-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis.py
1100 lines (955 loc) · 37.4 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Univ. Michigan Aerostructural model.
# Based on OpenAeroStruct by John Hwang, and John Jasa (github.com/mdolab/OpenAeroStruct)
# author: Sam Friedman ([email protected])
# date: 4/12/2017
"""
analysis.py
This module contains wrapper functions for each part of the multidisciplinary
analysis of the OpenAeroStruct model. Specifically, this is the
solve_nonlinear() method to each OpenMDAO component in OpenAeroStruct. To use
them, first call the setup() function, which returns an OASProblem object. This
object contains the following attributes:
OASProblem.prob_dict : Dictionary of problem parameters
OASProblem.surfaces : List of surface dictionaries defining properties of
each lifting surface
OASProblem.comp_dict : Dictionary of OpenAeroStruct component objects
which contain the analysis of each with a
dictionary of problem parameters
For each wrapper function, optionally pass in the necessary component object
from the comp_dict dictionary. Using pre-initialized components drastically
reduces the computation time for a full multidisciplinary analysis. Without
pre-initialization of the component, another argument must be given to initialize
the component within the function. This extra argument is usually the surface
dictionary, but can be other problem or surface parameters. An example with
pre-initiazation is shown in aerodynamics() and structures(). A example without
pre-initialization is shown in aerodynamics2() and structures2().
An example of the multidisciplinary analysis of the coupled system is in the
if __name__=="__main__" function. It uses fixed point iteration to converge the
coupled system of loads and displacements.
Current list of function wrappers available:
vlm_geometry
assemble_aic
aero_circulations
vlm_forces
compute_nodes
assemble_k
spatial_beam_fem
spatial_beam_disp
materials_tube
geometry_mesh
transfer_displacements
transfer_loads
For now, these functions only support a single lifting surface, and does not
support B-spline customization of the lifting surface.
Future work required:
- Extend functions to be used with multiple lifting surfaces
- Write wrappers for remaining components in functionals.py, VLMFunctionals,
SpatialBeamFunctionals
- Fix BSpline surface customization
- Complete example of full multidisciplinary analysis in
if __name__=="__main__" function
"""
# make compatible Python 2.x to 3.x
from __future__ import print_function, division
# from future.builtins import range # make compatible Python 2.x to 3.x
import numpy as np
import math
from materials import MaterialsTube, ComputeModuli
from spatialbeam import ComputeNodes, AssembleK, SpatialBeamFEM, SpatialBeamDisp#, SpatialBeamEnergy, SpatialBeamWeight, SpatialBeamVonMisesTube, SpatialBeamFailureKS
from transfer import TransferDisplacements, TransferLoads
from vlm import VLMGeometry, AssembleAIC, AeroCirculations, VLMForces#, VLMLiftDrag, VLMCoeffs, TotalLift, TotalDrag
from geometry import GeometryMesh#, Bspline, MonotonicConstraint
from run_classes import OASProblem
from openmdao.api import Component
# from functionals import FunctionalBreguetRange, FunctionalEquilibrium
# to disable OpenMDAO warnings which will create an error in Matlab
import warnings
warnings.filterwarnings("ignore")
try:
import OAS_API
fortran_flag = True
data_type = float
except:
fortran_flag = False
data_type = complex
"""
================================================================================
GEOMETRY / SETUP
================================================================================
From run_classes.py: Manipulate geometry mesh based on high-level design parameters """
def setup(prob_dict={}, surfaces=[{}]):
''' Setup the aerostruct mesh
Default wing mesh (single lifting surface):
-------------------------------------------
name = 'wing' # name of the surface
num_x = 3 # number of chordwise points
num_y = 5 # number of spanwise points
root_chord = 1. # root chord
span_cos_spacing = 1 # 0 for uniform spanwise panels
# 1 for cosine-spaced panels
# any value between 0 and 1 for a mixed spacing
chord_cos_spacing = 0. # 0 for uniform chordwise panels
# 1 for cosine-spaced panels
# any value between 0 and 1 for a mixed spacing
wing_type = 'rect' # initial shape of the wing either 'CRM' or 'rect'
# 'CRM' can have different options after it, such as 'CRM:alpha_2.75' for the CRM shape at alpha=2.75
offset = np.array([0., 0., 0.]) # coordinates to offset the surface from its default location
symmetry = True # if true, model one half of wing reflected across the plane y = 0
S_ref_type = 'wetted' # 'wetted' or 'projected'
# Simple Geometric Variables
span = 10. # full wingspan
dihedral = 0. # wing dihedral angle in degrees positive is upward
sweep = 0. # wing sweep angle in degrees positive sweeps back
taper = 1. # taper ratio; 1. is uniform chord
# B-spline Geometric Variables. The number of control points for each of these variables can be specified in surf_dict
# by adding the prefix "num" to the variable (e.g. num_twist)
twist_cp = None
chord_cp = None
xshear_cp = None
zshear_cp = None
thickness_cp = None
Default wing parameters:
------------------------
Zero-lift aerodynamic performance
CL0 = 0.0 # CL value at AoA (alpha) = 0
CD0 = 0.0 # CD value at AoA (alpha) = 0
Airfoil properties for viscous drag calculation
k_lam = 0.05 # percentage of chord with laminar flow, used for viscous drag
t_over_c = 0.12 # thickness over chord ratio (NACA0012)
c_max_t = .303 # chordwise location of maximum (NACA0012) thickness
Structural values are based on aluminum
E = 70.e9 # [Pa] Young's modulus of the spar
G = 30.e9 # [Pa] shear modulus of the spar
yield = 20.e6 # [Pa] yield stress
mrho = 3.e3 # [kg/m^3] material density
fem_origin = 0.35 # chordwise location of the spar
Other
W0 = 0.4 * 3e5 # [kg] MTOW of B777 is 3e5 kg with fuel
Default problem parameters:
---------------------------
Re = 1e6 # Reynolds number
reynolds_length = 1.0 # characteristic Reynolds length
alpha = 5. # angle of attack
CT = 9.80665 * 17.e-6 # [1/s] (9.81 N/kg * 17e-6 kg/N/s)
R = 14.3e6 # [m] maximum range
M = 0.84 # Mach number at cruise
rho = 0.38 # [kg/m^3] air density at 35,000 ft
a = 295.4 # [m/s] speed of sound at 35,000 ft
with_viscous = False # if true, compute viscous drag
'''
# Use steps in run_aerostruct.py to add wing surface to problem
# Set problem type
prob_dict.update({'type' : 'aerostruct'}) # this doesn't really matter since we aren't calling OASProblem.setup()
# Instantiate problem
OAS_prob = OASProblem(prob_dict)
for surface in surfaces:
# Add SpatialBeamFEM size
FEMsize = 6 * surface['num_y'] + 6
surface.update({'FEMsize': FEMsize})
# Add the specified wing surface to the problem.
OAS_prob.add_surface(surface)
# Add materials properties for the wing surface to the surface dict in OAS_prob
for idx, surface in enumerate(OAS_prob.surfaces):
A, Iy, Iz, J = materials_tube(surface['radius'], surface['thickness'], surface)
OAS_prob.surfaces[idx].update({
'A': A,
'Iy': Iy,
'Iz': Iz,
'J': J,
})
# Get total panels and save in prob_dict
tot_panels = 0
for surface in OAS_prob.surfaces:
ny = surface['num_y']
nx = surface['num_x']
tot_panels += (nx - 1) * (ny - 1)
OAS_prob.prob_dict.update({'tot_panels': tot_panels})
# Assume we are only using a single lifting surface for now
surface = OAS_prob.surfaces[0]
# Initialize the OpenAeroStruct components and save them in a component dictionary
comp_dict = {}
comp_dict['MaterialsTube'] = MaterialsTube(surface)
comp_dict['GeometryMesh'] = GeometryMesh(surface)
comp_dict['TransferDisplacements'] = TransferDisplacements(surface)
comp_dict['VLMGeometry'] = VLMGeometry(surface)
comp_dict['AssembleAIC'] = AssembleAIC([surface])
comp_dict['AeroCirculations'] = AeroCirculations(OAS_prob.prob_dict['tot_panels'])
comp_dict['VLMForces'] = VLMForces([surface])
comp_dict['TransferLoads'] = TransferLoads(surface)
comp_dict['ComputeNodes'] = ComputeNodes(surface)
comp_dict['AssembleK'] = AssembleK(surface)
comp_dict['SpatialBeamFEM'] = SpatialBeamFEM(surface['FEMsize'])
comp_dict['SpatialBeamDisp'] = SpatialBeamDisp(surface)
OAS_prob.comp_dict = comp_dict
return OAS_prob
def gen_init_mesh(surface, comp_dict=None):
''' Generate initial def_mesh '''
if comp_dict:
mesh = geometry_mesh(surface, comp_dict['GeometryMesh'])
disp = np.zeros((surface['num_y'], 6), dtype=data_type) # zero displacement
def_mesh = transfer_displacements(mesh, disp, comp=comp_dict['TransferDisplacements'])
else:
mesh = geometry_mesh(surface)
disp = np.zeros((surface['num_y'], 6), dtype=data_type) # zero displacement
def_mesh = transfer_displacements(mesh, disp, surface)
return def_mesh
def aerodynamics(def_mesh, surface, prob_dict, comp_dict):
''' Use pre-initialized components '''
# Unpack variables
v = prob_dict.get('v')
alpha = prob_dict.get('alpha')
size = prob_dict.get('tot_panels')
rho = prob_dict.get('rho')
b_pts, c_pts, widths, cos_sweep, lengths, normals, S_ref = vlm_geometry(def_mesh, comp_dict['VLMGeometry'])
AIC, rhs= assemble_aic(surface, def_mesh, b_pts, c_pts, normals, v, alpha, comp_dict['AssembleAIC'])
circulations = aero_circulations(AIC, rhs, comp_dict['AeroCirculations'])
sec_forces = vlm_forces(surface, def_mesh, b_pts, circulations, alpha, v, rho, comp_dict['VLMForces'])
loads = transfer_loads(def_mesh, sec_forces, comp_dict['TransferLoads'])
return loads
def aerodynamics2(def_mesh, surface, prob_dict):
''' Don't use pre-initialized components '''
# Unpack variables
v = prob_dict.get('v')
alpha = prob_dict.get('alpha')
size = prob_dict.get('tot_panels')
rho = prob_dict.get('rho')
b_pts, c_pts, widths, cos_sweep, lengths, normals, S_ref = vlm_geometry(def_mesh, surface)
AIC, rhs= assemble_aic(surface, def_mesh, b_pts, c_pts, normals, v, alpha)
circulations = aero_circulations(AIC, rhs, size)
sec_forces = vlm_forces(surface, def_mesh, b_pts, circulations, alpha, v, rho)
loads = transfer_loads(def_mesh, sec_forces, surface)
return loads
def structures(loads, surface, prob_dict, comp_dict):
''' Use pre-initialized components '''
# Unpack variables
A = surface.get('A')
Iy = surface.get('Iy')
Iz = surface.get('Iz')
J = surface.get('J')
Kbt = surface.get('Kbt')
E = surface.get('E')
G = surface.get('G')
mesh = surface.get('mesh')
v = prob_dict.get('v')
alpha = prob_dict.get('alpha')
size = prob_dict.get('tot_panels')
nodes = compute_nodes(mesh, comp_dict['ComputeNodes'])
K, forces = assemble_k(A, Iy, Iz, J, Kbt, nodes, loads, E, G, comp_dict['AssembleK'])
disp_aug = spatial_beam_fem(K, forces, comp_dict['SpatialBeamFEM'])
disp = spatial_beam_disp(disp_aug, comp_dict['SpatialBeamDisp'])
def_mesh = transfer_displacements(mesh, disp, comp_dict['TransferDisplacements'])
return def_mesh # Output the def_mesh matrix
def structures2(loads, surface, prob_dict):
''' Don't use pre-initialized components '''
# Unpack variables
A = surface.get('A')
Iy = surface.get('Iy')
Iz = surface.get('Iz')
J = surface.get('J')
Kbt = surface.get('Kbt')
E = surface.get('E')
G = surface.get('G')
mesh = surface.get('mesh')
FEMsize = surface.get('FEMsize')
v = prob_dict.get('v')
alpha = prob_dict.get('alpha')
# Add the specified wing surface to the problem.
nodes = compute_nodes(mesh, surface)
K, forces = assemble_k(A, Iy, Iz, J, Kbt, nodes, loads, E, G, surface)
disp_aug = spatial_beam_fem(K, forces, FEMsize)
disp = spatial_beam_disp(disp_aug, surface)
def_mesh = transfer_displacements(mesh, disp, surface)
return def_mesh # Output the def_mesh matrix
# def cp2pt(cp, jac):
# """
# General function to translate from control points to actual points
# using a b-spline representation.
# """
# pt = np.zeros(jac.shape[0])
# pt = jac.dot(cp)
# return pt
def geometry_mesh(surface, comp=None):
"""
OpenMDAO component that performs mesh manipulation functions. It reads in
the initial mesh from the surface dictionary and outputs the altered
mesh based on the geometric design variables.
Parameters
----------
sweep : float
Shearing sweep angle in degrees.
dihedral : float
Dihedral angle in degrees.
twist[ny] : numpy array
1-D array of rotation angles for each wing slice in degrees.
chord_dist[ny] : numpy array
Chord length for each panel edge.
taper : float
Taper ratio for the wing; 1 is untapered, 0 goes to a point at the tip.
comp : (optional) OpenAeroStruct component object.
Returns
-------
mesh[nx, ny, 3] : numpy array
Modified mesh based on the initial mesh in the surface dictionary and
the geometric design variables.
"""
if not comp:
comp = GeometryMesh(surface)
params = {}
#
# The following is copied from the __init__() method of GeometryMesh()
#
ny = surface['num_y']
ones_list = ['taper', 'chord_cp'] # Variables that should be initialized to one
zeros_list = ['sweep', 'dihedral', 'twist_cp', 'xshear_cp', 'zshear_cp'] # Variables that should be initialized to zero
set_list = ['span'] # Variables that should be initialized to given value
all_geo_vars = ones_list + zeros_list + set_list
geo_params = {}
for var in all_geo_vars:
if len(var.split('_')) > 1:
param = var.split('_')[0]
if var in ones_list:
val = np.ones(ny)
elif var in zeros_list:
val = np.zeros(ny)
else:
val = surface[var]
else:
param = var
if var in ones_list:
val = 1.0
elif var in zeros_list:
val = 0.0
else:
val = surface[var]
geo_params[param] = val
if var in surface['geo_vars']:
params.update({param: val})
unknowns = {
'mesh': comp.mesh
}
resids = None
comp.solve_nonlinear(params, unknowns, resids)
mesh = unknowns.get('mesh')
return mesh
# def b_spline_surface(surface):
# """
# General function to translate from control points to actual points
# using a b-spline representation.
# Parameters
# ----------
# cpname : string
# Name of the OpenMDAO component containing the control point values.
# ptname : string
# Name of the OpenMDAO component that will contain the interpolated
# b-spline values.
# n_input : int
# Number of input control points.
# n_output : int
# Number of outputted interpolated b-spline points.
# """
# comp = Bspline(cpname, ptname, n_input, n_output)
# params = {
# cpname: cpname
# }
# unknowns = {
# ptname: np.zeros(n_output)
# }
# resids = None
# comp.solve_nonlinear(params, unknowns, resids)
# ptname_out = unknowns.get(ptname)
# return ptname_out
def transfer_displacements(mesh, disp, comp):
"""
Perform displacement transfer.
Apply the computed displacements on the original mesh to obtain
the deformed mesh.
Parameters
----------
mesh[nx, ny, 3] : numpy array
Flattened array defining the lifting surfaces.
disp[ny, 6] : numpy array
Flattened array containing displacements on the FEM component.
Contains displacements for all six degrees of freedom, including
displacements in the x, y, and z directions, and rotations about the
x, y, and z axes.
comp : Either OpenAeroStruct component object (better), or surface dict.
Returns
-------
def_mesh[nx, ny, 3] : numpy array
Flattened array defining the lifting surfaces after deformation.
"""
if not isinstance(comp, Component):
surface = comp
comp = TransferDisplacements(surface)
params = {
'mesh': mesh,
'disp': disp
}
unknowns = {
'def_mesh': np.zeros((comp.nx, comp.ny, 3), dtype=data_type)
}
resids = None
comp.solve_nonlinear(params, unknowns, resids)
def_mesh = unknowns.get('def_mesh')
return def_mesh
"""
================================================================================
AERODYNAMICS
================================================================================
From vlm.py: """
def vlm_geometry(def_mesh, comp):
""" Compute various geometric properties for VLM analysis.
Parameters
----------
def_mesh[nx, ny, 3] : numpy array
Array defining the nodal coordinates of the lifting surface.
comp : Either OpenAeroStruct component object (better), or surface dict.
Returns
-------
b_pts[nx-1, ny, 3] : numpy array
Bound points for the horseshoe vortices, found along the 1/4 chord.
c_pts[nx-1, ny-1, 3] : numpy array
Collocation points on the 3/4 chord line where the flow tangency
condition is satisfed. Used to set up the linear system.
widths[nx-1, ny-1] : numpy array
The spanwise widths of each individual panel.
lengths[ny] : numpy array
The chordwise length of the entire airfoil following the camber line.
normals[nx-1, ny-1, 3] : numpy array
The normal vector for each panel, computed as the cross of the two
diagonals from the mesh points.
S_ref : float
The reference area of the lifting surface.
"""
if not isinstance(comp, Component):
surface = comp
comp = VLMGeometry(surface)
params = {
'def_mesh': def_mesh
}
unknowns = {
'b_pts': np.zeros((comp.nx-1, comp.ny, 3), dtype=data_type),
'c_pts': np.zeros((comp.nx-1, comp.ny-1, 3)),
'widths': np.zeros((comp.ny-1)),
'cos_sweep': np.zeros((comp.ny-1)),
'lengths': np.zeros((comp.ny)),
'normals': np.zeros((comp.nx-1, comp.ny-1, 3)),
'S_ref': 0.
}
resids=None
comp.solve_nonlinear(params, unknowns, resids)
b_pts=unknowns.get('b_pts')
c_pts=unknowns.get('c_pts')
widths=unknowns.get('widths')
cos_sweep=unknowns.get('cos_sweep')
lengths=unknowns.get('lengths')
normals=unknowns.get('normals')
S_ref=unknowns.get('S_ref')
return b_pts, c_pts, widths, cos_sweep, lengths, normals, S_ref
def assemble_aic(surface, def_mesh, b_pts, c_pts, normals, v, alpha, comp=None):
"""
Compute the circulations based on the AIC matrix and the panel velocities.
Note that the flow tangency condition is enforced at the 3/4 chord point.
There are multiple versions of the first four parameters with one
for each surface defined.
Each of these parameters has the name of the surface prepended on the
actual parameter name.
Parameters
----------
def_mesh[nx, ny, 3] : numpy array
Array defining the nodal coordinates of the lifting surface.
b_pts[nx-1, ny, 3] : numpy array
Bound points for the horseshoe vortices, found along the 1/4 chord.
c_pts[nx-1, ny-1, 3] : numpy array
Collocation points on the 3/4 chord line where the flow tangency
condition is satisfed. Used to set up the linear system.
normals[nx-1, ny-1, 3] : numpy array
The normal vector for each panel, computed as the cross of the two
diagonals from the mesh points.
v : float
Freestream air velocity in m/s.
alpha : float
Angle of attack in degrees.
comp : (Optional) OpenAeroStruct component object.
Returns
-------
AIC[(nx-1)*(ny-1), (nx-1)*(ny-1)] : numpy array
The aerodynamic influence coefficient matrix. Solving the linear system
of AIC * circulations = n * v gives us the circulations for each of the
horseshoe vortices.
rhs[(nx-1)*(ny-1)] : numpy array
The right-hand-side of the linear system that yields the circulations.
"""
surfaces = [surface]
if not comp:
comp=AssembleAIC(surfaces)
params = {}
ny=surface['num_y']
nx=surface['num_x']
name=surface['name']
params.update({
name + 'def_mesh': def_mesh,
name + 'b_pts': b_pts,
name + 'c_pts': c_pts,
name + 'normals': normals
})
params.update({
'v': v,
'alpha': alpha
})
unknowns={
'AIC': np.zeros((comp.tot_panels, comp.tot_panels), dtype = data_type),
'rhs': np.zeros((comp.tot_panels), dtype = data_type)
}
resids=None
comp.solve_nonlinear(params, unknowns, resids)
AIC=unknowns.get('AIC')
rhs=unknowns.get('rhs')
return AIC, rhs
def aero_circulations(AIC, rhs, comp):
"""
Compute the circulation strengths of the horseshoe vortices by solving the
linear system AIC * circulations = n * v.
This component is copied from OpenMDAO's LinearSystem component with the
names of the parameters and outputs changed to match our problem formulation.
Parameters
----------
AIC[(nx-1)*(ny-1), (nx-1)*(ny-1)] : numpy array
The aerodynamic influence coefficient matrix. Solving the linear system
of AIC * circulations = n * v gives us the circulations for each of the
horseshoe vortices.
rhs[(nx-1)*(ny-1)] : numpy array
The right-hand-side of the linear system that yields the circulations.
comp : Either OpenAeroStruct component object (better), or tot_panels.
Returns
-------
circulations[(nx-1)*(ny-1)] : numpy array
Augmented displacement array. Obtained by solving the system
AIC * circulations = n * v.
"""
if not isinstance(comp, Component):
tot_panels = comp
comp = AeroCirculations(tot_panels)
size = comp.size
params = {
'AIC': AIC,
'rhs': rhs
}
unknowns = {
'circulations': np.zeros((size), dtype=data_type)
}
resids = {
'circulations': np.zeros((size), dtype=data_type)
}
comp.solve_nonlinear(params, unknowns, resids)
circulations = unknowns.get('circulations')
return circulations
def vlm_forces(surface, def_mesh, b_pts, circulations, alpha, v, rho, comp=None):
""" Compute aerodynamic forces acting on each section.
Note that the first two parameters and the unknown have the surface name
prepended on it. E.g., 'def_mesh' on a surface called 'wing' would be
'wing.def_mesh', etc.
Parameters
----------
def_mesh[nx, ny, 3] : numpy array
Array defining the nodal coordinates of the lifting surface.
b_pts[nx-1, ny, 3] : numpy array
Bound points for the horseshoe vortices, found along the 1/4 chord.
circulations : numpy array
Flattened vector of horseshoe vortex strengths calculated by solving
the linear system of AIC_mtx * circulations = rhs, where rhs is
based on the air velocity at each collocation point.
alpha : float
Angle of attack in degrees.
v : float
Freestream air velocity in m/s.
rho : float
Air density in kg/m^3.
comp : (optional) OpenAeroStruct component object.
Returns
-------
sec_forces[nx-1, ny-1, 3] : numpy array
Flattened array containing the sectional forces acting on each panel.
Stored in Fortran order (only relevant with more than one chordwise
panel).
"""
surfaces = [surface]
if not comp:
comp=VLMForces(surfaces)
params = {}
unknowns = {}
tot_panels = 0
name = surface['name']
ny = surface['num_y']
nx = surface['num_x']
tot_panels += (nx - 1) * (ny - 1)
params.update({
name+'def_mesh': def_mesh,
name+'b_pts': b_pts
})
unknowns.update({
name+'sec_forces': np.zeros((nx-1, ny-1, 3), dtype=data_type)
})
params.update({
'circulations': circulations,
'alpha': alpha,
'v': v,
'rho': rho
})
resids=None
comp.solve_nonlinear(params, unknowns, resids)
sec_forces=unknowns.get(name+'sec_forces')
return sec_forces
def transfer_loads(def_mesh, sec_forces, comp):
"""
Perform aerodynamic load transfer.
Apply the computed sectional forces on the aerodynamic surfaces to
obtain the deformed mesh FEM loads.
Parameters
----------
def_mesh[nx, ny, 3] : numpy array
Flattened array defining the lifting surfaces after deformation.
sec_forces[nx-1, ny-1, 3] : numpy array
Flattened array containing the sectional forces acting on each panel.
Stored in Fortran order (only relevant when more than one chordwise
panel).
comp : Either OpenAeroStruct component object (better), or surface dict.
Returns
-------
loads[ny, 6] : numpy array
Flattened array containing the loads applied on the FEM component,
computed from the sectional forces.
"""
if not isinstance(comp, Component):
surface = comp
comp=TransferLoads(surface)
params={
'def_mesh': def_mesh,
'sec_forces': sec_forces
}
unknowns={
'loads': np.zeros((comp.ny, 6), dtype=complex)
}
resids=None
comp.solve_nonlinear(params, unknowns, resids)
loads=unknowns.get('loads')
return loads
"""
================================================================================
STRUCTURES
================================================================================
From spatialbeam.py: Define the structural analysis component using spatial beam theory. """
def spatial_beam_fem(K, forces, comp):
"""
Compute the displacements and rotations by solving the linear system
using the structural stiffness matrix.
This component is copied from OpenMDAO's LinearSystem component with the
names of the parameters and outputs changed to match our problem formulation.
Parameters
----------
K[6*(ny+1), 6*(ny+1)] : numpy array
Stiffness matrix for the entire FEM system. Used to solve the linear
system K * u = f to obtain the displacements, u.
forces[6*(ny+1)] : numpy array
Right-hand-side of the linear system. The loads from the aerodynamic
analysis or the user-defined loads.
comp : Either OpenAeroStruct component object (better), or FEMsize of surface.
Returns
-------
disp_aug[6*(ny+1)] : numpy array
Augmented displacement array. Obtained by solving the system
K * u = f, where f is a flattened version of loads.
"""
if not isinstance(comp, Component):
FEMsize = comp
comp=SpatialBeamFEM(FEMsize)
else:
FEMsize = comp.size
params={
'K': K,
'forces': forces
}
unknowns={
'disp_aug': np.zeros((FEMsize), dtype=data_type)
}
resids={
'disp_aug': np.zeros((FEMsize), dtype=data_type)
}
comp.solve_nonlinear(params, unknowns, resids)
disp_aug=unknowns.get('disp_aug')
return disp_aug
def spatial_beam_disp(disp_aug, comp):
"""
Reshape the flattened displacements from the linear system solution into
a 2D array so we can more easily use the results.
The solution to the linear system has additional results due to the
constraints on the FEM model. The displacements from this portion of
the linear system are not needed, so we select only the relevant
portion of the displacements for further calculations.
Parameters
----------
disp_aug[6*(ny+1)] : numpy array
Augmented displacement array. Obtained by solving the system
K * disp_aug = forces, where forces is a flattened version of loads.
comp : Either OpenAeroStruct component object (better), or surface dict.
Returns
-------
disp[6*ny] : numpy array
Actual displacement array formed by truncating disp_aug.
"""
if not isinstance(comp, Component):
surface = comp
comp=SpatialBeamDisp(surface)
params={
'disp_aug': disp_aug
}
unknowns={
'disp': np.zeros((comp.ny, 6), dtype=data_type)
}
resids=None
comp.solve_nonlinear(params, unknowns, resids)
disp=unknowns.get('disp')
return disp
def compute_nodes(mesh, comp):
"""
Compute FEM nodes based on aerodynamic mesh.
The FEM nodes are placed at fem_origin * chord,
with the default fem_origin = 0.35.
Parameters
----------
mesh[nx, ny, 3] : numpy array
Array defining the nodal points of the lifting surface.
comp : Either OpenAeroStruct component object (better), or surface dict.
Returns
-------
nodes[ny, 3] : numpy array
Flattened array with coordinates for each FEM node.
"""
if not isinstance(comp, Component):
surface = comp
comp=ComputeNodes(surface)
params={
'mesh': mesh
}
unknowns={
'nodes': np.zeros((comp.ny, 3), dtype=data_type)
}
resids=None
comp.solve_nonlinear(params, unknowns, resids)
nodes=unknowns.get('nodes')
return nodes
def assemble_k(A, Iy, Iz, J, Kbt, E, G, nodes, loads, comp):
"""
Compute the displacements and rotations by solving the linear system
using the structural stiffness matrix.
Parameters
----------
A[ny-1] : numpy array
Areas for each FEM element.
Iy[ny-1] : numpy array
Area moment of inertia around the y-axis for each FEM element.
Iz[ny-1] : numpy array
Area moment of inertia around the z-axis for each FEM element.
J[ny-1] : numpy array
Polar moment of inertia for each FEM element.
nodes[ny, 3] : numpy array
Flattened array with coordinates for each FEM node.
loads[ny, 6] : numpy array
Flattened array containing the loads applied on the FEM component,
computed from the sectional forces.
comp : Either OpenAeroStruct component object (better), or surface dict.
Returns
-------
K[(nx-1)*(ny-1), (nx-1)*(ny-1)] : numpy array
Stiffness matrix for the entire FEM system. Used to solve the linear
system K * u = f to obtain the displacements, u.
forces[(nx-1)*(ny-1)] : numpy array
Right-hand-side of the linear system. The loads from the aerodynamic
analysis or the user-defined loads.
"""
if not isinstance(comp, Component):
surface = comp
comp = AssembleK(surface) # if component is not passed in, surface must be
params = {
'A': A,
'Iy': Iy,
'Iz': Iz,
'J': J,
'Kbt': Kbt,
'nodes': nodes,
'loads': loads,
'E': E,
'G': G
}
unknowns = {
'K': np.zeros((comp.size, comp.size), dtype=data_type),
'forces': np.zeros((comp.size), dtype=data_type)
}
resids = None
comp.solve_nonlinear(params, unknowns, resids)
K = unknowns.get('K')
forces = unknowns.get('forces')
return K, forces
"""
================================================================================
MATERIALS
================================================================================
From materials.py: """
def materials_tube(r, thickness, comp):
""" Compute geometric properties for a tube element.
Parameters
----------
r : array_like
Radii for each FEM element.
thickness : array_like
Tube thickness for each FEM element.
comp : Either OpenAeroStruct component object (better), or surface dict.
Returns
-------
A : array_like
Areas for each FEM element.
Iy : array_like
Area moment of inertia around the y-axis for each FEM element.
Iz : array_like
Area moment of inertia around the z-axis for each FEM element.
J : array_like
Polar moment of inertia for each FEM element.
"""
if not isinstance(comp, Component):
surface = comp
comp=MaterialsTube(surface)
# if not r:
# r = surface['radius'] # this is already contained in surface dict
# if not thickness:
# thickness = surface['thickness'] # this is already contained in surface dict
params={
'radius': r,
'thickness': thickness
}
unknowns={
'A': np.zeros((comp.ny - 1)),
'Iy': np.zeros((comp.ny - 1)),
'Iz': np.zeros((comp.ny - 1)),
'J': np.zeros((comp.ny - 1)),
}
resids = None
comp.solve_nonlinear(params, unknowns, resids)
A=unknowns.get('A')
Iy=unknowns.get('Iy')
Iz=unknowns.get('Iz')
J=unknowns.get('J')
return A, Iy, Iz, J
def compute_moduli(r, thickness, comp):
""" Compute geometric properties for a tube element.
Parameters
----------
r : array_like
Radii for each FEM element.
thickness : array_like
Tube thickness for each FEM element.
comp : Either OpenAeroStruct component object (better), or surface dict.
Returns
-------
A : array_like
Areas for each FEM element.
Iy : array_like
Area moment of inertia around the y-axis for each FEM element.
Iz : array_like
Area moment of inertia around the z-axis for each FEM element.
J : array_like
Polar moment of inertia for each FEM element.
"""
if not isinstance(comp, Component):
surface = comp
comp=ComputeModuli(surface)
params={
'radius': r,
'thickness': thickness
}
unknowns={