-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigs9_total_prev_plots_no_resistance.R
191 lines (169 loc) · 11.1 KB
/
figs9_total_prev_plots_no_resistance.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
library(tidyverse)
library(readxl)
load("outputs/model_data_runs_new.RData")
params <- read_xlsx("data/parameter_sweep_new.xlsx")
params$run <- 1:length(params$RESISTANCE)
user_prev <- cbind(params$run, user_prev)
non_user_prev <- cbind(params$run, non_user_prev)
user_prev_1 <- user_prev[1,]
user_prev$resistance <- resistance[1:length(user_prev$varying_low)]
user_prev <- filter(user_prev, resistance == 0.0)
user_prev$resistance <- NULL
non_user_prev_1 <- non_user_prev[1,]
non_user_prev$resistance <- resistance[1:length(non_user_prev$varying_low)]
non_user_prev <- filter(non_user_prev, resistance == 0.0)
non_user_prev$resistance <- NULL
user_prev_long <- gather(user_prev, key = "run", value = "prev", -`params$run`)
user_prev_long <- filter(user_prev_long, ! run %in% c("varying_low_no_insect",
"varying_0.8_no_insect","varying_0.5_no_insect",
"varying_0.1_no_insect", "fixed_low",
"fixed_0.8","fixed_0.5",
"fixed_0.1", "indirect_low",
"indirect_0.1", "indirect_0.5",
"indirect_0.8", "varying_low_insect" ,
"varying_0.1_insect",
"varying_0.5_insect", "varying_0.8_insect"))
user_prev_long$run <- factor(user_prev_long$run,
levels = rev(c("fixed_low_no_insect", "fixed_0.1_no_insect",
"fixed_0.5_no_insect", "fixed_0.8_no_insect",
"indirect_low_no_insect", "indirect_0.1_no_insect",
"indirect_0.5_no_insect", "indirect_0.8_no_insect",
"fixed_low_insect" , "fixed_0.1_insect",
"fixed_0.5_insect", "fixed_0.8_insect",
"indirect_low_insect", "indirect_0.1_insect",
"indirect_0.5_insect", "indirect_0.8_insect",
"varying_low", "varying_0.1", "varying_0.5",
"varying_0.8")),
labels = rev(c("One user",
"10% usage",
"50% usage",
"80% usage",
"One user ",
"10% usage ",
"50% usage ",
"80% usage ",
"One user ",
"10% usage ",
"50% usage ",
"80% usage ",
"One user ",
"10% usage ",
"50% usage ",
"80% usage ",
"One user ",
"10% usage ",
"50% usage ",
"80% usage ")))
user_prev_long$fill <- ifelse(user_prev_long$run %in%
c("One user",
"10% usage",
"50% usage",
"80% usage",
"One user ",
"10% usage ",
"50% usage ",
"80% usage "), "Direct",
ifelse(user_prev_long$run %in%
c("One user ",
"10% usage ",
"50% usage ",
"80% usage "), "Total", "Indirect"))
user_prev_long$cat = "Net user"
user_prev_long$scenario = ifelse(user_prev_long$run %in% c("One user", "10% usage","50% usage","80% usage"), "A",
ifelse(user_prev_long$run %in% c("One user ", "10% usage ", "50% usage ", "80% usage "), "B",
ifelse(user_prev_long$run %in% c("One user ", "10% usage ", "50% usage ", "80% usage "), "C",
ifelse(user_prev_long$run %in% c("One user ", "10% usage ", "50% usage ", "80% usage "), "D", "E"))))
non_user_prev_long <- gather(non_user_prev, key = "run", value = "prev", -`params$run`)
non_user_prev_long <- filter(non_user_prev_long, ! run %in% c("varying_low_no_insect",
"varying_0.8_no_insect","varying_0.5_no_insect",
"varying_0.1_no_insect", "fixed_low",
"fixed_0.8","fixed_0.5",
"fixed_0.1", "indirect_low",
"indirect_0.1", "indirect_0.5",
"indirect_0.8", "varying_low_insect" ,
"varying_0.1_insect",
"varying_0.5_insect", "varying_0.8_insect"))
non_user_prev_long$run <- factor(non_user_prev_long$run,
levels = rev(c("fixed_low_no_insect", "fixed_0.1_no_insect",
"fixed_0.5_no_insect", "fixed_0.8_no_insect",
"indirect_low_no_insect", "indirect_0.1_no_insect",
"indirect_0.5_no_insect", "indirect_0.8_no_insect",
"fixed_low_insect" , "fixed_0.1_insect",
"fixed_0.5_insect", "fixed_0.8_insect",
"indirect_low_insect", "indirect_0.1_insect",
"indirect_0.5_insect", "indirect_0.8_insect",
"varying_low", "varying_0.1", "varying_0.5",
"varying_0.8")),
labels = rev(c("One user",
"10% usage",
"50% usage",
"80% usage",
"One user ",
"10% usage ",
"50% usage ",
"80% usage ",
"One user ",
"10% usage ",
"50% usage ",
"80% usage ",
"One user ",
"10% usage ",
"50% usage ",
"80% usage ",
"One user ",
"10% usage ",
"50% usage ",
"80% usage ")))
non_user_prev_long$fill <- ifelse(non_user_prev_long$run %in%
c("One user",
"10% usage",
"50% usage",
"80% usage",
"One user ",
"10% usage ",
"50% usage ",
"80% usage "), "Direct",
ifelse(user_prev_long$run %in%
c("One user ",
"10% usage ",
"50% usage ",
"80% usage ") , "Total", "Indirect"))
non_user_prev_long$cat = "Non net user"
non_user_prev_long$scenario = ifelse(non_user_prev_long$run %in% c("One user", "10% usage","50% usage","80% usage"), "A",
ifelse(non_user_prev_long$run %in% c("One user ", "10% usage ", "50% usage ", "80% usage "), "B",
ifelse(non_user_prev_long$run %in% c("One user ", "10% usage ", "50% usage ", "80% usage "), "C",
ifelse(non_user_prev_long$run %in% c("One user ", "10% usage ", "50% usage ", "80% usage "), "D", "E"))))
prev_data_long <- rbind(user_prev_long, non_user_prev_long)
dat = prev_data_long
dat$usage = ifelse(dat$run %in% dat$run[grep("One user", dat$run)] , 1e-5,
ifelse(dat$run %in% dat$run[grep("10% usage", dat$run)], 0.1,
ifelse(dat$run %in% dat$run[grep("50% usage", dat$run)], 0.5, 0.8)))
dat$contribution = ifelse(dat$cat == "Net user", dat$prev*dat$usage, dat$prev*(1-dat$usage))
overall = dat %>% group_by(`params$run`, run, fill, scenario) %>%
summarise("prev" = sum(contribution))
overall$cat = "Community"
prev_data_long = rbind(prev_data_long, overall)
# Reformat for plot
prev_data_long$run[grep("One user", prev_data_long$run)] <- "One user"
prev_data_long$run[grep("10% usage", prev_data_long$run)] <- "10% usage"
prev_data_long$run[grep("50% usage", prev_data_long$run)] <- "50% usage"
prev_data_long$run[grep("80% usage", prev_data_long$run)] <- "80% usage"
#-------------------------
scenario_names <- c(
"A" = "A: Direct benefit of barrier (control - a)",
"B" = "B: Indirect benefit of barrier (a - b)",
"C" = "C: Additional direct benefit of insecticide (a - c)",
"D" = "D: Additional indirect benefit of insecticide (b - d - (a - c))",
"E" = "E: All (control - d)"
)
p <- ggplot(prev_data_long) +
geom_boxplot(aes(prev/0.4779928, run, col = cat, fill = fill)) +
facet_wrap(~scenario, ncol = 1, labeller = as_labeller(scenario_names)) +
scale_x_continuous(labels = scales::percent) +
ylab("Scenario") + xlab("Relative reduction in prevalence") + scale_colour_discrete(name = "User type") +
scale_fill_manual(name = "Protection type", values = c("Direct" = "grey", "Indirect" = "yellow",
"Total"= "purple")) +
theme_bw()
print(p)
ggsave("figures/fig_s9.pdf", p, height = 6, width = 8)
ggsave("figures/fig_s9.png", p, height = 6, width = 8)