestRaft(1, et, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
timeouts := make(map[int]bool)
for round := 0; round < 50*et; round++ {
switch state {
case StateFollower:
r.becomeFollower(r.Term+1, 2)
case StateCandidate:
r.becomeCandidate()
}
time := 0
for len(r.readMessages()) == 0 {
r.tick()
time++
}
timeouts[time] = true
}
for d := et; d < 2*et; d++ {
assert.True(t, timeouts[d], "timeout in %d ticks should happen", d)
}
}
func TestFollowersElectionTimeoutNonconflict(t *testing.T) {
SetLogger(discardLogger)
defer SetLogger(defaultLogger)
testNonleadersElectionTimeoutNonconflict(t, StateFollower)
}
func TestCandidatesElectionTimeoutNonconflict(t *testing.T) {
SetLogger(discardLogger)
defer SetLogger(defaultLogger)
testNonleadersElectionTimeoutNonconflict(t, StateCandidate)
}
// testNonleadersElectionTimeoutNonconflict tests that in most cases only a
// single server(follower or candidate) will time out, which reduces the
// likelihood of split vote in the new election.
// Reference: section 5.2
func testNonleadersElectionTimeoutNonconflict(t *testing.T, state StateType) {
et := 10
size := 5
rs := make([]*raft, size)
ids := idsBySize(size)
for k := range rs {
rs[k] = newTestRaft(ids[k], et, 1, newTestMemoryStorage(withPeers(ids...)))
}
conflicts := 0
for round := 0; round < 1000; round++ {
for _, r := range rs {
switch state {
case StateFollower:
r.becomeFollower(r.Term+1, None)
case StateCandidate:
r.becomeCandidate()
}
}
timeoutNum := 0
for timeoutNum == 0 {
for _, r := range rs {
r.tick()
if len(r.readMessages()) > 0 {
timeoutNum++
}
}
}
// several rafts time out at the same tick
if timeoutNum > 1 {
conflicts++
}
}
assert.LessOrEqual(t, float64(conflicts)/1000, 0.3)
}
// TestLeaderStartReplication tests that when receiving client proposals,
// the leader appends the proposal to its log as a new entry, then issues
// AppendEntries RPCs in parallel to each of the other servers to replicate
// the entry. Also, when sending an AppendEntries RPC, the leader includes
// the index and term of the entry in its log that immediately precedes
// the new entries.
// Also, it writes the new entry into stable storage.
// Reference: section 5.3
func TestLeaderStartReplication(t *testing.T) {
s := newTestMemoryStorage(withPeers(1, 2, 3))
r := newTestRaft(1, 10, 1, s)
r.becomeCandidate()
r.becomeLeader()
commitNoopEntry(r, s)
li := r.raftLog.lastIndex()
ents := []pb.Entry{{Data: []byte("some data")}}
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: ents})
assert.Equal(t, li+1, r.raftLog.lastIndex())
assert.Equal(t, li, r.raftLog.committed)
msgs := r.readMessages()
sort.Sort(messageSlice(msgs))
wents := []pb.Entry{{Index: li + 1, Term: 1, Data: []byte("some data")}}
assert.Equal(t, []pb.Message{
{From: 1, To: 2, Term: 1, Type: pb.MsgApp, Index: li, LogTerm: 1, Entries: wents, Commit: li},
{From: 1, To: 3, Term: 1, Type: pb.MsgApp, Index: li, LogTerm: 1, Entries: wents, Commit: li},
}, msgs)
assert.Equal(t, []pb.Entry{
{Index: li + 1, Term: 1, Data: []byte("some data")},
}, r.raftLog.nextUnstableEnts())
}
// TestLeaderCommitEntry tests that when the entry has been safely replicated,
// the leader gives out the applied entries, which can be applied to its state
// machine.
// Also, the leader keeps track of the highest index it knows to be committed,
// and it includes that index in future AppendEntries RPCs so that the other
// servers eventually find out.
// Reference: section 5.3
func TestLeaderCommitEntry(t *testing.T) {
s := newTestMemoryStorage(withPeers(1, 2, 3))
r := newTestRaft(1, 10, 1, s)
r.becomeCandidate()
r.becomeLeader()
commitNoopEntry(r, s)
li := r.raftLog.lastIndex()
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
for _, m := range r.readMessages() {
r.Step(acceptAndReply(m))
}
assert.Equal(t, li+1, r.raftLog.committed)
assert.Equal(t, []pb.Entry{
{Index: li + 1, Term: 1, Data: []byte("some data")},
}, r.raftLog.nextCommittedEnts(true))
msgs := r.readMessages()
sort.Sort(messageSlice(msgs))
for i, m := range msgs {
assert.Equal(t, uint64(i+2), m.To)
assert.Equal(t, pb.MsgApp, m.Type)
assert.Equal(t, li+1, m.Commit)
}
}
// TestLeaderAcknowledgeCommit tests that a log entry is committed once the
// leader that created the entry has replicated it on a majority of the servers.
// Reference: section 5.3
func TestLeaderAcknowledgeCommit(t *testing.T) {
tests := []struct {
size int
nonLeaderAcceptors map[uint64]bool
wack bool
}{
{1, nil, true},
{3, nil, false},
{3, map[uint64]bool{2: true}, true},
{3, map[uint64]bool{2: true, 3: true}, true},
{5, nil, false},
{5, map[uint64]bool{2: true}, false},
{5, map[uint64]bool{2: true, 3: true}, true},
{5, map[uint64]bool{2: true, 3: true, 4: true}, true},
{5, map[uint64]bool{2: true, 3: true, 4: true, 5: true}, true},
}
for i, tt := range tests {
s := newTestMemoryStorage(withPeers(idsBySize(tt.size)...))
r := newTestRaft(1, 10, 1, s)
r.becomeCandidate()
r.becomeLeader()
commitNoopEntry(r, s)
li := r.raftLog.lastIndex()
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
r.advanceMessagesAfterAppend()
for _, m := range r.msgs {
if tt.nonLeaderAcceptors[m.To] {
r.Step(acceptAndReply(m))
}
}
assert.Equal(t, tt.wack, r.raftLog.committed > li, "#%d", i)
}
}
// TestLeaderCommitPrecedingEntries tests that when leader commits a log entry,
// it also commits all preceding entries in the leader’s log, including
// entries created by previous leaders.
// Also, it applies the entry to its local state machine (in log order).
// Reference: section 5.3
func TestLeaderCommitPrecedingEntries(t *testing.T) {
tests := [][]pb.Entry{
{},
{{Term: 2, Index: 1}},
{{Term: 1, Index: 1}, {Term: 2, Index: 2}},
{{Term: 1, Index: 1}},
}
for i, tt := range tests {
storage := newTestMemoryStorage(withPeers(1, 2, 3))
storage.Append(tt)
r := newTestRaft(1, 10, 1, storage)
r.loadState(pb.HardState{Term: 2})
r.becomeCandidate()
r.becomeLeader()
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
for _, m := range r.readMessages() {
r.Step(acceptAndReply(m))
}
li := uint64(len(tt))
assert.Equal(t, append(tt,
pb.Entry{Term: 3, Index: li + 1},
pb.Entry{Term: 3, Index: li + 2, Data: []byte("some data")},
), r.raftLog.nextCommittedEnts(true), "#%d", i)
}
}
// TestFollowerCommitEntry tests that once a follower learns that a log entry
// is committed, it applies the entry to its local state machine (in log order).
// Reference: section 5.3
func TestFollowerCommitEntry(t *testing.T) {
tests := []struct {
ents []pb.Entry
commit uint64
}{
{
[]pb.Entry{
{Term: 1, Index: 1, Data: []byte("some data")},
},
1,
},
{
[]pb.Entry{
{Term: 1, Index: 1, Data: []byte("some data")},
{Term: 1, Index: 2, Data: []byte("some data2")},
},
2,
},
{
[]pb.Entry{
{Term: 1, Index: 1, Data: []byte("some data2")},
{Term: 1, Index: 2, Data: []byte("some data")},
},
2,
},
{
[]pb.Entry{
{Term: 1, Index: 1, Data: []byte("some data")},
{Term: 1, Index: 2, Data: []byte("some data2")},
},
1,
},
}
for i, tt := range tests {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
r.becomeFollower(1, 2)
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgApp, Term: 1, Entries: tt.ents, Commit: tt.commit})
assert.Equal(t, tt.commit, r.raftLog.committed, "#%d", i)
assert.Equal(t, tt.ents[:int(tt.commit)], r.raftLog.nextCommittedEnts(true), "#%d", i)
}
}
// TestFollowerCheckMsgApp tests that if the follower does not find an
// entry in its log with the same index and term as the one in AppendEntries RPC,
// then it refuses the new entries. Otherwise it replies that it accepts the
// append entries.
// Reference: section 5.3
func TestFollowerCheckMsgApp(t *testing.T) {
ents := []pb.Entry{{Term: 1, Index: 1}, {Term: 2, Index: 2}}
tests := []struct {
term uint64
index uint64
windex uint64
wreject bool
wrejectHint uint64
wlogterm uint64
}{
// match with committed entries
{0, 0, 1, false, 0, 0},
{ents[0].Term, ents[0].Index, 1, false, 0, 0},
// match with uncommitted entries
{ents[1].Term, ents[1].Index, 2, false, 0, 0},
// unmatch with existing entry
{ents[0].Term, ents[1].Index, ents[1].Index, true, 1, 1},
// unexisting entry
{ents[1].Term + 1, ents[1].Index + 1, ents[1].Index + 1, true, 2, 2},
}
for i, tt := range tests {
storage := newTestMemoryStorage(withPeers(1, 2, 3))
storage.Append(ents)
r := newTestRaft(1, 10, 1, storage)
r.loadState(pb.HardState{Commit: 1})
r.becomeFollower(2, 2)
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgApp, Term: 2, LogTerm: tt.term, Index: tt.index})
assert.Equal(t, []pb.Message{
{From: 1, To: 2, Type: pb.MsgAppResp, Term: 2, Index: tt.windex, Reject: tt.wreject, RejectHint: tt.wrejectHint, LogTerm: tt.wlogterm},
}, r.readMessages(), "#%d", i)
}
}
// TestFollowerAppendEntries tests that when AppendEntries RPC is valid,
// the follower will delete the existing conflict entry and all that follow it,
// and append any new entries not already in the log.
// Also, it writes the new entry into stable storage.
// Reference: section 5.3
func TestFollowerAppendEntries(t *testing.T) {
tests := []struct {
index, term uint64
ents []pb.Entry
wents []pb.Entry
wunstable []pb.Entry
}{
{
2, 2,
index(3).terms(3),
index(1).terms(1, 2, 3),
index(3).terms(3),
},
{
1, 1,
index(2).terms(3, 4),
index(1).terms(1, 3, 4),
index(2).terms(3, 4),
},
{
0, 0,
index(1).terms(1),
index(1).terms(1, 2),
nil,
},
{
0, 0,
index(1).terms(3),
index(1).terms(3),
index(1).terms(3),
},
}
for i, tt := range tests {
storage := newTestMemoryStorage(withPeers(1, 2, 3))
storage.Append([]pb.Entry{{Term: 1, Index: 1}, {Term: 2, Index: 2}})
r := newTestRaft(1, 10, 1, storage)
r.becomeFollower(2, 2)
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgApp, Term: 2, LogTerm: tt.term, Index: tt.index, Entries: tt.ents})
assert.Equal(t, tt.wents, r.raftLog.allEntries(), "#%d", i)
assert.Equal(t, tt.wunstable, r.raftLog.nextUnstableEnts(), "#%d", i)
}
}
// TestLeaderSyncFollowerLog tests that the leader could bring a follower's log
// into consistency with its own.
// Reference: section 5.3, figure 7
func TestLeaderSyncFollowerLog(t *testing.T) {
ents := index(0).terms(0, 1, 1, 1, 4, 4, 5, 5, 6, 6, 6)
term := uint64(8)
for i, tt := range [][]pb.Entry{
index(0).terms(0, 1, 1, 1, 4, 4, 5, 5, 6, 6),
index(0).terms(0, 1, 1, 1, 4, 4),
index(0).terms(0, 1, 1, 1, 4, 4, 5, 5, 6, 6, 6, 6),
index(0).terms(0, 1, 1, 1, 4, 4, 5, 5, 6, 6, 6, 7, 7),
index(0).terms(0, 1, 1, 1, 4, 4, 4, 4),
index(0).terms(0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3),
} {
leadStorage := newTestMemoryStorage(withPeers(1, 2, 3))
leadStorage.Append(ents)
lead := newTestRaft(1, 10, 1, leadStorage)
lead.loadState(pb.HardState{Commit: lead.raftLog.lastIndex(), Term: term})
followerStorage := newTestMemoryStorage(withPeers(1, 2, 3))
followerStorage.Append(tt)
follower := newTestRaft(2, 10, 1, followerStorage)
follower.loadState(pb.HardState{Term: term - 1})
// It is necessary to have a three-node cluster.
// The second may have more up-to-date log than the first one, so the
// first node needs the vote from the third node to become the leader.
n := newNetwork(lead, follower, nopStepper)
n.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// The election occurs in the term after the one we loaded with
// lead.loadState above.
n.send(pb.Message{From: 3, To: 1, Type: pb.MsgVoteResp, Term: term + 1})
n.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
assert.Empty(t, diffu(ltoa(lead.raftLog), ltoa(follower.raftLog)), "#%d", i)
}
}
// TestVoteRequest tests that the vote request includes information about the candidate’s log
// and are sent to all of the other nodes.
// Reference: section 5.4.1
func TestVoteRequest(t *testing.T) {
tests := []struct {
ents []pb.Entry
wterm uint64
}{
{index(1).terms(1), 2},
{index(1).terms(1, 2), 3},
}
for j, tt := range tests {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
r.Step(pb.Message{
From: 2, To: 1, Type: pb.MsgApp, Term: tt.wterm - 1, LogTerm: 0, Index: 0, Entries: tt.ents,
})
r.readMessages()
for i := 1; i < r.electionTimeout*2; i++ {
r.tickElection()
}
msgs := r.readMessages()
sort.Sort(messageSlice(msgs))
require.Len(t, msgs, 2, "#%d", j)
for i, m := range msgs {
assert.Equal(t, pb.MsgVote, m.Type, "#%d.%d", j, i)
assert.Equal(t, uint64(i+2), m.To, "#%d.%d", j, i)
assert.Equal(t, tt.wterm, m.Term, "#%d.%d", j, i)
assert.Equal(t, tt.ents[len(tt.ents)-1].Index, m.Index, "#%d.%d", j, i)
assert.Equal(t, tt.ents[len(tt.ents)-1].Term, m.LogTerm, "#%d.%d", j, i)
}
}
}
// TestVoter tests the voter denies its vote if its own log is more up-to-date
// than that of the candidate.
// Reference: section 5.4.1
func TestVoter(t *testing.T) {
tests := []struct {
ents []pb.Entry
logterm uint64
index uint64
wreject bool
}{
// same logterm
{index(1).terms(1), 1, 1, false},
{index(1).terms(1), 1, 2, false},
{index(1).terms(1, 1), 1, 1, true},
// candidate higher logterm
{index(1).terms(1), 2, 1, false},
{index(1).terms(1), 2, 2, false},
{[]pb.Entry{{Term: 1, Index: 1}, {Term: 1, Index: 2}}, 2, 1, false},
// voter higher logterm
{index(1).terms(2), 1, 1, true},
{index(1).terms(2), 1, 2, true},
{index(1).terms(2, 2), 1, 1, true},
{index(1).terms(1, 1), 1, 1, true},
}
for i, tt := range tests {
storage := newTestMemoryStorage(withPeers(1, 2))
storage.Append(tt.ents)
r := newTestRaft(1, 10, 1, storage)
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgVote, Term: 3, LogTerm: tt.logterm, Index: tt.index})
msgs := r.readMessages()
require.Len(t, msgs, 1, "#%d", i)
m := msgs[0]
assert.Equal(t, pb.MsgVoteResp, m.Type, "#%d", i)
assert.Equal(t, tt.wreject, m.Reject, "#%d", i)
}
}
// TestLeaderOnlyCommitsLogFromCurrentTerm tests that only log entries from the leader’s
// current term are committed by counting replicas.
// Reference: section 5.4.2
func TestLeaderOnlyCommitsLogFromCurrentTerm(t *testing.T) {
ents := []pb.Entry{{Term: 1, Index: 1}, {Term: 2, Index: 2}}
tests := []struct {
index uint64
wcommit uint64
}{
// do not commit log entries in previous terms
{1, 0},
{2, 0},
// commit log in current term
{3, 3},
}
for i, tt := range tests {
storage := newTestMemoryStorage(withPeers(1, 2))
storage.Append(ents)
r := newTestRaft(1, 10, 1, storage)
r.loadState(pb.HardState{Term: 2})
// become leader at term 3
r.becomeCandidate()
r.becomeLeader()
r.readMessages()
// propose a entry to current term
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgAppResp, Term: r.Term, Index: tt.index})
r.advanceMessagesAfterAppend()
assert.Equal(t, tt.wcommit, r.raftLog.committed, "#%d", i)
}
}
type messageSlice []pb.Message
func (s messageSlice) Len() int { return len(s) }
func (s messageSlice) Less(i, j int) bool { return fmt.Sprint(s[i]) < fmt.Sprint(s[j]) }
func (s messageSlice) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func commitNoopEntry(r *raft, s *MemoryStorage) {
if r.state != StateLeader {
panic("it should only be used when it is the leader")
}
r.bcastAppend()
// simulate the response of MsgApp
msgs := r.readMessages()
for _, m := range msgs {
if m.Type != pb.MsgApp || len(m.Entries) != 1 || m.Entries[0].Data != nil {
panic("not a message to append noop entry")
}
r.Step(acceptAndReply(m))
}
// ignore further messages to refresh followers' commit index
r.readMessages()
s.Append(r.raftLog.nextUnstableEnts())
r.raftLog.appliedTo(r.raftLog.committed, 0 /* size */)
r.raftLog.stableTo(r.raftLog.lastEntryID())
}
func acceptAndReply(m pb.Message) pb.Message {
if m.Type != pb.MsgApp {
panic("type should be MsgApp")
}
return pb.Message{
From: m.To,
To: m.From,
Term: m.Term,
Type: pb.MsgAppResp,
Index: m.Index + uint64(len(m.Entries)),
}
}