forked from joanibal/DGflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcfdsolvers.py
1013 lines (764 loc) · 39.1 KB
/
cfdsolvers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from meshes import Mesh
import copy
import time
from scipy.linalg import solve
from scipy.sparse import lil_matrix,csr_matrix
from scipy.sparse.linalg import spsolve
from dg_solver import fluxes
import dg_solver
import quadrules
class DGSolver(object):
def __init__(self, mesh, order=1,alpha=0.0,mach=0.5):
"""
class to solver for the flow in a given mesh
"""
self.order = order
self.mesh = mesh
self.mesh.curvOrder = order+1
self.nStates = 4
self.psi = None
# set BC data
self.gamma = 1.4
self.mach_Inf = mach
self.R_gas = 1.0
self.rho_Inf = 1.
self.P_inf = 1.
self.temp_Inf = 1.
self.alpha = np.deg2rad(alpha)
self.tempTot_inf = 1 + (self.gamma - 1)/2 * self.mach_Inf**2*self.temp_Inf
self.Ptot_inf = self.tempTot_inf**(self.gamma/(self.gamma - 1))
# this method assumes that there is only one of each bc type
self.curvWall = -1
self.wall = -1
self.inlet = -1
self.outlet = -1
self.freestream = 10 # some value that won't match the other bcs
self.curvFreestream = 100 # some value that won't match the other bcs
for idx, bcname in enumerate(mesh.BCs.keys()):
if 'curv' in bcname and 'wall' in bcname:
self.curvWall = idx
elif 'wall' in bcname:
self.wall = idx
elif 'inlet' in bcname:
self.inlet = idx
elif 'outlet' in bcname:
self.outlet = idx
elif 'farfield' in bcname:
self.freestream = idx
# ====================================================
# Basis
# ====================================================
# get the basis function that are used to represent the solution
self.nSolBasis, self.solBasis = quadrules.getTriLagrangeBasis2D(order)
# number of degrees of freedom
self.dof = self.mesh.nElem*self.nSolBasis
# basis fucntion to represent the curved geometric elements
self.nCurvBasis, self.curvBasis = quadrules.getTriLagrangeBasis2D(self.mesh.curvOrder)
self.initFreestream()
# ====================================================
# Qaud rules for the mesh (get separate rules for the linear and curved elements)
# ====================================================
self.mesh.getHighOrderNodes()
# for maximum python efficiency these two nearly identical quadrature variables should be a loop
# but it works better with fortran this way
# --------------------- Linear Element Quadrature ------------------------
# these are 1d points form 0 to 1 (used for edge integration)
self.linQuadPts1D, self.linQuadWts1D = quadrules.getQuadPts1D(order+1, 0, 1)
self.nLinQuadPts1D = len(self.linQuadWts1D)
# these are 2d points of a tri element in reference space
self.linQuadPts2D, self.linQuadWts2D = quadrules.getQuadPtsTri(order+2)
self.nLinQuadPts2D = len(self.linQuadWts2D)
self.linPhi, self.linGPhi = self.getPhiMat(self.linQuadPts2D, self.solBasis, self.nSolBasis)
self.lLinEdgePhi, self.rLinEdgePhi = self.getEdgePhi(self.linQuadPts1D, self.solBasis, self.nSolBasis)
# get jacobian
self.linInvJ, self.linDetJ = self.mesh.getLinearJacobian()
# calculate inverse mass matrix for each element
self.invM = np.zeros((self.mesh.nElem, self.nSolBasis, self.nSolBasis))
for k, idx_elem in enumerate(self.mesh.linElem):
M = self.linDetJ[k] * np.matmul(np.matmul(self.linPhi.T,
np.diag(self.linQuadWts2D)), self.linPhi)
self.invM[idx_elem] = np.linalg.inv(M)
# --------------------- Curved Element Quadrature -------------------------
# these are 1d points form 0 to 1 (used for edge integration)
self.curvQuadPts1D, self.curvQuadWts1D = quadrules.getQuadPts1D(self.mesh.curvOrder+1, 0, 1)
self.nCurvQuadPts1D = len(self.curvQuadWts1D)
# these are 2d points of a tri element in reference space
self.curvQuadPts2D, self.curvQuadWts2D = quadrules.getQuadPtsTri(self.mesh.curvOrder+2)
self.nCurvQuadPts2D = len(self.curvQuadWts2D)
self.curvPhi, self.curvGPhi = self.getPhiMat(self.curvQuadPts2D, self.solBasis, self.nSolBasis)
self.lCurvEdgePhi, self.rCurvEdgePhi = self.getEdgePhi(self.curvQuadPts1D, self.solBasis, self.nSolBasis)
# get jacobian
self.mesh.nCurvElem = len(self.mesh.curvElem)
# self.curvJ = np.zeros((self.mesh.nCurvElem, self.nCurvQuadPts2D, 2, 2))
self.curvInvJ = np.zeros((self.mesh.nCurvElem, self.nCurvQuadPts2D, 2, 2))
self.curvDetJ = np.zeros((self.mesh.nCurvElem, self.nCurvQuadPts2D))
for idx_elem, _ in enumerate(self.mesh.curvElem):
# print elem
_, self.curvInvJ[idx_elem], self.curvDetJ[idx_elem] = self.mesh.getCurvedJacobian(
idx_elem, self.curvQuadPts2D, self.curvBasis)
# calculate inverse mass matrix for each element
for idx_elem, k in enumerate(self.mesh.curvElem):
M = np.matmul(np.matmul(self.curvPhi.T, np.diag(
self.curvDetJ[idx_elem]*self.curvQuadWts2D)), self.curvPhi)
self.invM[k] = np.linalg.inv(M)
self.curvDetJEdge, self.curvNormal = self.mesh.getEdgeJacobain(self.curvQuadPts1D, self.curvBasis)
def setBCFortranVariables(self):
# set external flow constants
dg_solver.constants.temptot_inf = self.tempTot_inf
dg_solver.constants.ptot_inf = self.Ptot_inf
dg_solver.constants.p_inf = self.P_inf
dg_solver.constants.alpha = self.alpha
dg_solver.constants.ub = self.Ub
def setAllFortranVariables(self):
"""
transfers all of the precomputed values to the fortran layer so they can be used for solving
+1 and reshaping everwhere because fortran is index 1 and column major
"""
self.setBCFortranVariables()
# initialize state
dg_solver.solver.u = self.U.T
dg_solver.solver.res = self.U.T
# quadrature parameters
dg_solver.quadrature.nlinquadpts1d = self.nLinQuadPts1D
dg_solver.quadrature.nlinquadpts2d = self.nLinQuadPts2D
dg_solver.quadrature.linquadwts1d = self.linQuadWts1D
dg_solver.quadrature.linquadwts2d = self.linQuadWts2D
dg_solver.quadrature.ncurvquadpts1d = self.nCurvQuadPts1D
dg_solver.quadrature.ncurvquadpts2d = self.nCurvQuadPts2D
dg_solver.quadrature.curvquadwts1d = self.curvQuadWts1D
dg_solver.quadrature.curvquadwts2d = self.curvQuadWts2D
# set mesh properties
dg_solver.mesh.curvwall = self.curvWall + 1
dg_solver.mesh.wall = self.wall + 1
dg_solver.mesh.inlet = self.inlet + 1
dg_solver.mesh.outlet = self.outlet + 1
dg_solver.mesh.freestream = self.freestream + 1
dg_solver.mesh.curvfreestream = self.curvFreestream + 1
dg_solver.mesh.innormal = self.mesh.inNormal.T
dg_solver.mesh.bcnormal = self.mesh.bcNormal.T
dg_solver.mesh.inlength = self.mesh.inLength
dg_solver.mesh.bclength = self.mesh.bcLength
dg_solver.mesh.inedge2elem = self.mesh.inEdge2Elem.T + 1
dg_solver.mesh.bcedge2elem = self.mesh.bcEdge2Elem.T + 1
dg_solver.mesh.area = self.mesh.area
dg_solver.mesh.nelem = self.mesh.nElem
dg_solver.mesh.ninedge = self.mesh.nInEdge
dg_solver.mesh.nbcedge = self.mesh.nBCEdge
dg_solver.mesh.linelem = self.mesh.linElem + 1
dg_solver.mesh.nlinelem = self.mesh.nLinElem
dg_solver.mesh.curvelem = self.mesh.curvElem + 1
dg_solver.mesh.ncurvelem = self.mesh.nCurvElem
dg_solver.mesh.elem2curvelem = self.mesh.elem2CurvElem + 1
dg_solver.mesh.invm = self.invM.reshape(self.nSolBasis, self.nSolBasis, self.mesh.nElem)
for idx_elem in range(self.mesh.nElem):
dg_solver.mesh.invm[:, :, idx_elem] = self.invM[idx_elem]
dg_solver.mesh.lininvj = np.asfortranarray(self.linInvJ.T)
for idx_linElem in range(self.mesh.nLinElem):
dg_solver.mesh.lininvj[:, :, idx_linElem] = self.linInvJ[idx_linElem]
dg_solver.mesh.lindetj = self.linDetJ
# check these np.zeros((self.mesh.nCurvElem, self.nCurvQuadPts2D, 2, 2))
dg_solver.mesh.curvinvj = self.curvInvJ.reshape(2, 2, self.nCurvQuadPts2D, self.mesh.nCurvElem)
for idx_curvElem in range(self.mesh.nCurvElem):
for q in range(self.nCurvQuadPts2D):
dg_solver.mesh.curvinvj[:, :, q, idx_curvElem] = self.curvInvJ[idx_curvElem, q]
dg_solver.mesh.curvdetj = self.curvDetJ.T
# nElem, 3, nQuadPts1D, 2
# curvDetJEdge
dg_solver.mesh.curvdetjedge = self.curvDetJEdge.reshape(self.nCurvQuadPts1D, 3, self.mesh.nCurvElem)
dg_solver.mesh.curvnormal = self.curvNormal.reshape(2, self.nCurvQuadPts1D, 3, self.mesh.nCurvElem)
for idx_curvElem in range(self.mesh.nCurvElem):
for idx_edge in range(3):
for q in range(self.nCurvQuadPts1D):
dg_solver.mesh.curvnormal[:, q, idx_edge, idx_curvElem] = self.curvNormal[idx_curvElem, idx_edge, q]
dg_solver.mesh.curvdetjedge[q, idx_edge,
idx_curvElem] = self.curvDetJEdge[idx_curvElem, idx_edge, q]
# print(self.curvDetJEdge)
# ------------- basis function values ----------
dg_solver.basis.nsolbasis = self.nSolBasis
dg_solver.basis.linphi = self.linPhi.T
dg_solver.basis.lingphi = self.linGPhi.reshape(self.mesh.nDim, self.nSolBasis, self.nLinQuadPts2D)
for q in range(self.nLinQuadPts2D):
for idx_sol in range(self.nSolBasis):
dg_solver.basis.lingphi[:, idx_sol, q] = self.linGPhi[q, idx_sol, :]
# print(self.rLinEdgePhi)
dg_solver.basis.llinedgephi = self.lLinEdgePhi.reshape(self.nSolBasis, self.nLinQuadPts1D, 3)
dg_solver.basis.rlinedgephi = self.rLinEdgePhi.reshape(self.nSolBasis, self.nLinQuadPts1D, 3)
for idx_edge in range(3):
for q in range(self.nLinQuadPts1D):
for idx_sol in range(self.nSolBasis):
dg_solver.basis.llinedgephi[idx_sol, q, idx_edge] = self.lLinEdgePhi[idx_edge, q, idx_sol]
dg_solver.basis.rlinedgephi[idx_sol, q, idx_edge] = self.rLinEdgePhi[idx_edge, q, idx_sol]
dg_solver.basis.curvphi = self.curvPhi.T
dg_solver.basis.curvgphi = self.curvGPhi.reshape(self.mesh.nDim, self.nSolBasis, self.nCurvQuadPts2D)
for q in range(self.nCurvQuadPts2D):
for idx_sol in range(self.nSolBasis):
dg_solver.basis.curvgphi[:, idx_sol, q] = self.curvGPhi[q, idx_sol, :]
# print(dg_solver.basis.curvgphi[:, idx_sol, q])
dg_solver.basis.lcurvedgephi = self.lCurvEdgePhi.reshape(self.nSolBasis, self.nCurvQuadPts1D, 3)
dg_solver.basis.rcurvedgephi = self.rCurvEdgePhi.reshape(self.nSolBasis, self.nCurvQuadPts1D, 3)
for idx_edge in range(3):
for q in range(self.nCurvQuadPts1D):
for idx_sol in range(self.nSolBasis):
dg_solver.basis.lcurvedgephi[idx_sol, q, idx_edge] = self.lCurvEdgePhi[idx_edge, q, idx_sol]
dg_solver.basis.rcurvedgephi[idx_sol, q, idx_edge] = self.rCurvEdgePhi[idx_edge, q, idx_sol]
def getPhiMat(self, quadPts2D, basis, nBasis):
nQuadPts2D = len(quadPts2D)
Phi = np.zeros((nQuadPts2D, self.nSolBasis))
dPhi_dXi = np.zeros((nQuadPts2D, self.nSolBasis, self.mesh.nDim))
for idx, pt in enumerate(quadPts2D):
# the basis function value at each of the quad points
Phi[idx], dPhi_dXi[idx] = self.solBasis(pt)
return Phi, dPhi_dXi
# precompute the values of the basis functions are each edge of the reference element
def getEdgePhi(self, quadPts1D, basis, nBasis):
# 3 because there are three faces of a triangle
nQuadPts1D = len(quadPts1D)
leftEdgePhi = np.zeros((3, nQuadPts1D, nBasis))
rightEdgePhi = np.zeros((3, nQuadPts1D, nBasis))
for edge in range(3):
# map 2D fave coordinates to
pts = np.zeros((nQuadPts1D, 2))
if edge == 0:
pts[:, 0] = 1 - quadPts1D
pts[:, 1] = quadPts1D
elif edge == 1:
pts[:, 0] = 0
pts[:, 1] = 1 - quadPts1D
elif edge == 2:
pts[:, 0] = quadPts1D
pts[:, 1] = 0
for idx, pt in enumerate(pts):
# the basis function value at each of the quad points
leftEdgePhi[edge, idx], _ = basis(pt)
for idx, pt in enumerate(pts[::-1]):
# the basis function value at each of the quad points
rightEdgePhi[edge, idx], _ = basis(pt)
return leftEdgePhi, rightEdgePhi
def initFreestream(self):
# calculate conversed qualities
Ub = self.getFarFieldState(self.alpha)
self.U = np.zeros((self.mesh.nElem, self.nSolBasis, self.nStates))
self.U[:, :] = Ub
self.Ub = Ub
def getFarFieldState(self, alpha):
c = np.sqrt(self.gamma*self.R_gas*self.temp_Inf)
u = self.mach_Inf*c
Ub = np.array([self.rho_Inf,
self.rho_Inf*u*np.cos(alpha),
self.rho_Inf*u*np.sin(alpha),
self.P_inf/(self.gamma-1) + 0.5*self.rho_Inf*u**2])
return Ub
# residuals
def getResidual(self, U):
# loop over elements and compute residual contribution from interior
self.R = np.zeros(U.shape)
self.S = np.zeros(self.mesh.nElem)
self.getInternalResiduals(U)
self.getEdgeResiduals(U)
def getInternalResiduals(self, U):
for idx_elem, elem in enumerate(self.mesh.linElem):
Uq = np.matmul(self.linPhi, U[elem])
for qPt in range(self.nLinQuadPts2D):
# Rtot = 0
flux = fluxes.analyticflux(Uq[qPt]).T
for idx_basis in range(self.nSolBasis):
self.R[elem, idx_basis] -= np.dot(np.matmul(self.linGPhi[qPt, idx_basis], self.linInvJ[idx_elem]), flux) *\
self.linQuadWts2D[qPt]*self.linDetJ[idx_elem]
# self.R[elem, idx_basis] -= Rtot
for idx_elem, elem in enumerate(self.mesh.curvElem):
Uq = np.matmul(self.curvPhi, U[elem])
for qPt in range(self.nCurvQuadPts2D):
# Rtot = 0
flux = fluxes.analyticflux(Uq[qPt]).T
for idx_basis in range(self.nSolBasis):
self.R[elem, idx_basis] -= np.dot(np.matmul(self.curvGPhi[qPt, idx_basis], self.curvInvJ[idx_elem, qPt]), flux) *\
self.curvQuadWts2D[qPt]*self.curvDetJ[idx_elem, qPt]
def getEdgeResiduals(self, U):
for idx_edge in range(self.mesh.nInEdge):
# ! get the elements connected to the edge
idx_elem_left = self.mesh.inEdge2Elem[idx_edge, 0]
idx_edge_left = self.mesh.inEdge2Elem[idx_edge, 1]
idx_elem_right = self.mesh.inEdge2Elem[idx_edge, 2]
idx_edge_right = self.mesh.inEdge2Elem[idx_edge, 3]
uL = np.matmul(self.lLinEdgePhi[idx_edge_left], U[idx_elem_left])
uR = np.matmul(self.rLinEdgePhi[idx_edge_right], U[idx_elem_right])
for idx_basis in range(self.nSolBasis):
Rtot_left = np.zeros(self.nStates)
Rtot_right = np.zeros(self.nStates)
Stot_left = 0
Stot_right = 0
for q in range(self.nLinQuadPts1D):
flux, s = fluxes.roeflux(uL[q], uR[q], self.mesh.inNormal[idx_edge])
tmp = flux*self.mesh.inLength[idx_edge] * self.linQuadWts1D[q]
Rtot_left += self.lLinEdgePhi[idx_edge_left, q, idx_basis] * tmp
Rtot_right += self.rLinEdgePhi[idx_edge_right, q, idx_basis] * tmp
Stot_left += s*self.mesh.inLength[idx_edge] * self.linQuadWts1D[q]
Stot_right += s*self.mesh.inLength[idx_edge] * self.linQuadWts1D[q]
self.R[idx_elem_left, idx_basis] += Rtot_left
self.R[idx_elem_right, idx_basis] -= Rtot_right
self.S[idx_elem_left] += Stot_left/self.nSolBasis
self.S[idx_elem_right] += Stot_right/self.nSolBasis
for idx_edge in range(self.mesh.nBCEdge):
idx_elem = self.mesh.bcEdge2Elem[idx_edge, 0]
idx_edge_loc = self.mesh.bcEdge2Elem[idx_edge, 1]
bc = self.mesh.bcEdge2Elem[idx_edge, 2]
# print(idx_elem, idx_edge, bc)
if bc == self.curvWall:
edgePhi = self.lCurvEdgePhi[idx_edge_loc]
nQuadPts = self.nCurvQuadPts1D
quadWts = self.curvQuadWts1D
elem = np.where(self.mesh.curvElem == idx_elem)[0][0]
# print(bc, idx_edge, idx_elem)
else:
edgePhi = self.lLinEdgePhi[idx_edge_loc]
nQuadPts = self.nLinQuadPts1D
quadWts = self.linQuadWts1D
uL = np.matmul(edgePhi, U[idx_elem])
# it was written this way to avoid checking the bc type in the loop of basis and q
if bc == self.wall or bc == self.curvWall:
for idx_basis in range(self.nSolBasis):
Rtot_left = np.zeros(self.nStates)
Stot_left = 0
for q in range(nQuadPts):
if bc == self.curvWall:
flux, s = fluxes.wallflux(uL[q], self.curvNormal[elem, idx_edge_loc, q])
tmp = self.curvDetJEdge[elem, idx_edge_loc, q]*quadWts[q]
else:
flux, s = fluxes.wallflux(uL[q], self.mesh.bcNormal[idx_edge])
tmp = self.mesh.bcLength[idx_edge]*quadWts[q]
Rtot_left += edgePhi[q, idx_basis] * flux * tmp
Stot_left += s*tmp/self.nSolBasis
self.R[idx_elem, idx_basis] += Rtot_left
self.S[idx_elem] += Stot_left
elif bc == self.inlet:
for idx_basis in range(self.nSolBasis):
Rtot_left = np.zeros(self.nStates)
Stot_left = 0
for q in range(nQuadPts):
flux, s = fluxes.inflowflux(uL[q], self.mesh.bcNormal[idx_edge])
# flux * delta L * wq
tmp = flux*self.mesh.bcLength[idx_edge] * self.linQuadWts1D[q]
Rtot_left += edgePhi[q, idx_basis] * tmp
Stot_left += s*self.mesh.bcLength[idx_edge]*self.linQuadWts1D[q]/self.nSolBasis
self.R[idx_elem, idx_basis] += Rtot_left
self.S[idx_elem] += Stot_left
elif bc == self.outlet:
for idx_basis in range(self.nSolBasis):
Rtot_left = np.zeros(self.nStates)
Stot_left = 0
for q in range(nQuadPts):
flux, s = fluxes.outflowflux(uL[q], self.mesh.bcNormal[idx_edge])
tmp = flux*self.mesh.bcLength[idx_edge] * self.linQuadWts1D[q]
Rtot_left += edgePhi[q, idx_basis] * tmp
Stot_left += s*self.mesh.bcLength[idx_edge]*self.linQuadWts1D[q]/self.nSolBasis
self.R[idx_elem, idx_basis] += Rtot_left
self.S[idx_elem] += Stot_left
else:
print(bc)
raise NotImplementedError
# time integration
def TVDRK2(self, cfl):
U_FE = np.zeros(self.U.shape)
self.getResidual(self.U)
dt = 2*self.mesh.area*cfl/self.S
for idx_elem in range(self.mesh.nElem):
U_FE[idx_elem] = self.U[idx_elem] - dt[idx_elem] * \
np.matmul(self.invM[idx_elem], self.R[idx_elem])
self.getResidual(U_FE)
for idx_elem in range(self.mesh.nElem):
self.U[idx_elem] = 0.5*(self.U[idx_elem] + U_FE[idx_elem] -
dt[idx_elem] * np.matmul(self.invM[idx_elem], self.R[idx_elem]))
def FE(self, cfl):
self.getResidual(self.U)
dt = 2*self.mesh.area*cfl/self.S
for idx_elem in range(self.mesh.nElem):
self.U[idx_elem] = self.U[idx_elem] - dt[idx_elem] * \
np.matmul(self.invM[idx_elem], self.R[idx_elem])
def TVDRK3(self, cfl):
U_1 = np.zeros(self.U.shape)
U_2 = np.zeros(self.U.shape)
self.getResidual(self.U)
dt = 2*self.mesh.area*cfl/self.S
for idx_elem in range(self.mesh.nElem):
U_1[idx_elem] = self.U[idx_elem] - dt[idx_elem] * \
np.matmul(self.invM[idx_elem], self.R[idx_elem])
self.getResidual(U_1)
for idx_elem in range(self.mesh.nElem):
U_2[idx_elem] = 3.0/4*self.U[idx_elem] + 1.0/4*U_1[idx_elem] - 1.0/4 * dt[idx_elem] * \
np.matmul(self.invM[idx_elem], self.R[idx_elem])
self.getResidual(U_2)
for idx_elem in range(self.mesh.nElem):
self.U[idx_elem] = 1.0/3*self.U[idx_elem] + 2.0/3*U_2[idx_elem] - 2.0/3 * dt[idx_elem] * \
np.matmul(self.invM[idx_elem], self.R[idx_elem])
def JRK(self, cfl, nStages=4):
U_stage = np.zeros(self.U.shape)
self.getResidual(self.U)
dt = 2*self.mesh.area*cfl/self.S
for ii in range(nStages, 1, -1):
for idx_elem in range(self.mesh.nElem):
U_stage[idx_elem] = self.U[idx_elem] - dt[idx_elem]/ii * \
np.matmul(self.invM[idx_elem], self.R[idx_elem])
self.getResidual(U_stage)
for idx_elem in range(self.mesh.nElem):
self.U[idx_elem] = self.U[idx_elem] - dt[idx_elem] * \
np.matmul(self.invM[idx_elem], self.R[idx_elem])
# solver
def solve(self, maxIter=10000, tol=1e-7, cfl=0.4, method='JRK', nStages=4):
if self.psi is not None:
self.psi = None
# tranfer precomputed values to the fortran layer
self.setAllFortranVariables()
t = time.time()
if method =='JRK':
self.Rmax = dg_solver.solver.solve_jrk(maxIter, tol, cfl, nStages)
else:
raise NotImplementedError
self.wallTime = time.time() - t
# transfer computed values back to python
self.U = dg_solver.solver.u.T
self.R = dg_solver.solver.res.T
self.Rmax = self.Rmax[self.Rmax > 0]
self.nIter = len(self.Rmax)
print('wall time', self.wallTime, 'iters', self.nIter, 'Rmax', self.Rmax[-1])
def solve_python(self, maxIter=10000, tol=1e-7, cfl=0.4, method='JRK'):
# needed because python still uses the flux routines
self.setBCFortranVariables()
if method =='JRK':
takeTimeStep = self.JRK
elif method == 'FE':
takeTimeStep = self.FE
elif method == 'TVDRK2':
takeTimeStep = self.TVDRK2
elif method == 'TVDRK3':
takeTimeStep = self.TVDRK3
else:
raise NotImplementedError
self.Rmax =np.zeros(maxIter)
t = time.time()
for ii in range(maxIter):
takeTimeStep(cfl)
self.Rmax[ii] = np.max(np.max(np.max(np.abs(self.R))))
if (np.mod(ii, 100) == 0):
print(ii, self.Rmax[ii] )
self.wallTime = time.time() - t
self.Rmax = self.Rmax[self.Rmax > 0]
self.nIter = len(self.Rmax)
print('wall time', self.wallTime, 'iters', self.nIter, 'Rmax', self.Rmax[-1])
# adjoint
def getdRdW(self, h=1e-5):
"""
use finite difference to compute the sensitivities of each of the residuals with respect to the states
"""
U = copy.copy(self.U)
s = np.zeros(len(self.U)) # dummy argument
res = copy.copy(self.R)
dg_solver.residuals.getresiduals( U.T, res.T, s)
res0 = copy.copy(res) # for accuracy
dR_dW = lil_matrix((U.size, U.size)) # sparse LIL format
idx = 0
for idx_elem in range(self.mesh.nElem):
for idx_basis in range(self.nSolBasis):
for idx_state in range(self.nStates):
Uold = U[idx_elem,idx_basis,idx_state]
U[idx_elem,idx_basis,idx_state] += h
dg_solver.residuals.getresiduals( U.T, res.T, s)
U[idx_elem,idx_basis,idx_state] = Uold # to prevent substractive errors
row = ((res - res0)/h).flatten() # we save the Jacobian row-wise because LIL format is more efficient
dR_dW[idx,:] = row
idx += 1
# plt.spy(dR_dW.todense())
# frame1 = plt.gca()
# frame1.axes.get_xaxis().set_visible(False)
# frame1.axes.get_yaxis().set_visible(False)
# plt.show()
return dR_dW.tocsr().transpose() # here we transpose back to get correct orientation
def getdRdX(self, h=1e-5):
"""
get the change in sensitives with respect to the design variables
*** ASSUMING ALPHA IS THE ONLY DESIGN VARIABLE ***
"""
res = copy.copy(self.R)
s = np.zeros(len(self.U)) # dummy argument
alpha = self.alpha + h
Ub = self.getFarFieldState(alpha)
dg_solver.constants.ub = Ub
dg_solver.residuals.getresiduals( self.U.T, res.T, s)
dR_dX = ((res - self.R)/h).flatten()
return dR_dX
def getdFdX(self):
"""
Computes dFdX where F = cl and X = alpha
This derivative is hand differentiated and checked against FD
"""
cl = self.postprocess()
CF = self.F/(self.gamma/2*self.P_inf*self.mach_Inf**2)
dF_dX = -CF[1]*np.sin(self.alpha)-CF[0]*np.cos(self.alpha)
return np.atleast_2d(dF_dX)
def getdFdU(self, h=1e-5):
cl0 = self.postprocess()
dF_dU = np.zeros(self.U.size)
F_elems = self.mesh.bcEdge2Elem[self.mesh.wallEdges][:,0] # these are the boundary elems that affect cl
for idx_elem in F_elems: # we only loop over these
for idx_basis in range(self.nSolBasis):
for idx_state in range(self.nStates):
idx = idx_elem*self.nSolBasis*self.nStates + idx_basis*self.nStates + idx_state
self.U[idx_elem,idx_basis,idx_state] += h
dF_dU[idx] = (self.postprocess() - cl0)/h
self.U[idx_elem,idx_basis,idx_state] -= h
return dF_dU
def solveAdjoint(self):
"""
Solves the adjoint equation, and computes total derivative
"""
t0 = time.time()
dFdX = self.getdFdX()
t1 = time.time()
dFdU = self.getdFdU()
t2 = time.time()
dRdU = self.getdRdW()
t3 = time.time()
dRdX = self.getdRdX()
t4 = time.time()
self.psi = spsolve(dRdU.transpose(),dFdU.T)
t5 = time.time()
dFdX_total = np.deg2rad(np.asscalar(dFdX - self.psi.T.dot(dRdX)))# we want dFdX per degree, since input alpha is also in degrees
t6 = time.time()
print('dFdx took ',t1-t0,' seconds')
print('dFdU took ',t2-t1,' seconds')
print('dRdU took ',t3-t2,' seconds')
print('dRdx took ',t4-t3,' seconds')
print('solving adjoint took ',t5-t4,' seconds')
print('solving total derivative took ',t6-t5,' seconds')
print('Total time: ',t6-t0,' seconds')
return dFdX_total
# postprocess
def postprocess(self):
"""
get Cl, Cd, and Cp(x)
"""
# ------------ total entropy error --------------
# entropy = np.zeros(self.mesh.nElem)
# EsTot = 0
Es = 0
areaTot = 0
rhoTot_inf = self.Ptot_inf/(self.R_gas*self.tempTot_inf)
entropyTot = self.Ptot_inf/rhoTot_inf**self.gamma
for idx_linElem, idx_elem in enumerate(self.mesh.linElem):
Uq = np.matmul(self.linPhi, self.U[idx_elem])
for qPt in range(self.nLinQuadPts2D):
# Rtot = 0
# flux = fluxes.analyticflux(Uqq[qPt]).T
# print(idx_elem)
p = (self.gamma - 1.)*(Uq[qPt, 3] - 0.5*(np.linalg.norm(Uq[qPt, 1:3])**2)/Uq[qPt, 0])
entropy = (p / Uq[qPt, 0]**self.gamma)
Es += (entropy/entropyTot - 1)**2 * self.linQuadWts2D[qPt] * self.linDetJ[idx_linElem]
areaTot += self.mesh.area[idx_elem]
for idx_curvElem, idx_elem in enumerate(self.mesh.curvElem):
Uq = np.matmul(self.curvPhi, self.U[idx_elem])
for qPt in range(self.nCurvQuadPts2D):
# Rtot = 0
# flux = fluxes.analyticflux(Uqq[qPt]).T
# print(idx_elem)
p = (self.gamma - 1.)*(Uq[qPt, 3] - 0.5*(np.linalg.norm(Uq[qPt, 1:3])**2)/Uq[qPt, 0])
entropy = (p / Uq[qPt, 0]**self.gamma)
Es += (entropy/entropyTot - 1)**2 * self.curvQuadWts2D[qPt] * self.curvDetJ[idx_curvElem, qPt]
areaTot += self.mesh.area[idx_elem]
self.Es = np.sqrt(Es/areaTot)
# --------------------- get the force acting on the wall ----------
# get the value of the **geometry** basis fucntions at each of the
# 1d quad points
geomEdgePhi, _ = self.getEdgePhi(self.curvQuadPts1D, basis=self.curvBasis, nBasis=self.nCurvBasis)
# for idx, pt in enumerate(Xi):
# # the basis function value at each of the quad points
# geomPhi[idx], _ = self.curvBasis(pt)
self.F = np.zeros(2)
self.cp_wall = np.zeros(len(self.mesh.wallEdges)*self.nCurvQuadPts1D)
self.x_wall = np.zeros(len(self.mesh.wallEdges)*self.nCurvQuadPts1D)
idx = 0
for bcEdge in self.mesh.bcEdge2Elem[self.mesh.wallEdges]:
idx_elem = bcEdge[0]
idx_curvElem = self.mesh.elem2CurvElem[idx_elem]
idx_edge_loc = bcEdge[1]
Uq = np.matmul(self.lCurvEdgePhi[idx_edge_loc], self.U[idx_elem])
nodesPos = self.mesh.curvNodes[idx_curvElem]
Xq = np.matmul(geomEdgePhi[idx_edge_loc], nodesPos )
# else:
# Upts = np.matmul(solPhi, self.U[elem])
# Xpts = np.matmul(geomPhi, nodesPos)
for qPt in range(self.nCurvQuadPts1D):
P = (self.gamma - 1.)*(Uq[qPt, 3] - 0.5*(np.linalg.norm(Uq[qPt, 1:3])**2)/Uq[qPt, 0])
delP = self.P_inf - P
self.F += -1*delP*self.curvNormal[idx_curvElem, idx_edge_loc, qPt] * \
self.curvDetJEdge[idx_curvElem, idx_edge_loc, qPt] * self.curvQuadWts1D[qPt]
# print('outlet', Rtot_left)
self.x_wall[idx] = Xq[qPt, 0]
self.cp_wall[idx] = delP
idx += 1
h = 0.0625
self.cp_wall /= (self.gamma/2*self.P_inf*self.mach_Inf**2)
self.cd = self.F[1]*np.sin(self.alpha) + self.F[0]*np.cos(self.alpha)
self.cl = self.F[1]*np.cos(self.alpha) - self.F[0]*np.sin(self.alpha)
self.cd /= (self.gamma/2*self.P_inf*self.mach_Inf**2)
self.cl /= (self.gamma/2*self.P_inf*self.mach_Inf**2)
# print('cd', self.cd, 'cl', self.cl, 'Es', self.Es)
idxs_sorted = np.argsort(self.x_wall)
self.x_wall = self.x_wall[idxs_sorted]
# self.p_wall = self.p_wall[idxs_sorted]
self.cp_wall = self.cp_wall[idxs_sorted]
return self.cl
def plotResiduals(self):
plt.semilogy(range(1, self.nIter+1), self.Rmax, label='order: ' + str(self.order))
plt.xlabel('Iteration', fontsize=16)
plt.ylabel(r'$|R_{\infty }|$', fontsize=16)
plt.title('Residual History', fontsize=16)
def plotCP(self):
plt.plot(self.x_wall, self.cp_wall, '-', label='order: ' + str(self.order))
plt.xlabel(r'$X$', fontsize=16)
plt.ylabel(r'$C_p$', fontsize=16)
plt.title(r'$C_p$ along the bump')
plt.gca().invert_yaxis()
def getMachNumber(self, U):
p = (self.gamma - 1.)*(U[:,3] - 0.5*(np.linalg.norm(U[:,1:3], axis=1)**2)/U[:,0])
c = np.sqrt(self.gamma*p/U[:,0])
m = np.linalg.norm(U[:,1:3], axis=1)/U[:,0]/c
return m
def writeSolution(self, fileName):
# so all the array values are printed
np.set_printoptions(threshold=np.inf)
# for each set of elements of the same geoemtric order
with open(fileName + '.dat', 'w') as fid:
fid.write('TITLE = "bump"\n')
# Variable names
var_list = ['X', 'Y', 'U', 'V', 'rho', 'M', 'Index']
if self.psi is not None:
psimat = self.psi.reshape(self.mesh.nElem, self.nSolBasis, self.nStates)
var_list += ['psi1', 'psi2', 'psi3', 'psi4']
# fid.write('Variables="X", "Y", "U", "V", "rho", "P", "M", "rhoRes"\n')
var_string = 'Variables='
for i, var in enumerate(var_list):
var_string += '"{}"'.format(var)
if i < len(var_list) - 1:
var_string += ', '
else:
var_string += '\n'
fid.write(var_string)
elemOrder = {
self.mesh.curvOrder: np.array([], dtype=int),
1: self.mesh.linElem,
}
elemOrder[self.mesh.curvOrder] = np.append(elemOrder[self.mesh.curvOrder], self.mesh.curvElem)
# self.mesh.curvOrder: self.mesh.curvElem
for q in elemOrder.keys():
# get the basis functions for the mapping
# this is a little bit of extra work for the linear elements, but by not utilizing the constant jacobian
# the next loop can be written without conditional statments (if q==1) which is nice and clean
#
nBasis, basis = quadrules.getTriLagrangeBasis2D(q)
# these are the points(in reference space) where the function will be evaluated
interpOrder = min([self.order+3, q+4])
Xi = quadrules.getTriLagrangePts2D(interpOrder)
# create element connectivity
N = len(Xi)
nodes = np.arange(1, N+1)
rows = []
k = 0
for ii in range(1, interpOrder+1)[::-1]:
rows.append(nodes[k:k+ii+1])
k += ii+1
# conn = np.zeros(interpOrder**2, 3)
conn = []
# idx_conn = 0
for idx, row in enumerate(rows):
# do add the top and bottom elements to the connectivity matrix
k = len(row)
if idx > 0:
# add the elements below this row of nodes
for i in range(k-1):
conn.append([row[i], row[i+1], row[i]-k])
# add the elements above the row
for i in range(k-1):
conn.append([row[i], row[i+1], row[i+1]+k-1])
conn = np.array(conn)
geomPhi = np.zeros((len(Xi), nBasis))
solPhi = np.zeros((len(Xi), self.nSolBasis))
for idx, pt in enumerate(Xi):
# the basis function value at each of the quad points
geomPhi[idx], _ = basis(pt)
solPhi[idx], _ = self.solBasis(pt)
# loop over elements now
for idx_elem, elem in enumerate(elemOrder[q]):
# nodesPos = self.mesh.node2Pos[self.mesh.elem2Node[elem]]
if q == 1:
nodesPos = self.mesh.node2Pos[self.mesh.elem2Node[elem]]
else:
nodesPos = self.mesh.curvNodes[idx_elem]
Upts = np.matmul(solPhi, self.U[elem])
Xpts = np.matmul(geomPhi, nodesPos)
# ---------------- calculate mach number
Mpts = self.getMachNumber(Upts)
# writeZone()
# print(elem)
fid.write('ZONE\n')
fid.write('T="elem '+str(elem)+'"\n')
fid.write('DataPacking=Block\n')
fid.write('ZoneType=FETRIANGLE\n')
fid.write('N=' + str(N) +
' E=' + str(interpOrder**2)+'\n')
# fid.write('VarLocation=([3-9]=CellCentered)\n')
fid.write('#XData (Grid Variables must be nodal)\n')
fid.write(str(Xpts[:, 0])[1:-1]+'\n')
fid.write('#YData (Grid Variables must be nodal)\n')
fid.write(str(Xpts[:, 1])[1:-1]+'\n')
fid.write('#U Data \n')
fid.write(str(Upts[:, 1]/Upts[:, 0])[1:-1]+'\n')
fid.write('#V Data \n')
fid.write(str(Upts[:, 2]/Upts[:, 0])[1:-1]+'\n')
fid.write('#rho Data \n')
fid.write(str(Upts[:, 0])[1:-1]+'\n')
# fid.write('#P Data \n')
# fid.write(str(solver_post.p)[1:-1]+'\n')
fid.write('#M Data \n')
fid.write(str(Mpts)[1:-1]+'\n')
# fid.write('#rhoRes Data \n')
# fid.write(str(solver.res[0, :])[1:-1]+'\n')
fid.write('#number Data \n')
fid.write(str(np.ones(N)*elem+1)[1:-1]+'\n')
if self.psi is not None:
psipts = np.matmul(solPhi, psimat[elem, :, :])
fid.write('#Adjoint data\n')
for i in range(4):
fid.write(str(psipts[:,i])[1:-1]+'\n')
fid.write('#Connectivity List\n')
for idx in range(len(conn)):
fid.write(str(conn[idx])[1:-1]+'\n')
# set np back to normal
np.set_printoptions(threshold=1000)
def testFreestream(self):
""" changes all the bc to free stream and then preforms 10000
iterateions and sets the bcs back again
"""
oldBCEdge2Elem = copy.copy(self.mesh.bcEdge2Elem)
#change all bc conditions to freestream
self.mesh.bcEdge2Elem[:,2] = self.freestream
self.mesh.bcEdge2Elem[oldBCEdge2Elem[:,2] == self.curvWall, 2] = self.curvFreestream
self.solve(maxIter=1000, tol=1e-32, cfl=0.4)
self.mesh.bcEdge2Elem[:,2] = oldBCEdge2Elem[:,2]
if __name__ == '__main__':
def bumpShape(x, y):
return 0.0625*np.exp(-25*x**2)
grid = Mesh('meshes/bump0_kfid.gri', wallGeomFunc=bumpShape)
# grid = Mesh('meshes/naca0012.gri')
# grid = Mesh('meshes/test0_2.gri', wallGeomFunc=bumpShape)